
Research Article

Sorting Data via a Look-Up-Table Neural Network and
Self-Regulating Index

Ying Zhao ,1,2 Dongli Hu,1 Dongxia Huang,1 You Liu,1 Zitong Yang,3 Lei Mao,1

Chao Liu ,4 and Fangfang Zhou 1

1School of Computer Science and Engineering, Central South University, Changsha 410083, China
2Rail Data Research and Application Key Laboratory of Hunan Province, Changsha 410083, China
3School of Automation, Central South University, Changsha 410083, China
4Institute of Systems Engineering, Academy of Military Sciences, People’s Liberation Army, Beijing 100000, China

Correspondence should be addressed to Chao Liu; generaladolph@163.com and Fangfang Zhou; zff@csu.edu.cn

Received 16 February 2020; Revised 9 June 2020; Accepted 16 June 2020; Published 27 July 2020

Academic Editor: Quanmin Zhu

Copyright © 2020 Ying Zhao et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e so-called learned sorting, which was first proposed by Google, achieves data sorting by predicting the placement positions of
unsorted data elements in a sorted sequence based on machine learning models. Learned sorting pioneers a new generation of
sorting algorithms and shows a great potential because of a theoretical time complexityO(N) and easy access to hardware-driven
accelerating approaches. However, learned sorting has two problems: controlling the monotonicity and boundedness of the
predicted placement positions and dealing with placement conflicts of repetitive elements. In this paper, a new learned sorting
algorithm named LS is proposed. We integrate a back propagation neural network with the technique of look-up-table in LS to
guarantee the monotonicity and boundedness of the predicted placement positions. We design a data structure called the self-
regulating index in LS to tentatively store and duly update placement positions for eliminating potential placement conflicts.
Results of three controlled experiments demonstrate that LS can effectively control the monotonicity and boundedness, achieve a
better time consumption than quick sort and Google’s learned sorting, and present an excellent stability when the data size or the
number of repetitive elements increases.

1. Introduction

Sorting is a fundamental data operation that obtains a sorted
data sequence from an unsorted dataset increasingly or
decreasingly. It is a crucial part of various advanced algo-
rithms and systems [1, 2]. Classical sorting algorithms, such
as bubble sort, quick sort, and heap sort, accomplish sorting
by comparing data elements with certain strategies; they can
satisfy general sorting requirements in scientific studies and
engineering projects [3, 4]. However, the efficiency of
comparison sorting algorithms would be greatly challenged
when faced with large-scale data. At present, two categories
of approaches are proposed to meet this challenge. ,e first
category is hardware-driven accelerating approaches that
reduce sorting time by utilizing multicore CPU/GPUs or
computer clusters to conduct parallel sorting [5–8]. Such

approaches require massive computing resources and do not
reduce the time complexity of sorting. Approaches of the
second category, which is called non-comparison sorting,
distribute input data in intermediate data structures to
gather and place them in a sorted sequence [9–12]. ,e time
complexity of non-comparison sorting, such as self-indexed
sort and Qureshi sort, is slightly superior to that of quick
sort, while their memory space consumptions are fairly large
and suitable data types are limited [11, 12].

Most recently, Google proposed a new sorting algorithm
(Google-sort) that sorts data by two steps. First, it predicts
the placement position of each element of an unsorted
dataset in a sorted sequence based on a machine learning
model [13, 14]. In accordance with the predicted positions,
unsorted elements are placed one by one into a sorting result
array to obtain the final sorted sequence. ,is algorithm

Hindawi
Complexity
Volume 2020, Article ID 4793545, 13 pages
https://doi.org/10.1155/2020/4793545

mailto:generaladolph@163.com
mailto:zff@csu.edu.cn
https://orcid.org/0000-0002-4200-5200
https://orcid.org/0000-0002-3879-1026
https://orcid.org/0000-0002-4760-0551
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4793545

pioneers a new generation of sorting algorithms, that is, the
so-called learned sorting. Learned sorting has three ad-
vantages: (1) the time complexity can reach O(N) theo-
retically. (2) Machine learning models readily adapt to
various data types. (3)Machine learningmodels can be easily
combined with hardware-driven accelerating approaches.

However, we find that learned sorting has two problems:
(1) constructing the cumulative distribution function (CDF)
of an unsorted dataset by using amachine learningmodel for
placement position prediction is crucial in the first step of
learned sorting. However, most machine learning models
cannot fully guarantee the monotonicity and boundedness
of CDF. For instance, a fully-connected neural network
guarantees neither the monotonicity nor boundedness
(Section 5.1); recursive-model indexes used by Google-sort
dissatisfy the monotonicity [13, 14]. ,erefore, a small part
of unsorted elements would be predicted to incorrect or
non-existent placement positions. Additional data opera-
tions are needed for correction. (2) Some elements in an
unsorted dataset inevitably have the same key value. We call
such elements as repetitive elements. For example, in a
dataset with 7 elements and key values [3, 4, 8, 7, 4, 8, 4], the
three elements with a value of 4 and the two elements with a
value of 8 are repetitive. Repetitive elements would be
predicted to the same position, which would result in
placement conflicts. ,at is, only one of the repetitive ele-
ments with the same value can be correctly placed in the
sorting result array. Additional data operations are needed
again. Google-sort locally adopts quick sort to deal with
placement conflicts. ,is manner reduces the overall per-
formance of Google-sort. Self-indexed sort and Qureshi sort
use linear mapping and difference mapping, respectively, to
eliminate conflicts. However, both of them present high
space consumptions [11, 12].

,is paper proposes a new learned sorting algorithm that
sorts data via a look-up-table (LUT) neural network (LNN)
and self-regulating index (SRI) data structure, herein re-
ferred to as LS. ,is algorithm can effectively solve the two
aforementioned problems. For the first problem, we in-
troduce the technique of LUT into back propagation (BP)
neural network for placement position prediction. LUT
allows using predefined monotonicity rules and output
ranges to control the mapping of inputs to outputs. We
propose to replace the weight matrix of BP neural network
with LUT to generate an LNN for guaranteeing the
monotonicity and boundedness of CDF. For the second
problem, we design a new data structure called the self-
regulating index (SRI). SRI uses an auxiliary array of the
same size to tentatively store the predicted placement po-
sitions of unsorted elements. SRI provides a self-regulating
operation that automatically updates the tentatively stored
positions during placing unsorted elements into the sorting
result array to eliminate placement conflicts. Moreover, SRI
features low space consumption and a simple and efficient
data operation.

,ree controlled experiments are conducted to verify the
effectiveness of LS. ,e first experiment demonstrates that
LNN can fully guarantee the monotonicity and boundedness
of CDF, but three referenced machine learning models fail.

,e second experiment shows that LS has an average margin
of 27% faster execution than quick sort on the experimental
datasets with different data sizes. ,e third experiment
indicates that the performance of LS algorithm is more stable
than that of Google-sort when the number of repetitive
elements increases.

In summary, we propose a new learned sorting algo-
rithm inspired by Google-sort. ,is algorithm introduces
LUT and SRI to solve the two problems that may be en-
countered in learned sorting. In theory, the algorithm can
reach theO(N) time complexity.,e algorithm is also stable
regardless of the data size and the proportion of repetitive
elements in unsorted datasets.

2. Related Work

Sorting is a basic and ubiquitous operation in computer
science and has a long history. Many classical sorting al-
gorithms, such as quick sort, merge sort, and heap sort, have
been widely used [15]. Meanwhile, technical improvements
are continuously evolving in these years toward the unre-
mitting goal of being faster than before. ,e existing im-
provements can generally be categorized into two technical
routes, namely, the hardware-driven accelerating approach
and complexity reduction.

Hardware-driven accelerating approaches speed up
sorting by utilizing high-performance hardware. Marszalek
[5] proposed a method that divides the input data into
smaller parts to ensure that each processor of a multipro-
cessor computer can perform sorting operations on the
allocated memory. Empirically, the speed of the entire
process is high when a large number of processors are in-
volved. Pang et al. [6] presented a large-scale distributed
sorting algorithm based on cloud computing; this algorithm
applies a control terminal to manage a set of location-dis-
tributed working machines to complete a parallel sorting.
,e experimental results showed that the data transfer
optimized by the control terminal can improve the overall
sorting efficiency. Gebali et al. [7] presented a new structured
algorithm for parallel sorting. ,e algorithm achieves par-
allelization by using processors to sort each dimension of
multidimensional datasets, and there are no restrictions on
the number of processors in each dimension. Faujdar and
Ghrera [8] accelerated the bubble sort using GPU. All the
aforementioned methods can significantly speed up the
processing of data sorting. However, these hardware-driven
accelerating methods commonly require a large amount of
computing resources and do not change the time complexity
of sorting; thus, their application ranges are limited [16].

Reducing the complexity of sorting algorithms features a
common meaning. However, ,omas [17] proved that the
average-case time complexity of sorting based on compar-
ison operations, such as heap sort, merge sort, and quick
sort, cannot be less than O(N logN) mathematically.
,erefore, noncomparison sorting is the main method for
complexity reduction. Several noncomparison sorting
methods have been proposed. ,e most classical non-
comparison algorithm is Radix_sort [9], which utilizes
several buckets to preserve the original order of the keys and,

2 Complexity

then, maps them into a sorted sequence. Curiquintal et al.
[10] presented an integer sorting algorithm called bit-index
sort, which can achieve a time complexity close to O(N) by
utilizing a bit array to map the input integer elements to a
sorted output sequence. However, this algorithm is un-
suitable to other data types and has relatively slow speed in
the case of high data repeatability. Wang [11] presented a
noncomparison sorting method called self-indexed sort,
which directly maps the element into a relative offset based
on its value. However, this algorithm has difficulty obtaining
a satisfactory optimization result on large-scale data due to
the requirement of a large auxiliary space. Qureshi [12]
proposed a method called Qureshi sort, which achieves the
optimal time complexity O(N) by using two additional
arrays; however, its worst-case time complexity is O(N2),
and it requires large auxiliary spaces. In general, non-
comparison methods have two-common drawbacks: limited
data types and large extra required spaces.

Machine learning has made remarkable achievements in
various fields of computer science [18–22]. Ai et al. [23]
proposed a dual learning algorithm for ranking; the algo-
rithm jointly learns unbiased propensity models and ranking
models from user clicking data without preprocessing.
Google proposed a brilliant idea that speeds up indexes in
databases by modeling the CDF of the input data using a
neural network [13]. Subsequently, Google introduced a
similar idea to speed up data sorting in databases and
presented a new sorting algorithm (Google-sort) [14].
Google-sort initially predicts the position of each element of
an unsorted dataset in a sorted sequence using a data dis-
tribution model built by CDF. ,en, it places all unsorted
elements into the corresponding positions in a result array.
,is algorithm has a significant performance benefit on
large-scale data over comparison sorting algorithms. Placing
elements in positions is the major time-consuming part, the
theoretical time of which achieves complexity O(N).
Moreover, neural network can well adapt to various data
types and can be easily combined with hardware-driven
accelerating approaches. However, Google-sort has two
problems that have been explained in Sections 1 and 3. ,is
work is inspired by Google-sort. We try to design a new
learned sorting algorithm by introducing the technique of
LUT and a new data structure to solve the two problems
mentioned above.

3. Design Problems

As mentioned in Section 1, two major difficult problems are
encountered in learned sorting. ,is section introduces the
basic workflow of learned sorting and provides a detailed
explanation to the two problems.

3.1. Learned Sorting Foundations. ,e basic idea of learned
sorting can be described by two steps: prediction and
placement.,e prediction step constructs a data distribution
model of an unsorted dataset to predict the position of each
unsorted element in a sorted sequence. ,e placement step
places all unsorted elements into a result array according to

the corresponding predicted placement positions. ,e
prediction step can be further divided into two substeps.
First, machine learning methods, such as neural network
and linear regression (LR), are used to learn the distribution
of an unsorted dataset and generate the corresponding
distribution model, such as the CDF model, for predicting
the CDF value of each element. ,en, the CDF values are
multiplied by the size of an unsorted dataset to obtain the
placement positions of elements. For example, a dataset has
7 elements with key values [3, 4, 8, 7, 4, 8, 4]. ,e predicted
CDF value of the first element with a value 3 is 0.138. We
multiply 0.138 by 7 and round down the result to finally
obtain the placement position 0 of the element in a sorted
sequence.

3.2.DataDistributionModelConstruction. ,e first problem
is that the data distribution model for placement position
prediction must satisfy the mathematical properties of CDF.
Given an element of an unsorted dataset, its CDF value is
defined as

v � P(X≤Key), (1)

where v is the CDF value of the element, X is any element in
the array, Key is the value of the element, and P is the
likelihood to observe X smaller or equal to Key [13].

,e data distribution model for placement position
prediction can be defined as

p � F(Key)∗N, (2)

where p is the position of an unsorted element, Key is the
value of the element, F(Key) is the CDF value of the element
with value Key, and N is the total number of elements.

A straightforward method to obtain a CDF of an un-
sorted dataset is using a BP neural network, which is a
commonmethod to simulate functions with forms unknown
due to the ability of fitting arbitrary functions and good anti-
interference performance [24]. However, we find that such a
CDF may violate two important mathematical properties of
CDF: (1) monotonicity, that is, the CDF is monotonous and
nondecreasing; (2) boundedness, that is, the range of CDF
values belongs to [0, 1]. Figure 1 illustrates two typical
unexpected examples. Figure 1(a) depicts the occurrence of
one small local decline marked in the dashed box, which
causes elements with large values to be incorrectly predicted
as small ones. At the upper-right dashed box of Figure 1(b), a
few pink triangle-shaped points exceed 1.0, which leads to
the F(Key) greater than 1. As a result, the relevant elements
will be predicted to nonexistent positions. Similar situations
occur in the CDFs obtained from many machine learning
models (Section 5.1). Accordingly, we need to find a new
method to construct data distribution models that guarantee
the monotonicity and boundedness of CDF.

3.3. Placement Conflict. ,e second problem is placement
conflicts. A single element has a definite key value that
determines an accurate placement position. However, some
elements with the same value, which are called repetitive

Complexity 3

elements, will be predicted to the same position. ,is
condition causes placement conflicts. As shown in Figure 2,
the unsorted dataset has three elements with the same value
of 4. ,e three elements will be predicted to the second
position from left to right in the sorted sequence. Surely, the
second position can only be occupied by a single element.

Two common existing methods, namely, open hashing
and open addressing, can solve the problem. Open hashing
creates an empty linked list for a position to temporally store
the elements that are assigned to the position [25]. ,is
method is time and memory consuming due to massive
memory request operations. Open addressing places ele-
ments assigned to the same position in closest empty po-
sitions [26]. ,e process of finding empty positions is also
time consuming. Google-sort introduces another idea to
solve placement conflicts. It processes repetitive elements by
locally utilizing quick sort, which makes its time complexity
approach to comparison sorting methods in the case the
unsorted array has a high proportion of repetitive elements.
Accordingly, the existing methods are all obsessed with large
time or memory consumptions. ,erefore, data placement
in learned sorting is still challenging.

4. LS Algorithm

In this section, we detail our LS algorithm from three parts: a
training data generation method, an LNN, and a self-reg-
ulation data structure.

4.1. Training Data Generation Method. Obtaining training
data is an integral part of any machine learning algorithm. In
many application scenarios, a portion of raw data is ran-
domly selected as training data. However, such a training
data generation method is unsuitable in our case. Training
data randomly selected from raw data cannot accurately
reflect the distribution of all unsorted elements; this inca-
pability results in low accuracy of position prediction.

We propose to generate the training data based on the
frequency distribution and cumulative frequency distribution
histograms of an unsorted array. First, we divide unsorted
elements into equal intervals based on the range of values and
calculate the proportion of elements in each interval to the
total elements, that is, frequency of each interval, to obtain a
frequency distribution histogram. Second, we obtain a cu-
mulative frequency distribution histogram based on the
frequency distribution histogram. ,ird, we take the right-
most value of each interval in the cumulative frequency
distribution histogram and the corresponding cumulative
frequency value to generate an input-output pair. In this way,
we obtain a set of input-output pairs as our raw-labeled data,
which has the same number of intervals and can accurately
reflect the overall distribution of unsorted elements. Finally,
we randomly select 25% of the raw-labeled data as training
data. ,e rest 75% of the raw-labeled data is kept as test data
to evaluate the accuracy of position prediction. Notably,
inputs of these pairs may not be actual element values, and
outputs of these pairs are in the range of [0, 1].

1.0

C
D

F
 v

a
lu

e

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Value

Prediction result

Test dataset

(a)

1.0

C
D

F
 v

a
lu

e

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Value

Prediction result

Test dataset

(b)

Figure 1: Illustration of two examples violating the monotonicity (a) and boundedness (b) properties of CDF, respectively. In both plots, the
x-axis presents the values of unsorted elements in the test dataset and the y-axis represents the values of CDF. In a plot, the pink triangle-
shaped points depict the CDF values predicted by a BP neural network, the blue points present the true CDF values of unsorted elements in
the test dataset, and the lower and upper gray lines are the lower and upper bounds of the CDF (i.e., 0 and 1), respectively.

Unsorted array

Sorted array

Data distribution model

Conflicts

Conflicts

Array index 0 1 2 3 4 5 6

3 4 8 7 4 8 4

3 4

4

4

7 8

8

Figure 2: Illustration of placement conflicts.

4 Complexity

We take an unsorted array of 292 elements with values
that range from −210 to 210 as an example (Figure 3). We
divide the value range into 21 equal intervals and obtain the
frequency distribution histogram (Figure 3(a)) and cumu-
lative frequency distribution histogram (Figure 3(b)). A total
of 21 input-output pairs, which are marked with red crosses,
will be extracted from the cumulative frequency distribution
histogram to generate the raw-labeled data. For instance, the
first cross from the left is the first pair with an input of −190
and an output of 0.075, and the second cross from the left is
the second pair with an input of −170 and an output of 0.127.
,en, we randomly select 25% of the raw-labeled data as
training data.

4.2. Look-Up-Table Neural Network. We use neural network
to learn the training data for obtaining a proper CDF model
and, then, predict CDF values for unsorted elements. A
neural network generally consists of an input layer, several
hidden layers, and an output layer. An input value will start
from the input layer to hidden layers and finally end at the
output layer to obtain the output value [27, 28]. Such a
process is called a computing link.We need to guarantee that
the relationship of input and output of each link in a neural
network is monotonic and bounded. ,is issue is the first
problem mentioned in Section 3; that is, constructing a data
distribution model that satisfies the mathematical properties
of CDF. Our idea is to introduce the technique of LUT into
the traditional BP neural network [29, 30]. We call such a
neural network as LNN. Figure 4 illustrates a BP neural
network and an LNN. ,e BP neural network (Figure 4(a))
obtains the output value of a link by calculating the values of
nodes using weights (e.g., wij and wjk) between neurons,
while the LNN uses an LUTto replace the weights of a link to
ensure that the process result is monotonic and bounded.

LUT is a control technique of data mapping. LUTallows
using a predefined monotonicity and output range to rule
the mapping of inputs to outputs [31]. We take an LUTwith
input values within [1, 10] and output values within [1, 10] as
an example (Figure 5) to demonstrate how the LUT guar-
antees that the relationship between inputs and outputs is
nondecreasing and bounded. Five LUTcontrol points (dark-
gray points) are shown from left to right in Figure 5. Five
control points are connected by straight lines. ,us, a
piecewise input-output relationship is formed. ,is LUT
guarantees the mathematical properties of the relationship
from three aspects. First, the up and low bounds of the
relationship are limited between 0 and 1. Second, the output
of any node is not less than that of its left node. ,us, the
relationship is nondecreasing. ,ird, we can fit any complex
input-output relationship by increasing the number of
control points. ,e numbers of control points, input values,
and output values of control points in this case are manually
prespecified, while they are automatically determined by the
training process of the neural network in actual experiments.

Next, we need to determine the number of LNN’s hidden
layers and the number of nodes contained in each layer.
Considering the balance between time consumption and
fitting accuracy, we decide to utilize an LNN containing one

hidden layer with 20 nodes. A large number of hidden layers
indicate precise fitting but large time consumption. Our
sorting needs to model the distribution of unsorted data,
which is a simple task for neural network. We conduct a
large number of pilot experiments and find that an LNN of
one hidden layer with 20 nodes can obtain an ideal result in
most cases. Moreover, we set the input and output layers to
have only one node because we assume that unsorted ele-
ments are a single-dimensional real number in this study.

,e following part introduces how we use an LNN with
single input and output nodes and one hidden layer of 20
nodes to build a model for predicting CDF values of un-
sorted elements. As shown in Figure 4(b), the value of an
unsorted element, that is, x1, enters the input layer and
obtains the corresponding output value zj through LUTij.
Next, zj obtains αj through an activation function, and then,
αj obtains the corresponding output value y1 through LUTjk
[32]. Finally, y1 obtains the output value through an acti-
vation function, that is, x1’s CDF value β1. ,e formulas are
shown as follows:

zj �∑
i�1

LUTij x1(), (3)

αj � f zj(), (4)

y1 �∑
j�1

LUTjk αj(), (5)

β1 � f y1(). (6)

LUTij in formula (3) is an LUT between input layer i
and hidden layer j. f in formulas (4) and (6) is the com-
monly used activation function sigmoid for realizing
nonlinear fitting of a neural network. LUTjk in formula (5)
is an LUT between hidden layer j and output layer k. An
LNN’s computing link has two kinds of computations,
namely, LUTand sigmoid computations. ,e monotonicity
and boundedness of an LUT can be guaranteed by setting
constraints before training, and the sigmoid function is
nondecreasing with the range [0, 1]. ,us, all computing
links of LNN satisfy the condition, which means the output
of LNN is monotonic and bounded. Figure 6 shows the
experiment result of an example using LNN. ,e CDF
values in Figure 6 do not violate monotonicity and
boundedness.

4.3. Placement Method Based on the Self-Regulating Index.
After an LNN is prepared, we use the data distribution
model built by the LNN to predict the placement positions of
unsorted elements and, then, place them into a result array
in an ascending order. We will encounter the second
problemmentioned in Section 3, that is, placement conflicts.
A data structure called the SRI is designed to solve the
challenge. SRI is a data structure consisting of a memory
space and a set of data operations. ,e memory space is an
array of the same type and size as unsorted elements, that is,
the index array. ,e data operations include memory space

Complexity 5

initialization, index array assignment, and index array self-
regulation. In the following, we use an example shown in
Figure 7 to specialize the three operations.

4.3.1. Memory Space Initialization. ,is operation prepares
three arrays with the same size of unsorted elements. As
shown in Figure 7(a), an original array (OArray) stores raw
unsorted elements. In this case, it has four elements with
values [16, 16, 18, 11]. An index array (IArray) is a set with
initial values [−1, −1, −1, −1]. An empty result array
(RArray) is prepared for storing sorted elements.,e indices
of all arrays start from 0 upward. For example, OArray[0]
represents the first element of the original array, and its key
value is 16.

4.3.2. Index Array Assignment. For each element in the
OArray, this operation obtains its placement position in
the RArray predicted by the data distribution model and
assigns the position as the value to the IArray element with
an index equal to the position. As illustrated in
Figure 7(b), the values of OArray[0] and OArray[1] are
both 16, and their predicted placement positions are both
1. ,us, IArray[1] is set to 1. ,e value of OArray[2] is 18
and is predicted as 3. Accordingly, IArray[3] is set to 3.
,e value of OArray[3] is 11 and is predicted as 0. As a
result, IArray[0] is set to 0.

F
re
q
u
en
cy

Value

–200 –100 0 100 200

0.10

0.08

0.06

0.04

0.02

0.00

(a)

Value

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

–200 –100 0 100 200

1.0

0.8

0.6

0.4

0.2

0.0

(b)

Figure 3: Illustration of training data generation. ,e x-axes of both histograms represent values in raw data. In the frequency distribution
histogram (a), the y-axis represents the frequency of each interval. In the cumulative frequency distribution histogram (b), the y-axis
represents the total frequency of the present interval (blue) and all intervals on the left (yellow).

Wij Wjk

z1 | α1

z2 | α2

zn | αn

Input layer Hidden layer Output layer

x1 y1 | β1

(a)

LUTij LUTjk

z1 | α1

z2 | α2

zn | αn

Input layer Hidden layer Output layer

x1 y1 | β1

(b)

Figure 4: Illustration of the traditional BP neural network (a) and LNN (b). Both plots have only one input node x1, one output node y1, and
one hidden layer in neural network. zj represents hidden layer nodes. LUTij and LUTjk in Figure 4(b) are used to replace weights wij and
wjk in Figure 4(a).

O
u
tp
u
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Input

Figure 5: Illustration of an LUT with 5 control points. ,e x-axis
presents the input value of the LUT, and the y-axis presents the
output value of the LUT. ,e entire line presents the input-output
relationship of the LUT, in which dark-gray points present control
points.

6 Complexity

4.3.3. Index Array Self-Regulation. ,is operation utilizes
the predicted placement positions that are tentatively stored
and self-regulated in the IArray to place all OArray elements
into the RArray in an ascending order. For each element in
the OArray, we take its placement position predicted as the
target index of the IArray.,en, we take the element value of
the IArray under the target index as the actual placement
position of the OArray element in the RArray. After the
OArray element is placed into the RArray in accordance
with the actual placement position, the element value of the
IArray is incremented by 1. ,e abovementioned process is
called self-regulation. It ensures that repetitive OArray el-
ements, which have the same predicted positions and, thus,
result in placement conflicts, can be placed at adjacent empty
positions in the RArray. After sequentially executing the self-
regulation operation on all elements in the OArray, we
eventually obtain the sorted RArray.

We take Figures 7(c)–7(h) as an example to illustrate the
self-regulation operation. For OArray[0], its value is 16, its
predicted position is 1, and IArray[1] is 1, which indicates
that the tentative and actual placement positions of OArray
[0] in the RArray are both 1. ,en, the self-regulation op-
eration assigns the value 16 of OArray[0] to RArray[1]
(Figure 7(c)) and increments the value of IArray[1] by 1.
Figure 7(d) shows that the current value of IArray[1] is 2.
,at is, if a repetitive OArray element with a value of 16
occurs, then it will be placed at RArray[2]. OArray[1] is a
repetitive element of OArray[0] with a value of 16 and has a
predicted position of 1 again. However, the value of IArray
[1] is 2 now. ,us, the self-regulation operation assigns the
second 16 to RArray[2] (Figure 7(e)) and increment IArray
[1] by 1. Figure 7(f) shows that the current value of IArray[1]
is 3. ,ereafter, the value of OArray[2] is 18 predicted as 3
while IArray[3] is 3. As a result, 18 is assigned to RArray[3]
(Figure 7(f)) and IArray[3] is incremented by 1, as shown in

Figure 7(g). Finally, the last element OArray[3] with a value
of 11 is predicted as 0 while IArray[0] is 0. ,us, it is placed
at RArray[0] (Figure 7(g)), and IArray[0] becomes 1 in
Figure 7(h). Now, all unsorted OArray elements are stored in
the RArray in an ascending order, as shown in Figure 7(h).

,e complexities of three main data operations of LS
algorithm, namely, memory space initialization, index array
assignment, and index array self-regulation, are allO(N). LS
algorithm only involves a simple memory allocation oper-
ation, that is, memory is initially allocated only once. With
regard to the two problem-solving methods for placement
conflicts introduced in Section 3, open hashing is memory
consuming due to massive memory request operations,
while open addressing is time consuming owing to the la-
borious calculation of finding empty positions.

5. Evaluation

We conduct three experiments to evaluate the effectiveness
of the proposed LS algorithm. ,e first experiment is
designed to test whether the LNNmethod can guarantee the
properties of CDF. ,e second experiment evaluates the
time consumption of LS by taking Google-sort and popular
sorting algorithms as the references. ,e third experiment
evaluates the stability of Google-sort and LS under different
rates of repetitive elements. All the three experiments are
conducted on a MacBook Air with a 1.8GHz Intel Core i5
CPU and 8GB 1600MHz DDR3.

5.1. Performance of the LNN in Different Distributions.
,is experiment aims to test whether the proposed LNN
method can effectively guarantee the mathematical prop-
erties of CDF, namely, monotonicity and boundedness. ,is
experiment consists of three steps. (1) We generate 36
synthetic unsorted datasets that present 9 distributions on 4
scale levels, namely, 10000, 100000, 1 million, and 10 mil-
lion, as raw datasets. Figure 8 shows examples of the 9
distributions with the scale of 10million.,en, we obtain the
corresponding 36 training datasets and 36 test datasets by
using the training data generation method mentioned in
Section 4.1. (2) We input each training dataset into the LNN
and three widely used prediction methods to train predictive
models. ,e three reference methods are adaptive boosting
(AdaBoost), a fully-connected neural network (DNN), and
LR. A total of 144 predictive models (36 training datasets× 4
prediction methods) are obtained. (3) We use each pre-
dictive model to predict the CDF values of the elements of
the corresponding test dataset in an ascending order.
Eventually, we obtain 144 predicted CDF value sets as ex-
perimental results.

We analyze the experimental results in three aspects. (1)
We check the violation of monotonicity. ,at is, we examine
the existence of prediction errors that the predicted CDF
values of elements with larger values are less than those with
smaller values. (2) We check the violation of boundedness.
,at is, the existence of the predicted CDF values outside the
range [0, 1] is reviewed. (3) We conduct a statistical analysis
grouped by the prediction method on the rate of violating

C
D

F
 v

a
lu

e

Value

1.0

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Prediction result

Test dataset

Figure 6: Illustration of a CDF example obtained by LNN. ,e x-
axis represents values of unsorted elements in the test dataset, and
the y-axis represents CDF values. In the plot, the pink triangle-
shaped points depict the CDF values predicted by LNN, the blue
points present the true CDF values of unsorted elements in the test
dataset, and the lower and upper gray lines are the lower and upper
bounds of the CDF (i.e., 0 and 1), respectively. ,e test dataset in
this figure is the same as that in Figure 1.

Complexity 7

monotonicity (RVM) and rate of violating boundedness
(RVB). For instance, among the 36 predicted CDF value sets
fitted by the DNN, if 2 sets break the monotonicity and 17
sets break the boundedness, then the RVM and RVB of DNN
are 47.2% (17/36) and 5.5% (2/36), respectively. ,e RVM
and RVB of the four methods are listed in Table 1.

,e analysis results, as shown in Table 1 and Figure 9,
demonstrate that the LNN obtains a 0% RVMand a 0% RVB.
,is result indicates that the LNN can fully guarantee the
monotonicity and boundedness properties of CDF. A result
example of LNN is shown in Figure 9(a). ,e LR derives an

RVB up to 88.9% due to its linear limitation, while most raw
datasets are nonlinearly distributed. As shown in
Figure 9(b), the pink triangle-shaped points at the lower-left
and upper-right corners are invalid CDF values out of the
range of [0, 1] on the same dataset in Figure 9(a). ,e
AdaBoost obtains an RVB and an RVM of 0%, but we find
that the AdaBoost model possibly causes a staircase phe-
nomenon. As shown in Figure 9(c), the pink triangle-shaped
points form two local staircases marked in the dashed boxes.
Based on regression tree methods, the AdaBoost outputs the
mean instead of the continuous predicted CDF values, which

Data distribution model

Array index 0 1 2 3

16 16 18 11

–1 –1 –1 –1

OArray

IArray

RArray

(a)

0 1 2 3

16 16 18 11

0 1 –1 3

OArray

IArray

RArray

Data distribution model

Array index

(b)

0 1 2 3

16 16 18 11

0 1 –1 3

16

OArray

IArray

RArray

Data distribution model

Array index

(c)

16 16 18 11

0 1 2 3

0 2 –1 3

16

OArray

IArray

RArray

Data distribution model

Array index

(d)

16 16 18 11

0 1 2 3

0 2 –1 3

16 16

OArray

IArray

RArray

Data distribution model

Array index

(e)

16 16 18 11

0 1 2 3

0 3 –1 3

16 16 18

OArray

IArray

RArray

Data distribution model

Array index

(f)

16 16 18 11

0 1 2 3

0 3 –1 4

11 16 16 18

OArray

IArray

RArray

Data distribution model

Array index

(g)

16 16 18 11

0 1 2 3

1 3 –1 4

11 16 16 18

OArray

IArray

RArray

Data distribution model

Array index

(h)

Figure 7: Illustration of the proposed placement solution. ,e array elements highlighted in pink show the changes during the placement.

8 Complexity

causes the elements with adjacent values to be predicted to
the same CDF value [33, 34]. ,e RVB and RVM of DNN
reach 47.2% and 5.5%, respectively. ,is result implies that
the DNN dissatisfies the monotonicity and boundedness.
Figure 9(d) depicts the occurrence of one small local decline
marked in the dashed box. In summary, the prediction sets
of all test datasets made by the LNN effectively satisfy the two
mathematical properties of CDF, but the three reference
methods fail.

5.2.Performance in theAverageCase. ,e second experiment
is designed to evaluate the sorting time of two learned
sorting algorithms (i.e., LS and Google-sort algorithms) and
three popular sort algorithms (i.e., heap sort, quick sort, and

merge sort). In theory, the two learned sorting algorithms
have the O(N) time complexity and the three popular sort
algorithms have the O(N logN) time complexity. We select
five data sizes from 10 million to 50 million referring to the
experiment settings in the study of Google-sort; we also
randomly generate 10 raw datasets for each data size (50 raw
datasets in total) [14]. For the three popular sort algorithms,
we use each of them to sort each raw dataset in an ascending
order and calculate the average time consumptions by al-
gorithm and data size. For each of the two learned sorting
algorithms, we perform two steps on each raw dataset. ,e
first step is data preparation. A training dataset and a
predictive model are obtained using the methods mentioned
in Sections 4.1 and 4.2, respectively.,e second step is to sort
the raw dataset in an ascending order. We record the time
consumption of each sorting and calculate the average time
consumptions by algorithm and data size. As a result, 25
average time consumptions (5 data sizes× 5 sorting algo-
rithms) are obtained. ,e result is given in Table 2 and
Figure 10.

,e results in Table 2 show that the quick sort out-
performs the merge sort and heap sort. ,e quick sort is
26% faster than merge sort and 174% faster than heap sort

75,000

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

–1000
0

500 2000 3500

Value

60,000

45,000

30,000

15,000

(a)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

75,000

–1000
0

500 2000 3500

60,000

45,000

30,000

15,000

(b)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

750,000

0
0

10 20 30

600,000

450,000

300,000

150,000

(c)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

750,000

0

600,000

450,000

300,000

150,000

1800 1900 2000 2100

(d)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

750,000

0

600,000

450,000

300,000

150,000

2000 2100 2200 2300

(e)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

750,000

0

600,000

450,000

300,000

150,000

0.0 0.2 0.4 0.6

(f)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

900,000

0.0
0

2.5e7 5.0e7 7.5e7

720,000

540,000

360,000

180,000

(g)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

750,000

0

600,000

450,000

300,000

150,000

0 40 80 120

(h)

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Value

750,000

0

600,000

450,000

300,000

150,000

1000 2000 3000 4000

(i)

Figure 8: Examples of 9 distribution histograms of raw experimental datasets with the scale of 10 million: (a) a uniform distribution in the
range of [−800, 4800], (b) a normal distribution with μ � 2000, σ � 1500, (c) a log normal distribution with μ � 2000, σ � 1500, (d) a Poisson
distribution with λ � 2000, (e) a negative binomial distribution with r � 2.17, p � 0.055, (f) a beta distribution with α � 1, β � 10, (g) an
exoinential distribution with λ � 2000, (h) a gamma distribution with α � 1, β � 10, and (i) a Wald distribution with μ � 2000.

Table 1: Rates of violating monotonicity (RVM) and violating
boundedness (RVB) of the four prediction methods.

Prediction methods RVM (%) RVB (%)

LNN 0 0
LR 0 88.9
AdaBoost 0 0
DNN 5.5 47.2

Complexity 9

on average. Figure 10 depicts that the time consumptions
of the three sort algorithms grow steadily as the data size
increases. Among them, the growth trend of time con-
sumption of quick sort is the slowest. Compared with the
quick sort, the results in Table 2 show that our LS has a
significant performance benefit and an average margin of
27% faster execution than the quick sort. Compared with
the time consumption of Google-sort, the time con-
sumption of LS is very close to that of Google-sort when
the data size is lower than 30 million. However, the LS
outperforms the Google-sort when the data size is greater
than 30 million. Figure 10 shows that the growth trend of

time consumption of Google-sort suddenly speeds up at
the data size of 30 million, and the time consumption of
Google-sort is close to that of quick sort at the data size of
50 million. We speculate that this phenomenon is caused
by the manner of processing repetitive elements of
Google-sort. ,e Google-sort utilizes the quick sort to
process repetitive elements. When the proportion of re-
petitive elements increases with the data size, the sorting
time of Google-sort would significantly increase. In
summary, this experiment demonstrates that the pro-
posed LS algorithm can achieve a satisfied sorting effi-
ciency on large-scale datasets.

C
D

F
 v

a
lu

e

Value

1.0

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Prediction result

Test dataset

(a)

C
D

F
 v

a
lu

e

Value

1.0

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Prediction result

Test dataset

(b)

C
D

F
 v

a
lu

e

Value

1.0

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Prediction result

Test dataset

(c)

C
D

F
 v

a
lu

e

Value

1.0

0.8

0.6

0.4

0.2

0.0

–1000 0 1000 2000 3000 4000

Prediction result

Test dataset

(d)

Figure 9: Illustration of some experimental results. In all charts, the x-axis represents the values of unsorted elements in the test dataset and
the y-axis represents their CDF values. All charts are drawn based on the same dataset in normal distribution with a 1 million scale.,e pink
triangle-shaped points depict the CDF values predicted by predictive models, the blue points present the true CDF values of unsorted
elements in test datasets, and the lower and upper gray lines are the lower and upper bounds of the CDF (i.e., 0 and 1), respectively. (a) LNN
model, (b) LR model, (c) Ada Boost model, and (d) DNN model.

Table 2: Average time consumptions of five sorting algorithms on five experimental data sizes (in seconds).

Data size Heap sort (s) Merge sort (s) Quick sort (s) Google-sort LS

10 million 4.12 2.17 1.66 0.91 1.18
20 million 9.25 4.32 3.52 2.45 2.62
30 million 14.71 6.82 5.34 4.32 4.54
40 million 21.34 9.27 7.30 6.63 6.08
50 million 26.88 11.29 9.19 8.56 7.61

10 Complexity

5.3. Performance in Different Repetitive Element Rates.
,e last experiment investigates whether our LS algorithm
can effectively solve placement conflicts. A specific in-
dicator, named the repetitive element rate (RER), is de-
fined for this experiment. It represents the ratio of
repetitive elements to all elements in a dataset. In this
experiment, we select five RERs (i.e., 0%, 20%, 40%, 60%,
and 80%) and randomly generate 10 raw datasets for each
RER on the fixed data size of 20 million (50 raw datasets in
total) as the experimental datasets. By taking a raw dataset
with 20% RER and 20 million data size as an example, we
generate the raw dataset in the following steps: (1) 16
million unsorted elements with different element key
values are randomly generated. (2) One element is ran-
domly selected from the 16 million elements, and this step
is randomly repeated 0–10 times. (3) Step 2 is repeated
until we gather 4 million repetitive elements. We ensure
that the selected element from the 16 million elements is
different for each time. (4) ,e 4 million elements are
randomly inserted into the 16 million elements. We select
Google-sort as the reference algorithm. Using the same
experimental process of the second experiment, we obtain
10 average time consumptions (2 sorting algorithms × 5
RERs) as the results. ,e results are shown in Table 3 and
Figure 11.

,e results show that the time consumptions of LS
only fluctuate 1.9% as the RER increases from 0% to 80%.
By contrast, the Google-sort consumes more time as the
RER increases. At an RER of 60%, the time consumption
of Google-sort reaches 3.65 s, which is even slower than
that of quick sort recorded in Table 2 (3.52 s with a scale
of 20 million). ,is experiment confirms that the RER
greatly negatively affects the sorting time of Google-sort.
When faced with high RERs, the time complexity of
Google-sort would approach O(NlgN) because of using
quick sort to solve placement conflicts. In summary, our
algorithm can achieve a stable performance when the
proportion of repetitive elements in a dataset increases.

6. Discussion

In this section, we discuss the limitations of the proposed LS
algorithm and give suggestions for further work.

We select to use an LNNwith only one hidden layer of 20
nodes, which is determined based on our experience gained
from pilot experiments. Notably, this simple neural network
may be challenged in complex sorting scenarios, such as
complex data distribution and multidimensional sorting.
However, increasing the number of hidden layers and nodes
will consume much time for model training. Similarly, we
sample 1000 points as the raw-labeled dataset when gen-
erating training data. ,is empirical setting may not be the
absolute best number of sampling points balancing time and
accuracy. Moreover, trained models require generalizability
to new data. In our experiments, we train a predictive model
to learn the distribution of each raw dataset, where over-
fitting is a good thing. Maybe we can explore inner rela-
tionships between raw datasets, which can be exploited to
speed up the training process of predictive models.

Placement conflicts are mainly caused by repetitive el-
ements. In practice, some elements with different values may
be predicted to the same position, which results in placement
conflicts. ,is situation occurs under two conditions: (1) a
dataset has elements from a very large domain. (2) Most
elements of the dataset are concentrated in a small area of the
domain space. Raw predicted placement positions are
double type. Raw predicted placement positions of elements
concentrated in such a small area would be extremely close

25

T
im

e
(s

)

20

15

10

5

0
0 10 20 30 40

Size (million)

50

Heap sort
Merge sort
Quick sort

Google-sort
LS

Figure 10: Trends of average time consumptions of five sorting
algorithms. ,e x-axis represents the size of experimental datasets
(in millions), and the y-axis represents the sorting time in the
average case (in seconds).

Table 3: Average time consumptions of LS and Google-sort al-
gorithms on five RERs (in seconds).

RER (%) LS (s) Google-sort (s)

0 2.62 2.45
20 2.62 2.98
40 2.65 3.32
60 2.62 3.65
80 2.60 3.92

5.0

T
im

e
(s

)

4.0

3.0

2.0

1.0

0.0
0 20 40

RER (%)

60 80

Google-sort
LS

Figure 11: Trends of average time consumptions of LS and Google-
sort algorithms with five RERs. ,e x-axis represents the RER of
experimental datasets (%), and the y-axis represents the sorting
time in the average case (in seconds).

Complexity 11

to each other.When rounding raw positions for placement, a
few elements with adjacent values would be placed to the
same position of the sorted array. ,is situation is rarely
observed in our experiments but is worth considering. To
deal with the problem, we can sort the raw dataset in ac-
cordance with the process of LS. ,en, we can use insertion
sort, which works very fast with almost sort array, to adjust
the sorted array. ,is problem is worthy of optimization in
the future.

When generating experimental datasets with repetitive
elements in Section 5.3, we make the values of repetitive
elements as evenly distributed as possible. ,is case is the
worst for learned sorting because sorting a dataset with all
the repetitive elements having only one key value is easy. In
the experiments, we do not test the case that sorts a
backward sequence to a forward sequence because the order
of a dataset does not affect the performance of learned
sorting. Moreover, our experiments are conducted on a
normal CPU to compare the performances of traditional
comparison sorting algorithms and learned sorting algo-
rithms under common circumstances. Notably, the data
preparation time of LS and Google-sort is excluded to ease
the establishment of the same experimental conditions. We
believe that our LS algorithm can achieve a better result with
high-performance hardware. Of course, we should consider
the balance between time consumption and economic
consumption.

,is study limits the scope to single-dimensional sorting.
However, application scenarios that need multidimensional
sorting often occur. Two potential methods can be used to
improve our LS algorithm to sort multidimensional data. (1)
Sort by dimension: this method sorts values of each di-
mension until all dimensions are sorted. (2) Building the
distribution model of multidimensional data to enable LS to
predict the placement positions of multidimensional data
and place them without placement conflicts. Our experi-
ments only include real number sorting. Many other types of
data sorting, such as imaginary number sorting, are avail-
able. When dealing with such type of data sorting, we can
think of the dataset as a two-dimensional dataset. One di-
mension stores the values of the real part, and the other
dimension stores the values of the imaginary part. ,us, we
can use the two aforementioned methods to sort the two-
dimensional dataset.

7. Conclusions

In this study, we comprehensively analyzed two potential
problems, namely, CDF property violations and placement
conflicts, in applying machine learning models for data
sorting. We proposed to integrate a BP neural network with
the technique of LUT to avoid CDF property violations. We
designed an SRI data structure to eliminate placement
conflicts. We proposed a new learned sorting algorithm
named LS based on the two manners. ,e results of three
controlled experiments demonstrate that LS can completely
solve the two problems and can achieve a satisfied and stable
performance on large-scale data. ,is study moves the idea
of learned sorting forward after it was first raised by Google.

,is study can inspire researchers and engineers that learned
approaches have great potentials in improving fundamental
methods in computer sciences.

Data Availability

Data can be obtained from the corresponding author upon
request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported in part by the National Key Re-
search and Development Program of China (No.
2018YFB1700403), the National Natural Science and
Technology Fundamental Resources Investigation Program
of China (No. 2018FY10090002), and the National Natural
Science Foundation of China (No. 61872388).

References

[1] R. Ding, Q. Wang, Y. Dang, Q. Fu, H. Zhang, and D. Zhang,
“YADING: fast clustering of large-scale time series data,”
Proceedings of the VLDB Endowment, vol. 8, no. 5, pp. 473–
484, 2015.

[2] S. Geuens, K. Coussement, and K. W. De Bock, “A framework
for configuring collaborative filtering-based recommenda-
tions derived from purchase data,” European Journal of
Operational Research, vol. 265, no. 1, pp. 208–218, 2018.

[3] N. Leischner, V. Osipov, and P. Sanders, “GPU sample sort,”
in Proceedings of 2010 IEEE International Parallel and Dis-
tributed Processing Symposium, IEEE, Atlanta, GA, USA,
pp. 1–10, April 2010.

[4] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: a unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, 2008.

[5] Z. Marszalek, “Parallelization of modified merge sort algo-
rithm,” Symmetry, vol. 9, no. 9, pp. 176–194, 2017.

[6] N. Pang, D. Zhu, Z. Fan,W. Rong, andW. Feng, “A large-scale
distributed sorting algorithm based on cloud computing,”
Communications in Computer and Information Science,
vol. 557, pp. 226–237, 2015.

[7] F. Gebali, M. Taher, A. M. Zaki, M. W. El-kharashi, and
A. Tawfik, “Parallel multidimensional lookahead sorting al-
gorithm,” IEEE Access, vol. 7, pp. 75446–75463, 2019.

[8] N. Faujdar and S. P. Ghrera, “A practical approach of GPU
bubble sort with CUDA hardware,” in Proceedings of Inter-
national Conference on Cloud Computing, pp. 7–12, Noida,
India, January 2017.

[9] Radix_sort, https://en.wikipedia.org/wiki/Radix_sort, 2020.
[10] L. F. Curiquintal, J. O. Cadenas, and G.M.Megson, “Bit-index

sort: a fast non-comparison integer sorting algorithm for
permutations,” in Proceedings of 2013 the International
Conference on Technological Advances in Electrical Electronics
and Computer Engineering, IEEE, Konya, Turkey, pp. 83–87,
May 2013.

[11] S. Y. Wang, “A new sort algorithm: self-indexed sort,” ACM
Sigplan Notices, vol. 31, no. 3, pp. 28–36, 1996.

[12] M. A. Qureshi, “Qureshi sort: a new sorting algorithm,” in
Proceedings of 2009 2nd International Conference on

12 Complexity

https://en.wikipedia.org/wiki/Radix_sort

Computer, Control and Communication, IEEE, Karachi,
Pakistan, February 2009.

[13] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “,e
case for learned index structures,” in Proceedings of Inter-
national Conference on Management of Data, pp. 489–504,
Houston, TX, USA, June 2018.

[14] T. Kraska, M. Alizadeh, A. Beutel et al., “SageDB: a learned
database system,” in Proceedings of Conference on Innovative
Data Systems Research, Asilomar, California, January 2019.

[15] M. B. Ludwig, H. M. Chehreghani, and J. M. Buhmann, “,e
information content in sorting algorithms,” in Proceedings of
2012 IEEE International Symposium on Information Ceory,
IEEE, Cambridge, MA, USA, July 2012.

[16] E. Strubell, A. Ganesh, and A. Mccallum, “Energy and policy
considerations for deep learning in NLP,” 2019, https://arxiv.
org/abs/1906.02243.

[17] H. C. ,omas, Introduction to Algorithms, ,e MIT Press,
Cambridge, MA, USA, 3rd edition, 2009.

[18] Y. Zhao, X. Luo, X. Lin et al., “Visual analytics for electro-
magnetic situation awareness in radio monitoring and
management,” IEEE Transactions on Visualization and
Computer Graphics, vol. 26, no. 1, pp. 590–600, 2020.

[19] F. Zhou, X. Lin, C. Liu et al., “A survey of visualization for
smart manufacturing,” Journal of Visualization, vol. 22, no. 2,
pp. 419–435, 2019.

[20] O. Abedinia and N. Amjady, “Net demand prediction for
power systems by a new neural network-based forecasting
engine,” Complexity, vol. 21, no. S2, pp. 296–308, 2016.

[21] H. Bao, J. H. Park, and J. Cao, “Synchronization of fractional-
order delayed neural networks with hybrid coupling,”
Complexity, vol. 21, no. S1, pp. 106–112, 2015.

[22] R. Li, J. Cao, A. Alsaedi, B. Ahmad, F. E. Alsaadi, and T. Hayat,
“Nonlinear measure approach for the robust exponential
stability analysis of interval inertial Cohen-Grossberg neural
networks,” Complexity, vol. 21, no. S2, pp. 459–469, 2016.

[23] Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft, “Unbiased
learning to rank with unbiased propensity estimation,” ,e
41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, July 2018.

[24] X. Li, H. Xie, R. Wang et al., “Empirical analysis: stock market
prediction via extreme learning machine,” Neural Computing
and Applications, vol. 27, no. 1, pp. 67–78, 2016.

[25] N. Sun and R. Nakamura, “An alternative analysis of the open
hashing algorithm,” in Proceedings of International Confer-
ence on Applied Mathematics, pp. 1–6, Chalkis, Greece,
September 2004.

[26] J. I. Munro and P. Celis, “Techniques for collision resolution
in hash tables with open addressing,” in Proceedings of ACM
Fall Joint Computer Conference, IEEE Computer Society
Press, Los alamitos, CA, USA, pp. 601–610, November 1986.

[27] A. Abels, D. M. Roijers, T. Lenaerts, A. Nowé, and
D. Steckelmacher, “Dynamic weights in multi-objective deep
reinforcement learning,” in Proceeding of the 36th Interna-
tional Conference On Machine Learning, pp. 11–20, Long
Beach, CA, USA, May 2018.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[29] M. M. Fard, K. R. Canini, A. Cotter, J. Pfeifer, and
M. R. Gupta, “Fast and flexible monotonic functions with
ensembles of lattices,” in Proceedings of 29th Conference on
Neural Information Processing Systems, pp. 2919–2927, Bar-
celona, Spain, December 2016.

[30] S. You, D. Ding, K. R. Canini, J. Pfeifer, and M. R. Gupta,
“Deep lattice networks and partial monotonic functions,” in

Proceedings of 31st Conference on Neural Information Pro-
cessing Systems, pp. 2985–2993, Mountain View, CA, USA,
May 2017.

[31] M. A. Hasan, “Look-up table-based large finite field multi-
plication in memory constrained cryptosystems,” IEEE
Transactions on Computers, vol. 49, no. 7, pp. 749–758, 2000.

[32] A. K. Jain, J. Jianchang Mao, and K. M. Mohiuddin, “Artificial
neural networks: a tutorial,” Computational Science and
Engineering, vol. 29, no. 3, pp. 31–44, 1996.

[33] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for
AdaBoost,” Machine Learning, vol. 42, no. 3, pp. 287–320,
2001.

[34] V. Kuznetsov, M. Mohri, and U. Syed, “Multi-class deep
boosting,” in Proceeding of 28th Conference on Neural In-
formation Processing Systems, Montreal, Canada, December
2014.

Complexity 13

https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1906.02243

