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Abstract 

For a Jordan c urve C in the plane, let x
1 

,x
2

"" , xn 

be t he ab sc i ssas of the intersection points o f C with the 

x -ax is , listed ill ~he order the 

Xl,X ~ J" . ,x a Jordan sequence . _ n 

points o ccur on C. We ca ll 

In thi s paper we describe 

an O(n)-time algorithm for recognizing and s orting Jordan 

sequences . The problem of s orti ng such sequences ari ses in 

c omp utational geometry and compu tational geography . Our 

algor ithm is ba sed on a reduction of the recognition and 

sorting problem to a list- s plitting problem. To solve the 

list-splitting problem we use level linked sea rch trees . 
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1. Int roductio n 

Let C be a Jordan curve in the pla ne and let 

x
l

'x
2
'· .. ,x

n 
be the abscissas of the intersection points 

of C with the x-axis, listed in the order the points occur 

on C. (See Figure 1 . ) We call a sequence of real numbers 

x
l

'x
2
'·· "x

n 
obtainable in this way a Jordan sequence. 

In this paper we consider the problem of recognizing 

and sorting ~ordan sequences. 

[Figure 1] 

The Jordan sequence sorting problem arises in at 

least two different contexts. Edelsbrunner [5] has posed 

the problem of computing the sorted list of intersections of 

a simple n-sided polygon with a line. This problem is 

linear-time equivalent to the problem of sorting a Jordan 

sequence, since we can represent the line parametrically and 

compute the list of intersections in the order they occur 

along the pc·.,·gon in linear time by computing the intersection 
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of the line with each side of the polygon. (We assume that 

the sides of the polygon are given in the order they occur 

along the polygon.) Iri [11] has encount ered the problem 

in the context of computational geography; for two Jordan 

curves A a nd B, we are given the list of their intersection 

points in the order they occur along A and asked to sort them 

i n the order they occur along B, using as a unit -t ime primitive 

t he operation of compar ing two intersection points with 

re spect to the ir order along B. Any comparison-based algorithm 

for the Jo rdan sequence sorti ng problem will solve 1ri ' s 

proble!"- a s well. 

We cal l a Jordan sequence a Jordan permutation if 

the sequence consists of the integers 1 through n in some 

order. Any Jorda n permutation determines two nested sets 

of parentheses [16J. (See Sec tion 2.) It follows that there 

are at most en Jordan permutations of 1 through n, where c is 

a constant independent of n. This implies by a result of 

Fredman [6 ) that Jordan sequences can be sorted in O(n) binary 

compa ri sons . Un fortunately t he algorithm i mplied b y Fredman ' s 

result has non-linear o v erhead. Our goal is to provide an 

algorithm that r uns in linear time including overhead. 

Our approach to t he Jordan sequence sorting problem 

is to c onver t it into a data manipulation problem that involves 

repeated splitti ng of lists . We discuss this transformation 

in Section 2. In Section 3 we solv e the list-splitting problem 

using an extension of level-linked search trees [4,10,:3] I ttus 

obtaining a :inear-time algorithm for recognizing and 
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sorting Jordan sequences. Section 4 contains some final 

remarks. 

Hi s torical Note. The algorithm presented here was discovered 

by the first pair of authors and by the second pair of authors 

working independently. A sketch of the first pair's solution 

was presented in [71. 

2. Jordan Sequences and List-S~tting 

Let x
1

,x
2

' . .. ,x
n 

be a Jordan sequence , and suppose 

without loss of generality that the Jordan curve C defining 

the s equence starts below the x-axis. (If not. reflect it 

about the x-axis.) Let x n (1),xn (2)"" ,x n (n) be the numbers 

x l ,x
2
'··· IX

n 
permuted into sorted order. Each pair {x2i_ l,x2i } 

for i 2 [1 .. L n/2 J) corresponds to a part of C starting on the 

x-axis at x
2i

-
1

' rising above it, and returning to the x-axis 

at x2i' Since C never crosses itse l f , any two such pairs 

{x 2 · l'x
2

,) , {x2 , l'x
2

·} must nest: 
~- ~ J - J --

if either of x
2j

_
l 

or x
2j 

lies between x
2i

-
l 

and x
2i

, then so does the other. This means 

tha t we can construct a set of Ln/2J nested parentheses 

corresponding to the pairs (x 2i_l,x2i1: in the sorted sequence 

x n (l)'x n (2) '· ... x w(n). replace x 2i - l and x 2i for i £ [1.. Ln/2J) 

by a matched left and right parenthesis, with the left parenthesis 

replacing the smaller of h2i_l and x
2i 

and the right parenthesis 

replacing the larger. (If n is odd, we merely delete x .) 
n 

Similarly , the pairs {x2i,x2i+l} for i £ [1 .. Ln/2J1 correspond 

to a set of Ln/ 2J nested parenth e ses representing connected 
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parts of C below the x-axis. (See Figure 2.) 

[Figure 2] 

We need some notation. For a pair {x. l'x, } , we ,- , 
define Yi ; min {x

i
_

l 
,xi} and zi ; max{xi_l,x

i
}. Thus 

{y o ,z. } ; {x. l'x .} . We say the pair {x . l'x .} encloses 
1. 1. 1 - 1. 1.- 1-

a number r if y . <r <z. . Similarly, {x. l'x .} encloses a 
1. 1. 1.- 1 

pair {x. l'x .} if y. <y .< z .< z . . The parent of a pair {x . l'x .} 
)-) 1)) 1 - 1- 1 

is the enclosing pair { x~ , , Xj } with i = j mod 2 and Y
j 

maximum. 

With this definit ion the pairs {x2i_l,x2i ) together with their 

parent relation define a forest of rooted trees called the 

upper forest of x
l

,x
2

' ... ,x
n

. Similarly the pairs {x2i,x2i+l} 

together with their parent relation define the lower forest of 

XI 'X2 '··· ,xn · If ( xi_l,x i ) and ( xj_l,X j ) are siblings in either 

the upper or lower forest, we order them by putting {x. I'X .} 
1- 1 

first if Yi < Y
j

. Th is makes each forest into an ordered 

forest. We make the forests into trees by adding a dummy pair 

!_m,m} to each and declaring it to be the parent of any pair 

not othe:rwi se havi ng a parent. Thus we obtain two trees called 

the upper tree and the lower tree. (See Figure 3.) 

[Figure 3] 

To sort a Jordan sequence x
1

,x
2

' ... ,x
n

' we process 

the numbers Xi in increasing order on i, constructing three ob jects 

simultaneously: a sorted list of the numbers so far processed, 

and the upper and lower trees of the pairs corresponding to the 

numbers s o far pr ~cess ed. Initially the sorted list c c ntains 
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-~ and ~ and the upper and l owe r tre es each consist of t he 

single pai r { -~, ~ } . We proc es s x. by a dding pair {x . "x. I 
1 1-... 1 

t o t he appropria t e tree (unless i = 1) and inserting x . 
1 

i nto the s orted l i s t. The proces s of i nserting ( x . l' x . I 
1- 1 

i nto i t s tree prov ides the approxima t e location of x . in 
1 

the sorted list, s o that it c a n be ins erted in 0(1) time. 

The de tai ls of process i n g x. are as fo l lows. I f 
1 

i-I we me r ely insert x. i n t he sor t ed li s t betwee n - ~ 
1 

and :lO Otherwise , we locate the numbe rs r < x. 1 and 
1 -

s > x. 1 adj'ce n t to x . 1 in the s o rted li s t. Let 
1 - 1-

( xj_l,xj l and ( xk_l,xk l b e the pairs c ontaining rand s 

s uc h t hat i = k = k mod 2. (Either or both of these pairs 

ma y be the dummy pair ( _m,m l. ) If both {x . l'x . } and 
J- J 

{Xk_l,xk l enclose Xi' it must be the c ase that 

{xj_l,X
j 

I = {xk_l,xkl = {r,s l ; otherwise x
l

,x 2 "" ,xn is 

not a Jorda n sequence and we abort the algorithm. If this 

c ondition is met, we insert x. into the sorted list before 
1 

or after x . 1 as appropriate. Also, we construct a new fmaily 
1-

wi th parent ( r,s ) and {x . l'x . I a s its only child. 
1- 1 

On the other hand, suppose one of the pairs, say 

• { x . l'x . } , does not enclose x .. 
J- J 1 

We access the family containing 

{xj_l,x jl as a child (in the upper tree if i is even, t he 

lower tree if i is odd ) and split t h e list of children into 

two list s , containing t hose ch ildren e nclosed by { x . l' x, : and those 
1- 1 

not. There may be a child t hat i s a pa i r having exact ly one e lement 

(rather than zero or t·,w ) enc losed by {x . l'x . I ; if '.Ie f i nd such 
1 - 1 

a pair we abort t he algor i thm, as x
1

,x
2

, . . "x
n 

is not a Jo raar. 

• By a fam i ly we mean a tree node a nd its l ist of c hildr en . 
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sequence. Otherwise, we construct a new family with parent 

{x
i

_ l / x
i

}, having as children the children in the old family 

e nclosed by {x . l'x. } ; in the old family, we replace these 
1- 1 

removed children by l x. l/X' } ' 
1- 1 

(See Figure 4.) Then we 

insert x. in the sorted list. 
1 

[Figure 4] 

If this algor ithm successfully processes x
1

,x
2
'·.· IX

n
, 

then x
1

,x
2

' ... IX
n 

is indeed a Jordan sequence and is sorted by 

the algorithm. If the algorithm aborts, then x
1

,x
2

' ... ,x
n 

is 

not a Jordan sequence. 

In order to estimate the running time of the algorithm, 

we need to say more about the data structures used to implement the 

methoci. ~ ' le repres ent the sorted list of processed numbers by 

a doubly-linked list, so that accessing the number before or 

after a given one or inserting a new number before or after a given 

one takes Oil} time. We store the numbers x. in an array indexed 
~ 

on it so that given i we can in O(l} time access x x 
it i-I' or 

We store each family in the upper or lower forest as a 

sorted list of the numbers in its constituent pairs. Each number 

Xi occurs at most four times in such family lists, since it is 

in at most two pairs ({ xi_l,x i ) and {xi,x
i

+
1

}} , each of which 

occurs in at most two families (as a parent and as a child). 
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The crucial operations are those on the family lists. 

Given a pair { x . l 'X '} and a number u in a family list 
1- 1 P 

find the number u such 
q 

u l ex. l <u or u <x. l eu +1' we must 
p - 1- P P 1- P 

that u <x.< U l' test the appropriate 
q 1 q+ 

?airs containing u
q 

and U
q

+
1 

to see if they and { xi_1,x
i

} 

v iolate the nesting property, split the family list in two 

and add x
i

_
l 

and xi to the new family lists. (If 

u l ex. l<u and x. l <x" the final family lists are p- 1- P 1- 1 

"1 "" ,U l'x, l/X' ,ll 1"" ,u " and p- 1- 1 q+ ~ 
X. l'u , ... , u ,x.; 
1- P q 1 

the other three possible cases are similar .) Then we must 

insert x. near u in the sorted list of processed numbers. 
1 q 

(Numbers x. fits immediately after u unless i is odd and Xl 
1 q 

lies betwe-. n u and x . , in which case x. fits after Xl' This 
q 1 1 

anoma ly occurs because Xl is not represented in the lower tree.) 

The total time required by the algorithm is O(n) 

not counting the time to split family lists and to find the 

positions at which to split. We shall discuss two ways of 

implementing family lists. One way is to represent each family 

list as a circular doubly-linked list. With such a repre s entation 

the time to insert a new item next to a given one is 0(1) and 

the time to perform the splitting and insertion described above 

(To find u
q

' we begin at up and search 

simultaneously for u
q 

in both directions around the circular list.) 

To estimate the list - splitting and insertion time with 

this representation , let Tl(t,m) be the worst-case time to car ry 

out t successive splittings and insertions on an initial list of 

size m. The~ Tl (i ,m) is bounded by the :ollowing recurrence: 
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T1{t , m) < ma x 

O<i < t-l 
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(T
l 

( i, j +2) + Tl ( i -i-l,m-j+2) + O(min ( j,m-j })l for ~> l. 

, 
To estimate Tl ( l. ,m), let Tl (n ) satisfy the following recurrence, 

where the "0" term is the same as that in the bound on T
1

: 

• • • 
Tl (n ) ; max (TI( i ) + Tl (n-i) + O(min ( i , n-i !" for n >2. 

l <i <n-l 

• 
A straightforward induction shows that Tl (t,m) 2 Tl (4 t +m) . 

• 
It is well-known that Tl(n) ; O(n log n) [l,14}, wh i ch implies 

Tl(t,m) ; O« l +m)log(t+m». 

To obtain a time bound for the Jordan sequence sorting 

algorithm, we note that there are two sets of Ln/2J list-splittings, 

on the families of the upper tree and on the families of the 

lower tree. The initial family list for each tree contains two 

items. Thus the total time for list-splitting is 2Tl ( Ln/2J ,2) 

O(n log n), and the total time for the entire algorithm is 

O(n log n). 

This O(n log n) bound is no better than what we 

can ob t ain u sing any fast general-purpose sorting method. We 

can s peed up the algorithm b y changi ng our implementation of 

the famil y list s . In the next section we shall develop a 
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representation such that the amortized time* to insert a new 

item next t o a given one is 0(1) and the amortized time 

to carry out the list-splitting operation described above is 

O(log minI !p-q ! , £- !p-q !}). Wi th this representation, if 

T
2

(t,m) is the worst-case time to carry out i successive 

spl ittings on an initia l list of size m, T
2

(i,m) is bounded 

by the following recurrence: 

(T
2

(i,j+2) + T
2

(t-i-l,m-j+2) + O(log min (j, m-j }» £or£>l. 

O<i<i-l 

• 
Let T

2
(n) satisfy the following recurrence, where the ·0" term 

is the same as that in the bound on T
2

: 

. , 
(T

2
(i) + T

2
(n-i) + O(log min ( i,n-i }» for n >2. 

l <i <n-l 

, , 
Then T

2
( i ,m) < T

2
(4Hm) and T

2
(n) = O(n) (lS,p.18S], from which 

we obtain that the Jordan sequence sorting algorithm runs in 

O(n) time. 

3. List-Splitting Using Level-Linked Search Trees 

In order to represent lists so that splitting is 

efficient, we shall use an extension of level-linked 2,4 trees 

• 
By amortized time we mean the time of an operation 
a worst-case sequence of operations. See [15,18] . 

concept more full y in the next s ection. 

averaged over 
We discuss tr:is 
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(IC / l Sj. Although our presentation is self-contained, 50mp 

famili a r i t y with search trees and especially with 2,3 trees [lJ 

or B-tre es [2J will help the reader. 

A 2,4 tree is an ordered tree in which all external 

nodes have the same depth and each internal node has two, three, 

or four children. We can represent an ordered list of items 

using a 2,4 tree by storing the items in the external nodes in 

left-to-right order. In addition, we store in each internal node 

the maximum item in each of its subtrees except the last. Thus 

an internal node with d children, which we call a d-node, contains 

d-l items, which we call keys. Each item except the last occurs 

exactly once as a key. As an exceptional special case, we 

store the last item in the tree root; otherwise this last item would 

not appear as a key. 

Remark. Although the root contains an extra key, we can avoid 

using extra space for the root node by maintaining the tree so that 

the root has at most three children. Small changes in the update 

algorithms discussed below suffice for this purpose. o 

To represent such a tree, we store in each node 

pointers to its parent and children. With each item we store 

pointers to its two locations in the tree. In addition, we make 

the tree level-linked: each node points to the nodes preceding 

and following it at the same height, called its left neighbor 

and its right neighbor, respectively. The level links are circular, 

so that the last node on a level points to the first and 

vice-versa. The tree root points to itself. (See Figure 5.) 

[Figure 5J 
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Such a data st ructure is-a (c i r cularly) l evel-linked 2,4 

t~e e. Level-linked 2,4 trees were inven ted by Huddleston and 

Mehlhorn [10] as an extension of the level-linked 2,3 trees 

of Brown and Tarjan [4]. Essentially the same extensio n 

was proposed by Maier and Salveter [13]. Our innovation 

i s to make the level links circular, which speeds up access 

operations and splitting, as we shall see. 

The purpose of leve l links is to make it possible 

t o access an y item in the tre e starting from any other item 

i n time proportional to the logar ithm of the number of items 

separating them. Suppose x is an item in the tree and we 

wi sh to find the smalles t item in the trea no smal ler than some 

other item y . Suppose x < y. (The case x > y i s simi lar .) 

Start ing at the external node containing x, we follow parent 

pointers up through the tree until reaching a node e such that 

• e is on the right path of the tree, or the right neighbor of 

e contains a key grea ter than or equal to y, or e is on the 

left path of the tree and its left neighbor (which is on the right 

path) contains a key less than or equal to y. We have now located 

one or possibly two subtrees in which the item sought must 

a ppear . (The two-subtree case occurs when y is greater than 

all keys in e and less than all keys in its right neighbo r. Then the 

de s ired item is either in the rightmost subtree of e or in the leftmost 

s ubtree of its right neighbor, but we cannot in t he worst c a s e tell 

• By the right path of a tree, we mean the path from the r oot 
to the rightmost external node. We d~fine the left path 
symmetrically . A node is on the right path if and only if it 
is the root or its right ne ighbor contains smaller items than 
it doe s . 
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which without searching both.) We search down in the appropriate 

subtree or subtrees, following child pointers and guided by keys, 

until finding the desired item. (See Figure 5.) 

The time required for such a search is proportional 

to the maximum height, say h, reached during the search. If 

n is the total number of items in the tree and d is the number of items 

greater than x and less than y, then h = O(log min {d,n-d }) . 

To prove this. we note that a 2 ,4 tree of height i contains 

at lea s t 2i items. Let f be the first node reached at height 

h-l during the sea rch . The leftmos t subtree of the right 

neighbor of f contains only items greater than x and less 

than y. Since t his subtree is a 2,4 tree of height h-2, we have 

d > 2h-2. Similar l y the rightmost subtree of the left neighbor 

of f contains only items less than x or greater than y, which 

. 1 · d 2 h-2 lmp 1es n- > • Combining these bounds, we obtain 

h ~ log min {d,n-d } + 2. Thus the access operation takes 

O(log min (d ,n-d }) time. This bound improves Brown and 

Tarjan's O(log d) bound for access operations in level-linked 

tree s without circular linking. 

It remains f o r us to describe how to update level-

linked 2 ,4 trees . We shall discuss the various update opera-

tions only as they affect the tree structure; it is easy to 

ve rify t hat keys and lev e l links can be updated : n the claimed 

time bounds. 
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Insertion and deletion in 2,4 trees were discussed 

_0 H ~dd leston and Mehlhorn [lOJ and Maier and Salveter [13J; 

~e s~all review their algorithms and analysis (see also [15], 

=t:OI' III. 5) . To insert a new item x in a tree next to a given 

G~e y, we create a new external node to hold x and make its parent 

~~e same as that of the external node containing y. This may con

-;e rt the parent from a 4-node into a 5-node, which is not allowed 

~n a 2,4 tree. We sp l it such a 5-node into a 2-node and 

a 3-~ode. This may create a new 5-node, which we split in 

t ~ J.rn . We continue splitting newly created S-nodes, moving 

il ~ the tree, until either the root splits or no new 5-node is 

created. (See Figure 6.) If the root splits, we create a 

new root, a 2-node, causing the tree to grow in height by one. 

The time needed for the insertion is proportional to one plus 

the number of splits. 

[Figure 6) 

Deletion is an inverse process, only slightly more 

complicated. To delete a given item, we destroy the external 

node containing it. This may make the parent a I-node. If 

this I-node has a neighboring sibling that is a 3-node or a 

4-node, we move a child of this neighbor to the l-node and the 

deletion stops. (This is called borrowing.) If the I-node has a 

neighboring sibling that is a 2-node, we combine the I-node and 

the 2-node. (This is called fusing.) Fusing may produce a new 

I-node, which we eliminate in the same way. We move up the tree 

eliminating l-nodes until either a borrowing occurs or the root 
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becomes a I-node, which we destroy. (See Figure 7.) The time 

needed for the deletion is proportional to one plus the number 

of fusings. 

[Figure 7] 

In order to obtain a tight estimate of the time 

for insertions and deletions, we shall amortize, i.e. average 

the time over a worst-case sequence of operations. Huddleston 

and Mehlhorn [10] and independently Maier and Salveter [13] 

did an amortized analysis of insertion and deletion in 2,4 trees. 

We shall restate their results in the "potential" paradigm 

[14 , Section I II. 6.1; 1 8] . 

We define the potential of a collection of 2,4 trees 

to be twice the number of 4-nodes plus the number of 2-nodes. 

We define the amortized time of an operation to be the actual 

time of the operation plus the net increase in potential caused 

by the operation. with this definition, the total actual 

time of a sequence of operations is the total amortized time 

plus the net potential drop over the sequence. If initially 

there are no trees, then the net potential drop over any 

sequence is non-positive, since the final potential is non

negative. Thus the sum of the amortized times is an upper 

bound on the sum of the actual times, and we can use the 

amortized times as a valid estimate of the complexity of 

the opera tions. 

Let us define the actual time of an insertion to be 

one plus the number of sp lits. Then the amortized time of an 

insertion is at most three: each split costs one b ~ : converts 
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a node that was originally a 4- node into a 2-node and a 3-node, 

fo r a net potential drop of one; in addition, the insertion c an 

create one new 2-node o r 4-node . Simi larly, if we define the 

time of a deletion to be one plus the number of fusings, the 

amortized cost is at most two: each fusing costs one but con

'lerts two nodes that were origina lly 2-nodes into a 3-node , for 

a net potential drop of twoi in addition , the deletion can 

create one new 2 -node. 

This 0(1) amortized time bound for insertion and 

deletion , deri ved by Huddleston and Mehlhorn [lO} and Maier 

and Salveter [13}, generalizes the 0(1) bound per operation 

d e rive d b y Brown a nd Tarjan [4J for a sequence of pure insertions 

or a sequence of pure deletions in a 2,3 tree; the e xt ra flex ibi lity 

of the balance condition in 2,4 trees means that insertions and 

deletions can be freel y intermixed while maintaining the 0(1) 

bound per operation. This advantage of 2,4 trees is crucial in 

our applicat ion. 

The 0(1) bound for insertion and deletion general izes 

to the elimination of a single 5-node or a single I-node in 

a 2,4 tree. To eliminate a 5-node, we walk up the path toward 

the root splitting 5-nodes as in insertion: to eliminate a 

l-node, we walk up the path toward the root fusing l-nodes as 

in deletion. The ability to eliminate 5-nodes and l-nodes 

allows us to devise conceptually straightforward algorithms 

for joining of 2,4 trees and for a simple f o rm of splitting. 

Suppose Tl and T2 are 2,4 trees such that all items in 

Tl are less than all items in T
2

, and we ~ish to combine the 

trees to form a single tree representing the concatenation 0: 

the lists represented by Tl and T
2

. From t he root of T i f or 
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i = 1 ,2, we can access the largest item in the tree, hence the 

rightmos t external node, and from there the leftmost external 

node, in 0(1) time. To carry out the join,we walk up the right 

path of Tl and t he left path of T2 until reaching the root of one 

or the other. Let hl and h2 be the heights of Tl and T2 

respectively, and let h = min ( h
l

,h
2

l. If hl = h2' we create a 

new 2-node whose children are the roots of Tl and T
2

. If 

hl < h
2

, we make the root of Tl a child of the node on t he left 

path of T2 of height h + 1, and eliminate the re su lting 5-node 

if this crea tes one. We proceed symmetrically if hl > h
2

. The 

amortized time of concatenation is O(h). 

Suppose T is a 2,4 tree containing an item x, and 

we wish to split T into two trees, Tl containing all items less 

than or equal to x, and T2 containing all items greater than or 

equal to x. To perform the splitting, we walk up the path 

from the external node containing x to the root, splitting each 

node along the path into two, one whose subtrees contain 

items less than or equal to x and the other whose subtrees 

contain items greater than or equal to x. Once the root 

is split , ~e ha v e trees Tl and T2 as des i red, except that Tl 

may have some I-nodes along its right path and T2 may have 

some I-nodes along its left path. We eliminate these I-nodes 

in top-to-bottom order by iterated fusing. The amortized time 

needed fo r such a splitting is O(h), where h is the he ight of T. 

Remark. An alternative way to implement splitting is to use r epeated 

joining (lJ. The time bound is the same, but it is worst-case 

rathe r than amort ized . This is no t important for our purposes. 
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~ ~W we are ready to consider t he kind of splitt i ng 

:-.eeded in the Jordan sequence sorting algorithm. Given a 

2 ,4 tree T and two items x 2 y in it, such that there are d 

items greater than x and less than y, we wish to split out 

t~ese d items into a new tree, with the old tree containing 

~he rema ining items. We shall describe a method with an amor-

t ized r un ni ng time of O(min log{d,n-d }, where n is t he total 

r.umber of i terns . 

The first step of the splitting is to walk up toward 

the root concurrently from the external nodes containing x and 

":' unti 1 reaching a common node , say e, or two neighboring nodes, 

say e whose subtree contains x and f whose subtree contains y . 

~o complete t h e splitting we apply the appropriate one of the 

following three cases. 

Wrap- a round: f exists and is the left neighbor of e. (Node e 

is on the left path and f is on the right path . ) Detach the 

subtree rooted at e, say T
L

, from its parent. If the 

parent becomes a l-node, eliminate it by repeated fusing. 

Split T at x into T~ containing items less than or equal to 

x and T~ containing the rest. Concatenate T~ with what is 

left of the original tree. Proceed symmetrica lly on f to 

obtain T~ containing items greater than or equal to y. Con

catenate T~ and T~. 

Single root: f does not exist. Detach t he subtree rooted 

M 
at e, say T , from its parent. 1 · M . _M M h 

Sp ,t T into Ti' T2 suc . 

that T~ contains items less than or equal to x. Split 

TM into TM TM such that ~M contains items greater tha~ 
2 3' 4 ' 4 
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or equal to y. 
M M 

Concatenate Tl and T
4

. If the root of 

the resulting tree has height less than or equal to h, 

extend the tree by adding I-nodes at the top to make it 

of height h, reattach it in place of e, and eliminate the 

I-nodes by repeated fusing. Otherwise the concatenated 

tree must have a 2-node of height h + 1 as its root. In 

t h is case, make the two children of this root children of 

t he original parent of e, and eliminate the resulting 

5-node if any by repeated splitting. 

Double root: f exists and is the right neighbor of e. This 

case is similar to the single-root case: we split the 

subtree with root e at x, split the subtree with root f at y, 

and combine the pieces in the appropriate way. 

If h is the height of node e, then h = O(min log{d,r.-d }) 

by the same argument we used to obtain the bound on access time 

in le~el -linked 2,4 trees . In all three cases of splitting it 

is easy to verify that the amortized running time is O(h). 

The repertoire of 2,4 tree operations needed for 

the Jordan sequence sorting problem consists of access, 

insertion, and the form of splitting just discussed. The 

amort ized time bounds we have derived for these operations 

imply an O(n) running time for the sorting algorithm of Section 2, 

as we have shown there. 
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4. Remarks 

We close this paper with two remarks. First, 

the kind of list-splitting necessary in the Jordan sequence 

s orting problem arises in other situations as well. Indeed, 

it is the most time-consuming part of an early planarity-testing 

algorithm devised by Hopcroft and Tarjan [8]. By using level

linked 2,4 trees in place of their doubly-linked lists, 

we reduce the running time of their algorithm from O(n log n) 

to O(n). This gives a third linear-time planarity-testing 

algor i thm, the others being those of Hopcroft and Tarjan [9] 

and Lempel, Even, and Cederbaum [12] as implemented by Booth 

and Leuker [3]. Level-linked 2,4 trees, being a general-purpose 

list representation, undoubtedly have other applications remaining 

to be discovered. 

Our seconG remark is that there may be a much 

simpler way to sort Jordan sequences in linear time: we 

merely insert the items in the sequence one-at-a-time into a 

splay tree (a self-adjusting form of binary search tree [17]) and 

then access them in sorted order. This algorithm certainly runs 

in O(n log n) time [17 J. On the basis of Sleator and Tarjan's 

dynamic optimality conjecture [17], we conjecture that this 

algorithm in fact runs in O(n) time. If this is true , then there 

is a simple linear-time algorithm for recognizing Jordan 

sequences as well: we run the sorting algorithm until it stops 

or the O(n} time bound is exceeded. If it finishes within the 

time bound, we test the parenthesis nesting property, which can 
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be done in O(n) time once the sequence is sorted. If the 

s ort ing algorithm runs too long, we stop and declare the 

sequence non-Jordan. We leave to the reader the problem 

of prov ing or disproving that sorting a Jordan sequence using 

a splay tree takes O(n) time. 
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Figu re 1 . A Jordan curve corres pondi ng to the sequence 
6,1, 21,13,1 2 ,7.5.4.3.2.20.18.17 , 14.11.1 0 .9.8.15.16.19. 

20 21 
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Figure 3. The upper and lower trees for the Jordan curve of 
Figure 1 . The smaller and larger elements of each pair are on 
either side of the corresponding tree node. 
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Figure 4. Splitting of a family in the lower tree during proce ssing 
of 15 in the Jordan sequence of Figure 1. 

(a ) The Jordan curve. The solid part is already processed, 
the dashed part i s be ing processed, and the do t ted part is 
to be process ed . 

(b) The effect of inserting the pair !S,15 ! into the lowe r tree. 
Only the affected family is shown. 
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Figure 5. A level-linked 2,4 tree. The edges denote bidirectional 
links . The circular links are dashed. The starred nodes are those 
on the access path from 4 to 16. 



Figure 6 . Insertion in a 2,4 tree . Only the affected part of 
t he t ree is shown. Three nodes are split. 



Figure 7. Deletion in a 2,4 tree. Only the affected part of the 
tree is shown. There are three fusings and one borrowing. 
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