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Abstract—Digital implementations of sorting networks that rely
on a digital signal processor core are not as efficient as their analog
counterparts. This paper builds on the.L,, comparators for which
efficient analog implementations exist that employ operational am-
plifiers. From a statistical point of view, L,, comparators are based
on nonlinear means. Their probability density function and the
first- and second-order moments are derived for independent uni-
formly distributed inputs. L, comparators provide estimates of
the minimum and maximum of their inputs. A proper approach to
compensate for the estimation errors is proposed. Applications of
the L, comparators in odd—even transposition networks, median
approximation networks, and min/max networks are presented. s (s
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Index Terms—L,, comparators, L, means, moments of the com- (a)
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|I. INTRODUCTION 2

o Yo =max{Ey, T2} =3y
ORTING is a fundamental operation in data processing. )
Sorting operations are estimated to account for over 25% 5 e n1=Lp{m,m} =g

of processing time for all computations [1]. Sorting networks

are special cases of sorting algorithms. Much work has been
done on sorting networks since the original idea was conceived o e n=Llom} =g

by Batcher [2]. A sorting network is a combinatorial circuit ©

constructed frontomparators which are also known asom-

pare-swapunits that sort [3]. A comparator takes two value§ig- 1. (a) Odd-even transposition sorting network/of = 5 inputs. (b)

as input and outputs them in ascending order. Let us consiffifymax comparator. (cf., comparator.

a sorting network ofN inputs z1,...,z5. The number of e ) L
the inputs defines th#O size of the sorting network [4]. A Batcher’s bitonic sorter depicted in Fig. 2. They have small

sorting network consists o parallel channels, which canthroughput delay and a very uniform structure. For example,

be thought of as wires carrying values, to which comparato.%e Batcher’s bitonic sorter merges two monotonic sequences

are attached. The network is divided into a finite number #ft0 @ single sorted sequence. The sorting network has a
levels that consist of one or more comparators. The num@pt Fourier transform (FFT)-like structure that is recursive,
of levels is a reasonable measure of parallel time and defirfed- it can be applied to design thé/2-element sorters [S].

the depthof the network. The outputs of a sorting network aréthough sorting networks based on functional units other
(1), -+ @), Wherez ;) denotes theth-order statistic of the than comparators have been proposed, e.g., sorting networks

set {z1,...,ox}. That is, z(;y denotes the smallest elemenpP@sed on a three-element median [6], the most common type of
of the set, whereas, y, denotes the largest element. Optima?ort'ng network employs gomparators. _The analysis presented
sorting networks haveost (i.e., number of constant fan-in'N this paper is also applicable to sorting networks based on
processing nodesp (N log, N) and depth O(log, N)[3]. Fhree—elementmedlan units as well. Recgntly, a sorting network
Two of the most commonly used sorting networks are tH& Shown to be a wave digital filter realization of a¥-port

odd-even transposition network shown in Fig. 1(a) and tflgemoryless nonlinear classical network [7]. In general, sorting
networks of large 1/0 sizé{ are implemented by employing

sorting networks of fixed 1/O siz&v < M[4], [8], [9]. The
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P B —— x, MUL gates realized by bipolar junction transistors. A closely
related topic is the hardware/VLSI realization of median fil-
ters [20]-[23]. For a review of hardware median filters, see

K - N2-clement ® [24] and [25]. Existing architectures for median filters can be
: o ) broadly classified into array-based and sorting network-based

E - @ ones. The latter ones are of our interest in this paper. They are
inherently pipelined, but they consist of a large number of com-

*4 e — @ pare-swap units. For example, median filter architectures based
on bubble-sort [20], [23] requird’ | N/2| comparators to sort

x5 min —— *s IV numbers, whereas those based on Batcher’s bitonic sort re-
duce the number of comparators@® N log, N)[26]. Further

X, max % shortcomings on the number of comparators are possible if the

Ni2-element design is based on Batcher’'s odd-even merge sort [26]. In the
latter case(logs N — log, N +4) N/4 comparators are needed
[27]. However, the processing speed of the architecture in [26] is
significantly lower than Batcher’s odd-even sorting network [6].
Efficient parallel processing techniques, namely, pipelining and
block processing, are employed in order to systematically deter-
Fig. 2. Batcher's bitonic sorter fav numbers {V = 8). mine shared merging networks and thus reduce the size of the
maximum and minimum structures [27]. Sorting network-based

[4], [8]. An efficient pipelined use of sorting networks of fixedarchitectures for nonrecursive and recursive weighted-order sta-
I/O size N to sortM > N numbers is studied in [4]. tistics filters are described in [28].

Sorting is the basic operation in order statistics filters that Thig paper builds on a new type of comparator (fjecom-
const?tute effective techniques for imagg/sjgngl processing %@rator) that can be materialized using op-amps [29]. Thus, the
to thelrro_bustrjess properties. Order statistics fllter_s employ USY> comparator can be used for high-speed analog or hybrid
ally a digital signal processor core. However, sorting is a COMggnal processing. Thé, comparator is based on nonlinear
putationally expensive operation, and a large area and pOwggan filters [31], [32]. Howeverl,, comparators are “noisy”
reduction can be obtained with simpler analog implementatioggmparators. Therefore, we have to compensate for their errors
[9]. Major reasons support the choice of analog implementatiqfafore we replace the conventional comparators in a sorting net-
namely [8] work with them. To devise such an error compensation algo-

i) The information/wiring ratio is better than in the digitalrithm, first, the statistical properties of tig, comparators are
approach. explored and compared against those of the min/max compara-

ii) Asmaller areais needed than in digital systems to obtaiors. Then, we propose a simple error-compensation algorithm,
different functionality types. and we derive theoretically the gain that is obtained whgn

iif) The basic cells are either bipolar junction transistors asomparators employing the proposed error compensation are

operational amplifiers (op-amps) that are more compagsed. Next, we develop a median approximation network that
and are faster than their digital counterparts. can be built usind.,, comparators.

iv) Analog implementations offer time complexity on the The major contributions of the paper are in

order of microseconds if they are based on op-amps (e.g., . o - _

[12]) and on the order of tens of nanoseconds when they i) the derivation of the statistical propertiesiof compara-

are based on bipolar junction transistors (e.g., [8]). . dors; _ _
One class of implementations is based on op-amps. An op-amp—") the compensf';\tlon for the errors that are introduced py
based circuit realization of a sorting network is described in ... comparator_s, . .
[12]. It implements an analog sorting neural network that treats”') the generallza_non oL, comparz?\tors to min/max net-
the sorting operation as an assignment problem. Another analo works of I/O size greater than 2; - _
circuit based on op-amps suitable for the comparison and sortinjv) the cpncept of _odd—_even transposition ;ortmg networks,
of two input voltages is described in [13]. A nonlinear dynamic median approximation networkg and min/max networks
system that sortd’ data is developed in [14]. It is based on the based OrL.P mean cqmparators, .
theory of completely integrable Hamiltonian systems, and its v) the experimental ew_de_nce that the aforementioned net-
realization is based on op-amps as well. Another class of im- works can be used within acceptable error levels for small
plementations of multiple-input min/max circuits is based on a values ofp in the range [2, 5]
common emitter/source configuration [15]. A novel configurafhe paper focuses on the ideal performance of iecom-
tion combining a voltage-mode common source circuit andparators, assuming that ideal op-amps are employed. It does not
current-mode rank selector is proposed in [16]. This configenter into the imperfections encountered when actual op-amps
ration implements a “winner takes all” circuit. A third class ofire used.
implementations is based on current-mirroring [9], [17]-[19]. The outline of the paper is as follows. The definitionof
The design of sorting networks formed by sums of products comparators with two inputs is given in Section Il. Their sta-
products of sums is reported in [8]. It is based on ADD anitistical properties are derived in this section as well. The com-

x min sorter L

x
7 (@)

b S —— max. b X(g)
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pensation for the errors introduced by thg comparators, im- ~ TheL, comparators are “noisy” comparators. Indeed, the fol-
plementation issues, and the generalizatiod ptomparators lowing well-known property [30] holds foV = 2:
to min/max networks of 1/O size greater than 2 are treated in

Section 11l Medlan.appr.oxmat!on networks'based[qmpm- 2y < L_p(ar,22) < 5(351 +29) < Ly(1,2) < 22 (5)
parators are described in Section IV. Experimental evidence is

provided in Section V, and conclusions are drawn in Section Vlh this section, the statistical propertiesiof comparators are
derived for independent uniformly distributed input samples.

The analysis will be confined t& = 2 to maintain mathemat-
The L,, comparator employs nonlinedr_,, and L,, means ical tractability. Based on the results of this section, we modify
with two inputs to estimate the minimum and maximum of twthe outputs of an min/max network of I/O si2é > 2 in Sec-

II. L, COMPARATORS

input samples, respectively [31], [32], i.e., tion 1l as follows:
2P P -1/p N-1
j;(l) :L—p(xlva) = <%> Q) (1) =L_p(a:1,a:2 S ,.IN) — Z dz|xz — $i+1| (6)
=1
N-1
X PP 1/p )
By =Lp(w1,22) = <¥) 2 vy =Lyp(w,22...,2N8) + Z cilwi — @i (7)
=1

wherep is a positive real number different than 1, i.e.,e
Rt — {0,1}. In contrast to classical min/max comparator

W_h°se output is one of "?p_”t samples, tb,eco_mparator pro- comparator. Hencefortlly will be equal to 2.
vides estimates of the minimum and the maximum samiple. ¢ z;, 1 = 1,2 are independent random variables (RVs) uni-
comparators can be treat_ed as analog sorters_ n the Sensefmmly distributed in the interval [QL], the probability density
their outputs are not restricted to be one of their inputs. Sucq ction (pdf) of the RVz = L, (x4, x2) is given by (8), shown

2 = Lp(a, .

performance can be tolerated in the case of order-statistics fil1,« hottom of the page, wheB¥-) denotes the Beta function

Fers whose output is a linear combin.ation of the rank-ordergﬂdlm(% b) is the incomplete Beta function defined as [36], [37]
input samples (e.ga-trimmed mean/-filters). If a fully analog

implementation is pursued, the propodggdcomparators could 1 S -

be used without requantization of the output so that it becomes I(a,b) = Bla.b) / T (=) dt. 9)
one of the inputs. However, if such a quantization is required, ’ 0

then the procedures proposed in [33] can be employed, providgsk derivation of (8) is given in Appendix A. For = 2, we
that the analog sorter preserves the ordering of input sampletain

Fig. 1(b) and (c) depict the min/max comparator and the

wherec; andd; are appropriate coefficients. It can be seen that
Jor N = 2, (6) and (7) define the corrected outputs of an

comparator. The comparator depicted in Fig. 1(b) or (c) is called =% ifo<z< % L
type 0 comparatoand is used in odd-even transposition net- f(z) = 2 arcsin (Lz—zzz) if %f L<»<[L .- (10)
z ? 2 -

works. Type lcomparators that also support a swap function, 0
i.e., they provide their outputs in descending order, can also be ’
implemented by using,, comparators. The latter comparatorshe pdf of the RVz is plotted forp =2, 5, and 8 in Fig. 3. For
are used in bitonic sorting networks [4]. completeness, the pdf of the Ry, for uniform parent distri-

The proposed., comparators can easily be extended tgytion in the interval [0L] and N = 2 is included () =
min/max networks with /O sizeV > 2 that estimate the (2/L) (z/L),0 < z < L.

otherwise.

minimum and maximum ofV input samples by The expected value and the mean square value of the RV
L —1/p are given by
&y =L_p(z1,22...,2N5) = <—Zx7_p> 3) 97 9-1/p 1
N B{z} = <1 - / tHP(1 4 t)l/pldt> (11)
p 0

N i/p

. 1 2 —2/p 1

&vy =Lp(xr, 20 yan) = <N Zw”> @ E{z%} :% <1 - 2—/ t/7(1 +t)2/P—1dt> (12)
i=1 p 0

%B(},, ;) z, ifo<z<27V/PL
— /P . _
F& =182 B(4 1) 2 (20w (2, 2) -1), H2VrL<e<r ®)

0, otherwise.
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Fig. 3. Probability density function of the RV = L,(x1,z2) forp =2, 5,
and 8 when:; andz; are independent RVs uniformly distributed in the interval o M M v v M v

[0, L].

respectively. The derivation of (11) is outlined in Appendix A.
Equation (12) can be proven similarly. Foe= 2, we obtain

E{z} =272 § (\/5 —Intan (%)) , B{?} = %LQ

(13)
The following approximate expressions for the first and second o
moment Of the RVZ h0|d o32f x----%  approximation
& - -0 xfz))/L
03 ; é zla 1'0 1‘2 1l4 16
Coefficient,p
11
L —1/p B (;’ ;) —-1/p ()
E{Z} NE (1 +2 ) B 6p (3 -2 ) (14) Fig. 4. Firstand second moment of the R\= L, (x, 25 ) for several values

of the coefficienp. (a) Expected value. (b) Mean square value.

1 1
E{z2} ~9~2/P 12 | 9l/p 4 M <1 _ 21/p> . (15) Itis obvious that the first and second moments of thez:Rend

2p 2 to those of the R\e(,) for largep.

Similarly, if z;, ¢ = 1, 2 are independent RVs uni-

The proofs of (14) and (15) are given in Appendix B. The eXormly distributed in the interval¢ L], the pdf of the RV
pected value and the mean square value of the R several w = L_,(x1,z2) is given by (17), shown at the bottom of the
values of the coefficient are plotted in Fig. 4(a) and (b), respecpage. The proof of (17) is omitted due to lack of space. For
tively. The approximate values obtained by using (14) and (1b)= 2, (17) is simplified to
are overlaid for comparison purposes. It is seen thap for§,

2 w?—e?
the values obtained by the approximate expressions are practi- () =07 Vaer—w?’ if e <w < \/_\/W
cally the same as those obtained by the numerical integration offw(w) = - 26 . %7 if \/2 L _<w<lL
(11) and (12). The expressions in (11) and (12) should be com- 6’ N otherwiesg.L
pared with those of the order statistics fgr= 2 and uniform (18)
parent distribution that are given by [34] and [38] The pdf of the RV (1) for uniform parent distribution in the in-

terval [0, L] for N = 2 is given by f1)(z) = 2/L (1 —z/L),
0 < z < L.Forz;, i =1, 2 independent RVs uniformly
27, 2 distributed in the interval [0.1,1], the pdf of tie_,, comparator
Bz}t = 3 E{xé)} =5 (16) output is found by employing numerical |ntegrat|on and is

Frar 0 [ ORI )T by it < w < 27 Gty
Juw(w) = pzz;/:)z w flp/L;’;Q2Lpt (41/p)(1 — $)=H+L/P) gt if 21/PW <w<L (17)

0, otherwise.
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Fig. 6. Limit of first and second moment of the RV = L_,(z1,x2) for

Fig. 5. (@) Probability density function of the RV = L _,(z1, ;) obtained  goq ) values of the coefficieptwhene — 0. (a) Expected value. (b) Mean
by numerical integration fop = 2, 4, and 6 when:; andx- are independent square value

RVs uniformly distributed in the interval [0.1,1]. (b) Exact probability density
function of the RVw = L_,(x,x>) whenz; andx, are independent RVs

uniformly distributed in the interval [0.1,1]. first and the second moment of the RVapproximate those of
the RVa:(l), ie.,

plotted in Fig. 5(a) forp = 2, 4, and 6. The plot of (18) is L ) 1.2

shown in Fig. 5(b) for comparison purposes. Blew} =5, Blagyl =+ (22)

The limit of the expected value and the mean square value of
the RVw for ¢ — 0 is given by
[ll. ERRORCOMPENSATION AND IMPLEMENTATION |ISSUES

4 2-1/p vt Having derived the statistical properties of thg compara-
lim E{w} == 2t/P~1 L/ TN (19) tors in the previous section, we will estimate first the error in-
0 3 0 (1-) r troduced by a singld.,, comparator and propose a method to
. 9 2/l 42 2 dt compensate for it. Second, we discuss the overall error intro-
51_13% Biw} =2 L /0 (1 —tp)i+i/p (20) duced by theL,, comparators in a sorting network when they
replace the classical min/max comparators. Next, we describe
respectively. The derivation of (19) and (20) is outlined in Apthe implementation of thé,, comparators studied in this paper,
pendix C. Forp = 2, we obtain and finally, we generalize to the case of min/max networks of

more than two inputs.

o—1/p

4
(21) Let epax(1, 22) = 2(2) — 2(2) denote the error introduced

The expected value and the mean square value of thee R by the L, comparator in the estimation of the maximum of two
several values of the coefficieptare plotted in Fig. 6(a) and input samples. Similarly, I&t,i, (21, 2) = x(1) — #(1) denote
(b), respectively. It can easily be verified that fotarge, the the corresponding error in the estimation of the minimum of two

. 4 1 . 27 72 T .
}1_1)%E{w} =3 L <1 \/§> , ll_l)r(l)E{w =L (1 ) . A. Error Introduced by a Singlé,, Comparator
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Fig. 7. (a) MSE of theL,, comparator and the modifie, comparator in

estimating the maximum of two independent input samples that are unifornfig- 8- (&) Limit of the MSE of theL._,, comparator and the modifiel _,
distributed in the interval [0L]. (b) Zoom in the MSE introduced by the comparator in estimating the minimum of two independent Input samples that
modified L, comparator are uniformly distributed in the intervad,[L] for e — 0. (b) Zoom in the MSE

» .

introduced by the modified _,, comparator.

input samples. Inequalities (5) imply that
P P q (5) imply seen that the larger the coefficiemtis, the smaller the MSE

0 < Conan (21, 72) <1 g — 1] introduced by thel,, comparator becomes. Accordingly, for
= mamieh s =9 ’ large values of the coefficient, the L,, comparator converges
(23) to the max operator, as expected.
If z;,7 =1, 2, are independent RVs uniformly distributed in
the interval , L], for ¢ — 0, the limit of the MSE of thel_,
comparator is

1
_5 |-T2 - -T1| Semin(xlv-TQ) S 0.

Moreover, if the absolute value of the difference between
andzx, is large, that ismax{z1,z2} > min{zy,z=2}, then
we obtaine,, s (z1, 2) =~ (1 — 1/21/7’) max{z1,z2}. On the 1
other hand, ife; ~ x5, theney.(z1,22) ~ 0. Similar results lin% EB{c?, (x1,12)}y=L? {E +22/r—1
can also be found faf,,, (21, z2). o

Forz;,i =1, 2, independent RVs uniformly distributed in the
interval [0, L], itis shown in Appendix D that the mean squared
error (MSE) introduced by thé,, comparator is given by

1 t2 1/ 1 t2
—dt — 2P —dt;. (25
X/o (1 )2 /0(1+tp)1/p } (23)

Forp = 2, (25) is simplified tolim. .o E{e?; (71, z2)} =

L? (1/6 — n/4++/2/2 In(1+V/2)). The MSE of theL_,
comparator is plotted for several values of the coefficieirt

Fig. 8(a) as well. It is seen that the larger the coefficjeist the
smaller the MSE introduced by thie_, comparator becomes.
Accordingly, for large values of the coefficieptthe L _, com-

For p = 2, we obtain E{c3_ (z;,z2)} = L?/2 parator converges to the min operator, as expected.

(2/3 —In(1 + v2)/Vv/2). The MSE of theL, comparator is  Next, we compensate for the MSE introduced byXheom-
plotted for several values of the coefficignin Fig. 7(a). It is parators for smaj. We argue that the estimation error increases

L2
E{cdalor a2} = 5 {14272

1 1
x/ (1+t1“)2/1“dt—21—1/1“/ (1+t1“)1/1“dt}. (24)
0 0
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Fig. 9. Absolute value 0f,,.x forp = 5.

almost linearly with the absolute value of the difference between ‘
21 andzz. No error is introduced whejxs — 21| ~ 0. The in- % n s
equalities (23) set an upper and lower bound on the estimation
error that is a linear envelope in terms|of — x»|. Indeed, for Fig. 10. Optimal constants and d that minimize the MSE between the
z1 andz, independent RVs uniformly distributed in the intervajnodified L, comparator output and the true maximum and minimum of two

. independent uniformly distributed samples for several values of the coefficient
(0, 255], the plot of the:,,,«, as a function of the comparator,,
inputszy, 22 for p = 5 in Fig. 9, demonstrates that the error in-
creases almost linearly with the distance from the ipe= z. parator output (26) and the true minimum samplgz2. } —

Accordingly, we propose to modify thi,, comparator outputs E{e2. } — (d2 L2/6) is shown overlaid in Fig. 8. Tﬁlciendetails
aS min

of the variation of MSE versug are revealed in Fig. 8(b).

10
Coefficient,p

Ty =L_p(z1,22) —d|s|, d>0 (26)

i B. Overall Error
Ty =Lyp(x1,22) +cs|, ¢>0 (27)

If L, comparators are used in a sorting network, e.g., the
wheres = x5 — 1 andc, d are constants. By doing so, the errondd-even transposition network of Fig. 1(a), it is obvious that
between:i(;y andz(;y and the corresponding error betwegr,  the errors introduced by eadh, comparator propagate through

andzyy is bounded by the network and accumulate at the sorting network outputs. For
large values ofV or for small values op, the ordering of sorting
<d— 1) 8| <Cmin < s, Emin =20) — Fq) (28) output samples may no longer hold. Quantitative results for
2 the errors introduced at the several ranked-ordered samples are

given in Section V, where it can be seen that the proposed modi-
fied L,, comparators reduce the accumulated error at the outputs
(29) of an odd-even transposition network or a median approxima-
tion network.

. 1 . .
—C|S| Semax S <§ - C) |3|7 Cmax = $(2) - $(2)

respectively. The dependenceigfy andz,) on|s| is partially

explained from the fact that [7] C. Implementation
_xyt x| 30 The basic module in the analog implementation of fhe
Ty TTT Ty (30) comparator is the so-callechultifunction convertef29, pp.
_ T+ T2 || 31 113-116]. A multifunction converter consists of four opera-
T =7 T 9 (31) tional amplifiers, four logging transistors, and four resistors.

The exponeng is determined by two external resistors. Raising
to an arbitrary powep and computing thesth root can be
achieved with the same module by controlling an external
potentiometer together with two fixed resistors. Accuracy of
3 “1/p L o\1/p 0.2% can be achieved far ranging from 0.2 to 5 [29]. This
c=5+3-2 /0 (s =1 (1 +s")""ds  (32) module can be used to raise to a powemppfo computepth
1 Log(s—1) roots, and as a divider. The latter operation is need in the
d=-— 5~ 3.24/P / (33) implementation of anL_, comparator. Moreover, the same
o ( module can be used to implement the correction term in (26)
The optimal constants and d are plotted for several valuesand (27). Clearly, the absolute value can be computed with a
of the coefficientp in Fig. 10(a) and (b), respectively. As ex-cascade of an adder and a multifunction converter that can be
pected by inequalities (29) and (28), they are much smallgsed first to raise to an even power (e.g., 2 or 4) and then to
than 0.5. The MSE between the modifibgd comparator output compute thepth root. Accordingly, efficient pipelined archi-
(27) and the true maximum sample is given By{¢2 _} = tectures forL,, comparators of two inputs can be developed to
E{c? .} —(c? L?/6). Itis overlaid in Fig. 7(a) for comparison estimate the minimum and maximum by exploiting an adder,
purposes. A zoom in the plot of the MSE vergus depicted in a multifunction converter used to raise to the poweand
Fig. 7(b). Similarly, the MSE between the modifi¢d , com- compute theth root, and a divider.

The constants and d can be chosen so thd{¢2, } and
lim._o E{¢2,,} is minimized, respectively. In Appendix D, it

is shown that the optimal constantandd are given by

1+ sP)/p 5



KOTROPOULOSet al: SORTING NETWORKS USINGL » MEAN COMPARATORS 2723

D. Generalization to Min/Max Sorting Networks With Highercomment on the implementation of (37). This implementation
I/0 Size of median approximation network requir€g.v, ) L_, com-

One may argue that (30) and (31) indicate that an ided@rators ofi inputs each and ong, comparator oiC(N,v)
comparator can be implemented simply with a multifundPUts. EachL_.p unit operates in parallel with the rgst of the
tion converter used to evaluate the absolute value and a ,) — 1 units. The output of thé._,, comparator is an ap-

op-amp-based adders. The major benefitZgf comparators proximation of the subset minimum. Subsequently &/, »)

stems from the fact that they can easily be extended to min/nf@limaare fed to ait,, comparator, which produces an estimate

networks with I/O sizeV > 2 that estimate the minimum Of theé maximum of its inputs. The use of different symbpls

and maximum ofN input samples byl._, (w1, 2 en) andq manifest that there is no need for the coefficients to be the
(1, T, .. 2N

given by (3) andL_,(z1,2,...,2y) and defined by (4) same in both comparators. Obviously, the above-described im-

respectively. It can easily be verified that the min/max netwofR€mentation has a cost, which comes in the form of the number
employing (3) and (4) delivers an estimate of either min (ﬂ_pr gomparators requwed._CIearIy, for large values p_fthemput
max faster than any sorting network specialized for min/maiz€ (i-€.~ or C(, 1)), the input set should be partitioned to
calculations using regular comparators defined by (30) afyPsets of smaller size. Min/max computations should be per-
(31). Moreover, the first estimates provided by (3) and (4) c4fMed on these subsets, and the partial results should be com-
be further corrected by generalizing (26) and (27) to (6) arftined to yield the final minimum or maximum. This is equiva-
(7), respectively. The expressions (6) and (7) are related to 1fBt {0 performing efficient pipelining and block processing op-
so-callecpiecewise-linear function®WL), which are a widely €rations in a hardware implementation.

used class of nonlinear approximate functions [39], [40]. In these
equations, the coefficients andd;, i = 1,2,...,N — 1can
then be derived arithmetically by a general least squares fit. TheThree sets of experiments have been conducted. The first set
use of min/max network defined by (6) and (7) is found to redues experiments measures the approximation errors at the outputs
the estimation errors effectively, as can be seen in Sectiond¥.a sorting network wheth,, comparators replace the classical
L_,(z1,22,...,2n)andLy(x1, 22, . . ., xx)aretwononlinear min/max comparators. The second set of experiments measures
functions whose nonlinearity increases with the increase of th error introduced by the, comparators in a median selection
exponentp. The compensation terms Y"1 " d;|«; — @+1]  network. The third set of experiments refers to the error intro-
and N7l eile; — wiya| are, in fact, two piecewise-linear duced by the generalized min/max networks for I/O size- 2.
nonlinear functions whose approximation properties depend on

the coefficients;; andd;. However, the aforementioned piece/- Errors at the Outputs of a Sorting Network

wise-linear nonlinear functions are not universal approximateThe first set of experiments aims at measuring the errors at
functions, and they do not yield a canonical representation [38)e outputs of an odd-even transposition sorting network using
[40]. The compensation effect can be enhanced further iffa, comparators and demonstrating the error compensation
canonical piecewise-linear function is considered at the expengtieved when the modified,, comparators replace the,

V. SIMULATION RESULTS

of anincrease in the hardware complexity. comparators. We created 5000 random samples that were uni-
formly distributed in the interval [0.0001, 255]. An odd-even
IV. MEDIAN APPROXIMATION NETWORK transposition network of Fig. 1(a) was used where the min

L, mean comparators can also be used to estimate only ! max operators had been replaced byihecomparators
sample median. Lé¥ be odd. The median of a setifelements  d€fined by i) (1) and (2), and ii) (26) and (27), respectively. The
is thevth-order statistie(,.), wherew = (N + 1/2). Letus con- root mean square (RMSE) errétM SE ;) between the actual
sider its subsets consistingioélements thata@ (N, ) = (%) ith rank-ordered output and its approximation, when eifher
intotal. It can easily be proven thatthere is at leasteeéement comparators or modified,, comparators were employed, was

subset’; of the N-element set that satisfies used as a quantitative criterion, i.e.,

max{C;} = z(,), i € {1,...,C(N,v)} (34) RMSE;) I\/E{(x(i) —&@)°}
while the remaining@'(V, ») — 1) v-element subsets satisfy ] K 2
~, | = Z (a:(lf‘) - f:({“)) . (38)
max{C;} > max{C;}, i,5 € {1,...,C(N,»)}, j #i. (35) O

If the C(V,v) maximamax{C;} are computed, then by (34)In (38), K is the number of tests performed when a sliding
and (35) window of lengthV is applied to the sequence of random
— i ax{C. 1< i< C(N ' 36 samples. Since many nonlinear image filtering schemes employ
2() = minmax{C;}, Sj O} (36) three, five, or nine-point filter windows (one-dimensional and
Similarly, there is a dual form of (36), i.e., 3 x 3 two-dimensional, respectively), tests were performed on
£y = max{min{C;}, 1< j < C(N,v)}. 37) ?grgn%}networks ofV inputs, whereVN took values in the set
Since anl_, comparator is a more costly operator because it In each case, paramejgtook values in the set {2, 5, 8}. The
employs dividers and yields generally larger errors thaihan RMSE for each sorting network output is plotted in Fig. 11(a)
comparator of the same input size for smalalues, we will and (c) forV = 5 andN = 9 inputs, respectively, when thfg,
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RMSE
RMSE

a
rank order

(a)

3
rank order

(b)
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5
rank order
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Fig. 11. Root mean square error at each output of an odd-even transposition network. (a) Sorting nefWosk dfinputs whenL, comparators (without
compensation) are used. (b) Sorting networRof= 5 inputs when modified.,, comparators (with compensation) are used. (c) Sorting netwakk ef 9 inputs
whenL, comparators are used. (d) Sorting network\of= 9 inputs when modified.,, comparators are used.

comparators defined in (1) and (2) were used. It is seen that thél)
estimates of the higher ranked ordered samples deviate much
from the actual values. The ranked ordered samples close to th#l)
sample median are estimated with fewer errors. As expected,

median approximation network (37) with_, and L,
comparators having = g;

median approximation network (37) with_, and L,
comparators having = 2p;

the errors reduce gsincreases. However, accurate analog iMyere used forV e {3,5,9}. The input samples were those of
plementations are available for smalvalues, i.e.2 < p < 5, the previous set of experiments. For the netwigrthe output

as has been explained in Section llI-C. For larger valugs of that corresponds to the median sample was taken into account
cascades of multifunction converters should be used, which ig@y. The simulation results are summarized in Table I. Itis seen
fact that increases the hardware complexity. Small approxim@iat if ¢ is chosen to bej2 the RMSE for the median estimate
tion errors were achieved when the modifig comparators provided by the networkwhen compensation is used is always
defined in (26) and (27) were used. TR/ SE ;) resulted are |ess than that without compensation. As a basis of comparison,
plotted in Fig. 11(b) and (d) falV = 5 andN = 9 inputs, re-  the RMSE between the true median sample and the arithmetic
spectively. The simulation results indicate that the approximgrean for the same values dfis included in the columiV of

tion errors are within acceptable levels. In this case, the samglg; table. The best RMSE values are written boldface. It can
minimum and the sample maximum are more closely appro¥a seen that when the proposed modiflgdcomparators are
imated than the sample median. To reduce the RMSE for t@ﬁ]pmyed in each median approximation network, the approx-
median estimate, an appropriate selection of the expgnent jmation errors are significantly reduced. Moreover, 16r= 3

L_, comparators should be made. Such a selection is propog@ 5, the median approximation network (37) outperforms the
in the next subsection. odd-even transposition network with respect to the RMSE. For
N = 9, the situation is reversed due to the large sorting network
of C(N,v) inputs that need to be implemented. However, the

_ ] RMSE achieved by the median approximation network is not
The RMSE between the true median sample and its appror pehind. From this point of view, all three median approxi-
mation, when three median approximation networks, namelymation networks are practically equivalent. Moreover, their per-
1) the odd-even transposition network of Fig. 1(a) witliormance is much better than that of the arithmetic mean in the
L_, and L, comparators having = 2¢; estimation of the median sample.

B. Errors in Median Approximation Networks
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TABLE | TABLE I
ROOT MEAN SQUARE ERROR IN THE APPROXIMATION OF THEMEDIAN ROOT MEAN SQUARE ERROR IN THE APPROXIMATION OF THEMINIMUM , THE
OF AN N -ELEMENT SET. MEDIAN, AND THE MAXIMUM OF NINE OBSERVATIONS USING GENERALIZED
MIN/MAX NETWORKSWITH L_, AND L, COMPARATORS
I n I v
N | p | without with com- | without with com- | without with com- p | g | order statistic | without compensation | with compensation
compensa- | pensation compensa- | pensation compensa- | pensation minimum 9.430 8.418
tion tion tion 8 | 16 | median 17.291 5.06
2 | 30.958 9.847 33.002 11.721 20.156 10.441 masimum 25,502 7.955
3|51 16.367 7.351 17.903 10.221 8.534 6.65 26.703
8| 10.887 5.529 11.696 7.835 5.007 4.664 o
the proposed modifiedl,, comparators have been demonstrated
2 | 30.157 20.393 46.137 19.980 32.319 17.809 tO Operate W|th|n acceptable error IeVelS.
5 15| 17.087 11.715 32.296 17.148 16.972 10.667 24.345
8 | 11599 8.148 23.643 12.743 10.834 7.303 APPENDIX A
2| 39.953 33.556 54.367 39.874 40.370 35.555
A. Proof of (8)
9 15 |27.234 17.253 46.472 32.824 28.088 18.898 20.840
s |20135 | 11330 38,750 22.801 20930 12.408 Letz;, i = 1, 2 be independent RVs uniformly distributed in

the interval [0,L]. Then, the pdf of the R\ = «? is given by
— 1-1/p << LP
C. Errors in Generalized Min/Max Networks ‘éc\g?z Cgl—i{%f?vs:]/efegi 2)3’71191 i - :Cly_zfylis[Z?\lé:f:mp;;%;t:}:?e
For N = 9, the generalized min/max networks discussed &pnvolution of the pdfg,, (£) and f, (£)[35]. That is, we have
Section IlI-D can be used to further reduce the RMSE. Such4.1), shown at the bottom of the page. In (A.1), itis easily seen
network withL _,, andL, comparators having= 8 andg = 16  that [36]
was tested in the same framework. The RMSE for the minimum, .. 11
the median, and the maximum sample using (3) and (4) aswell | AP~ (¢ — )P 1dx=B <—, —) el (A2)
as using (6) and (7) are given in Table Il. The computation of 7/© pp
the median was done according to the analysis presented in Seltere B(-) denotes the Beta function. To calculate the re-
tion IV. This analysis can be extended to any order statistic, emining integral, we apply the change of variable- £/2 + 1,
is demonstrated in [9]. A much lower RMSE for the median ese.,
timate than that of the netwotl (see Table 1) is obtained. This LP—¢/2 ¢ 1/p—1 ¢ 1/p—1
is attributed to the more accurate estimates provided by the gen- / <_ + ¢) <_ — ¢) dip
eralized min/max networks and the fewer accumulation errors Je/2—r» \2 2

that occurred. _¢2/rt <B <1 1)
p'p
VI. CONCLUSIONS 1-LP Lpt pet
This paper has introduced the, comparator, which is a _2/0 P (A=)t d¢> - (A3)
unit that can be utilized in analog implementations of sorting
networks to improve performance. Analog implementatiodt z denote the following function of the RV,
of L, comparators employ multifunction converters that are = 271/p ¢M/r. Then, the pdf of the Rz is given by
based on operational amplifiers. The statistical propertids(z) = 2 p 2¥~* fe(2 2#)[35] for » such that 2" belongs to
of the L, comparators have been derived for independeite domain off.(-), which completes the proof.
uniformly distributed inputs. Sincd., comparators provide
only approximations of the minimul;n and the maximum olfD" Proof of (11)
their inputs, an efficient compensation approach has been

devised that succeeds in reducing significantly those errors. 22/p <1 1) L 21+2/p

Generalizations off., comparators to min/max networks of£{z} = —B| -, §( L3 1) + T,
. L p pp b
I/O size N > 2 have also been proposed. Applications of the B o
L, comparators in odd—even transposition networks, median x/ 22 l/ tl/p—l(l _ t)l/p—ldt dz. (A.4)
2 0

approximation networks, and min/max networks that employ -1/p [

0, if £ <0
1 (& y1/p—-1 1/p—1 .
2z Jo AP —A dx, ifo< &< LP
Je(6) = L21p2 JOLP l/p(i ) 1/p—1 i p_ ‘ P (A1)
257 Ll (€—=X) d\, if P < &< 2L

0, if ¢ > 2Lp
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The integral in (A.4) can be calculated by integration by partetegrating by parts the second integral in (B.3), we obtain

and by applying Leibnitz’s rule for the differentiation of the I L

inner integral, i.e., E{z} =27/ 3 G YPL)y+ L - / Q(z) dz.
2-1/p [,

L 2 2¥ (B.4)
/ 22 / /=g — t)l/f’—ldt] dz By applying the trapezoidal rule, we obtain the following ap-
27 L 0 proximation for the integral in (B.4):
1[5 (11 11 L .
_- 1+G2YrL
3 {L Y <p p) fuz <p p) / G(z)dz ~ Lo P (L-27Y7L). (B.5)
11 11\ pLr 2L 2
—273/P[*B < ) I <—, —) + The substitution of (B.5) in (B.4) yields
p'p pp 2 N
L p N\ L/p—1 p\ 1/p-1 L 1 G2 YPL)L 1
(B ey ] s ) SR o)
o—1/p], 2 2P 2 2P (B.6)
A5 y combining (B.2) and (B.6), we obtain .
(A5) B bining (B.2) and (B.6) btain (14)
It is well known that [37] B. Proof of (15)
11 1 11 By following the procedure outlined above, we rewiit¢z?}
Il/2 ] = 5> 1|l——)=1 Vp>0 (AG) as
pp 2
2~ 1l/pp, 22
By applying the change of variable= L?/2 2P, the last term E{z?} = / 22627V L) 2 dx
in (A.5) is rewritten as L
L 1/p—1 1/p—1 —|—/ 22 g(z)dz. (B.7)
pL? 22—p<Lf’> r <1 LP> e e, )
2 Jrvrr 220 220 The integration by parts of the second integral in (B.7) and the

application of the trapezoidal rule to approximate the integral

L
/ 22G(2)dz =
2-1/p L

(L NS Neloalty L)) (L—2"1) (B.8)

1
2—3/PL3/ P — )Y g (A7)
/2

The substitution of (A.5)—(A.7) in (A.4) yields

1
E{z} = 2L o1 / Yl )Y tae (A8)
p 1/2 yields (15).
that can further be simplified by appropriate variable changes APPENDIX C
and integration by parts to (11). A. Proof of (17)
APPENDIX B Let z;, ¢« = 1, 2, be independent RVs uniformly distributed
in the interval , L]. Then, the pdf of the R = =P is given
A. Proof of (14) by fy(n) = (1/p (L =€) (1/n**+/7), L7 < n < 77[35].
) The pdf of the RV¢p = 11 + 12, wheren, = z; 7, ¢ =1, 21is
Let us rewrite (8) as given by the convolution of the pdfs, (¢) and,, (#)[35]. Let
22/® (l l) L fO<z<2-lUrl w denote the following function of the R, w = 21/7 ¢—1/»,
f(2) = LZp p'p) ST : (B.1) Then, the pdf of the RVv is obtained by the transformation
77 9(2), if 2=1/P [ <2< L ' fw(w) = 2 p w= @Y f,(247P) [35] for w such that 27

0, otherwise. belongs to the domain of,(-), which completes the proof.

The pdf f(z) results from convolution, and accordingly, it isg  pygof of (19)
continuous. From its continuity, we know the exact values of 'y . /p
functiong(z) atz = 2=%? Landz = L, i.e,,g(27'/? L) = Lety = 2/#(c L/(¢”? + LP)*/*). Then
(277 /L p) B(1/p,1/p) andg(L) = 0, respectively. More- 2-2/p 2l )
over, at the same values of the argumerthe cumulative dis- E{lw} =——- U dw w
tribution G(z) attains the following values: v )20

) 11 % / t=(AH/P) (1 — )= (4P gt
Gerry= Lt B <_, _) L a=1 (B2 (2er—wr) 20

2p pp L

. +/ dww

The expected value of the R¥is given by

~
27YPL 52/p L Gty —(1+1/p) —(1+1/p)

E{z}= / 2—2G( “YPLY22d +/ o z2g(z)dz. /wp/QLp t (=% dt

(B.3) (C.1)
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Integrating by parts in (C.1) and taking the limit for— 0, we difference. Then, the MSE between the,, comparator and the

obtain (19). minimum sampler;y among the input samples; andx is
APPENDIX D given by
1 L* —¢ 3
A. Proof of (24) E{e2  (z1,22)} Lo < 5~ 3 L9
Letz;,¢ =1,2,beindependentuniformlydistributed RVsinthe I 4 I
interval [0,L]. Inaddition, lets = x> —z; denotetheirdifference. +( ) +22/P/ da:la:i”
Then, the MSE between thig, comparator and the maximum L1/2 e
sampler ,) among the input samples andz, is given by y / ' £2(1 + tp),Q/p gt — 91 t1/p
E{eiwx(xl?x?)} ¢/
L /L 3 ' 2( p) 1/p d
_ X da:lazl/ t(1+47)" t
JREYACY E »
L
(a? + (21 + 5)P)/P]° _ot41/p [ gpia®
X x1 — I fs(slz1)ds 1
s<0 2 /» ¢
L ~L/$1 1
_,_/ dzy fu(z1) x/l H(1 )" YPdt | (D.6)
0
2
(2f + (z + s)P)L/P Integrating by parts and taking the limit of (D.6) fer— 0
% />0 [(xl +s) - 21/p Fs(slr)ds. ponks to L Hospital’s rule, we obtain (25).
D.1
_ (0-1) C. Proof of (32)
It can easily be proven that The error produced at the modifiégl comparator output (27)
L L
_ )1 wm<s<L-m is given by
Fo(slw1) {O, otherwise. (©-2) v pN1/p
Ty — (ayte) F +cs if s<0
By using (D.2), (D.l) is rewritten as Conax(T1,T2) = 2177 "y =
z —(c—l)s—M if s>0
E{62 a: x 1 21/» ’ .
max (%1, T2) (D.7)
z; + )PP ? Then, the MSE is given by (D.8), shown at the top of the next
_ S + (@ + 90 : by ( :
= T1 B 21/p S page. By setting the derivative of (D.8) with respect tequal
; 1 L to zero and solving foe, we obtain
—z1 (xl + (xl + S)P) P:|
d - ds | . L
+/0 3?1/0 |:(3?1 + ) 21/p s _ ; <1 +2—1/p/ (t—1) (1 +tp)l/p dt)
0
(D3) 1/p 5 L/z1 Y,
We then have (D.4), shown at the bottom of the page, where, —6 74 /0 ”71/1 (- 1DA+e7)7Pdt. (D.9)
by L' Hospital’s rule . . . . .
; The last integral in (D.9) can be integrating by parts. By taking
lim x4/ I £ (1+7) dt =0, (D.5) into consideration that
z—0 1 L/Wl
: 4 1 _
By substitution of (D.4) in (D.3), we obtain (24). Jm /1 (t=1) (L + )P dt =0 (D.10)
B. Proof of (25) we find that the last term is equal to
Let ;, ¢ = 1, 2, be independent uniformly distributed RVs 3 -1/ 1/
in the interval E, L]. In addition, lets = x, — x; denote their 9 2 p/o (€ —1) (A +e7)/r dt. (D.11)

L 0 L L—z1
/ dx / z2ds = / dzy / (z1 + 5)%ds =—
0 —xq 0

L—xq L4 1
2/7’/ da:l/ [ + (z1 + s)P]7? ds = 2/p?/(1+tp)2/pdt

0

[}

Lot
21_1/p/ dxy / x1 [2) + (z1 + s)p]l/p ds =2t=1/r T / (1+t")/Pat
0 —ry 0

L L—a;l 1 L4 1
o1=1/p / dan / (o1 4 5) [o 4 (on + 5] ds =22 T / (14 )/ (D.4)
0 0 0
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L p 1/p7?
El(onant = [ dn o) [ ot es = CEEIVTE ey as
s<
L . P 1/p7?
—i—/o dzy fz (1) /520 |:.’L'1 —(e—1)s— (o1 + (lel/—: i) p} fs(s|z1) ds. (D.8)

By substitution of (D.11) in (D.9), (32) results. Equation (33) [24] D. S. Richards, “VLSI median filters,JEEE Trans. Acoust., Speech,
can be proven simiIarIy. Signal Processingvol. 38, pp. 145-153, Jan. 1990.

[25] T. Jarske and O. Vainio, “A review of median filter systems for
analog processingAnalog Integr. Circuits Signal Processol. 3, pp.
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