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Abstract

We show that a unit-cost RAM with a word length of w bits

can sort n integers in the range O. . 2W – 1 in O (n log log n)

time, for arbitrary w z log n, a significant improvement

over the bound of O (n-) achieved by the fusion trees

of Fredman and Willard. Provided that w 2 (log n)z+’, for

some fixed e > 0, the sorting can even be accomplished in

linear expected time with a randomized algorithm.

Both of our algorithms parallelize without loss on a unit-

cost PRAM with a word length of w bits. The first one yields

an algorithm that uses O (log n) time and O (n log log n) op-

erations on a deterministic CRCW PRAM. The second one

yields an algorithm that uses O(log n) expected time and

O(n) expected operations on a randomized EREW PRAM,

provided that w 2 (log n)2+’ for some fixed c >0.

Our deterministic and randomized sequential and parallel

algorithms generalize to the lexicographic sorting problem

of sorting multiple-precision integers represented in several

words.

1 Introduction

Sorting is one of the most fundamental computational prob-

lems, and n keys can be sorted in O(n log n) time by any

of a number of “well-known sorting algorithms. These algo-

rithms operate in the comparison-based setting, i.e., they ob-

tain information about the relative order of keys exclusively

through pairwise comparisons. It is easy to show that a run-

ning time of O (n log n) is optimal in the comparison-based

model. However, this model may not always be the most

natural one for the study of sorting problems, since real ma-

chines allow many other operations besides comparison. Us-

ing indirect addressing, for instance, it is possible to sort n
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integers in the range O.. n – 1 in linear time via bucket sort-

ing, thereby demonstrating that the comparison-based lower

bound can be meaningless in the context of integer sorting.

Integer sorting is not an exotic special case, but in fact

is one of the sorting problems most frequently encountered.

Aside from the ubiquity of integers in algorithms of all kinds,

we note that all objects manipulated by a ccmventional com-

puter are represented internally by bit patterns that are inter-

preted as integers by the built-in arithmetic instructions. For

most basic data types, the numerical ordering of the repre-

senting integers induces a natural ordering on the objects rep-

resented; e.g., if an integer represents a character string in the

natural way, the induced ordering is the lexicographic order-

ing among character strings. This is true even for floating-

point numbers; indeed, the IEEE 754 floating-point standard

was designed specifically to facilitate the scwting of floating-

point numbers by means of integer-sorting subroutines [13,

p. 228]. Most sorting problems therefore eventually boil

down to sorting integers or, possibly, multiple-precision in-

tegers stored in several words.

Classical algorithms for integer sorting require assump-

tions about the size of the integers to be sorted, or else have a

running time dependent on the size. Bucket sorting requires

the n input keys to be in the range O.. n – 1. Radix sorting

in k phases, each phase implemented via bucket sorting, can

sort n integers in the range O. . nk – 1 in O (T&) time. A more

sophisticated technique, due to Kirkpatrick and Reisch [14],

reduces this to O (n log k), but the fact remains that as the size

of the integers to be sorted grows to infinity, the cost of the

sorting also grows to infinity (or to @(n log n), if we switch

to a comparison-based method at the appropriate point).

If we allow intermediate results containing many more bits

than the input numbers, we can actually sort integers in linear

time independently of their size, as demonstrated by Paul and

Simon [18] and Kirkpatrick and Reisch [14]. But again, from

a practical point of view, this is not what we want, since a real

machine is unlikely to have unit-time instructions for operat-

ing on integers containing a huge number (of bits. Instead, if

the input numbers are w-bit integers, we would like all inter-

mediate results computed by a sorting algorithm to fit in w

bits as well—in the terminology of Kirkpatrick and Reisch,

the algorithm should be conservative. In this case it is real-

istic to assume that a full repertoire of “reasonable” instrttc-

tions can be applied to word-sized operands in constant time.

In the remainder of the paper, when nothing else is stated, we

will take “sorting” to mean sorting w-bit words on a unit-cost

RAM with a word length of w bits.
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Fredman and Willard [9] were the first to show that n arbi-

trary integers can be sorted in o(n log n) time by a conserva-

tive method. Their algorithm, based on fusion trees, sorts n

integers in O (n=) time. We describe two simple algo-

rithms that improve their result. It should be noted that fusion

trees have other uses besides sorting, such as in efficient data

structures, to which our results do not apply.

Our first algorithm works in O(n log log n) time. It uses

arithmetic instructions drawn from what we call the restricted

instruction set, including comparison, addition, subtraction,

bitwise AND and OR, and unrestricted bit shift, i.e., shift of an

entire word by a number of bit positions specified in a second

word. As is not difficult to see, these instructions are all in

ACO, i.e., they can be implemented through constant-depth,

polynomial-size circuits with unbounded fan-in. Since this is

known not to be the case for the multiplication instruction [4],

which is essential for the fusion-tree algorithm, our algorithm

can also be viewed as placing less severe demands on the un-

derlying hardware; this answers a question posed by Fredman

and Willard (an answer to this question is already implicit in

[3]). Also, the algorithm by Fredman and Willard is nonuni-

form, in the sense that a number of precomputed constants

depending on w need to be included in the algorithm. Our

algorithms need to know the value of w itself, but no other

precomputed constants.

Our second algorithm is randomized and works in O(n)

expected time, provided that w 2 (log n)2+c for some fixed

e > 0. Sufficiently large integers can thus be sorted in lin-

ear expected time by a conservative algorithm. The algo-

rithm uses a full instruction set that augments the restricted

instruction set with instructions for multiplication and ran-

dom choice, where the latter takes an operands in the range

1.. 2W – 1 and returns a random integer drawn from the uni-

form distribution over {1 ,...,s} and independent of all other

such integers.

Ben-Amram and Galil [5, Theorem 5] have shown that, un-

der some circumstances, sorting requires Q(n log n) time on

a RAM with an instruction set consisting of comparison, ad-

dition, subtraction, multiplication, and bitwise boolean oper-

ations. While it is possible to simulate leji shifts using multi-

plication in their model, their lower bound does not apply if

right shifts are allowed. We, on the other hand, assume that

the complexity of left and right shifts is the same (as indeed

it is to the underlying hardware).

Our basic algorithms can be extended in various directions.

They parallelize without loss on a PRAM with a word length

of w bits, yielding algorithms that use O (log n) time and

O(n log log n,) operations on a deterministic CRCW PRAM

or, provided that w ~ (log n)2+’ for some fixed c > 0,

O(log n) expected time and O(n) expected operations on a

randomized EREW PRAM. We also obtain algorithms for the

general lexicographic sorting problem of sorting variable-

length multiple-precision integers. As an example, if then

input numbers occupy a total of N words, they can be sorted

sequentially in O (N + n log log n) time, which is worst-case

optimal if N = fl(n log log n).

Our results flow from the combination of the two tech-

niques of packed sorting and range reduction. Packed sort-

ing, introduced by Paul and Simon [18] and developed further

in [12] and [2], saves on integer sorting by packing several

integers into a single word and operating simultaneously on

all of them at unit cost. This is only possible, of course, if

several integers to be sorted fit in one word, i.e., packed sort-

ing is inherently nonconservative. Range reduction, on the

other hand, reduces the problem of sorting integers in a cer-

tain range to that of sorting integers in a smaller range. The

combination of the two techniques is straightforward: First

range reduction is applied to replace the original full-size in-

tegers by smaller integers of which several fit in one word,

and then these are sorted by means of packed sorting.

As a purely technical point, we assume a machine architec-

ture that always allows us to address enough working mem-

ory for our algorithms, even when w is barely larger than

log n (this is an issue only for w = log n + O(l), in which

case radix sorting works in linear time and space). Also,

standard algorithms for multiple-precision arithmetic allow

us to assume constant-time operations on words of O (w) bits,

rather than exactly w bits.

2 Sorting in O(Z3 log log n) time

Our goal in this section is to prove the following theorem.

Theorem 1 For all given integers n > 4 and w >

log n, n integers in the range O. . 2W – 1 can be sorted in

O(n log log n) time on a unit-cost RAW with a word length

of w bits and the restricted instruction set.

For all positive integers n and b with b < w, denote by

T(n, b) the worst-case time needed to sort n integers of b bits

each, assuming b and w to be known. A sequential version of

a parallel algorithm due to Albers and Hagerup [2] shows that

7’(n, b) = O(n) for all n 24 and b < [w/(logn loglogn)l,

i.e., provided that O (log n log log n) keys can be packed into

one word, sorting can be accomplished in linear time. This

follows directly from Corollary 1 of [2]. (The corollary re-

quires a quantity hog log m] to be known, but it is easy to see

that it suffices, in our case, to know the word length w.) We

sketch the algorithm to illustrate its simplicity. It stores keys

in the so-called word representation, i.e., k to a word, where

k = @(log n log log n), and its central piece is a subroutine

to merge two sorted sequences, each consisting of k keys and

given in the word representation, in O(log k) time. Essen-

tially using calls of this subroutine instead of single compar-

isons, the algorithm proceeds as in standard merge sort to cre-

ate longer and longer sorted runs. Since it can handle k keys

at a cost of O(log k), it saves a factor of @(k/log k) relative

to standard merge sort, so that the total time needed comes to

O(n logn log k/k) = O(n).

Our second ingredient is the range reduction of Kirkpatrick

and Reisch [14, Corollary 4.2], embodied in the recurrence
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relation

T(n, b) < T(n, [b/21) + o(n),

i.e., in O(n) time we can reduce by about half the number

of bits in the integers to be sorted; again, code realizing the

reduction fits on one page.

Let us now prove Theorem 1. In order to sort n given

keys, we first apply the range reduction of Kirkpatrick and

Reisch 2 [log log nl times, at a total cost of O(n log log n).

This leaves us with the problem of sorting n integers of at

most [zo/ (log n)21 bits each, which can be done in O(n) time

using the algorithm of Albers and Hagerup.

3 Sorting in linear expected time

In this section we describe anew signature sort algorithm and

show that it works in linear expected time. Signature sort is

obtained by combining the packed sorting of [2] with a new,

randomized range-reduction scheme.

We first provide an informal sketch of the main ideas be-

hind signature sort. The algorithm uses packed sorting twice:

to construct a path-compressed trie of hash codes and to sort

the edges of this trie. Assume a word length of w bits and a

parameter k < w chosen to allow linear-time packed sort-

ing of k-bit integers. In order to sort n w-bit keys, we split

each key into w/k fields of k bits each and represent each

value occurring in one or more fields by a unique signature

of@ (log n) bits, obtained by applying a universal hash func-

tion. The signatures of all fields in a key can be computed to-

gether in constant time, and their concatenation occupies just

O(w log n/k) bits. If k is sufficiently large, the concatenated

signatures of the input keys can be sorted in linear time, after

which we construct their path-compressed trie (with signa-

tures considered as characters) in linear time. The trie is a tree

with fewer than 2n edges. Each leaf corresponds to an input

key, and each edge is associated with a distinguishing signa-

ture in a natural way. After sorting the “sibling” edges below

each node in the tree by the original field values correspond-

ing to their distinguishing signatures, the sorted sequence of

the n input keys can be read off the tree in a left-to-right scan.

Besides the usual interpretation of the contents of words as

integers, we will interpret words as representing sequences

of integers or truth values (booleans). Which interpretation

is intended for a given word will be expressed implicitly

through the operations applied to the word. Our interpreta-

tion is parameterized by two integers M, ~ ~ 2. These will

mostly be implicit; when wanting to make them explicit, we

speak of the (M, j)-represerztation.

The (M, ~)-representation partitions the rightmost Mf

bits of a word into M jields of j bits each, while ignoring

any other bits present in the word. The fields are numbered

1,.. ., M from right to left, and the leftmost bit of each field,

called the test bit, is required to be zero. Suppose that field

i of a word X contains the integer Xt, for i = 1, ..., M

(according to the usual binary representation). Then one in-

terpretation of X is as the integer sequence ($1, ..., ZM ).

The interpretation of X as a boolean sequence additionally

requires that xi E {O, 1}, for i = 1, . . . . M, land interprets X

as the sequence (r(xI ), . . . ,~(zM)), where ~(l) = true and

T(O) = false.

We now develop an arsenal of basic operations, many of

which operate on sequences of integers or booleans on a com-

ponent-by-component basis. The built-in bitwise boolean op-

erations will be denoted by AND and OR, and the shift opera-

tor is rendered as ~ or $ When x and i are integers, x ~ i

denotes lZ . 2zj, and z $ i = z ~ (–z). In the follow-

ing, assume the (M, f) -representation used throughout, for

integers M, f ~ 2. As is common, we do not always dis-

tinguish between a variable and its value; e.g., we may write

X=(zl,. . . ,ZM), where X is a variable and (xl, . . . . ZM)

is the sequence that it represents.

First, the constant ~~~1 2if, which represents the se-

quence l~,f = (1,..., 1), can be computed in O(logM)

time by noting that 12M,f = l~,f . (1 + 2~f). As will be

seen below, much of the utility of the constant 1~,f comes

from the fact that multiplication with lM, ~ carries out a pre-

fix summation. Componentwise logical conjunction and dis-

junction, denoted A and V, are easy, since they maybe imple-

mented directly through AND and OR. Componentwise logi-

cal negation, denoted =, is just subtraction from 1~,f. As a

slightly less trivial operation, consider [X z Y], where X =

(x~,..., xM)and Y=(yl, . . . , VA4) are integer sequences,

which returns the boolean sequence (bl, . . . . b~) with b, =

trueifandonlyifx, z y%,fori = 1, ..., M. [X 2 Y] can be

computed by subtracting Y from X after first setting all test

bits in X to 1. The test bits prevent carries between fields, and

the test bit in field i will “survive” exactly if Xa z y,, so that

all that remains is to shift the test bits to the rightmost position

of the fields and to mask away all other bits Thus [X z Y]

can beobtainedas ((X+ (lM,f ~ (f – 1)) - Y) J (f – 1))

AND 1 ~,f. Because the full range of compon entwise boolean

operators is available, it is an easy matter to implement there-

maining componentwise relational operators <, >, <, = and

#. E.g., [X = Y] = [X ~ Y] A [Y ~ X]. Another useful

operator is the extract operator [. When X = (sl, ..., ZM)

is an integer sequence and B = (bl, . . . . b~) is a boolean

sequence, X I B denotes the integer sequence (Y1, ..., YM)

such that for i = 1, ..., M, y, = x, if b,, = true, while

Y, = 0 if b, = false. X I B can be obtained simply as X

AND (~ . (2f – l)).

Lemma 1 Suppose that we are given two integers M 2 2

and f ~ log M + 2, a word X representing a sequence of in-

tegers according to the (M, f ) -representation, and the con-

stant lM, f. Then, in constant time and using a word length

of Mf bits, we can compute the index of the lefimost nonzero

jield in X (zero if there is no such field).

PROOF Setting A := [X > O] . l~,f computes for each field

the number of nonzero fields to its right, including itselfi the

condition f 2 log M + 2 ensures that the fields are wide

enough to hold the counts. In particular, m := (A J. ((M –

1) f )) AND (2f – 1) is the total number of nonzero fields in X.
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Assume that m >0, Then B := [A= m. l~,f] A [X > O]

contains 1 in the field of interest and zeros in all other fields.

Taking C := (lM,f)2 = (1, 2,..., Ill) and forming D :=

C I B replaces the 1 in the field of interest by the index of that

field. The latter quantity, which is the desired answer, can fi-

nallybeobtainedas (( D.lM,f) $ ((M–1)$)) AND (2 f–1).

If m = O, the same computation yields zero. ❑

We now return to the sorting problem and give a high-level

description of the new range reduction that ignores details

such as rounding. Assume that w z 2 (log n)2 log log n.

In order to sort n keys of b bits each, we begin by con-

ceptually partitioning each key into b/k k-bit fields, where

k is chosen so that we can still just sort k-bit integers in lin-

ear time; we know from Section 2 that we should choose

k = @(w/( log n log log n)). Assume that we are given a

function h:{0,...,21 }+{0,0,2~.l },wherel<k,l <k,

that operates invectively on the set of all fields occurring in the

input keys. We will actually consider the images under h as

strings of ~ = Z + 1 bits, with the leftmost bit always equal

to zero. For each fields, we call h(x) the signature ofs; fur-

thermore, if a key X consists of fields xl,. . . . xbj,$, we define

the concatenated signature of X as the integer obtained by

concatenating (the f-bit strings representing) the signatures

h(zl),..., h(xb/J.

We now sort the n input keys by their concatenated sig-

natures. This is the sorting problem to which we reduce the

original problem; because 1 < k, itwill be easier than the

original problem—the fields have “shrunk”. Unless h hap-

pens to be monotonic, this arranges the keys in an order dif-

ferent from the one required by the original sorting problem,

but one that nonetheless turns out to be useful.

Let Yl,. ... Yn be the concatenated signatures in the order

in which they appear after the sorting (i.e., Yl s Y2 s . . . ~

Yn)andtake ~={ Y1,.. ., Yn}, formed as a multiset. View-

ing the elements of ~ as character strings of length bik over

the alphabet Z = {O,. . . . 2f _ 1}, we now aim to construct a

path-compressed trie TD for ~. (For a more detailed discus-

sion of the material that follows, consult [11].) TD is a tree

with a leaf node for each element of ~ and an internal node

for each string over Z that is the longest common prefix of

two strings in y, and the parent of each nonroot nodes in TD

is the longest proper prefix ofs that occurs as a node in TD.

We will assume that each internal node in TD is marked with

the length of the relevant common prefix, and that each leaf

in T~ is marked with the corresponding input key (of which

the leaf is the concatenated signature); after an easy ~omputa-

tion, we can assume that each internal nodes in TD is marked

with one of the input keys occurring in the subtree rooted ats.

In order to construct TD, we begin by computing the length

rl of the longest common prefix of Y, and Yl+l, for i =

1,..., n – 1; by Lemma 1, applied to words of the form

[~= E+ I], this can be done in a total time of O(n). Guided

by this information, we can construct TD in O(n) time by

means of an algorithm of Gabow et al. [10] for constructing a

so-called Cartesian tree, which is closely related to TD [11].

The crucial observation at this point is that we can sort the

input keys, attached to the leaves of TD, by sorting the chil-

dren of each internal node in TD by the original fields corre-

sponding to the single signatures in which they differ. Since

the information available locally in the tree suffices to con-

struct a list of the fields concerned in linear time for each

internal node, we are now faced with the problem of sort-

ing a total of at most 2n fields within disjoint groups. We

have taken care to ensure that fields are small enough to be

sorted in linear time, so that the sorting at the internal nodes

in TD can be done in O(n) time altogether. All that is required

to finish the sorting is a left-to-right traversal of TD, during

which the input keys are output as they are encountered. The

idea of first constructing an unordered compressed trie and

then sorting at each of its internal nodes was also used in [3].

We still need to describe how to obtain and evaluate the

function h : {O,... ,2k – 1} -+ {O,... ,2[ – 1}. Recall that

what we require of h is that it must operate invectively on a set

S of O(n log n log log n) fields. While it appeaxs difficult to

ensure this deterministically, it turns out that if 1is sufficiently

large, a function chosen at random from a suitable class of

hash functions is injective on S with high probability. In fact,

most reasonable classes of hash functions have this property

(the class should be what is known as universal), but we are

severely restricted in our choice of hash functions by the facts

that, first, our instruction repertoire does not include division

and, second, we can spend only constant time computing the

signatures of all fields in a word. A class of hash functions

that fits the bill is the class H = {ha \ O < a < 2k, and a is

odd}, where ha is defined by

ha(x) = (az mod 2k) div 2~-t,

forz= O,..., 2k – 1. It can be seen that ha simply picks out

a segment of 1consecutive bits from the product ax. In order

to compute the signatures of all fields in a word in constant

time, we treat the fields in even-numbered positions and those

in odd-numbered positions separately. To obtain the signa-

tures of all even-numbered fields, we first clear the fields in

odd-numbered positions (i.e., they are set to zero) by means

of a suitable mask, which creates “buffer zones” between the

fields of interest. The whole resulting word is then multi-

plied by a, the buffer zones preventing overflow from one

field from interfering with the multiplication in another field,

and the final application of a suitable mask clears all bits out-

side of the signatures. At this point the signatures of the even-

numbcrcd positions am easily combined with those of the

odd-numbered positions. Note that the integer represented by

the word computed so far, although closely related to the con-

catenated signature of the original key, is essentially as large

as the original key-each signature, though only f bits long,

still occupies a k-bit field, with zeros in unused bit positions.

This runs counter to our purpose, and it is necessay to obtain

a smaller integer by packing the signatures tightly in adjacent

f-bit fields. Fig. 1 shows how this can be done with a simple

extension of the algorithm of [9, Lemma 3]. We pack fields
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lx91x81$91x81x71x81x71x61x71x6 x51xIjlx51x41x5 \x41x31x41x31$21x3 X21X11X21X11 Ixl

\ /

Ixgl lx91x81x91x8 lx71x8]x71x6 lx71x61x5jX6 l$51~41x51x4 lX31x41x31x2 lx3l~2l~l
\ 4

mask mask mask

lX91$81x71 lx61x51x41 1X31X21X1

11 11 1[

IX91X81X71 IX61X51X41 1X31X21$1

lx91x81x71 I l@lx51x41 IX31X21X11

lx61x5 x4 I I lx31x21XI

l~91~81$71x61x51 $41x91 X81~71~61x51x41 x31$21$l lxfjlx51x41x31x21xl I I 1X31X21X1

I I lx91x61x71 lx91x81x71~Ij lx5]x41x91x81x71 xljlx51x41x31x21xl

mask

lZ9[x81$71x61x51 x41$31 x21xl

Figure 1: Packing fields tightly.

tightly in ever larger groups, starting from a group size of 1.

With one multiplication, a shift and a masking operation, we

can increase the size of all groups by a factor of lc/.f. Since

the total number of fields is b/k, the complete packing takes

time 0(1 + log(b/k)/log(k/j)) = 0(1+ log b/log(k/$)).

The class M was analyzed by Dietzfelbinger et al. [8], who

establish (Lemma 2.3) that if h is chosen randomly from ‘H

(which amounts to choosing the multiplier a at random), then

his injective on S with probability at least 1 – 1S12/21. Since

ISI = O(n log n log log n), we can make the probability that

h is not injective on S smaller than 1/n2 by choosing 1 =

El(log n) appropriately.

This completes the description of the reduction. The orig-

inal problem is reduced in O(n(l + log b/log(k/.f))) time

to that of sorting n concatenated signatures, each of which

is a factor of k/f smaller than the original input keys. By

our choice of parameters, k/f = ~(q), where q =

W/ ((log n)2 log log n) z 2, and we are free in our choice of

k to ensure that in fact k/f ~ q. For n ~ 1, 1 < b < w

and p > 0, denote by T(n, b, p) the time needed to sort n in-

tegers of b bits each with probability at least p, assuming b

and w to be known. The reduction can be summarized in the

recurrence relation

T(n, b,p) < T(n, b/q, p + l/n2) + O(7W + @b/@q)).

As in Section 2, we apply the reduction repeatedly until

the remaining sorting problem can be solved directly us-

STAGE 1

(multiply)

(shift)

STAGE 2

(multiply)

(shift)

FINISH

ing the algorithm of Albers and Hagerup, i.e., until the

length of the numbers involved has dropped by a factor of

@(log n log log n); it is easy to see that this happens af-

ter O (1 + log log n/log q) reduction steps. Furthermore,

log b/log q = 0(1+ log log n/log q) for b <; w. This proves

the following main result.

Theorem 2 For all given integers n 2 4 and w 2

2(log n)2 log log n, a unit-cost RAM with a word length of w

bits and thefull instruction set can sort n integers in the range

0..2w–lin

O(n(l + loglogn/log q)2)

time, where q = w/( (log n)2 log log n), with probability at

least 1 – l/n.

Corollary 1 If w ~ (log n)2+’ for sornejxed E >0, we can

sort in linear expected time.

4 Sorting multiple-precision integers

The forward radix sort of Andersson and Nilsson [3] reduces

the problem of sorting n multiple-precision integers occupy-

ing a total of N words to that of sorting n (single-precision)

integers; the reduction itself needs O (AJ + n) time. Com-

bining this with Theorem 1 and Corollary 1, we obtain two

algorithms for the general lexicographic sorting problem.
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Corollary 2 For all integers n, N ~ 4, n multiple-precision

integers occupying a total of N machine words can be sorted

in O(N + n log log n) time OK provided that w ~ (log n)2+c

for some~xed e >0, in O(N + n) expected time.

5 Space requirements

As is easy to discover from an inspection of the algorithms

of [2] and [14], the deterministic algorithm of Section 2

works in O (2W) space. The only point that might need clar-

ification concerns the recursion stack needed for successive

range-reduction steps. Each reduction step pushes a list of n

numbers on the stack. However, the number of bits needed

to store these numbers is reduced by a factor of essentially

two from one reduction step to the next. Hence, by stor-

ing several numbers in each machine word, we can arrange

that the total space requirements for the recursion stack are

O(E:O n/2i) = O(n) = O(2W).

By breaking each input key into r pieces of at most (w/T-l

bits each, for some r- ~ 1, thereby in effect reducing the word

length, and sorting the resulting multiple-precision integers

as described in the previous section, we obtain a sorting al-

gorithm that uses O(r-w + n log log n) time and O(n + 2W/r)

space. (The reduction of Corollary 2 itself works in O (n +

2WIT) space.)

The recursion stack of signature sort can also be repre-

sented in linear space, so that signature sort naturally works

in O(n) space.

6 Parallel sorting

We begin this section by discussing two deterministic parallel

packed-sorting algorithms. We then show how to parallelize

the range reduction of Kirkpatrick and Reisch and use this to

obtain a deterministic conservative parallel sorting algorithm

(Theorem 4). Subsequently we argue that the range reduc-

tion of signature sort parallelizes in a straightforward manner

and derive a randomized conservative parallel sotiing algo-

rithm (Theorem 5). Finally we consider the problem of sort-

ing multiple-precision integers in parallel.

Lemma 2 For all given integers n z 4 and w ~ log n,

n integers of [w/ (log n log log n)l bits each can be sorted

in O((log n)2 ) time using O(n) operations on an EREW

PRAM with the restricted instruction set. On the CREW

PRAM, the same result holds, except that the running time is

O(log n log log n).

PROOF The first part of the lemma is just Corollary 1 of [2].

It turns out that the only part of the algorithm of that corollary

that needs more than @(log n log log n) time are @(log n)

successive rounds of merging longer and longer sorted runs

of input numbers. The second part of the lemma follows by

observing that merging can be done in doubly-logarithmic

time on the CREW PRAM [16]. ❑

The algorithms of Lemma 2 need more than logarithmic

time because they are based on repeated merging. We now

provide an alternative algorithm that sorts n keys in O(log n)

time, but in return requires more keys to fit in one word and

needs multiplication.

For all integers M, ~ ~ 2, we extend the (M, ~)-

representation to cover objects of one additional type, namely

multisets of integers. If field i of a word X contains the inte-

gerz~, fori= l,..., M, X may be interpreted as the mul-

tiset obtained from the multiset {zl, . . ., ZM } by removing

all occurrences of zero; in other words, afield with a value of

zero is interpreted as being “empty”. We sometimes restrict

the multiset representation further by requiring all nonzero

field values to be distinct; in this case we will call the object

represented a (simple) set, rather than a multiset.

Lemma 3 Suppose that we are given two integers M ~ 2

and f ~ log M + 2, a word X representing a (simple)

set U according to the (M, f) -representation, an integer r

with 1 < r < IU], and the constants 1~,~, lM,Mf and

1~,(~–1) f. Then, in constant sequential time and using a

word length of M2 f bits, we canfind the element of U whose

rank in U is r.

PROOF Denote by z, the integer contained in field z of X,

fori= l,..., M. We will temporarily adopt the (M2, f)-

representation, i.e., operations like \ are to be interpreted ac-

cordingly below; note that the fundamental constant 1~2, ~

can be obtained as lM, f. 1M,Mf. The basic idea, which goes

back to Paul and Simon [1 8], is to create words A and B such

that field number (i – 1) M + j of A contains X3, while the

corresponding field of B contains x%, for i = 1, ..., M and

j= l,.. ., M, and then to carry out all pairwise comparisons

between elements of {z1,..., ZM} by evaluating [A z B].

A is easily computed as X . lM,Mf, and B can be obtained

as ((X” lM,(M–IJf) I lM,Mf)” lM,.f.

Setting C := (([A Z B] A [B > 0]) ~ lM,Mf) 4

((M – l)Mf) computes the rank of x, in U and stores it in

field z of the (M, f)-representation, for z = 1,..., M, pro-

vided that ~Z # O (see Fig. 2). Recall that if Z? = O then,

by definition, x, # U, and note how the test B >0 prevents

zero elements of Z1, . . . . ZM from interfering with the rank

computation. As in the algorithm of Lemma 1, the condition

~ ~ log M + 2 ensures that fields are wide enough to hold

the ranks.

We now revert to the (M, ~)-representation and remove all

elements of U except the one of rank r by setting D := X I

[C = r . IM, ~]. Finally the element of rank r is obtained as

((D . l~,f) ~ ((M - 1)~)) AND (2f - 1). ❑

Given two multisets U and V of integers containing the

same number k of elements, we denote by U A V and U V V

the multisets consisting of the k smallest and the k largest el-

ements of the (2k)-element multiset U U V, respectively. We

will use the term “k-halver” to denote a device that inputs two

multisets U and V of k integers each and outputs U A V and
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c:= c’ J ((M – l)Mf)

Figure 2: Computing the ranks of the x, ‘s. t,j denotes the result of the comparison x, $ z~, for z = 1,. ... M

andj= l,..., M,andc, istherankofx%, fori = 1,..., M. x represents a don’t-care value.

U V V. The following lemma describes the implementation

of a k-halver.

Lemma 4 Suppose that we are given integers M ~ 2, m =

[log Ml +2, and f ~ m + 1, two words X and Y repre-

senting multisets U and V of the same cardinality k accord-

ing to the (M, f)- representation, and the constants 1M,~,

12fvf,2~f,and 12~,2f~_lJ ~. Suppose further that the m + 1

most significant bits of each field of X and Y are zero. Then,

in constant sequential time and using a word length of 4M2 f

bits, we can compute words representing U A V and U V V

according to the (2M, f) -representation.

PROOF We first combine X and Y by computing W := (X

AND (2”f –l)) +(Y ~ (Mf)). From now on we employ the

(2M, ~)-representation. The idea is simply to split the multi-

set stored in W’ at its median, the latter being found with the

algorithm of Lemma 3. Before we can appeal to Lemma 3,

however, we have to convert the multiset stored in W to a

simple set by imposing a total order among equal elements.

We do this by shifting each element left by m bits and ap-

pending a unique marker to the right end of each element.

By the assumption of free leading bit positions in each field,

the representation remains valid, and the relative order of dis-

tinct elements is as before, which will ensure the correctness

of the procedure. The unique end markers are obtained from

the word A = (12~,~)2 = (1,2,..., 2M), so that altogether

we execute W’ := (W ~ m) + (A I [W > O]). Now we

can employ the algorithm of Lemma 3 to determine the ele-

ment x of rank k. Subsequently we compute the two words

W I [W < x . 12~,~] and W I [W’ > z . lW,j] and return

them after removing their end markers and shifting them right

by m bits. ❑

An important fact to note about the lemma above is that the

output is “less compact” than the input, in that the number of

fields per word has doubled, while the number of nonempty

fields per word remains exactly the same. In order to coun-

teract this drift, we will regularly compact words representing

multisets in the sense described in the following lemma.

Lemma 5 Given two integers M 2 2 and f > log M +

2 and a word X representing a multiset U according to the

(M, f )-representation, a word representing U according to

the ([U/, f) -representation can be computed sequentially in

O(log M) time using a word length of M f bits.

PROOF We adapt a classical algorithm developed in the con-

text of routing on hypercubic networks. We first give a high-

Ievel description of the algorithm and then describe its de-

tailed implementation.

The goal will be to pack the elements of U tightly without

changing the relative order in which they occur in X. Hence

for z = 1, ..., M, if field z contains an element that has T-i

zero fields to its right, then this element should be moved

right by r? field widths-call rt its move distance. The ac-

tual movement takes place in (’log Ml phases. In Phase t,for

t = O,.. ., [log M] – 1, some elements move right by 2t field

widths, while the other elements remain stationary. Whether

an element should participate in the movement in Phase t can

be read directly off the corresponding bit of its move distance.

The nontrivial fact about the algorithm, which guarantees its

correctness, is that fields never “collide” during the move-

ment (see, e.g., [17, Section 3.4.3]).

The sequence R = (rl, . . . . r~) of move distances is

computed by the instruction R := [X = O] . 1~,~, and

the movement in Phase t simply computes .A ;= (R J t)

AND lM,f and replaces X by (((X I A) $ (2tf)) AND

(2”f - 1)) + (X I (-IA)), fort = O,..., ~log Ml -1.

❑
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For our purposes, a comparator network of width m is

a straight-line program consisting of a sequence of instruc-

tions of the form Compare(z, j), where 1 s z < j <

m. The intended semantics is that a comparator network of

width m operates on an array Q [1 . . m] containing m (not

necessarily distinct) elements drawn from an ordered uni-

verse, and that the execution of an instruction Compare(i, j)

simultaneously replaces Q[z] and Q[j] by mh{Q[i], Q[d}

and max{Q [i], Q [j]}, respectively. If executing a compara-

tor network P according to this interpretation sorts Q, i.e., if

Q[l] s Q[2] s . . . s Q [m] after the execution of P irrespec-

tively of the initial contents of Q, P is called a sorting net-

work. A leveled network of depth d is a comparator network

whose sequence of Compare instructions is partitioned into

d contiguous subsequences, called levels, such that no inte-

ger occurs more than once as an argument to Compare within

a single level. All Compare instructions within one level of

a leveled sorting network can clearly be executed in parallel

without affecting the sorting property of the network. For all

integers m ~ 2, the AKS network [1] is a leveled sorting net-

work of width m and depth O(log m).

Let m and k be positive integers and suppose that we re-

interpret a sorting network P of width m as follows: Rather

than single elements, the cells of Q now contain multisets of

k elements each, and the execution of Compare(i, j) simul-

taneously replaces Q[z] and Q[j] by Q[z] A Q[j] and Q[i] V

Q[~l, respectively. Suppose further that we add to the be-

ginning of P instructions to partition km elements arbitrar-

ily into m multisets of k elements each and to store these

in Q[l], ..., Q[m], and that we add to the end of P instruc-

tions to sort the multiset Q[i] into nondecreasing order, for

i = 1~.. . ~m, and to concatenate the resulting sorted se-

quences in the order corresponding to Q[l],..., Q[m]. We

will call the procedure obtained in this way the k-halving ver-

sion of P. It is known that the k-halving version of any sort-

ing network of width m correctly sorts any sequence of km

elements [15, Exercise 5.3.4.38].

Theorem 3 For all given integers n ~ 2 and w > log n and

alljixed e > 0, n integers of b = [w/(log n)2+c] bits each

can be sorted in O (log n) time using O(n) operations on a

unit-cost EREW PRAM with a word length of w bits and the

full instruction set.

PROOF Let k be the smallest power of 2 no smaller than

log n and assume without loss of generality that k divides

n and that n, b ~ 4. We will use the k-halving ver-

sion of the AKS network P of width m = n/k, with

each Compare instruction being executed by the k-halver of

Lemma 4. Since the k-halver works in constant time and

the depth of P is O(log m) = O (log n), the sorting runs in

O(log n) time. Furthermore, since the number of Compare

instructions in a leveled comparator network cannot exceed

the product of its width and depth, the total number of lc-

halving steps and, hence, the total number of operations ex-

ecuted is O(m log m) = O(n). What remains is to check a

number of details.

Given n integers of b bits each and any integer j > b, it

is a trivial matter, spending O(k) = O(log n) time and O(n)

operations, to partition the input numbers into m multisets of

k elements each and to store each of these in a word accord-

ing to the (k, ~)-representation. One small complication de-

rives from the fact that the value zero, stored in a field, is re-

served to denote an “empty” field. We can deal with this by

adding 1 to each key for the duration of the sorting, which

may increase b by 1. This realizes the “preprocessing” of

the k-halving version of P. Similarly, the “postprocessing”

can be realized by first converting each multiset, stored in the

(k, f )-representation, to the corresponding sequence of k in-

tegers, stored ink words, and then sorting this sequence with

the algorithm of Lemma 2. The sorting needs O((log k)2) =

O(log n) time and a total of O(n) operations. Recall, how-

ever, that since the k-halvers of the k-halving version of P

are implemented via Lemma 4, each level of the network

blows up the representation by a factor of 2, i.e., takes us from

the (M, ~)-representation to the (2M, j)-representation, for

some M ~ k, We need to limit the maximum value M- of

M that arises during the sorting, which we do by compacting

the words produced by regularly spaced levels of the network.

More precisely, for an integer d ~ 1, we compact the words

at hand whenever the total number of levels executed so far

is divisible by d, as well as after the final level. We choose

d such that d < [(~/4) log log nl, but d = fl(log log n).

The first condition ensures that Mmm is bounded by k -

2 [(~/A) M @ ~1 < Zk(log n)’j4 = O((log n)l+’14). In par-

ticuk since Mmax is polylogarithmic in n, each compaction

according to Lemma 5 takes O(log log n) time, together with

which the second condition imposed on d implies that the to-

tal time spent on compaction is within a constant factor of the

depth of the network, i.e., negligible.

The word length needed is M:aXf bits (Lemma4 is the bot-

tleneck). By the discussion above, this is O(~(log n)2+c12)

bits. According to Lemma 4, ~ must be chosen so large that

each field, in addition to the b bits of the key stored there,

has at least (log M-l + 3 leading zero bits. Since Mmm is

polylogarithmic in n, we can easily satisfy this requirement

while ensuring that ~ = O(b + (log n)cj2 ); the necessary

word length therefore is O(b(log n)2+~ ) = O(w) bits, as

promised. Note also that it is trivial to compute the constants

of the form la,e required by Lemma 4 in O(log n) sequential

time for all relevant values of M. Finally, although we shall

not demonstrate it here, the AKS network can be constructed

within the required resource bounds. ❑

The range reduction of Kirkpatrick and Reisch does not

lend itself to easy direct parallelization. Bhatt et al. [6] dis-

covered a way around this based on reducing the integer-

sorting problem to another problem known as ordered chain-

ing and applying parallel versions of the techniques of Kirk-

patrick and Reisch to the latter problem. The ordered-

chaining problem of size N is, given N processors numbered

o,. ... N – 1, some of which are (permanently) inactive,

to compute for each active processor the smallest processor
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number of an active processor larger than its own number, if

any; the active processors are thus to be hooked together in a

linked list.

The problem of sorting n keys in the range O.. m – 1 can

also be viewed as that of sorting n distinct integers in the

range O.. nm – 1, which can in turn be viewed as an ordered-

chaining problem of size N = nm. Bhatt et al. describe a re-

duction that takes constant time on a CRCW PRAM and es-

sentially reduces an ordered-chaining problem of size IV to a

collection of ordered-chaining subproblems of size @ each.

Our approach is to apply this reduction r times, for suitable

r, and to solve the resulting ordered-chaining subproblems by

viewing them as integer-sorting problems (sort the processors

within each subproblem by their processor numbers, which

are integers of length smaller than the input keys by a factor of

2“). Undoing the reductions yields a solution to the original

ordered-chaining problem, which is turned into a solution to

the original integer-sorting problem by means of optimal list

ranking [7]. The whole reduction needs O (r + log n) time

and O (nr) operations.

Theorem 4 For all given integers n ? 4 and w 2 log n,

n integers in the range O.. 2W – I can be sorted using

O(n log log n) operations in O(log n log log n) time on a

unit-cost CRCW PRAM with the restricted instruction set, or

in O(log n) time on a unit-cost CRCW PRAM with the full in-

struction set.

PROOF We apply the reduction above with T = 3 [log log nl,

which takes O (log n) time and uses O (n log log n) opera-

tions. The resulting problem of sorting n integers of at most

[log nl + [(w+ log n)/(log n)31 bits each is solved using

the algorithm of [6] if w s (log n)4, and using the packed-

sorting algorithm either of the second part of Lemma 2 or of

Theorem 3 otherwise. •1

Theorem 5 Forallgiven integers n 24 and w 2 2(log n)2,

a unit-cost EREWPRAIW with a word length of w bits and the

fi.dl instruction set can sort n integers in the range 0.. 2W –

1 in O(log n(l + log log n/log q)2) time using O(n(l +

log log n/log q)2) operations, where q = w/(log n)z, with

probability at least 1 – l/n.

PROOF We will demonstrate the theorem only for w 2

(log n)3+’, for fixed c >0, in which case the bounds claimed

are O (log n) time and O (n) operations with high probability;

the extension to smaller word lengths centers around a ran-

domized version of Lemma 3 that is less wasteful, in terms of

word length. One may note that Theorem 5 actually strength-

ens Theorem 2. The sequential version of Theorem 5 does not

need the AKS network.

Recall that the major steps in the randomized signature-

based range reduction of Section 3 were to compute the con-

catenated signatures of the input keys, to sort these, then to

construct their compressed trie TD, and finally to sort the chil-

dren of each internal node in TD not by the relevant signa-

tures, but instead by the corresponding original fields.

The sequential computation of the concatenated signatures

of the input keys parallelizes trivially, since it is done inde-

pendently for each key. The same is true of the computation

of the lengths T1, ..., rn_l of the longest common prefixes of

consecutive concatenated signatures, Given these numbers,

TD can be constructed in O(log n) time using O(n) opera-

tions, as described in [11], and the Euler-tour technique [19]

and optimal list ranking [7] can be used to collect the leaves of

TD in left-to-right order after the sorting at the internal nodes,

which concludes the whole sorting.

We choose k = @(w/(log n)2+’12), which allows us to

sort at the nodes of the trie in O (log n) time using the al-

gorithm of Theorem 3. Since the “reduction factor” k/~ is

fl((log n) ’i2), after a constant number of reduction steps we

can also sort the concatenated signatures in O (log n) time us-

ing the algorithm of Theorem 3. ❑

Corollary 3 If w ~ (log n)2+’ for some$xed e >0, we can

sort n integers in O (log n) expected time on an EREWPRAM

using O(n) expected operations.

Theorem 6 For all integers n ~ 4, n multiple-precision

integers occupying at most L machine words each and N

machine words altogether can be sorted either in O (L +

log n log log n) time using O(N + n log log n) operations on

a CRCW PRAM 06 provided that w ~ (log n)2+6 for some

jixed c >0, in O(L + log n) expected time using O(N + n)

expected operations on a randomized CRCW PRAM.

PROOF Omitted. •1

7 Conclusions

The comparison-based model is an elegant and general

framework in which to study sorting prolblems, and the

@(n log n) complexity of sorting is one of the basic tenets

of computer science. However, many sorting problems of

considerable interest can be cast as integer-sorting problems.

The complexity of integer sorting on RAM-lil&e models there-

fore is of great practical and theoretical significance.

The problem of integer sorting is sometimes equated with

that of sorting n integers of O (log n) bits each, another clas-

sical and well-understood problem, solved using indirect ad-

dressing in the form of radix sorting. However, it seems more

natural to tie the size of the integers to be sorted not to the in-

put size, but to the word length of the computer on which the

sorting problem arises. A fundamental question therefore is:

How fast can we sort n w-bit integers on a w-bit machine?

Fredman and Wdlard achieved a breakthrough by showing

the complexity to be o(n log n), independently of w. In a

practical vein, they suggested that the use clf features found

on typical machines other than indirect addressing and com-

parison might eventually lead to new sorting schemes with

the potential of outperforming both comparison-based sort-

ing and radix sorting in certain settings.
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The actual algorithm proposed by Fredman and Willard

probably is impractical. Our sequential algorithms are sim-

pler, have smaller constant factors, require much shorter

word lengths to be effective and offer greater improvements

over comparison-based sorting. Moreover, like the algorithm

of Fredman and Willard, they do not rely on exotic instruc-

tions (indeed, the deterministic algorithm eschews even the

use of multiplication). Nevertheless, several factors remain

that probably preclude them from being practical. For in-

stance, the deterministic algorithm has inordinate storage re-

quirements, a property that it inherits from the algorithm of

Kirkpatrick and Reisch, and both algorithms still rely on un-

realistically large word sizes. In the case of the deterministic

algorithm, the last claim can be partially countered by observ-

ing that the exclusive use of ACO instructions could make the

unit-cost assumption remain valid even for fairly large word

sizes. Still, our results are best viewed as no more than a step

further towards the goal of faster practical integer-sorting al-

gorithms.

Our research also raises a number of intriguing theoretical

questions. One is to fmd tight bounds on deterministic integer

sorting. Can the performance of signature sort be matched

by a deterministic algorithm? And can integers be sorted in

linear expected time for all word lengths? We have demon-

strated that n integers can be sorted in O(n) expected time

with a word length of w bits not only for w = O(log n),

but also for w ~ (log n,)2+’, for arbitrary fixed e > 0.

Between these two outer ranges, however, there might be a

“hump”, where the complexity of integer sorting goes up to

@(n log log n). We leave as an open problem to demonstrate

the presence or absence of such a “hump”.
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