
Sort ing Jordan Sequences in Linear T;me

A 09 /8 4

Kurt Hof f mann/Kurt Mehl horn
Uni versitat des Saa r landes

Saarbrticken , Germany

Pierre Rosenstiehl
Centre de Mathernatique Sociale

Paris, France

Robe r t E. Tar j a~

AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract

For a Jordan c urve C in the plane, let x
1

,x
2

"" , xn

be t he ab sc i ssas of the intersection points o f C with the

x -ax is , listed ill ~he order the

Xl,X ~ J" . ,x a Jordan sequence . _ n

points o ccur on C. We ca ll

In thi s paper we describe

an O(n)-time algorithm for recognizing and s orting Jordan

sequences . The problem of s orti ng such sequences ari ses in

c omp utational geometry and compu tational geography . Our

algor ithm is ba sed on a reduction of the recognition and

sorting problem to a list- s plitting problem. To solve the

list-splitting problem we use level linked sea rch trees .

Sorting Jordan Sequences in Linear Time

Kurt Hoffmann
Kurt Mehlhorrl

Universitat des Saarlandes
Saarbrucken, Germany

Pierre Rosenstiehl
Centre de Mathematique Sociale

Paris, France

Robert E. Tarjan
AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Int roductio n

Let C be a Jordan curve in the pla ne and let

x
l

'x
2
'· .. ,x

n
be the abscissas of the intersection points

of C with the x-axis, listed in the order the points occur

on C. (See Figure 1 .) We call a sequence of real numbers

x
l

'x
2
'·· "x

n
obtainable in this way a Jordan sequence.

In this paper we consider the problem of recognizing

and sorting ~ordan sequences.

[Figure 1]

The Jordan sequence sorting problem arises in at

least two different contexts. Edelsbrunner [5] has posed

the problem of computing the sorted list of intersections of

a simple n-sided polygon with a line. This problem is

linear-time equivalent to the problem of sorting a Jordan

sequence, since we can represent the line parametrically and

compute the list of intersections in the order they occur

along the pc·.,·gon in linear time by computing the intersection

- 2 -

of the line with each side of the polygon. (We assume that

the sides of the polygon are given in the order they occur

along the polygon.) Iri [11] has encount ered the problem

in the context of computational geography; for two Jordan

curves A a nd B, we are given the list of their intersection

points in the order they occur along A and asked to sort them

i n the order they occur along B, using as a unit -t ime primitive

t he operation of compar ing two intersection points with

re spect to the ir order along B. Any comparison-based algorithm

for the Jo rdan sequence sorti ng problem will solve 1ri ' s

proble!"- a s well.

We cal l a Jordan sequence a Jordan permutation if

the sequence consists of the integers 1 through n in some

order. Any Jorda n permutation determines two nested sets

of parentheses [16J. (See Sec tion 2.) It follows that there

are at most en Jordan permutations of 1 through n, where c is

a constant independent of n. This implies by a result of

Fredman [6) that Jordan sequences can be sorted in O(n) binary

compa ri sons . Un fortunately t he algorithm i mplied b y Fredman ' s

result has non-linear o v erhead. Our goal is to provide an

algorithm that r uns in linear time including overhead.

Our approach to t he Jordan sequence sorting problem

is to c onver t it into a data manipulation problem that involves

repeated splitti ng of lists . We discuss this transformation

in Section 2. In Section 3 we solv e the list-splitting problem

using an extension of level-linked search trees [4,10,:3] I ttus

obtaining a :inear-time algorithm for recognizing and

- 3 -

sorting Jordan sequences. Section 4 contains some final

remarks.

Hi s torical Note. The algorithm presented here was discovered

by the first pair of authors and by the second pair of authors

working independently. A sketch of the first pair's solution

was presented in [71.

2. Jordan Sequences and List-S~tting

Let x
1

,x
2

' . .. ,x
n

be a Jordan sequence , and suppose

without loss of generality that the Jordan curve C defining

the s equence starts below the x-axis. (If not. reflect it

about the x-axis.) Let x n (1),xn (2)"" ,x n (n) be the numbers

x l ,x
2
'··· IX

n
permuted into sorted order. Each pair {x2i_ l,x2i }

for i 2 [1 .. L n/2 J) corresponds to a part of C starting on the

x-axis at x
2i

-
1

' rising above it, and returning to the x-axis

at x2i' Since C never crosses itse l f , any two such pairs

{x 2 · l'x
2

,) , {x2 , l'x
2

·} must nest:
~- ~ J - J --

if either of x
2j

_
l

or x
2j

lies between x
2i

-
l

and x
2i

, then so does the other. This means

tha t we can construct a set of Ln/2J nested parentheses

corresponding to the pairs (x 2i_l,x2i1: in the sorted sequence

x n (l)'x n (2) '· ... x w(n). replace x 2i - l and x 2i for i £ [1.. Ln/2J)

by a matched left and right parenthesis, with the left parenthesis

replacing the smaller of h2i_l and x
2i

and the right parenthesis

replacing the larger. (If n is odd, we merely delete x .)
n

Similarly , the pairs {x2i,x2i+l} for i £ [1 .. Ln/2J1 correspond

to a set of Ln/ 2J nested parenth e ses representing connected

- 4 -

parts of C below the x-axis. (See Figure 2.)

[Figure 2]

We need some notation. For a pair {x. l'x, } , we ,- ,
define Yi ; min {x

i
_

l
,xi} and zi ; max{xi_l,x

i
}. Thus

{y o ,z. } ; {x. l'x .} . We say the pair {x . l'x .} encloses
1. 1. 1 - 1. 1.- 1-

a number r if y . <r <z. . Similarly, {x. l'x .} encloses a
1. 1. 1.- 1

pair {x. l'x .} if y. <y .< z .< z . . The parent of a pair {x . l'x .}
)-) 1)) 1 - 1- 1

is the enclosing pair { x~ , , Xj } with i = j mod 2 and Y
j

maximum.

With this definit ion the pairs {x2i_l,x2i) together with their

parent relation define a forest of rooted trees called the

upper forest of x
l

,x
2

' ... ,x
n

. Similarly the pairs {x2i,x2i+l}

together with their parent relation define the lower forest of

XI 'X2 '··· ,xn · If (xi_l,x i) and (xj_l,X j) are siblings in either

the upper or lower forest, we order them by putting {x. I'X .}
1- 1

first if Yi < Y
j

. Th is makes each forest into an ordered

forest. We make the forests into trees by adding a dummy pair

!_m,m} to each and declaring it to be the parent of any pair

not othe:rwi se havi ng a parent. Thus we obtain two trees called

the upper tree and the lower tree. (See Figure 3.)

[Figure 3]

To sort a Jordan sequence x
1

,x
2

' ... ,x
n

' we process

the numbers Xi in increasing order on i, constructing three ob jects

simultaneously: a sorted list of the numbers so far processed,

and the upper and lower trees of the pairs corresponding to the

numbers s o far pr ~cess ed. Initially the sorted list c c ntains

- 5 -

-~ and ~ and the upper and l owe r tre es each consist of t he

single pai r { -~, ~ } . We proc es s x. by a dding pair {x . "x. I
1 1-... 1

t o t he appropria t e tree (unless i = 1) and inserting x .
1

i nto the s orted l i s t. The proces s of i nserting (x . l' x . I
1- 1

i nto i t s tree prov ides the approxima t e location of x . in
1

the sorted list, s o that it c a n be ins erted in 0(1) time.

The de tai ls of process i n g x. are as fo l lows. I f
1

i-I we me r ely insert x. i n t he sor t ed li s t betwee n - ~
1

and :lO Otherwise , we locate the numbe rs r < x. 1 and
1 -

s > x. 1 adj'ce n t to x . 1 in the s o rted li s t. Let
1 - 1-

(xj_l,xj l and (xk_l,xk l b e the pairs c ontaining rand s

s uc h t hat i = k = k mod 2. (Either or both of these pairs

ma y be the dummy pair (_m,m l.) If both {x . l'x . } and
J- J

{Xk_l,xk l enclose Xi' it must be the c ase that

{xj_l,X
j

I = {xk_l,xkl = {r,s l ; otherwise x
l

,x 2 "" ,xn is

not a Jorda n sequence and we abort the algorithm. If this

c ondition is met, we insert x. into the sorted list before
1

or after x . 1 as appropriate. Also, we construct a new fmaily
1-

wi th parent (r,s) and {x . l'x . I a s its only child.
1- 1

On the other hand, suppose one of the pairs, say

• { x . l'x . } , does not enclose x ..
J- J 1

We access the family containing

{xj_l,x jl as a child (in the upper tree if i is even, t he

lower tree if i is odd) and split t h e list of children into

two list s , containing t hose ch ildren e nclosed by { x . l' x, : and those
1- 1

not. There may be a child t hat i s a pa i r having exact ly one e lement

(rather than zero or t·,w) enc losed by {x . l'x . I ; if '.Ie f i nd such
1 - 1

a pair we abort t he algor i thm, as x
1

,x
2

, . . "x
n

is not a Jo raar.

• By a fam i ly we mean a tree node a nd its l ist of c hildr en .

- 6 -

sequence. Otherwise, we construct a new family with parent

{x
i

_ l / x
i

}, having as children the children in the old family

e nclosed by {x . l'x. } ; in the old family, we replace these
1- 1

removed children by l x. l/X' } '
1- 1

(See Figure 4.) Then we

insert x. in the sorted list.
1

[Figure 4]

If this algor ithm successfully processes x
1

,x
2
'·.· IX

n
,

then x
1

,x
2

' ... IX
n

is indeed a Jordan sequence and is sorted by

the algorithm. If the algorithm aborts, then x
1

,x
2

' ... ,x
n

is

not a Jordan sequence.

In order to estimate the running time of the algorithm,

we need to say more about the data structures used to implement the

methoci. ~ ' le repres ent the sorted list of processed numbers by

a doubly-linked list, so that accessing the number before or

after a given one or inserting a new number before or after a given

one takes Oil} time. We store the numbers x. in an array indexed
~

on it so that given i we can in O(l} time access x x
it i-I' or

We store each family in the upper or lower forest as a

sorted list of the numbers in its constituent pairs. Each number

Xi occurs at most four times in such family lists, since it is

in at most two pairs ({ xi_l,x i) and {xi,x
i

+
1

}} , each of which

occurs in at most two families (as a parent and as a child).

- 7 -

The crucial operations are those on the family lists.

Given a pair { x . l 'X '} and a number u in a family list
1- 1 P

find the number u such
q

u l ex. l <u or u <x. l eu +1' we must
p - 1- P P 1- P

that u <x.< U l' test the appropriate
q 1 q+

?airs containing u
q

and U
q

+
1

to see if they and { xi_1,x
i

}

v iolate the nesting property, split the family list in two

and add x
i

_
l

and xi to the new family lists. (If

u l ex. l<u and x. l <x" the final family lists are p- 1- P 1- 1

"1 "" ,U l'x, l/X' ,ll 1"" ,u " and p- 1- 1 q+ ~
X. l'u , ... , u ,x.;
1- P q 1

the other three possible cases are similar .) Then we must

insert x. near u in the sorted list of processed numbers.
1 q

(Numbers x. fits immediately after u unless i is odd and Xl
1 q

lies betwe-. n u and x . , in which case x. fits after Xl' This
q 1 1

anoma ly occurs because Xl is not represented in the lower tree.)

The total time required by the algorithm is O(n)

not counting the time to split family lists and to find the

positions at which to split. We shall discuss two ways of

implementing family lists. One way is to represent each family

list as a circular doubly-linked list. With such a repre s entation

the time to insert a new item next to a given one is 0(1) and

the time to perform the splitting and insertion described above

(To find u
q

' we begin at up and search

simultaneously for u
q

in both directions around the circular list.)

To estimate the list - splitting and insertion time with

this representation , let Tl(t,m) be the worst-case time to car ry

out t successive splittings and insertions on an initial list of

size m. The~ Tl (i ,m) is bounded by the :ollowing recurrence:

Tl (O, m) 0;

T1{t , m) < ma x

O<i < t-l

- 8 -

(T
l

(i, j +2) + Tl (i -i-l,m-j+2) + O(min (j,m-j })l for ~> l.

,
To estimate Tl (l. ,m), let Tl (n) satisfy the following recurrence,

where the "0" term is the same as that in the bound on T
1

:

• • •
Tl (n) ; max (TI(i) + Tl (n-i) + O(min (i , n-i !" for n >2.

l <i <n-l

•
A straightforward induction shows that Tl (t,m) 2 Tl (4 t +m) .

•
It is well-known that Tl(n) ; O(n log n) [l,14}, wh i ch implies

Tl(t,m) ; O« l +m)log(t+m».

To obtain a time bound for the Jordan sequence sorting

algorithm, we note that there are two sets of Ln/2J list-splittings,

on the families of the upper tree and on the families of the

lower tree. The initial family list for each tree contains two

items. Thus the total time for list-splitting is 2Tl (Ln/2J ,2)

O(n log n), and the total time for the entire algorithm is

O(n log n).

This O(n log n) bound is no better than what we

can ob t ain u sing any fast general-purpose sorting method. We

can s peed up the algorithm b y changi ng our implementation of

the famil y list s . In the next section we shall develop a

- 9 -

representation such that the amortized time* to insert a new

item next t o a given one is 0(1) and the amortized time

to carry out the list-splitting operation described above is

O(log minI !p-q ! , £- !p-q !}). Wi th this representation, if

T
2

(t,m) is the worst-case time to carry out i successive

spl ittings on an initia l list of size m, T
2

(i,m) is bounded

by the following recurrence:

(T
2

(i,j+2) + T
2

(t-i-l,m-j+2) + O(log min (j, m-j }» £or£>l.

O<i<i-l

•
Let T

2
(n) satisfy the following recurrence, where the ·0" term

is the same as that in the bound on T
2

:

. ,
(T

2
(i) + T

2
(n-i) + O(log min (i,n-i }» for n >2.

l <i <n-l

, ,
Then T

2
(i ,m) < T

2
(4Hm) and T

2
(n) = O(n) (lS,p.18S], from which

we obtain that the Jordan sequence sorting algorithm runs in

O(n) time.

3. List-Splitting Using Level-Linked Search Trees

In order to represent lists so that splitting is

efficient, we shall use an extension of level-linked 2,4 trees

•
By amortized time we mean the time of an operation
a worst-case sequence of operations. See [15,18] .

concept more full y in the next s ection.

averaged over
We discuss tr:is

- 10 -

(IC / l Sj. Although our presentation is self-contained, 50mp

famili a r i t y with search trees and especially with 2,3 trees [lJ

or B-tre es [2J will help the reader.

A 2,4 tree is an ordered tree in which all external

nodes have the same depth and each internal node has two, three,

or four children. We can represent an ordered list of items

using a 2,4 tree by storing the items in the external nodes in

left-to-right order. In addition, we store in each internal node

the maximum item in each of its subtrees except the last. Thus

an internal node with d children, which we call a d-node, contains

d-l items, which we call keys. Each item except the last occurs

exactly once as a key. As an exceptional special case, we

store the last item in the tree root; otherwise this last item would

not appear as a key.

Remark. Although the root contains an extra key, we can avoid

using extra space for the root node by maintaining the tree so that

the root has at most three children. Small changes in the update

algorithms discussed below suffice for this purpose. o

To represent such a tree, we store in each node

pointers to its parent and children. With each item we store

pointers to its two locations in the tree. In addition, we make

the tree level-linked: each node points to the nodes preceding

and following it at the same height, called its left neighbor

and its right neighbor, respectively. The level links are circular,

so that the last node on a level points to the first and

vice-versa. The tree root points to itself. (See Figure 5.)

[Figure 5J

- 11 -

Such a data st ructure is-a (c i r cularly) l evel-linked 2,4

t~e e. Level-linked 2,4 trees were inven ted by Huddleston and

Mehlhorn [10] as an extension of the level-linked 2,3 trees

of Brown and Tarjan [4]. Essentially the same extensio n

was proposed by Maier and Salveter [13]. Our innovation

i s to make the level links circular, which speeds up access

operations and splitting, as we shall see.

The purpose of leve l links is to make it possible

t o access an y item in the tre e starting from any other item

i n time proportional to the logar ithm of the number of items

separating them. Suppose x is an item in the tree and we

wi sh to find the smalles t item in the trea no smal ler than some

other item y . Suppose x < y. (The case x > y i s simi lar .)

Start ing at the external node containing x, we follow parent

pointers up through the tree until reaching a node e such that

• e is on the right path of the tree, or the right neighbor of

e contains a key grea ter than or equal to y, or e is on the

left path of the tree and its left neighbor (which is on the right

path) contains a key less than or equal to y. We have now located

one or possibly two subtrees in which the item sought must

a ppear . (The two-subtree case occurs when y is greater than

all keys in e and less than all keys in its right neighbo r. Then the

de s ired item is either in the rightmost subtree of e or in the leftmost

s ubtree of its right neighbor, but we cannot in t he worst c a s e tell

• By the right path of a tree, we mean the path from the r oot
to the rightmost external node. We d~fine the left path
symmetrically . A node is on the right path if and only if it
is the root or its right ne ighbor contains smaller items than
it doe s .

- 12 -

which without searching both.) We search down in the appropriate

subtree or subtrees, following child pointers and guided by keys,

until finding the desired item. (See Figure 5.)

The time required for such a search is proportional

to the maximum height, say h, reached during the search. If

n is the total number of items in the tree and d is the number of items

greater than x and less than y, then h = O(log min {d,n-d }) .

To prove this. we note that a 2 ,4 tree of height i contains

at lea s t 2i items. Let f be the first node reached at height

h-l during the sea rch . The leftmos t subtree of the right

neighbor of f contains only items greater than x and less

than y. Since t his subtree is a 2,4 tree of height h-2, we have

d > 2h-2. Similar l y the rightmost subtree of the left neighbor

of f contains only items less than x or greater than y, which

. 1 · d 2 h-2 lmp 1es n- > • Combining these bounds, we obtain

h ~ log min {d,n-d } + 2. Thus the access operation takes

O(log min (d ,n-d }) time. This bound improves Brown and

Tarjan's O(log d) bound for access operations in level-linked

tree s without circular linking.

It remains f o r us to describe how to update level-

linked 2 ,4 trees . We shall discuss the various update opera-

tions only as they affect the tree structure; it is easy to

ve rify t hat keys and lev e l links can be updated : n the claimed

time bounds.

- 13 -

Insertion and deletion in 2,4 trees were discussed

_0 H ~dd leston and Mehlhorn [lOJ and Maier and Salveter [13J;

~e s~all review their algorithms and analysis (see also [15],

=t:OI' III. 5) . To insert a new item x in a tree next to a given

G~e y, we create a new external node to hold x and make its parent

~~e same as that of the external node containing y. This may con

-;e rt the parent from a 4-node into a 5-node, which is not allowed

~n a 2,4 tree. We sp l it such a 5-node into a 2-node and

a 3-~ode. This may create a new 5-node, which we split in

t ~ J.rn . We continue splitting newly created S-nodes, moving

il ~ the tree, until either the root splits or no new 5-node is

created. (See Figure 6.) If the root splits, we create a

new root, a 2-node, causing the tree to grow in height by one.

The time needed for the insertion is proportional to one plus

the number of splits.

[Figure 6)

Deletion is an inverse process, only slightly more

complicated. To delete a given item, we destroy the external

node containing it. This may make the parent a I-node. If

this I-node has a neighboring sibling that is a 3-node or a

4-node, we move a child of this neighbor to the l-node and the

deletion stops. (This is called borrowing.) If the I-node has a

neighboring sibling that is a 2-node, we combine the I-node and

the 2-node. (This is called fusing.) Fusing may produce a new

I-node, which we eliminate in the same way. We move up the tree

eliminating l-nodes until either a borrowing occurs or the root

- 14 -

becomes a I-node, which we destroy. (See Figure 7.) The time

needed for the deletion is proportional to one plus the number

of fusings.

[Figure 7]

In order to obtain a tight estimate of the time

for insertions and deletions, we shall amortize, i.e. average

the time over a worst-case sequence of operations. Huddleston

and Mehlhorn [10] and independently Maier and Salveter [13]

did an amortized analysis of insertion and deletion in 2,4 trees.

We shall restate their results in the "potential" paradigm

[14 , Section I II. 6.1; 1 8] .

We define the potential of a collection of 2,4 trees

to be twice the number of 4-nodes plus the number of 2-nodes.

We define the amortized time of an operation to be the actual

time of the operation plus the net increase in potential caused

by the operation. with this definition, the total actual

time of a sequence of operations is the total amortized time

plus the net potential drop over the sequence. If initially

there are no trees, then the net potential drop over any

sequence is non-positive, since the final potential is non

negative. Thus the sum of the amortized times is an upper

bound on the sum of the actual times, and we can use the

amortized times as a valid estimate of the complexity of

the opera tions.

Let us define the actual time of an insertion to be

one plus the number of sp lits. Then the amortized time of an

insertion is at most three: each split costs one b ~ : converts

- 15 -

a node that was originally a 4- node into a 2-node and a 3-node,

fo r a net potential drop of one; in addition, the insertion c an

create one new 2-node o r 4-node . Simi larly, if we define the

time of a deletion to be one plus the number of fusings, the

amortized cost is at most two: each fusing costs one but con

'lerts two nodes that were origina lly 2-nodes into a 3-node , for

a net potential drop of twoi in addition , the deletion can

create one new 2 -node.

This 0(1) amortized time bound for insertion and

deletion , deri ved by Huddleston and Mehlhorn [lO} and Maier

and Salveter [13}, generalizes the 0(1) bound per operation

d e rive d b y Brown a nd Tarjan [4J for a sequence of pure insertions

or a sequence of pure deletions in a 2,3 tree; the e xt ra flex ibi lity

of the balance condition in 2,4 trees means that insertions and

deletions can be freel y intermixed while maintaining the 0(1)

bound per operation. This advantage of 2,4 trees is crucial in

our applicat ion.

The 0(1) bound for insertion and deletion general izes

to the elimination of a single 5-node or a single I-node in

a 2,4 tree. To eliminate a 5-node, we walk up the path toward

the root splitting 5-nodes as in insertion: to eliminate a

l-node, we walk up the path toward the root fusing l-nodes as

in deletion. The ability to eliminate 5-nodes and l-nodes

allows us to devise conceptually straightforward algorithms

for joining of 2,4 trees and for a simple f o rm of splitting.

Suppose Tl and T2 are 2,4 trees such that all items in

Tl are less than all items in T
2

, and we ~ish to combine the

trees to form a single tree representing the concatenation 0:

the lists represented by Tl and T
2

. From t he root of T i f or

- 16 -

i = 1 ,2, we can access the largest item in the tree, hence the

rightmos t external node, and from there the leftmost external

node, in 0(1) time. To carry out the join,we walk up the right

path of Tl and t he left path of T2 until reaching the root of one

or the other. Let hl and h2 be the heights of Tl and T2

respectively, and let h = min (h
l

,h
2

l. If hl = h2' we create a

new 2-node whose children are the roots of Tl and T
2

. If

hl < h
2

, we make the root of Tl a child of the node on t he left

path of T2 of height h + 1, and eliminate the re su lting 5-node

if this crea tes one. We proceed symmetrically if hl > h
2

. The

amortized time of concatenation is O(h).

Suppose T is a 2,4 tree containing an item x, and

we wish to split T into two trees, Tl containing all items less

than or equal to x, and T2 containing all items greater than or

equal to x. To perform the splitting, we walk up the path

from the external node containing x to the root, splitting each

node along the path into two, one whose subtrees contain

items less than or equal to x and the other whose subtrees

contain items greater than or equal to x. Once the root

is split , ~e ha v e trees Tl and T2 as des i red, except that Tl

may have some I-nodes along its right path and T2 may have

some I-nodes along its left path. We eliminate these I-nodes

in top-to-bottom order by iterated fusing. The amortized time

needed fo r such a splitting is O(h), where h is the he ight of T.

Remark. An alternative way to implement splitting is to use r epeated

joining (lJ. The time bound is the same, but it is worst-case

rathe r than amort ized . This is no t important for our purposes.

- 17 -

~ ~W we are ready to consider t he kind of splitt i ng

:-.eeded in the Jordan sequence sorting algorithm. Given a

2 ,4 tree T and two items x 2 y in it, such that there are d

items greater than x and less than y, we wish to split out

t~ese d items into a new tree, with the old tree containing

~he rema ining items. We shall describe a method with an amor-

t ized r un ni ng time of O(min log{d,n-d }, where n is t he total

r.umber of i terns .

The first step of the splitting is to walk up toward

the root concurrently from the external nodes containing x and

":' unti 1 reaching a common node , say e, or two neighboring nodes,

say e whose subtree contains x and f whose subtree contains y .

~o complete t h e splitting we apply the appropriate one of the

following three cases.

Wrap- a round: f exists and is the left neighbor of e. (Node e

is on the left path and f is on the right path .) Detach the

subtree rooted at e, say T
L

, from its parent. If the

parent becomes a l-node, eliminate it by repeated fusing.

Split T at x into T~ containing items less than or equal to

x and T~ containing the rest. Concatenate T~ with what is

left of the original tree. Proceed symmetrica lly on f to

obtain T~ containing items greater than or equal to y. Con

catenate T~ and T~.

Single root: f does not exist. Detach t he subtree rooted

M
at e, say T , from its parent. 1 · M . _M M h

Sp ,t T into Ti' T2 suc .

that T~ contains items less than or equal to x. Split

TM into TM TM such that ~M contains items greater tha~
2 3' 4 ' 4

- 18 -

or equal to y.
M M

Concatenate Tl and T
4

. If the root of

the resulting tree has height less than or equal to h,

extend the tree by adding I-nodes at the top to make it

of height h, reattach it in place of e, and eliminate the

I-nodes by repeated fusing. Otherwise the concatenated

tree must have a 2-node of height h + 1 as its root. In

t h is case, make the two children of this root children of

t he original parent of e, and eliminate the resulting

5-node if any by repeated splitting.

Double root: f exists and is the right neighbor of e. This

case is similar to the single-root case: we split the

subtree with root e at x, split the subtree with root f at y,

and combine the pieces in the appropriate way.

If h is the height of node e, then h = O(min log{d,r.-d })

by the same argument we used to obtain the bound on access time

in le~el -linked 2,4 trees . In all three cases of splitting it

is easy to verify that the amortized running time is O(h).

The repertoire of 2,4 tree operations needed for

the Jordan sequence sorting problem consists of access,

insertion, and the form of splitting just discussed. The

amort ized time bounds we have derived for these operations

imply an O(n) running time for the sorting algorithm of Section 2,

as we have shown there.

- 19 -

4. Remarks

We close this paper with two remarks. First,

the kind of list-splitting necessary in the Jordan sequence

s orting problem arises in other situations as well. Indeed,

it is the most time-consuming part of an early planarity-testing

algorithm devised by Hopcroft and Tarjan [8]. By using level

linked 2,4 trees in place of their doubly-linked lists,

we reduce the running time of their algorithm from O(n log n)

to O(n). This gives a third linear-time planarity-testing

algor i thm, the others being those of Hopcroft and Tarjan [9]

and Lempel, Even, and Cederbaum [12] as implemented by Booth

and Leuker [3]. Level-linked 2,4 trees, being a general-purpose

list representation, undoubtedly have other applications remaining

to be discovered.

Our seconG remark is that there may be a much

simpler way to sort Jordan sequences in linear time: we

merely insert the items in the sequence one-at-a-time into a

splay tree (a self-adjusting form of binary search tree [17]) and

then access them in sorted order. This algorithm certainly runs

in O(n log n) time [17 J. On the basis of Sleator and Tarjan's

dynamic optimality conjecture [17], we conjecture that this

algorithm in fact runs in O(n) time. If this is true , then there

is a simple linear-time algorithm for recognizing Jordan

sequences as well: we run the sorting algorithm until it stops

or the O(n} time bound is exceeded. If it finishes within the

time bound, we test the parenthesis nesting property, which can

- 20 -

be done in O(n) time once the sequence is sorted. If the

s ort ing algorithm runs too long, we stop and declare the

sequence non-Jordan. We leave to the reader the problem

of prov ing or disproving that sorting a Jordan sequence using

a splay tree takes O(n) time.

References

[lJ A. V. Aho, J. E. Hopcroft, and J . D. Ullman, The

Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, Mass achusetts, 1974.

[2} R. Bayer and E. McCreight, nOrganization and maintenance

of large ordered indexes," Acta Info. 1(1972), 173-189.

[3J K. S. Booth and G. S. Leuker, "Testing for the

consecutive ones property, interval graphs, and graph

planarity using P-Q tree algorithms," J. Compo Sys.

Sci. 13(1976), 335-379.

[4} M. R. Brown and R. E. Tarjan, "Design and analysis of

a data structure for representing sorted lists," SIAM

J. Comput. 9(1980), 594-614.

[5J H. Edelsbrunner, Problem P36, Bull. EATCS 21(October,

1983), 195.

[6J M. L. Fredman, "How good is the information theory bound

in sorting?", Theor. Compo Sci. 1(1976), 355-361.

[7J K. Hoffman and K. Mehlhorn, "Intersecting a line and

a simple polygon," Bull. EATCS 22(February, 1984),

120-12l.

[8J J. E. Hopcroft and R. E. Tarjan, "Planarity testing in

V log V steps: extended abstract," Information Proce s sing

71, Vol. 1 - Foundations and Systems, North-Holland,

Amsterdam (1972), 85-90.

[9J J. E . Hopcroft and R. E. Tarjan, "Efficient planarity

testing," J. Assoc. Compo Mach. 21(1974), 549-568.

R-2

[10] S . Huddleston and K. Me h lhorn, "A new data structure

for representing sorted lists," Acta Info. 1 7 (1982),

157 -184.

fIll M. I ri, private communication.

[12] A. Lempel , S. Even , and 1. Cederbaum, "An algorithm for

pla nar ity testing of graphs," Theory of Graphs: Inter

national Symposium: Rome, July, 1966, P. Rosenstiehl,

ed., Gordon and Breach , New York, 1967 , 215-232.

[13] D. Maier and C . Salveter , "Hyster ical B-t rees ," Info .

Proc. Lett. 12 (1981), 199 - 202.

[14J K. Mehlhorn, "Nearly optimal binary search tree s," Acta

I nfo. 5 (1975), 287-295.

[1 5) K. Beh lhorn, !lata Structures a nd Effic i ent Algorithms,

Vo lume 1: Sorting and Searc~ing, Springer-Verlag, Berlin, 1984.

[16) P. Rosenstiehl, "Planar permutations defined by two

intersecting Jordan curves,ft Gra ph Theory and Combinatorics,

Academic Press, London, 1984, 259-271.

[17) D. D. Sleator and R. E. Tarjan, "Self-ad j~s ting binary

s ea r c h trees, "J. Assoc. Compo Mach., to appear.

[18] R. E . Tarjan, nAmortized computational co:nplexity,"

SHu'! J. A1g. Disc. Meth., to appear.

2

Figu re 1 . A Jordan curve corres pondi ng to the sequence
6,1, 21,13,1 2 ,7.5.4.3.2.20.18.17 , 14.11.1 0 .9.8.15.16.19.

20 21

(0) (() ()) (() ()) ((()) ())

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 1617 18 1920 21

(b) ((() () (() (())) (()))

Fi~u!~. The nested parentheses corresponding t o the Jordan curve
of--rl gure 1.

(a) The parentheses corresponding to the pairs {x2i _1,x2i }.

(b) The parentheses correspo~ding to the pairs {x
2i

,x
2i

+
1

).

)

7 12

14

15 16

3 9 10 12 13 17 18

19

21

-c c

Figure 3. The upper and lower trees for the Jordan curve of
Figure 1 . The smaller and larger elements of each pair are on
either side of the corresponding tree node.

1

(0)

3

(b)

18

• • • •

2021

Figure 4. Splitting of a family in the lower tree during proce ssing
of 15 in the Jordan sequence of Figure 1.

(a) The Jordan curve. The solid part is already processed,
the dashed part i s be ing processed, and the do t ted part is
to be process ed .

(b) The effect of inserting the pair !S,15 ! into the lowe r tree.
Only the affected family is shown.

-----
\

...... -----------115 * .. '

17 .. \ , ,
,----------------------------------~

Figure 5. A level-linked 2,4 tree. The edges denote bidirectional
links . The circular links are dashed. The starred nodes are those
on the access path from 4 to 16.

Figure 6 . Insertion in a 2,4 tree . Only the affected part of
t he t ree is shown. Three nodes are split.

Figure 7. Deletion in a 2,4 tree. Only the affected part of the
tree is shown. There are three fusings and one borrowing.

	A_1984_09 0000_1heitscover
	A_1984_09 0001
	A_1984_09 0002
	A_1984_09 0003
	A_1984_09 0003_a
	A_1984_09 0003_b
	A_1984_09 0004
	A_1984_09 0004_a
	A_1984_09 0004_b
	A_1984_09 0005
	A_1984_09 0005_a
	A_1984_09 0005_b
	A_1984_09 0006
	A_1984_09 0006_a
	A_1984_09 0006_b
	A_1984_09 0007
	A_1984_09 0007_a
	A_1984_09 0007_b
	A_1984_09 0008
	A_1984_09 0008_a
	A_1984_09 0008_b
	A_1984_09 0009
	A_1984_09 0009_a
	A_1984_09 0009_b
	A_1984_09 0010
	A_1984_09 0010_a
	A_1984_09 0010_b
	A_1984_09 0011
	A_1984_09 0011_a
	A_1984_09 0011_b
	A_1984_09 0012
	A_1984_09 0012_a
	A_1984_09 0012_b
	A_1984_09 0013
	A_1984_09 0013_b
	A_1984_09 0014
	A_1984_09 0014_a
	A_1984_09 0014_b
	A_1984_09 0015
	A_1984_09 0015_a
	A_1984_09 0015_b
	A_1984_09 0016
	A_1984_09 0016_a
	A_1984_09 0016_b
	A_1984_09 0017

