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Abstract—Digital implementations of sorting networks that rely
on a digital signal processor core are not as efficient as their analog
counterparts. This paper builds on the comparators for which
efficient analog implementations exist that employ operational am-
plifiers. From a statistical point of view, comparators are based
on nonlinear means. Their probability density function and the
first- and second-order moments are derived for independent uni-
formly distributed inputs. comparators provide estimates of
the minimum and maximum of their inputs. A proper approach to
compensate for the estimation errors is proposed. Applications of
the comparators in odd–even transposition networks, median
approximation networks, and min/max networks are presented.

Index Terms— comparators, means, moments of the com-
parators, sorting networks.

I. INTRODUCTION

SORTING is a fundamental operation in data processing.
Sorting operations are estimated to account for over 25%

of processing time for all computations [1]. Sorting networks
are special cases of sorting algorithms. Much work has been
done on sorting networks since the original idea was conceived
by Batcher [2]. A sorting network is a combinatorial circuit
constructed fromcomparators, which are also known ascom-
pare-swapunits that sort [3]. A comparator takes two values
as input and outputs them in ascending order. Let us consider
a sorting network of inputs . The number of
the inputs defines theI/O sizeof the sorting network [4]. A
sorting network consists of parallel channels, which can
be thought of as wires carrying values, to which comparators
are attached. The network is divided into a finite number of
levels that consist of one or more comparators. The number
of levels is a reasonable measure of parallel time and defines
thedepthof the network. The outputs of a sorting network are

, where denotes theth-order statistic of the
set { }. That is, denotes the smallest element
of the set, whereas denotes the largest element. Optimal
sorting networks havecost (i.e., number of constant fan-in
processing nodes) and depth [3].
Two of the most commonly used sorting networks are the
odd-even transposition network shown in Fig. 1(a) and the
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Fig. 1. (a) Odd-even transposition sorting network ofN = 5 inputs. (b)
Min/max comparator. (c)L comparator.

Batcher’s bitonic sorter depicted in Fig. 2. They have small
throughput delay and a very uniform structure. For example,
the Batcher’s bitonic sorter merges two monotonic sequences
into a single sorted sequence. The sorting network has a
fast Fourier transform (FFT)-like structure that is recursive,
e.g., it can be applied to design the -element sorters [5].
Although sorting networks based on functional units other
than comparators have been proposed, e.g., sorting networks
based on a three-element median [6], the most common type of
sorting network employs comparators. The analysis presented
in this paper is also applicable to sorting networks based on
three-element median units as well. Recently, a sorting network
is shown to be a wave digital filter realization of an-port
memoryless nonlinear classical network [7]. In general, sorting
networks of large I/O size are implemented by employing
sorting networks of fixed I/O size [4], [8], [9]. The
fixed I/O size sorting networks can be either odd-even transpo-
sition networks or bitonic sorters [10]. This modularity makes
the architecture very suitable for VLSI applications. It has been
shown that the complexity of sorting values is between

and up to
first-order terms in and when sorting networks of fixed
I/O size are used [11]. Common choices ofare 5 [9] and 8
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Fig. 2. Batcher’s bitonic sorter forN numbers (N = 8).

[4], [8]. An efficient pipelined use of sorting networks of fixed
I/O size to sort numbers is studied in [4].

Sorting is the basic operation in order statistics filters that
constitute effective techniques for image/signal processing due
to their robustness properties. Order statistics filters employ usu-
ally a digital signal processor core. However, sorting is a com-
putationally expensive operation, and a large area and power
reduction can be obtained with simpler analog implementations
[9]. Major reasons support the choice of analog implementation,
namely [8]

i) The information/wiring ratio is better than in the digital
approach.

ii) A smaller area is needed than in digital systems to obtain
different functionality types.

iii) The basic cells are either bipolar junction transistors or
operational amplifiers (op-amps) that are more compact
and are faster than their digital counterparts.

iv) Analog implementations offer time complexity on the
order of microseconds if they are based on op-amps (e.g.,
[12]) and on the order of tens of nanoseconds when they
are based on bipolar junction transistors (e.g., [8]).

One class of implementations is based on op-amps. An op-amp-
based circuit realization of a sorting network is described in
[12]. It implements an analog sorting neural network that treats
the sorting operation as an assignment problem. Another analog
circuit based on op-amps suitable for the comparison and sorting
of two input voltages is described in [13]. A nonlinear dynamic
system that sorts data is developed in [14]. It is based on the
theory of completely integrable Hamiltonian systems, and its
realization is based on op-amps as well. Another class of im-
plementations of multiple-input min/max circuits is based on a
common emitter/source configuration [15]. A novel configura-
tion combining a voltage-mode common source circuit and a
current-mode rank selector is proposed in [16]. This configu-
ration implements a “winner takes all” circuit. A third class of
implementations is based on current-mirroring [9], [17]–[19].
The design of sorting networks formed by sums of products or
products of sums is reported in [8]. It is based on ADD and

MUL gates realized by bipolar junction transistors. A closely
related topic is the hardware/VLSI realization of median fil-
ters [20]–[23]. For a review of hardware median filters, see
[24] and [25]. Existing architectures for median filters can be
broadly classified into array-based and sorting network-based
ones. The latter ones are of our interest in this paper. They are
inherently pipelined, but they consist of a large number of com-
pare-swap units. For example, median filter architectures based
on bubble-sort [20], [23] require comparators to sort

numbers, whereas those based on Batcher’s bitonic sort re-
duce the number of comparators to [26]. Further
shortcomings on the number of comparators are possible if the
design is based on Batcher’s odd-even merge sort [26]. In the
latter case, comparators are needed
[27]. However, the processing speed of the architecture in [26] is
significantly lower than Batcher’s odd-even sorting network [6].
Efficient parallel processing techniques, namely, pipelining and
block processing, are employed in order to systematically deter-
mine shared merging networks and thus reduce the size of the
maximum and minimum structures [27]. Sorting network-based
architectures for nonrecursive and recursive weighted-order sta-
tistics filters are described in [28].

This paper builds on a new type of comparator (thecom-
parator) that can be materialized using op-amps [29]. Thus, the

comparator can be used for high-speed analog or hybrid
signal processing. The comparator is based on nonlinear
mean filters [31], [32]. However, comparators are “noisy”
comparators. Therefore, we have to compensate for their errors
before we replace the conventional comparators in a sorting net-
work with them. To devise such an error compensation algo-
rithm, first, the statistical properties of the comparators are
explored and compared against those of the min/max compara-
tors. Then, we propose a simple error-compensation algorithm,
and we derive theoretically the gain that is obtained when
comparators employing the proposed error compensation are
used. Next, we develop a median approximation network that
can be built using comparators.

The major contributions of the paper are in

i) the derivation of the statistical properties of compara-
tors;

ii) the compensation for the errors that are introduced by
comparators;

iii) the generalization of comparators to min/max net-
works of I/O size greater than 2;

iv) the concept of odd-even transposition sorting networks,
median approximation networks, and min/max networks
based on mean comparators;

v) the experimental evidence that the aforementioned net-
works can be used within acceptable error levels for small
values of in the range [2, 5].

The paper focuses on the ideal performance of thecom-
parators, assuming that ideal op-amps are employed. It does not
enter into the imperfections encountered when actual op-amps
are used.

The outline of the paper is as follows. The definition of
comparators with two inputs is given in Section II. Their sta-
tistical properties are derived in this section as well. The com-



2718 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002

pensation for the errors introduced by thecomparators, im-
plementation issues, and the generalization ofcomparators
to min/max networks of I/O size greater than 2 are treated in
Section III. Median approximation networks based oncom-
parators are described in Section IV. Experimental evidence is
provided in Section V, and conclusions are drawn in Section VI.

II. COMPARATORS

The comparator employs nonlinear and means
with two inputs to estimate the minimum and maximum of two
input samples, respectively [31], [32], i.e.,

(1)

(2)

where is a positive real number different than 1, i.e.,
. In contrast to classical min/max comparators,

whose output is one of input samples, thecomparator pro-
vides estimates of the minimum and the maximum sample.
comparators can be treated as analog sorters in the sense that
their outputs are not restricted to be one of their inputs. Such a
performance can be tolerated in the case of order-statistics fil-
ters whose output is a linear combination of the rank-ordered
input samples (e.g.,-trimmed mean, -filters). If a fully analog
implementation is pursued, the proposedcomparators could
be used without requantization of the output so that it becomes
one of the inputs. However, if such a quantization is required,
then the procedures proposed in [33] can be employed, provided
that the analog sorter preserves the ordering of input samples.
Fig. 1(b) and (c) depict the min/max comparator and the
comparator. The comparator depicted in Fig. 1(b) or (c) is called
type 0 comparatorand is used in odd-even transposition net-
works. Type 1comparators that also support a swap function,
i.e., they provide their outputs in descending order, can also be
implemented by using comparators. The latter comparators
are used in bitonic sorting networks [4].

The proposed comparators can easily be extended to
min/max networks with I/O size that estimate the
minimum and maximum of input samples by

(3)

(4)

The comparators are “noisy” comparators. Indeed, the fol-
lowing well-known property [30] holds for :

(5)

In this section, the statistical properties of comparators are
derived for independent uniformly distributed input samples.
The analysis will be confined to to maintain mathemat-
ical tractability. Based on the results of this section, we modify
the outputs of an min/max network of I/O size in Sec-
tion III as follows:

(6)

(7)

where and are appropriate coefficients. It can be seen that
for , (6) and (7) define the corrected outputs of an
comparator. Henceforth, will be equal to 2.

If , are independent random variables (RVs) uni-
formly distributed in the interval [0, ], the probability density
function (pdf) of the RV is given by (8), shown
at the bottom of the page, where denotes the Beta function,
and is the incomplete Beta function defined as [36], [37]

(9)

The derivation of (8) is given in Appendix A. For , we
obtain

if

if

otherwise.

(10)

The pdf of the RV is plotted for 2, 5, and 8 in Fig. 3. For
completeness, the pdf of the RV for uniform parent distri-
bution in the interval [0, ] and is included

, .
The expected value and the mean square value of the RV

are given by

(11)

(12)

if

if

otherwise.

(8)
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Fig. 3. Probability density function of the RVz = L (x ; x ) for p = 2, 5,
and 8 whenx andx are independent RVs uniformly distributed in the interval
[0, L].

respectively. The derivation of (11) is outlined in Appendix A.
Equation (12) can be proven similarly. For , we obtain

(13)
The following approximate expressions for the first and second
moment of the RV hold:

(14)

(15)

The proofs of (14) and (15) are given in Appendix B. The ex-
pected value and the mean square value of the RVfor several
values of the coefficientare plotted in Fig. 4(a) and (b), respec-
tively. The approximate values obtained by using (14) and (15)
are overlaid for comparison purposes. It is seen that for ,
the values obtained by the approximate expressions are practi-
cally the same as those obtained by the numerical integration of
(11) and (12). The expressions in (11) and (12) should be com-
pared with those of the order statistics for and uniform
parent distribution that are given by [34] and [38]

(16)

(a)

(b)

Fig. 4. First and second moment of the RVz = L (x ; x ) for several values
of the coefficientp. (a) Expected value. (b) Mean square value.

It is obvious that the first and second moments of the RVtend
to those of the RV for large .

Similarly, if , 1, 2 are independent RVs uni-
formly distributed in the interval [ ], the pdf of the RV

is given by (17), shown at the bottom of the
page. The proof of (17) is omitted due to lack of space. For

, (17) is simplified to

if

if
otherwise.

(18)
The pdf of the RV for uniform parent distribution in the in-
terval [0, ] for is given by ,

. For , 1, 2 independent RVs uniformly
distributed in the interval [0.1,1], the pdf of the comparator
output is found by employing numerical integration and is

if

if
otherwise.

(17)
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(a)

(b)

Fig. 5. (a) Probability density function of the RVw = L (x ; x ) obtained
by numerical integration forp = 2, 4, and 6 whenx andx are independent
RVs uniformly distributed in the interval [0.1,1]. (b) Exact probability density
function of the RVw = L (x ; x ) whenx andx are independent RVs
uniformly distributed in the interval [0.1,1].

plotted in Fig. 5(a) for 2, 4, and 6. The plot of (18) is
shown in Fig. 5(b) for comparison purposes.

The limit of the expected value and the mean square value of
the RV for is given by

(19)

(20)

respectively. The derivation of (19) and (20) is outlined in Ap-
pendix C. For , we obtain

(21)
The expected value and the mean square value of the RVfor
several values of the coefficientare plotted in Fig. 6(a) and
(b), respectively. It can easily be verified that forlarge, the

(a)

(b)

Fig. 6. Limit of first and second moment of the RVw = L (x ; x ) for
several values of the coefficientp when� ! 0. (a) Expected value. (b) Mean
square value.

first and the second moment of the RVapproximate those of
the RV , i.e.,

(22)

III. ERRORCOMPENSATION ANDIMPLEMENTATION ISSUES

Having derived the statistical properties of the compara-
tors in the previous section, we will estimate first the error in-
troduced by a single comparator and propose a method to
compensate for it. Second, we discuss the overall error intro-
duced by the comparators in a sorting network when they
replace the classical min/max comparators. Next, we describe
the implementation of the comparators studied in this paper,
and finally, we generalize to the case of min/max networks of
more than two inputs.

A. Error Introduced by a Single Comparator

Let denote the error introduced
by the comparator in the estimation of the maximum of two
input samples. Similarly, let denote
the corresponding error in the estimation of the minimum of two
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(a)

(b)

Fig. 7. (a) MSE of theL comparator and the modifiedL comparator in
estimating the maximum of two independent input samples that are uniformly
distributed in the interval [0,L]. (b) Zoom in the MSE introduced by the
modifiedL comparator.

input samples. Inequalities (5) imply that

(23)

Moreover, if the absolute value of the difference between
and is large, that is, , then
we obtain . On the
other hand, if , then . Similar results
can also be found for .

For , 1, 2, independent RVs uniformly distributed in the
interval [0, ], it is shown in Appendix D that the mean squared
error (MSE) introduced by the comparator is given by

(24)

For , we obtain
. The MSE of the comparator is

plotted for several values of the coefficientin Fig. 7(a). It is

(a)

(b)

Fig. 8. (a) Limit of the MSE of theL comparator and the modifiedL
comparator in estimating the minimum of two independent input samples that
are uniformly distributed in the interval [�; L] for �! 0. (b) Zoom in the MSE
introduced by the modifiedL comparator.

seen that the larger the coefficientis, the smaller the MSE
introduced by the comparator becomes. Accordingly, for
large values of the coefficient, the comparator converges
to the max operator, as expected.

If , 1, 2, are independent RVs uniformly distributed in
the interval [ ], for , the limit of the MSE of the
comparator is

(25)

For , (25) is simplified to ,
. The MSE of the

comparator is plotted for several values of the coefficientin
Fig. 8(a) as well. It is seen that the larger the coefficientis, the
smaller the MSE introduced by the comparator becomes.
Accordingly, for large values of the coefficient, the com-
parator converges to the min operator, as expected.

Next, we compensate for the MSE introduced by thecom-
parators for small. We argue that the estimation error increases
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Fig. 9. Absolute value ofe for p = 5.

almost linearly with the absolute value of the difference between
and . No error is introduced when . The in-

equalities (23) set an upper and lower bound on the estimation
error that is a linear envelope in terms of . Indeed, for

and independent RVs uniformly distributed in the interval
(0, 255], the plot of the , as a function of the comparator
inputs , for in Fig. 9, demonstrates that the error in-
creases almost linearly with the distance from the line .
Accordingly, we propose to modify the comparator outputs
as

(26)

(27)

where and are constants. By doing so, the error
between and and the corresponding error between
and is bounded by

(28)

(29)

respectively. The dependence of and on is partially
explained from the fact that [7]

(30)

(31)

The constants and can be chosen so that and
is minimized, respectively. In Appendix D, it

is shown that the optimal constantsand are given by

(32)

(33)

The optimal constants and are plotted for several values
of the coefficient in Fig. 10(a) and (b), respectively. As ex-
pected by inequalities (29) and (28), they are much smaller
than 0.5. The MSE between the modifiedcomparator output
(27) and the true maximum sample is given by

. It is overlaid in Fig. 7(a) for comparison
purposes. A zoom in the plot of the MSE versusis depicted in
Fig. 7(b). Similarly, the MSE between the modified com-

Fig. 10. Optimal constantsc and d that minimize the MSE between the
modifiedL comparator output and the true maximum and minimum of two
independent uniformly distributed samples for several values of the coefficient
p.

parator output (26) and the true minimum sample
is shown overlaid in Fig. 8. The details

of the variation of MSE versusare revealed in Fig. 8(b).

B. Overall Error

If comparators are used in a sorting network, e.g., the
odd-even transposition network of Fig. 1(a), it is obvious that
the errors introduced by each comparator propagate through
the network and accumulate at the sorting network outputs. For
large values of or for small values of , the ordering of sorting
output samples may no longer hold. Quantitative results for
the errors introduced at the several ranked-ordered samples are
given in Section V, where it can be seen that the proposed modi-
fied comparators reduce the accumulated error at the outputs
of an odd-even transposition network or a median approxima-
tion network.

C. Implementation

The basic module in the analog implementation of the
comparator is the so-calledmultifunction converter[29, pp.
113–116]. A multifunction converter consists of four opera-
tional amplifiers, four logging transistors, and four resistors.
The exponent is determined by two external resistors. Raising
to an arbitrary power and computing the th root can be
achieved with the same module by controlling an external
potentiometer together with two fixed resistors. Accuracy of
0.2% can be achieved for ranging from 0.2 to 5 [29]. This
module can be used to raise to a power of, to compute th
roots, and as a divider. The latter operation is need in the
implementation of an comparator. Moreover, the same
module can be used to implement the correction term in (26)
and (27). Clearly, the absolute value can be computed with a
cascade of an adder and a multifunction converter that can be
used first to raise to an even power (e.g., 2 or 4) and then to
compute the th root. Accordingly, efficient pipelined archi-
tectures for comparators of two inputs can be developed to
estimate the minimum and maximum by exploiting an adder,
a multifunction converter used to raise to the powerand
compute the th root, and a divider.
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D. Generalization to Min/Max Sorting Networks With Higher
I/O Size

One may argue that (30) and (31) indicate that an ideal
comparator can be implemented simply with a multifunc-
tion converter used to evaluate the absolute value and a few
op-amp-based adders. The major benefit of comparators
stems from the fact that they can easily be extended to min/max
networks with I/O size that estimate the minimum
and maximum of input samples by
given by (3) and and defined by (4),
respectively. It can easily be verified that the min/max network
employing (3) and (4) delivers an estimate of either min or
max faster than any sorting network specialized for min/max
calculations using regular comparators defined by (30) and
(31). Moreover, the first estimates provided by (3) and (4) can
be further corrected by generalizing (26) and (27) to (6) and
(7), respectively. The expressions (6) and (7) are related to the
so-calledpiecewise-linear functions(PWL), which are a widely
used class of nonlinear approximate functions [39], [40]. In these
equations, the coefficients and , can
then be derived arithmetically by a general least squares fit. The
use of min/max network defined by (6) and (7) is found to reduce
the estimation errors effectively, as can be seen in Section V.

and are two nonlinear
functions whose nonlinearity increases with the increase of the
exponent . The compensation terms
and are, in fact, two piecewise-linear
nonlinear functions whose approximation properties depend on
the coefficients and . However, the aforementioned piece-
wise-linear nonlinear functions are not universal approximate
functions, and they do not yield a canonical representation [39],
[40]. The compensation effect can be enhanced further if a
canonical piecewise-linear function is considered at the expense
of an increase in the hardware complexity.

IV. M EDIAN APPROXIMATION NETWORK

mean comparators can also be used to estimate only the
sample median. Let be odd. The median of a set ofelements
is the th-order statistic , where . Let us con-
sider its subsets consisting ofelements that are
in total. It can easily be proven that there is at least one-element
subset of the -element set that satisfies

(34)

while the remaining ( ) -element subsets satisfy

(35)

If the maxima are computed, then by (34)
and (35)

(36)

Similarly, there is a dual form of (36), i.e.,

(37)

Since an comparator is a more costly operator because it
employs dividers and yields generally larger errors than an
comparator of the same input size for smallvalues, we will

comment on the implementation of (37). This implementation
of median approximation network requires com-
parators of inputs each and one comparator of
inputs. Each unit operates in parallel with the rest of the

units. The output of the comparator is an ap-
proximation of the subset minimum. Subsequently, the
minima are fed to an comparator, which produces an estimate
of the maximum of its inputs. The use of different symbols
and manifest that there is no need for the coefficients to be the
same in both comparators. Obviously, the above-described im-
plementation has a cost, which comes in the form of the number
of comparators required. Clearly, for large values of the input
size (i.e., or ), the input set should be partitioned to
subsets of smaller size. Min/max computations should be per-
formed on these subsets, and the partial results should be com-
bined to yield the final minimum or maximum. This is equiva-
lent to performing efficient pipelining and block processing op-
erations in a hardware implementation.

V. SIMULATION RESULTS

Three sets of experiments have been conducted. The first set
of experiments measures the approximation errors at the outputs
of a sorting network when comparators replace the classical
min/max comparators. The second set of experiments measures
the error introduced by the comparators in a median selection
network. The third set of experiments refers to the error intro-
duced by the generalized min/max networks for I/O size .

A. Errors at the Outputs of a Sorting Network

The first set of experiments aims at measuring the errors at
the outputs of an odd-even transposition sorting network using

comparators and demonstrating the error compensation
achieved when the modified comparators replace the
comparators. We created 5000 random samples that were uni-
formly distributed in the interval [0.0001, 255]. An odd-even
transposition network of Fig. 1(a) was used where the min
and max operators had been replaced by thecomparators
defined by i) (1) and (2), and ii) (26) and (27), respectively. The
root mean square (RMSE) error between the actual
th rank-ordered output and its approximation, when either

comparators or modified comparators were employed, was
used as a quantitative criterion, i.e.,

RMSE

(38)

In (38), is the number of tests performed when a sliding
window of length is applied to the sequence of random
samples. Since many nonlinear image filtering schemes employ
three, five, or nine-point filter windows (one-dimensional and
3 3 two-dimensional, respectively), tests were performed on
sorting networks of inputs, where took values in the set
{3, 5, 9}.

In each case, parametertook values in the set {2, 5, 8}. The
RMSE for each sorting network output is plotted in Fig. 11(a)
and (c) for and inputs, respectively, when the
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Fig. 11. Root mean square error at each output of an odd-even transposition network. (a) Sorting network ofN = 5 inputs whenL comparators (without
compensation) are used. (b) Sorting network ofN = 5 inputs when modifiedL comparators (with compensation) are used. (c) Sorting network ofN = 9 inputs
whenL comparators are used. (d) Sorting network ofN = 9 inputs when modifiedL comparators are used.

comparators defined in (1) and (2) were used. It is seen that the
estimates of the higher ranked ordered samples deviate much
from the actual values. The ranked ordered samples close to the
sample median are estimated with fewer errors. As expected,
the errors reduce asincreases. However, accurate analog im-
plementations are available for smallvalues, i.e., ,
as has been explained in Section III-C. For larger values of,
cascades of multifunction converters should be used, which is a
fact that increases the hardware complexity. Small approxima-
tion errors were achieved when the modified comparators
defined in (26) and (27) were used. The resulted are
plotted in Fig. 11(b) and (d) for and inputs, re-
spectively. The simulation results indicate that the approxima-
tion errors are within acceptable levels. In this case, the sample
minimum and the sample maximum are more closely approx-
imated than the sample median. To reduce the RMSE for the
median estimate, an appropriate selection of the exponentin

comparators should be made. Such a selection is proposed
in the next subsection.

B. Errors in Median Approximation Networks

The RMSE between the true median sample and its approxi-
mation, when three median approximation networks, namely

I) the odd-even transposition network of Fig. 1(a) with
and comparators having ;

II) median approximation network (37) with and
comparators having ;

III) median approximation network (37) with and
comparators having ;

were used for . The input samples were those of
the previous set of experiments. For the networkI, the output
that corresponds to the median sample was taken into account
only. The simulation results are summarized in Table I. It is seen
that if is chosen to be 2, the RMSE for the median estimate
provided by the networkI when compensation is used is always
less than that without compensation. As a basis of comparison,
the RMSE between the true median sample and the arithmetic
mean for the same values of is included in the columnIV of
this table. The best RMSE values are written boldface. It can
be seen that when the proposed modifiedcomparators are
employed in each median approximation network, the approx-
imation errors are significantly reduced. Moreover, for 3
and 5, the median approximation network (37) outperforms the
odd-even transposition network with respect to the RMSE. For

, the situation is reversed due to the large sorting network
of inputs that need to be implemented. However, the
RMSE achieved by the median approximation network is not
far behind. From this point of view, all three median approxi-
mation networks are practically equivalent. Moreover, their per-
formance is much better than that of the arithmetic mean in the
estimation of the median sample.
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TABLE I
ROOT MEAN SQUARE ERROR IN THEAPPROXIMATION OF THEMEDIAN

OF ANN -ELEMENT SET.

C. Errors in Generalized Min/Max Networks

For , the generalized min/max networks discussed in
Section III-D can be used to further reduce the RMSE. Such a
network with and comparators having and
was tested in the same framework. The RMSE for the minimum,
the median, and the maximum sample using (3) and (4) as well
as using (6) and (7) are given in Table II. The computation of
the median was done according to the analysis presented in Sec-
tion IV. This analysis can be extended to any order statistic, as
is demonstrated in [9]. A much lower RMSE for the median es-
timate than that of the networkIII (see Table I) is obtained. This
is attributed to the more accurate estimates provided by the gen-
eralized min/max networks and the fewer accumulation errors
that occurred.

VI. CONCLUSIONS

This paper has introduced the comparator, which is a
unit that can be utilized in analog implementations of sorting
networks to improve performance. Analog implementations
of comparators employ multifunction converters that are
based on operational amplifiers. The statistical properties
of the comparators have been derived for independent
uniformly distributed inputs. Since comparators provide
only approximations of the minimum and the maximum of
their inputs, an efficient compensation approach has been
devised that succeeds in reducing significantly those errors.
Generalizations of comparators to min/max networks of
I/O size have also been proposed. Applications of the

comparators in odd–even transposition networks, median
approximation networks, and min/max networks that employ

TABLE II
ROOT MEAN SQUARE ERROR IN THEAPPROXIMATION OF THEMINIMUM , THE

MEDIAN, AND THE MAXIMUM OF NINE OBSERVATIONSUSING GENERALIZED

MIN/MAX NETWORKSWITH L AND L COMPARATORS

the proposed modified comparators have been demonstrated
to operate within acceptable error levels.

APPENDIX A

A. Proof of (8)

Let , 1, 2 be independent RVs uniformly distributed in
the interval [0, ]. Then, the pdf of the RV is given by

, [35]. The pdf of the
RV , where , 1, 2, is given simply by the
convolution of the pdfs and [35]. That is, we have
(A.1), shown at the bottom of the page. In (A.1), it is easily seen
that [36]

(A.2)

where denotes the Beta function. To calculate the re-
maining integral, we apply the change of variable ,
i.e.,

(A.3)

Let denote the following function of the RV ,
. Then, the pdf of the RV is given by

[35] for such that 2 belongs to
the domain of , which completes the proof.

B. Proof of (11)

(A.4)

if
if

if
if

(A.1)
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The integral in (A.4) can be calculated by integration by parts
and by applying Leibnitz’s rule for the differentiation of the
inner integral, i.e.,

(A.5)

It is well known that [37]

(A.6)

By applying the change of variable , the last term
in (A.5) is rewritten as

(A.7)

The substitution of (A.5)–(A.7) in (A.4) yields

(A.8)

that can further be simplified by appropriate variable changes
and integration by parts to (11).

APPENDIX B

A. Proof of (14)

Let us rewrite (8) as

if

if
otherwise.

(B.1)

The pdf results from convolution, and accordingly, it is
continuous. From its continuity, we know the exact values of
function at and , i.e.,

and , respectively. More-
over, at the same values of the argument, the cumulative dis-
tribution attains the following values:

(B.2)

The expected value of the RVis given by

(B.3)

Integrating by parts the second integral in (B.3), we obtain

(B.4)
By applying the trapezoidal rule, we obtain the following ap-
proximation for the integral in (B.4):

(B.5)

The substitution of (B.5) in (B.4) yields

(B.6)
By combining (B.2) and (B.6), we obtain (14).

B. Proof of (15)

By following the procedure outlined above, we rewrite
as

(B.7)

The integration by parts of the second integral in (B.7) and the
application of the trapezoidal rule to approximate the integral

(B.8)

yields (15).

APPENDIX C

A. Proof of (17)

Let , 1, 2, be independent RVs uniformly distributed
in the interval [ ]. Then, the pdf of the RV is given
by , [35].
The pdf of the RV , where , 1, 2 is
given by the convolution of the pdfs and [35]. Let

denote the following function of the RV, .
Then, the pdf of the RV is obtained by the transformation

[35] for such that 2
belongs to the domain of , which completes the proof.

B. Proof of (19)

Let . Then

(C.1)
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Integrating by parts in (C.1) and taking the limit for , we
obtain (19).

APPENDIX D

A. Proof of (24)

Let , 1,2,beindependentuniformlydistributedRVsinthe
interval [0, ]. Inaddition, let denotetheirdifference.
Then, the MSE between the comparator and the maximum
sample among the input samples and is given by

(D.1)

It can easily be proven that

otherwise.
(D.2)

By using (D.2), (D.1) is rewritten as

(D.3)

We then have (D.4), shown at the bottom of the page, where,
by L’ Hospital’s rule

(D.5)

By substitution of (D.4) in (D.3), we obtain (24).

B. Proof of (25)

Let , 1, 2, be independent uniformly distributed RVs
in the interval [ ]. In addition, let denote their

difference. Then, the MSE between the comparator and the
minimum sample among the input samples and is
given by

(D.6)

Integrating by parts and taking the limit of (D.6) for
thanks to L’ Hospital’s rule, we obtain (25).

C. Proof of (32)

The error produced at the modified comparator output (27)
is given by

if

if .
(D.7)

Then, the MSE is given by (D.8), shown at the top of the next
page. By setting the derivative of (D.8) with respect toequal
to zero and solving for, we obtain

(D.9)

The last integral in (D.9) can be integrating by parts. By taking
into consideration that

(D.10)

we find that the last term is equal to

(D.11)

(D.4)
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(D.8)

By substitution of (D.11) in (D.9), (32) results. Equation (33)
can be proven similarly.
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