Sorting Jordan Sequences in Linear Time
A 09/84

Kurt Hoffmann/Kurt Mehlhorn
Universitdt des Saarlandes
Saarbriicken, Germany

Pierre Rosenstiehl
Centre de Mathematique Socilale
Paris, France

Robert E. Tarjaa
AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract

For a Jordan curve C in the plane, let XqsXysene,X
n

be the abscissas of the intersection points of C with the

X-axis, listed in the order the points occur on C. We call

XisXoysen,X 2 Jordan sequence. In this paper we describe

an O(n)-time algorithm for recognizing and sorting Jordan
sequences. The problem of sorting such sequences arises in
computational geometry and computational geography. Our
algorithm is based on a reduction of the recognition and
sorting problem to a list-splitting problem. To solve the
list-splitting problem we use level linked search trees.

Sorting Jordan Sequences in Linear Time

Kurt Hoffmann
Kurt Mehlhorn
Universitat des Saarlandes
Saarbricken, Germany

Pierre Rosenstiehl
Centre de Mathematique Sociale
Paris, France

Robert E. Tarjan

AT&T Bell Laboratories
Murray Hill, NJ 07674

L }ntroduction

Let C be a Jordan curve in the plane and let
KyrXKoee oo X be the abscissas of the intersection points
of C with the x-axis, listed in the order the points occur

on C. (See Figure 1.) We call a sequence of real numbers

KyrXgee oo aX, obtainable in this way a Jordan seguence.

In this paper we consider the problem of recognizing

and sorting Jordan sequences.
[Figure 1]

The Jordan sequence sorting problem arises in at
least two different contexts. Edelsbrunner [5] has posed
the problem of computing the sorted list of intersections of
a simple n-sided polygon with a line. This problem is
linear-time equivalent to the problem of sorting a Jordan
sequence, since we can represent the line parametrically and
compute the list of intersections in the order they occur

along the polgon in linear time by computing the intersection

of the line with each side of the polygon. (We assume that

the sides of the polygon are given in the order they occur
along the polygon.) Iri [11] has encountered the problem

in the context of computational geography: for two Jordan
curves A and B, we are given the list of their intersection
points in the order they occur along A and asked to sort them
in the order they occur along B, using as a unit-time primitive
the operation of comparing two intersection points with

respect to their order along B. Any comparison-based algorithm
for the Jordan sequence sorting problem will solve Iri's
problem as well.

We call a Jordan sequence a Jordan permutation if

the sequence consists of the integers 1 through n in some
order. Any Jordan permutation determines two nested sets

of parentheses [16]. (See Section 2.) It follows that there
are at most c" Jordan permutations of 1 through n, where c is
a constant independent of n. This implies by a result of
Fredman [6] that Jordan sequences can be sorted in O(n) binary
comparisons. Unfortunately the algorithm implied by Fredman's
result has non-linear overhead. Our goal is to provide an
algorithm that runs in linear time including overhead.

Our approach to the Jordan sequence sorting problem
is to convert it into a data manipulation problem that involves
repeated splitting of lists. We discuss this transformation
in Section 2. 1In Section 3 we solve the list-splitting problem

using an extension of level-linked search trees [4,10,13], thus

obtaining a linear-time algorithm for recognizing and

sorting Jordan sequences. Section 4 contains some final

remarks.

Historical Note. The algorithm presented here was discovered

by the first pair of authors and by the second pair of authors
working independently. A sketch of the first pair's solution

was presented in [7].

2. Jordan Sequences and List-Splitting

Let KirKgre oo X be a Jordan sequence, and suppose
without loss of generality that the Jordan curve C defining
the sequence starts below the x-axis. (If not, reflect it

about the x-axis.) Let x be the numbers

(1) = (2)" " a5 (n)

XyrXgre o X permuted into sorted order. Each pair {XZi-l'x2i}

for i ¢ [1..Ln/2j] corresponds to a part of C starting on the

x-axis at x rising above it, and returning to the x-axis

2i=-1'
at R Since C never crosses itself, any two such pairs
{x.. . . , : i i f . .
.le_l,le},{xzj_l,x23, must nest: if either o x23-1 or x2]
lies between Xoi-1 and Xoy then so does the other. This means

that we can construct a set of Lnlzj nested parentheses

corresponding to the pairs {xz. 10X }: in the sorted seguence

i- 21

X 1) X 2) Fa(n) replace X5: 1 and Xq4 for i ¢ [l..Ln/ZJ]
by a matched left and right parenthesis, with the left parenthesis

replacing the smaller of noio1 and X545 and the right parenthesis

replacing the larger. (If n is odd, we merely delete xn.)

Similarly, the pairs {x2i } for i € [1..[n/2]] correspond

iRgg

to a set of [n/2] nested parentheses representing connected

parts of C below the x-axis. (See Figure 2.)
[Figure 2]

We need some notation. For a pair {xi_l,xi}, we
N - .) o= . .}.
define v, mln{xi_l,xl} and z, = max{x;_;,x; Thus
{yi‘zi} = {xi_l,xi}. We say the pair {xi_l,xi} encloses

a number r if y <r<z,. Similarly, {xi—l'xi} encloses a

J

is the enclosing pair {xj.uij} with 1 = j mod 2 and fiy maximum.

pair {xj_l,x.) if yi<yj<zj<zi. The parent of a pair {xi_l,xi}

With this definition the pairs {xzi_l,xzi} together with their
parent relation define a forest of rooted trees called the

upper forest of x,,%,,...,X . Similarly the pairs {x2i'x2i+l}

together with their parent relation define the lower forest of

Xy Xgpeon X If {xi_l,xi} and {xj_l,xj} are siblings in either
the upper or lower forest, we order them by putting {xi_l,xi}
first if y; = yj. This makes each forest into an ordered
forest. We make the forests into trees by adding a dummy pair
[-»,o} to each and declaring it to be the parent of any pair

not otherwise having a parent. Thus we obtain two trees called

the upper tree and the lower tree. (See Figure 3.)
[Figure 3]

To sort a Jordan seguence X, ,X,,...,X_, We process
! 17%3

n
the numbers X4 in increasing order on 1, constructing three objects
simultaneously: a sorted list of the numbers so far processed,

and the upper ané lower trees of the pairs corresponding to the

numbers so far processed. Initially the sorted list ccntains

-» and = and the upper and lower trees each consist of the
single pair {-«,~}. We process x; by adding pair {xi-l’xi}
to the appropriate tree (unless i = 1) and inserting Xy
into the sorted list. The process of inserting {xi_l,xi}
into its tree provides the approximate location of Xy in
the sorted list, so that it can be inserted in 0O(1l) time.
The details of processing x, are as follows. If
i - 1 we merely insert Xy in the sorted list between -«
and =, Otherwise, we locate the numbers r < X: 1 and
el adj~cent to X1 in the sorted list. Let
{Xj~l'xj} and {xk_l,xk} be the pairs containing r and s
such that 1 = k = k mod 2. (Either or both of these pairs
may be the dummy pair {-=,=}.) If both {Xj-l'xj} and
{xk-l'xk} enclose Xi it must be the case that
{xj_l,xj} = {xk_l,xk} = {r,s}; otherwise Xy iXgren Xy is
not a Jordan sequence and we abort the algorithm. If this
condition is met, we insert xi into the sorted list before

or after X, _, as appropriate. Also, we construct a new fmaily

with parent {r,s} and {xi—l’xi} as its only child.

On the other hand, suppose one of the pairs, say
. *
1xj~1,xj}, does not enclose xi. We access the family containing
{xj—l'xj} as a child (in the upper tree if i is even, the

lower tree if i is odd) and split the list of children into
two lists, containing those children enclosed by {xi_l,xi} and those

not. There may be a child that is a pair having exactly one element

(rather than zero or two) enclosed by {xi* ,xi}; if we find such

1

a pair we abort the algorithm, as Xy rXgre oo X is not a Jordan

*By a family we mean a tree node and its list of children.

sequence. Otherwise, we construct a new family with parent
{xi*],xi}, having as children the children in the old family
enclosed by {xi_l,xi}; in the old family, we replace these
removed children by {x;_;,x;}. (See Figure 4.) Then we

insert X, in the sorted list.

[Figure 4]
1f this algorithm successfully processes Xy1Xgree Xy
then Ry rRge oo s Xy is indeed a Jordan sequence and is sorted by

the algorithm. TIf the algorithm aborts, then XyrXgpeeo X is

not a Jordan sequence.

In order to estimate the running time of the algorithm,
we need to say more about the data structures used to implement the
method. ile represent the sorted list of processed numbers by
a doubly-linked list, so that accessing the number before or
after a given one or inserting a new number before or after a given
one takes 0(l) time. We store the numbers X; in an array indexed
on i, so that given i we can in 0(l) time access Xis X4 _qr OF

X We store each family in the upper or lower forest as a

i+l*”
scrted list of the numbers in its constituent pairs. Each number

X; occurs at most four times in such family lists, since it is

in at most two pairs ({x, ,.,x;} and {x,,x, ,}), each of which

i+l

occurs in at most two families (as a parent and as a child).

The crucial operations are those on the family lists.

Given a pair {xi yr¥;}1 and a number u, in a family list

jl’uz""'ug’ such that u or u we must

p ¥i-1"Yp+1’
test the appropriate

pd Fied Mg
find the number uq such that uq(xi<uq+l'

b

rcalrs containing uq and u to see if they and {x i

g+l i-1'%4
violate the nesting property, split the family list in two
and add X: 1 and X, to the new family lists. (If

up—l<xi—l<up and x. l<xi' the final family lists are

l—
A A | X, . « s . i o ¥
1! A 1—1’K1’uq+1’ +u, and xl_l,up, ,uq,xl,
the other three possible cases are similar.) Then we must

insert X, near uq in the sorted list of processed numbers.
(Numbers X4 fits immediately after uq unless i is odd and X,

lies betwe: .n uq and xi, in which case xi fits after xl. This

anomaly occurs because x, is not represented in the lower tree.)

1
The total time required by the algorithm is 0(n)

not counting the time to split family lists and to find the

positions at which to split. We shall discuss two ways of

implementing family lists. One way is to represent each family

list as a circular doubly-linked list. With such a representation

the time to insert a new item next to a given one is 0(1l) and

the time to perform the splitting and insertion described above

is Oo(min{ |p-q!,%-!p-ql}). (To find uge we begin at ug and search

simultaneously for uq in both directions around the circular list.)
To estimate the list-splitting and insertion time with

this representation, let Tl(i,m) be the worst-case time to carry

out & successive splittings and insertions on an initial list of

size m. Then Tl(i,m) is bounded by the following recurrence:

Tl{O,m) = 0;

Tl(i,m) < max (Tl(i,j+2) + Tl(i—i—l,m-j+2) + O(min{j,m-3}) for
O<i<i-1

Oijim

]
To estimate Tl(i,m), let T,(n) satisfy the following recurrence,

1
where the "0O" term is the same as that in the bound on Tl:
L}
Tl(l) = 0(1);
1 T]
Tl(n) = max (Tl(i) + Tl(n-i) + O(min{i,n-i})) for n>2.
liiin-l

A straightforward induction shows that Tl(!,m) & Tl(4£+m).
L}
It is well-known that Tl(n) = O0(n log n) (1,14], which implies

Tl(!,,.m) = 0((+m)log(2+m)).

To obtain a time bound for the Jordan sequence sorting
algorithm, we note that there are two sets of Ln/2J list-splittings,
on the families of the upper tree and on the families of the
lower tree. The initial family list for each tree contains two
items. Thus the total time for list-splitting is 2T1(Ln/2j,2) =
O(n log n), and the total time for the entire algorithm is
O0(n log n).

This O(n log n) bound is no better than what we
can obtain using any fast general-purpose sorting method. We
can speed up the algorithm by changing our implementation of

the family lists. 1In the next section we shall develop a

5k,

representation such that the amortized time* to insert a new
item next to a given one is 0(1l) and the amortized time

to carry out the list-splitting operation described above is
O0f(log min{|p-q|,%~-|p-g|}). With this representation, if
Tz(Q,m) is the worst-case time to carry out £ successive
splittings on an initial list of size m, TZ(L,m) is bounded

by the following recurrence:

-

Tz(O,m) =0

T,{%,m) < max (Tz(i,j+2) + TZ(L—i—l,m—j+2) + O0(log min{j,m-j})) for >1.
0<i<e-1

L<j<m

L]
Let Tz(n) satisfy the following recurrence, where the "0" term

is the same as that in the bound on T2:

0(1);

]

Tz(l)

1}

T;(n) max (Té(i) + T;(n-i) + 0(log min{i,n-i})) for n>2.

dsi<ri~d
)]
Then Tz(i,m) < T2(4£+m) and Tz(n) = Oln) [15,p.185],; from which

we obtain that the Jordan sequence sorting algorithm runs in

0(n) time.

3. List-Splitting Using Level-Linked Search Trees

In order to represent lists so that splitting is

efficient, we shall use an extension of level-linked 2,4 trees

*
By amortized time we mean the time of an operation averaged over

a worst-case sequence of operations. See[15,18). We discuss this
concept more fully in the next section.

(1G,15]. Although our presentation is self-contained, some

familiarity with search trees and especially with 2,3 trees [1]
or B-trees [2] will help the reader.

A 2,4 tree is an ordered tree in which all external
nodes have the same depth and each internal node has two, three,
or four children. We can represent an ordered list of items
using a 2,4 tree by storing the items in the external nodes in
left-to-right order. 1In addition, we store in each internal node
the maximum item in each of its subtrees except the last. Thus
an internal node with d children, which we call a d-node, contains
d-1 items, which we call keys. Each item except the last occurs
exactly once as a key. As an exceptional special case, we

store the last item in the tree root; otherwise this last item would

not appear as a key.

Remark. Although the root contains an extra key, we can avoid

using extra space for the root node by maintaining the tree so that
the root has at most three children. Small changes in the update

algorithms discussed below suffice for this purpose.]

To represent such a tree, we store in each node
pointers to its parent and children. With each item we store
pointers to its two locations in the tree. 1In addition, we make

the tree level-linked: each node points to the nodes preceding

and following it at the same height, called its left neighbor

and its right neighbor , respectively. The level links are circular,

so that the last node on a level points to the first and

vice-versa. The tree root points to itself. (See Figure 5.)

[Figure 5]

Such a data structure is a (circularly) level-linked 2,4

tree. Level-linked 2,4 trees were invented by Huddleston and

Mehlhorn [10] as an extension of the level-linked 2,3 trees
cf Brown and Tarjan [4]. Essentially the same extension
was proposed by Maier and Salveter [13]. Our innovation
is to make the level links circular, which speeds up access
operations and splitting, as we shall see.

The purpose of level links is to make it possible
to access any item in the tree starting from any other item
in time proportional to the logarithm of the number of items
separating them. Suppose X is an item in the tree and we
wish to find the smallest item in the tree no smaller than some
other item y. Suppose X < y. (The case x > y is similar.)
Starting at the external node containing x, we follow parent
pointers up through the tree until reaching a node e such that
e is on the right path* of the tree, or the right neighbor of
e contains a key greater than or equal to y, or e is on the
left path of the tree and its left neighbor (which is on the right
path) contains a key less than or equal to y. We have now located
one or possibly two subtrees in which the item sought must
appear. (The two-subtree case occurs when y is greater than
all keys in e and less than all keys in its right neighbor. Then the
desired item is either in the rightmost subtree of

e or in the leftmost

subtree of its right neighbor, but we cannot in the worst case tell

By the right path of a tree, we mean the path from the root
to the rightmost external node. We define the left path
symmetrically. A node is on the right path if and only if it
is the root or its right neighbor contains smaller items than
it does.

which without searching both.) We search down in the appropriate
subtree or subtrees, following child pointers and guided by keys,
until finding the desired item. (See Figure 5.)

The time reguired for such a search is proportional
to the maximum height, say h, reached during the search. If
n is the total number of items in the tree and d is the number of items
greater than x and less than y, then h = 0(log min{d,n-d}).
To prove this, we note that a 2,4 tree of height i contains
at least 2i items. Let f be the first node reached at height
h-1 during the search. The leftmost subtree of the right
neighbor of f contains only items greater than x and less
than y. Since this subtree is a 2,4 tree of height h-2, we have
a > 2, Similarly the rightmost subtree of the left neighbor
of f contains only items less than x or greater than y, which

h-2

implies n-d > 2 Combining these bounds, we obtain

h < log min{d,n~d}+ 2. Thus the access operation takes
0(log min {d,n-d}) time. This bound improves Brown and
Tarjan's O0{(log @) bound for access operations in level-linked
trees without circular linking.

It remains for us to describe how to update level-
linked 2,4 trees. We shall discuss the various update opera-
tions only as they affect the tree structure; it is easy to

verify that keys and level links can be updated in the claimed

time bounds.

Insertion and deletion in 2,4 trees were discussed
= Huddleston and Mehlhorn [10] and Maier and Salveter [13];
we shall review their algorithms and analysis (see also [15],
Szction III.LS). To insert a new item X in a tree next to a given
cne y, we create a new external node to hold x and make its parent
~-e same as that of the external node containing y. This may con-
~vert the parent from a 4-node into a 5-node, which is not allowed
in a 2,4 tree. We split such a 5-node into a 2-node and
z 3-node. This may create a new 5-node, which we split in
turn. We continue splitting newly created 5-nodes, moving
afp the tree, until either the root splits or no new 5-node is
created. (See Figure 6.) If the root splits, we create a
new root, a 2-node, causing the tree to grow in height by one.
The time needed for the insertion is proportional to one plus

the number of splits.

[Figure 6]

Deletion is an inverse process, only slightly more
complicated. To delete a given item, we destroy the external
node containing it. This may make the parent a l-node. If
this l-node has a neighboring sibling that is a 3-node or a
4-node, we move a child of this neighbor to the l-node and the
deletion stops. (This is called borrowing.) If the l-node has a
neighboring sibling that is a 2-node, we combine the l-node and
the 2-node. (This is called fusing.) Fusing may produce a new
l-node, which we eliminate in the same way. We move up the tree

eliminating l-ncdes until either a borrowing occurs or the root

- 14 -

becomes a l-node, which we destroy. (See Figure 7.) The time

needed for the deletion is proportional to one plus the number

of fusings.
[Figure 7]

In order to obtain a tight estimate of the time
for insertions and deletions, we shall amortize, i.e. average
the time over a worst-case sequence of operations. Huddleston
and Mehlhorn {10] and independently Maier and Salveter [13]
did an amortized analysis of insertion and deletion in 2,4 trees.
We shall restate their results in the "potential® paradigm
{14, Section III.6.1;18].

We define the potential of a collection of 2,4 trees
to be twice the number of 4-nodes plus the number of 2-nodes.

We define the amortized time of an operation to be the actual

time of the operation plus the net increase in potential caused
by the operation. With this definition, the total actual
time of a sequence of operations is the total amortized time
plus the net potential drop over the sequence. If initially
there are no trees, then the net potential drop over any
sequence is non-positive, since the final potential is non-
negative. Thus the sum of the amortized times is an upper
bound on the sum of the actual times, and we can use the
amortized times as a valid estimate of the complexity of
the operations.

Let us define the actual time of an insertion to be
one plus the number of splits. Then the amortized time of an

insertion is at most three: each split costs one bui: converts

a node that was originally a 4-node into a 2-node and a 3-node,
for a net potential drop of one; in addition, the insertion can
create one new 2-node or 4-node. Similarly, if we define the
time of a deletion to be cne plus the number of fusings, the
amortized cost is at most two: each fusing costs one but con-
verts two nodes that were originally 2-nodes into a 3-node, for
a net potential drop of two; in addition, the deletion can
create one new 2-node.

This 0(l) amortized time bound for insertion and
deletion, derived by Huddleston and Mehlhorn [10] and Maier
and Salveter [13], generalizes the 0O(l) bound per operation
derived by Brown and Tarjan [4] for a sequence of pure insertions
or a sequence of pure deletions in a 2,3 tree; the extra flexibility
of the balance condition in 2,4 trees means that insertions and
deletions can be freely intermixed while maintaining the 0(1)
bound per operation. This advantage of 2,4 trees is crucial in
our application.

The 0(1) bound for insertion and deletion generalizes
to the elimination of a single S5-node or a single l-node in
a 2,4 tree. To eliminate a 5-node, we walk up the path toward
the root splitting 5-nodes as in insertion; to eliminate a
l-node, we walk up the path toward the root fusing l-nodes as
in deletion. The ability to eliminate 5-nodes and l-nodes
allows us to devise conceptually straightforward algorithms
for joining of 2,4 trees and for a simple form of splitting.

Suppose Tl and T, are 2,4 trees such that all items in
T. are less than all items in T2, and we wish to combine the

1
trees to form a single tree representing the concatenation of

the lists represented by T1 and T,. From the root of T. for

i =1,2, we can access the largest item in the tree, hence the
rightmost external node, and from there the leftmost external
node, in O(l) time. To carry out the join, we walk up the right

path of T, and the left path of T, until reaching the root of one

1

or the other. Let hl and h2 be the heights of Tl and ‘I‘2

respectively, and let h = min{hl,hz}. If hl = h2, we create a
new 2-node whose children are the roots of Tl and T2. If
hl < hz, we make the root of Tl a child of the node on the left
path of T2 of height h + 1, and eliminate the resulting 5-node
if this creates one. We proceed symmetrically if h1 > hz. The
amortized time of concatenation is 0(h).

Suppose T is a 2,4 tree containing an item x, and

we wish to split T into two trees, T. containing all items less

1
than or equal to x, and T, containing all items greater than or
equal to x. To perform the splitting, we walk up the path

from the external node containing x to the root, splitting each
node aleng the path into two, one whose subtrees contain
items less than or equal to x and the other whose subtrees
contain items greater than or egual to xXx. Once the root

is split, we have trees Tl and T2 as desired, except that T

may have some l-nodes along its right path and T2 may have

1

some l-nodes along its left path. We eliminate these l-nodes
in top-to-bottom order by iterated fusing. The amortized time

needed for such a splitting is O(h), where h is the height of T.

Remark. An alternative way to implement splitting is to use repeated
joining [l]. The time bound is the same, but it is worst-case

rather than amortized. This is not important for our purposes. [_

Yow we are ready to consider the kind of splitting
nneeded in the Jordan sequence sorting algorithm. Given a
2,4 tree T and two items X < y in it, such that there are d
items greater than x and less than y, we wish to split out
these d items into a new tree, with the old tree containing
the remaining items. We shall describe a method with an amor-
tized running time of O(min log{d,n-d}, where n is the total
number of items.

The first step of the splitting is to walk up toward
the root concurrently from the external nodes containing x and
v until reaching a common node, say e, or two neighboring nodes,
say e whose subtree contains x and f whose subtree contains y.
To complete the splitting we apply the appropriate one of the

following three cases.

Wrap-around: f exists and is the left neighbor of e. (Node e

is on the left path and f is on the right path.) Detach the
subtree rooted at e, say TL, from its parent. If the

parent becomes a l-node, eliminate it by repeated fusing.

Split T at x into Ti

x and Tg containing the rest. Concatenate Tg with what is

containing items less than or equal to

left of the original tree. Proceed symmetrically on f to
obtain Tg containing items greater than or equal to y. Con-

catenate T% and Tg.

single root: f does not exist. Detach the subtree rooted

at e, say TM, from its parent. Split ™ into TT, Tg such
that T? contains items less than or equal to x. Split

Tg into Tg, Tf such that T? contains items greater than

or equal to y. Concatenate TT and Tﬂ. If the root of
the resulting tree has height less than or equal to h,
extend the tree by adding l-nodes at the top to make it
of height h, reattach it in place of e, and eliminate the
l-nodes by repeated fusing. Otherwise the concatenated
tree must have a 2-node of height h + 1 as its root. 1In
this case, make the two children of this root children of

the original parent of e, and eliminate the resulting

5-node if any by repeated splitting.

Double root: f exists and is the right neighbor of e. This

case is similar to the single-root case: we split the
subtree with root e at x, split the subtree with root f at vy,

and combine the pieces in the appropriate way.

If h is the height of node e, then h = O(min log{d,n-d})
by the same argument we used to obtain the bound on access time
in level-linked 2,4 trees. 1In all three cases of splitting it

is easy to verify that the amortized running time is O(h).

The repertoire of 2,4 tree operations needed for
the Jordan sequence sorting problem consists of access,
insertion, and the form of splitting just discussed. The
amortized time bounds we have derived for these operations
imply an 0(n) running time for the sorting algorithm of Section 2,

as we have shown there.

4. Remarks

We close this paper with two remarks. First,
the kind of list-splitting necessary in the Jordan sequence
sorting problem arises in other situations as well. 1Indeed,
it is the most time-consuming part of an early planarity-testing
algorithm devised by Hopcroft and Tarjan [8]. By using level-
linked 2,4 trees in place of their doubly-linked lists,
we reduce the running time of their algorithm from O(n log n)
to O0{(n). This gives a third linear-time planarity-testing
algorithm, the others being those of Hopcroft and Tarjan [9]
and Lempel, Even, and Cederbaum [12] as implemented by Booth
and Leuker ([3]. Level-linked 2,4 trees, being a general-purpose
list representation, undoubtedly have other applications remaining
to be discovered.

Our seconc remark is that there may be a much
simpler way to sort Jordan sequences in linear time: we
merely insert the items in the sequence one-at-a-time into a
splay tree (a self-adjusting form of binary search tree [17]) and
then access them in sorted order. This algorithm certainly runs
in 0(n log n) time [17]. On the basis of Sleator and Tarjan's
dynamic optimality conjecture [17], we conjecture that this
algorithm in fact runs in O(n) time. 1If this is true, then there
is a simple linear-time algorithm for recognizing Jordan
sequences as well: we run the sorting algorithm until it stops
or the 0(n) time bound is exceeded. 1If it finishes within the

time bound, we test the parenthesis nesting property, which can

= 58 =

be done in O(n) time once the sequence is sorted. If the
sorting algorithm runs too long, we stop and declare the
sequence non-Jordan. We leave to the reader the problem
of proving or disproving that sorting a Jordan sequence using

a splay tree takes 0(n) time.

(1]

(2]

(31

[4]

[5]

(6]

(7]

(8]

[91]

References

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The

Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, Massachusetts, 1974.

R. Bayer and E. McCreight, "Organization and maintenance
of large ordered indexes," Acta Info. 1(1972), 173-189.
K. S. Booth and G. S. Leuker, "Testing for the
consecutive ones property, interval graphs, and graph

planarity using P-Q tree algorithms,"” J. Comp. Sys.

Sci. 13(1976), 335-379.
M. R. Brown and R. E. Tarjan, "Design and analysis of
a data structure for representing sorted lists," SIAM

J. Comput. 9(1980), 594-614.

H. Edelsbrunner, Problem P36, Bull. EATCS 21 (October,

1983), 195.

M. L. Fredman, "How good is the information theory bound

in sorting?", Theor. Comp. Sci. 1(1976), 355-361.

K. Hoffman and K. Mehlhorn, "Intersecting a line and

a simple polygon," Bull. EATCS 22(February, 1984),

120-121.
J. E. Hopcroft and R. E. Tarjan, "Planarity testing in

V log V steps: extended abstract," Information Processing

71, Vol. 1 - Foundations and Systems, North-Holland,

Amsterdam (1972), 85-90.
J. E. Hopcroft and R. E. Tarjan, "Efficient planarity

testing," J. Assoc. Comp. Mach. 21(1974), 549-568.

[10] S. Huddleston and K. Mehlhorn, "A new data structure
for representing sorted lists," Acta Info. 17(1982),
157-184.

{11] M. Iri, private communication.

[12] A. Lempel, S. Even, and I. Cederbaum, "An algorithm for

planarity testing of graphs," Theory of Graphs: Inter-

national Symposium: Rome, July, 1966, P. Rosenstiehl,

ed., Gordon and Breach, New York, 1967, 215-232.

[13] D. Maier and C. Salveter, "Hysterical B-trees," Info.
Proc. Lett. 12(1981), 199-202.

[14] K. Mehlhorn, "Nearly optimal binary search trees," Acta
Info. 5(1975), 287-295.

[15) K. Mehlhorn, Data Structures and Efficient Algorithms,

Volume 1l: Sorting and Searching, Springer-Verlag, Berlin, 1984,

[l6] P. Rosenstiehl, "Planar permutations defined by two

intersecting Jordan curves," Graph Theory and Combinatorics,

Academic Press, London, 1984, 259-271.
[17] D. D. Sleator and R. E. Tarjan, "Self-adjusting binary

search trees, "J. Assoc. Comp. Mach., to appear.

(18] R. E. Tarjan, "Amortized computational complexity,"

SIAM J. Alg. Disc. Meth., to appear.

Figure 1. A Jordan curve corresponding to the sequence
it s 21513:512:7:5:8,3:2,:20,18:17:14511.10.9.8.15,16,19.

@ (OO cC))y ooy ¢ o))

12345 6 7 89 101112 13 14 15 1617 18 19 20 21

® ((C)C HYCCHCC)Y)Y)Y e)y)))

Figure 2. The nested parentheses corresponding to the Jordan curve
of Figure 1.

(a) The parentheses corresponding to the pairs L PPIRES PYS P

(b) The parentheses correspopding to the pairs {x2i’x2i+1}'

Figure 3. The upper and lower trees for the Jordan curve of
Figure 1. The smaller and larger elements of each pair are on
either side of the corresponding tree node.

Figure 4. Splitting of a family in the lower tree during processing
of 15 in the Jordan sequence of Figure 1.

(a) The Jordan curve. The solid part is already processed,
the dashed part is being processed, and the dotted part is
to be processed.

(b) The effect of inserting the pair {8,15! into the lower tree,
Only the affected family is shown.

— o ———

’ N S D NS D S
\ * H * /
~«2 6,9\ ISy~
- e =R ——— A — - S O — - e e "'"\‘
{ * %
7/
e 3 (78) 10 12,13,14 6
* 7 *
U H2ZH3H4AHSHe 78 Ho o I2i3Hi4HISHi6 7
\
Ve e e e e SEn G e CEE SE DN SR SEE e SEn GED G M R G GED D AUS G M SRS RS S mEp e S e —
Figure 5. A level-linked 2,4 tree. The edges denote bidirectional
Tinks. The circular links are dashed. The starred nodes are those

on the access path from 4 to 16.

Figure 6. Insertion in a 2,4 tree. Only the affected part of
the tree is shown, Three nodes are split.

(I

Figure 7. Deletion in a 2,4 tree. Only the affected part of the
tree is shown. There are three fusings and one borrowing.

	A_1984_09 0000_1heitscover
	A_1984_09 0001
	A_1984_09 0002
	A_1984_09 0003
	A_1984_09 0003_a
	A_1984_09 0003_b
	A_1984_09 0004
	A_1984_09 0004_a
	A_1984_09 0004_b
	A_1984_09 0005
	A_1984_09 0005_a
	A_1984_09 0005_b
	A_1984_09 0006
	A_1984_09 0006_a
	A_1984_09 0006_b
	A_1984_09 0007
	A_1984_09 0007_a
	A_1984_09 0007_b
	A_1984_09 0008
	A_1984_09 0008_a
	A_1984_09 0008_b
	A_1984_09 0009
	A_1984_09 0009_a
	A_1984_09 0009_b
	A_1984_09 0010
	A_1984_09 0010_a
	A_1984_09 0010_b
	A_1984_09 0011
	A_1984_09 0011_a
	A_1984_09 0011_b
	A_1984_09 0012
	A_1984_09 0012_a
	A_1984_09 0012_b
	A_1984_09 0013
	A_1984_09 0013_b
	A_1984_09 0014
	A_1984_09 0014_a
	A_1984_09 0014_b
	A_1984_09 0015
	A_1984_09 0015_a
	A_1984_09 0015_b
	A_1984_09 0016
	A_1984_09 0016_a
	A_1984_09 0016_b
	A_1984_09 0017

