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Abstract

We adapt merge sort for a single SPU of the Cell Broadband Engine. This adaptation takes advantage of
the vector instructions supported by the SPU. Experimental results indicate that our merge sort adaptation is
faster than other sort algorithms (e.g., AA sort, Cell sort, quick sort) proposed for the SPU as well as faster
than our SPU adaptations of shaker sort and brick sort. An added advantage is that our merge sort adaptation
is a stable sort whereas none of the other sort adaptations is stable.
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1 Introduction

The Cell Broadband Engine (CBE) is a heterogeneous multicore architecture developed by IBM, Sony, and Toshiba.
A CBE (Figure 1) consists of a Power PC (PPU) core, eight Synergistic Processing Elements or Units (SPEs or
SPUs), and associated memory transfer mechanisms [6]. The SPUs are connected in a ring topology and each SPU
has its own local store. However, SPUs have no local cache and no branch prediction logic. Data may be moved
between an SPUs local store and central memory via a DMA transfer, which is handled by a Memory Flow Control
(MFC). Since the MFC runs independent of the SPUs, data transfer can be done concurrently with computation.
The absence of branch prediction logic in an SPU and the availability of SIMD instructions that can operate on
vectors that are comprised of 4 numbers poses a challenge when developing high performance CBE algorithms.

Recently, two sorting algorithms—A A-sort [8] and CellSort [4]-were proposed for the CBE. AA-sort is an adap-
tation of comb sort, which was originally proposed by Knuth [9] and rediscovered by Dobosiewicz [2] and Box and
Lacey [1]. CellSort is an adaptation of bitonic sort (e.g., [9]). Both AA-sort and CellSort are based on sorting
algorithms that are inefficient on a single processor. Hence, parallelizing these algorithms begins with a handicap
relative to the fastest serial sorting algorithms—merge sort for worst-case behavior and quick sort for average behav-
ior. Comb sort is known to have a worst-case complexity that is O(n?) [3]. Although the best upper bound known
for its average complexity is also O(n?), experimental results indicate an average complexity of O(nlogn) [1, 3].
On the other hand, the average complexity of quick sort is known to be O(nlogn). Since experiments indicate
that comb sort runs in about twice as much time on a single processor as does quick sort [3], attempts such as [8]
to develop a fast average-case sort, for a single SPU of the CBE that begin with comb sort, are handicapped by a
factor of two compared to attempts that begin with quick sort. This handicap needs to be overcome by the CBE
adaptation.

For integers and floats, the CBE supports 4-way parallelism within a single SPU as 4 integers (floats) may be
stored in each of the SPU’s 128-bit vector registers. Hence, we expect at best two-fold speed up over a conventional
implementation of quick sort. However, due to possible anomalous behavior resulting from such factors as the
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Figure 1: Architecture of the Cell Broadband Engine [5]

absence of branch prediction, we may actually observe a greater speed up [10]. Similarly, attempts such as [4] to
develop a fast worst-case sort for a single SPU starting with bitonic sort are handicapped relative to starting with
merge sort because the worst-case complexity of bitonic sort is O(nlog? n) while that of merge sort is O(nlogn).

As noted in [4], a logical way to develop a sorting algorithm for a heterogeneous multicore computer such as
the CBE is to (1) begin with a sorting algorithm for a single SPU, then (2) using this as a core, develop a sort
algorithm for the case when data fits in all available cores, then (3) use this multi-SPU algorithm to develop a sort
algorithm for the case when the data to be sorted does not fit in the local stores of all available SPEs but fits in
main memory. Our long-term strategy is to extend this hierarchical plan to the case where data to be sorted is so
large that it is distributed over the main memories of a cluster of CBEs.

An alternative strategy to sort is to use the master-slave model in which the PPU serves as the master processor
and the SPUs are the slave processors. The PPU partitions the data to be sorted and sends each partition to a
different SPU; the SPUs sort their partition using a single SPU sort; the PPU merges the sorted data from the
PPUs so as to complete the sort of the entire data set. This strategy is used in [14] to sort on the nCube hypercube
and in [13] to sort on the CBE.

Regardless of whether we sort large data sets using the hierarchical strategy of [4] or the master-slave strategy
of [13, 14], it is important to have a fast algorithm to sort within a single SPU. The absence of any branch
prediction capability and the availability of vector instructions that support SIMD parallelism on an SPU make
the development of a competitive merge sort a challenge, a challenge that we address in this paper. Our development
of a competitive merge sort is specifically for the case of sorting integers and floats and makes use of the fact that
4 integers or floats may be stored in a single register of an SPU. In Section 2, we describe SIMD functions that
are used in the specification of our SPU algorithms. Comb sort and its SPU adaptation AA-sort are reviewed in
Section 3. In this section, we develop SPU adaptations for brick sort and shaker sort as well. Our SPU adaptation
of merge sort is developed in Section 4 and experimental results comparing various SPU sorting algorithms are
presented in Section 5. In the remainder of this paper, we use the term number to refer to an integer or a float.
Note that 4 numbers may be stored in a 128-bit vector.

2 SPU Vector Operations

We shall use several SIMD functions that operate on a vector of 4 numbers to describe the SPU adaptation of
sorting algorithms. We describe these in this section. In the following, vl, v2, min, maz, and temp are vectors,
each comprised of 4 numbers and p, pl, and p2 are bit patterns. Function names that begin with spu are standard
C/C++ Cell SPU intrinsics while those that begin with mySpu are defined by us. Our description of these
functions is tailored to the sorting application of this paper.

1. spu_shuf fle(vl,v2,p) --- This function returns a vector comprised of a subset of the 8 numbers in v1 and
v2. The returned subset is determined by the bit pattern p. Let W, X, Y, and Z denote the 4 numbers
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(left to right) of v1 and let A, B, C, and D denote those of v2. The bit pattern p = XCCW, for example,
returns a vector comprised of the second number in vl followed by two copies of the third number of v2
followed by the first number in v1. In the following, we assume that constant patterns such as XYZD have
been pre-defined.

. spu_cmpgt(vl,v2) - - A 128-bit vector representing the pairwise comparison of the 4 numbers of v1 with those

of v2 is returned. If an element of v1 is greater than the corresponding element of v2, the corresponding 32
bits of the returned vector are 1; otherwise, these bits are 0.

spu-add(vl,v2) - - - Returns the vector obtained by pairwise adding the numbers of v1 with the corresponding
numbers of v2.

. spu_sub(vl,v2) --- Returns the vector obtained by pairwise subtracting the numbers of v2 from the corre-

sponding numbers of v1.
spu-and(pl,p2) - - - Returns the vector obtained by pairwise anding the bits of pl and p2.

mySpu_not(p) --- Returns the vector obtained by complementing each of the bits of p. Although the CBE
does not have a not instruction, we can perform this operation using the nor function that is supported
by the CBE and which computes the complement of the bitwise or of two vectors. It is easy to see that
spu_nor(p,v0) where v0 is an all zero vector, correctly computes the complement of the bits of p.

spu_select(vl,v2,p) - - - Returns a vector whose ith bit comes from v1 (v2) when the ith bit of p is 0 (1).

spu_slquwbyte(vl,n) --- Returns a vector obtained by shifting the bytes of v1 m bytes to the left, where m
is the number represented by the 5 least significant bits of n. The left shift is done with zero fill. So, the
rightmost m bytes of the returned vector are 0.

spu_splat(s) --- Returns a vector comprised of 4 copies of the number s.

mySpu_cmpswap(vl,v2) --- Pairwise compares the numbers of vl and v2 and swaps so that v1 has the
smaller number of each compare and v2 has the larger number Specifically, the following instructions are
executed:

p = spu_cmpgt(vl, v2);

min = spu_select(vl,v2, p);

v2 = spu_select(v2,v1,p);

vl = man;

mySpu_cmpswap_skew(vl,v2) - -- Performs the comparisons and swaps shown in Figure 2. Specifically, the
following instructions are executed:

temp = spu_slqubyte(v2,4);

p = spu_cmpgt(vl, temp);

min = spu_select(vl, temp, p);

vl = spu_shuf fle(min,vl, W XY D);

max = spu_select(temp, v, p);

v2 = spu_shuf fle(maz,v2, AWXY);

vip |V |12 vz | Min

V20| V21 | V22| V23 Max

Figure 2: Comparisons for mySpu_cmpswap_skew



12. mySpu_gather(vArray,vl) --- Here vArray is an array of vectors. Let W, X, Y and Z be the numbers of
v1. The function returns a vector whose first number is the first number of vArray[W], its second number is
the second number of vArray[X], its third number is the third number of vArray[Y], and its fourth number
is the fourth number of vArray[Z]. One implementation of this function first extracts W, X, Y, and Z from
vl using the function spu_extract and then executes the code:
temp = spu_shuf fle(vArray[W],vArray[X]|, WBWW);
temp = spu_shuf fle(temp,vArray[Y], WXCC);
return spu_shuf fle(temp,vArray[Z], W XY D);

13. mySpu_gather12(vArray,vl) --- This function, which is similar to mySpu_gather, returns a vector whose
first number is the first number of v Array[W] and whose second number is the second number of v Array[X].
The third and fourth numbers of the returned vector are set arbitrarily. Its code is:
return spu_shuf fle(vArray[W],vArray[X], W BWW);

14. mySpu_gather34(vArray,vl) --- This function, which is similar to mySpu_gatherl2, returns a vector whose
first number is the third number of v Array[WW] and whose second number is the fourth number of v Array[X].
The third and fourth numbers of the returned vector are set arbitrarily. Its code is:
return spu_shuf fle(vArray[W1],vArray[X],Y DYY);

15. mySpu_gather A(vArray,vl) --- This function is similar to mySpu_gather and returns a vector whose first
number is the first number of vArray[W], its second number is the third number of vArray[X], its third
number is the first number of vArray[Y], and its fourth number is the third number of vArray[Z]. The code:
temp = spu_shuf fle(vArray[W], vArray[X], WCWW);
temp = spu_shuf fle(temp, vArray[Y], WX AA);
return spu_shuf fle(temp,vArray|Z], WXYC);

16. mySpu_gather B(vArray,vl) --- This too is similar to mySpu_gather. The function returns a vector whose
first number is the second number of vArray[W], its second number is the fourth number of vArray[X], its
third number is the second number of v Array[Y], and its fourth number is the fourth number of v Array[Z].
The code is:
temp = spu_shuf fle(vArray[W],vArray[X], X DX X);
temp = spu_shuf fle(temp,vArraylY], WX BB);
return spu_shuf fle(temp,vArray[Z], W XY D);

3 Shellsort Variants

Shellsort [9] sorts a sequence of n numbers in m passes employing a decreasing increment sequence iy > ig > -+ >
im = 1. In the jth pass, increment h = 7; is used; the sequence is viewed as comprised of h subsequences with the
kth subsequence comprised of the numbers in positions k, k + h, k + 2h, ---, of the overall sequence, 0 < k < h;
and each subsequence is sorted. The sorting of the subsequences done in each pass is called an h-sort. While an
h-sort is typically accomplished using insertion sort, other simple sorting algorithms such as bubble sort may also
be used. With the proper choice of increments, the complexity of Shellsort is O(nlog®n) [9]. Shellsort variants
replace the h-sort used in each pass of Shellsort with an h-pass that only partially sorts the subsequences. For
example, in an h-bubble pass we make only the first pass of bubble sort on each subsequence. Since replacing
h-sort by h-pass in Shellsort no longer guarantees a complete sort, we follow with some simple sorting algorithm
such as bubble sort to complete the sort. So, the h-passes may be viewed as preprocessing passes done so as to
improve the performance of the ensuing sort algorithm In Shellsort, ,, = 1 is used to assure that the sequence is
sorted following the final h-sort. However, in a Shellsort variant, this assurance comes from the sort algorithm run
following the preprocessing h-passes. So, the h-pass with h = 1 is typically skipped. The general structure of a
Shellsort variant is:



Step 1 [Preprocess| Perform h-passes for h =i;, 1 < j < m.

Step 2 [Sort] Sort the preprocessed sequence

3.1 Comb and AA Sort

Knuth [9] proposed a Shellsort variant in which each h-pass is a bubble pass (Figure 3). This variant was redis-
covered later by Dobosiewicz [2] and Box and Lacey [1]. Box and Lacey [1] named this variant comb sort. The
increment sequence used by comb sort is geometric with factor s. Dobosiewicz [2] has shown that the preprocessing
step sorts a[0 : n— 1] with very high probability whenever s < 1.33. As a result, s = 1.3 is recommended in practice
(note that a larger s requires a smaller number of h-passes). With this choice, the outer for loop of the second step
(bubble sort) is entered only once with high probability and the complexity of comb sort is O(nlogn) with high
probability. Experiments indicate that the algorithm’s average run time is close to that of quick sort [3]. However,
the worst-case complexity of comb sort is O(n?) [3].

Algorithm combsort(a,n)
{// sort al0:n-1]
// Step 1: Preprocessing
for (h = n/s; h>1; h /=5s) {
// h-bubble pass
for (i = 0; i < n-h; i++)
if (a[il > al[i+h]) swap(alil,ali+h]);
}
sorted = false;
// Step 2: Bubble sort
for (pass = 1; pass < n && !sorted; pass++) {
sorted = true;
for (i = 0; i < n-pass; i++)
if (alil > al[i+1]) {swap(alil,al[i+1]); sorted = false;}

Figure 3: Comb sort

Inoue et al. [8] have adapted comb sort to the CBE to obtain the sort method AA-sort, which efficiently sorts
numbers using all 8 SPUs of a CBE. We describe only the single SPU version of AA-sort here as this paper’s focus
is sorting using a single SPU. The single SPU version begins with a vector array d[0 : r» — 1] of numbers; each
vector d[i] has 4 numbers. Hence, d is an r X 4 matrix of numbers. This matrix is first sorted into column-major
order and then the numbers permuted so as to be sorted in row-major order. Figure 4 gives the algorithm for the
column-major sort and Figure 6 gives the column-major to row-major reordering algorithm.

The column-major to row-major reordering is done in two steps. In the first step, the numbers in each 4 x 4
submatrix of the r x 4 matrix of numbers are transposed so that each vector now has the 4 numbers in some row of
the result. For simplicity, we assume that r is a multiple of 4. In the second step, the vectors are permuted into the
correct order. For the first step, we collect the first and second numbers in rows 0 and 2 of the 4 x 4 matrix being
transposed into the vector row02A. The third and fourth numbers of these two rows are collected into row02b.
The same is done for rows 1 and 3 using vectors rowl3A and rowl3B. Figure 5 shows this rearrangement. Then,
the transpose is constructed from the just computed 4 vectors.

3.2 Brick Sort

In brick sort, we replace the h-bubble pass of comb sort by an h-brick pass [11, 12] in which we first compare-
exchange positions ¢, i+2h, i+4h, - - - with positions i+h, 14+3h, i+5h, - -+, 0 < ¢ < h and then we compare-exchange
positions ¢ + h, i + 3h, i + 5h, --- with positions ¢ + 2h, i + 4h, i + 6h, ---, 0 < i < h. Figure 7 gives our CBE
adaptation of the preprocessing step (Step 1) for brick sort. Step 2 is a bubble sort as was the case for AA-sort.
The bubble sort needs to be followed by a column-major to row-major reordering step (Figure 6). It is known that



Algorithm AA(d,r)
{// sort d[0:r-1] into column-major order
// Step 1: Preprocessing
for (i = 0; i < r; i++) sort(d[il);
for (h=r; h>1; h /=38) {
// h-bubble pass
for (i = 0; i < r-h; i++)
mySpu_cmpswap(d[i],d[i+h]);
for (i = r-h; i < r; i++)
mySpu_cmpswap_skew(d[i],d[i+h-r]);
}
sorted = false;
// Step 2: Bubble sort
do {
for (i = 0; i < r-1; i++)
mySpu_cmpswap (d[i],d[i+1]);
mySpu_cmpswap_skew (d [r-1],d[0]);
} while (not sorted)

Figure 4: Single SPU column-major AA-sort [8]

a b ¢ d a 1 b j a e 1 m
e f g h c k d 1 b f j n
i j k 1 e m f n c g k o
m n o p g o h p d h 1 »p
(a) Initial (b) Rows 02A, 02B, (c) Transpose
03A, 03B, top to
bottom

Figure 5: Collecting numbers from a 4 x 4 matrix

the preprocessing step of brick sort nearly always does a complete sort when the increment sequence is geometric
with shrink factor (i.e., s) less than 1.22 [11, 12]. Hence, when we use s < 1.22, the do-while loop of Step 2
(bubble sort) is entered only once (to verify the data are sorted) with high probability.

3.3 Shaker Sort

Shaker sort differs from comb sort in that h-bubble passes are replaced by h-shake passes. An h-shake pass is a
left-to-right bubble pass as in comb sort followed by a right-to-left bubble pass. Figure 8 gives our CBE adaptation
of shaker sort. The preprocessing step of shaker sort almost always sorts the data when the shrink factor s is less
than 1.7.

4 Merge Sort

Unlike the Shellsort variants comb, brick, and shaker sort of Section 3 whose complexity is O(nlogn) with high
probability, the worst-case complexity of merge sort is O(nlogn). Further, merge sort is a stable sort (i.e., the
relative order of elements that have the same key is preserved). While this property of merge sort isn’t relevant
when we are simply sorting numbers (as you can’t tell two equal numbers apart), this property is useful in some
applications where each element has several fields, only one of which is the sort key. The Shellsort variants of
Section 3 are not stable sorts. On the down side, efficient implementations of merge sort require added space.
When sorting numbers in the vector array d[0 : » — 1] we need an additional vector array t[0 : » — 1] to support
the merge. We present our CBE merge sort adaptation in the context of a stable sort and later point out the



Algorithm transpose(d,r)
{// Column major to row major reordering
// Step 1: Transpose 4 x 4 submatrices
for (1 =0; i <r; i+=4) {
// Compute row02A, row02B, rowl3A, and rowl3B
row02A = spu_shuffle(d[i], d[i+2], WAXB);
row02B = spu_shuffle(d[i], d[i+2], YCZD);
rowl3A = spu_shuffle(d[i+1], d[i+3], WAXB);
rowl3B = spu_shuffle(d[i+1], d[i+3], YCZD);
// Complete the transpose
d[i] = spu_shuffle(row02A, rowl3A, WAXB);
d[i+1] = spu_shuffle(row02A, rowl3A, YCZD);
d[i+2] = spu_shuffle(row02B, rowl3B, WAXB);
d[i+3] = spu_shuffle(row02B, rowl3B, YCZD);
}
// Step 2: Reorder vectors
for (i = 0; i < r; i++)
if (linPlace[il) {
current = i;
next = i/(x/4) + (i mod (r/4))*4;
temp = d[il;
while (next != i) {// follow cycle
d[current] = d[next];
inPlace[current] = true;
current = next;
next = current/(r/4) + (current mod (r/4))*4;
}
d[current] = temp;

inPlace[current] = true;

Figure 6: Column major to row major

simplifications that are possible when we wish to sort numbers rather than elements that have multiple fields. We

assume that the element keys are in the vector array d[0 :  — 1] and that the remaining fields are stored elsewhere.

Our discussion focuses only on the needed data movements for the keys; each time a key is moved, the remaining

fields associated with this key need also to be moved (alternatively, we may use the table sort strategy discussed in

[7] to first determine the sorted permutation and later rearrange the remaining fields of the elements being sorted).
There are 4 phases to our stable merge sort adaptation:

Phase 1: Transpose the elements of d[0 : » — 1], which represents a r x 4 matrix, from row-major to column-major
order.

Phase 2: Sort the 4 columns of the r x 4 matrix independently and in parallel.

Phase 3: In parallel, merge the first 2 columns together and the last 2 columns together to get two sorted sequences
of length 2r each.

Phase 4: Merge the two sorted sequences of length 2r each into a row-major sorted sequence of length 4r.

We note that Phase 1 is needed only when we desire a stable sort. Figure 9 shows an initial 8 x 4 matrix of
numbers and the result following each of the 4 phases of our merge sort adaptation.

The Phase 1 transformation is the inverse of the column-major to row-major transformation done in Figure 6
and we do not provide its details. Details for the remaining 3 phases are provided in the following subsections.



Algorithm Brick(d,r)
{// sort d[0:r-1] into column-major order
// Step 1: Preprocessing
for (i = 0; i < r; i++) sort(d[il);
for (h=r; h>1; h /=38) {
// h-brick pass
// compare-exchange even:odd bricks
for (i = 0; i < r-2*h; i += 2%h)
for (j =15 j < i+ h; j++)
mySpu_cmpswap (d[j1,d[j+h]);
// handle end conditions
if (j < n - h) {// More than 1 brick remains
end = j + h;
for (; j < n - h; j++)
mySpu_cmpswap (d[j1,d[j+h]);
}
else end = r;
while (j < end) {
mySpu_cmpswap_skew(d[j],d[j+h-n]);
it
}
// compare-exchange odd:even bricks beginning with i = h
// similar to even:odd bricks
// Step 2: Bubble sort

// same as for AA-sort

Figure 7: Column-major brick sort

Algorithm Shaker(d,r)
{// sort d[0:r-1] into column-major order
// Step 1: Preprocessing
for (i = 0; i < r; i++) sort(d[il);
for (h=r; h>1; h /=58) {
// h-shake pass
// left-to-right bubble pass
for (i = 0; i < r-h; i++)
mySpu_cmpswap (d[i],d[i+h]);
for (i = r-h; i < r; i++)
mySpu_cmpswap_skew(d[i],d[i+h-r]);
// right-to-left bubble pass
for (i = r-h-1; i > 0; i--)
mySpu_cmpswap (d[i],d[i+h]);
for (i = r-1; i >=r - h; i--)
mySpu_cmpswap_skew(d[i],d[i+h-r]);
}
// Step 2: Bubble sort
// Same as for AA-sort

Figure 8: Column-major shaker sort
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Figure 9: Merge sort example

4.1 Merge Sort Phase 2—Sort Columns

Phase 2 operates in logr subphases characterized by the size of the sorted segments being merged. For instance,
in the first subphase, we merge together pairs of sorted segments of size 1 each, in the next subphase the segment
size is 2, in the third it is 4, and so forth. At any time, the two segments being merged have the same physical
locations in all 4 columns. So, for our 8 x 4 example, when merging together segments of size 2, we shall first
merge, in parallel, 4 pairs of segments, one pair from each column. The first segment of a pair is in rows 0 and 1
of the r x 4 matrix and the second in rows 2 and 3. Then, we shall merge together the segments of size 2 that are
in rows 4 through 7. Following this, the segment size becomes 4.

To merge 4 pairs of segments in parallel, we employ 8 counters to keep track of where we are in the 8 segments
being merged. The counters are called ag, ---, as, bo, - -, bs. (a;,b;) are the counters for the segments of column
7, 0 < i < 3 that are being merged. When the segment size is s and the segments being merged occupy rows ¢
through i 4+ 2s — 1, the a counters are initialized to i and the b counters to i + s. Although all a counters have
the same value initially as do all b counters, as merging progresses, these counters have different values. Figure 10
gives the Phase 2 algorithm. For simplicity, we assume that r is a power of 2.

Algorithm Phase2(d,r)
{// sort the 4 columns of d[0:r-1], use additional array t[0:r-1]
for (s = 1; s < r; s *= 2)
for (1 = 0; i < r; i += 2%s) {
A = spu_splats(i); // initialize a counters
B = spu_splats(i+s); // initialize b counters
for (k = i; k < i + 2*s; k++) {// merge the segments
// one round of compares
aData = mySpu_gather(d,A);
bData = mySpu_gather(d,B);
p = spu_cmpgt (aData,bData) ;
t[k] = spu_select(aData,bData,p);
// update counters
notP = mySpu_not(p);
A = spu_sub(A,notP);
B = spu_sub(B,p);
}
swap(d,t); // swap roles

}

Figure 10: Phase 2 of merge sort



4.2 Merge Sort Phase 3—Merge Pairs of Columns

In Phase 3 we merge the first two and last two columns of the  x 4 matrix together to obtain 2 sorted sequences,
each of size 2r. The first sequence is in columns 0 and 1 and the second in columns 2 and 3 of an output matrix.
We do this merging by using 8 counters. Counters ag, by, a1, b; start at the top of the 4 columns of our matrix
and move downwards while counters as, bo, as, b3 start at the bottom and move up (see Figure 11(a)). Let e(c)
be the matrix element that counter ¢ is at. The comparisons e(a;) : e(b;), 0 < i < 3 are done in parallel and
depending on the outcome of these comparisons, 4 of the 8 elements compared are moved to the output matrix.
When e(ag) < e(bg) (e(ar) < e(br)), e(ap) (e(a1)) is moved to the output and ag (a1) incremented by 1; otherwise,
e(bo) (e(b1)) is moved to the output and by (by) incremented by 1. Similarly, when e(az) < e(bs2) (e(as) < e(bs3)),
e(b2) (e(b3)) is moved to the output and bs (b3) decremented by 1; otherwise, e(az2) (e(as)) is moved to the output
and ag (a3) decremented by 1. The merge is complete when we have done r rounds of comparisons. Figure 12
gives the algorithm for Phase 3.

Theorem 1 Algorithm Phase3 correctly merges 4 sorted columns into 2.

Proof To prove the correctness of Algorithm Phase3 we need to show that each element of the first (last) two
columns of the input r x 4 matrix is copied into the first (last) two columns of the output matrix exactly once and
that the elements of the first (third) output column followed by those of the second (fourth) are in sorted order.
It is sufficient to show this for the first two columns of the input and output matrices. First, observe that when
ap < as (by < be), these counters are at input elements that have yet to be copied to the output. Further, when
ap > as (by > by) all elements of the respective column have been copied from the input to the output (note that
a counter is updated only when its element has been copied to the output matrix). We consider 4 cases: ag < as,
ag = ao, ap = as + 1, and ag > as + 1.

Case ap < az When by < by (Figure 11(a)), exactly one of e(ap) and e(bg) and one of e(az) and e(b2) are copied
to the output and the corresponding counters are advanced. No element is copied to the output twice.

Next, consider the case by = by (Figure 11(b)). If e(ag) < e(by), e(ag) and one of e(az) and e(by) are copied
to the output and the corresponding counters advanced. Again no element is copied to the output twice. If
e(ap) > e(by) = e(bz2), e(b2) < e(ag) < e(az) and e(by) and e(az) are copied to the output and their counters
advanced. Again, no element is copied twice.

The next case we consider has by = by + 1. Let the values of by and by be bj, and b, just before the update(s)
that resulted in by = bs + 1 and let af and a) be the values of the a counters at this time. One of the
following must be true: (a) by, = b + 1 (both by and by were advanced, Figure 11(c)), (b) bj, = b5, = by (only
by was advanced, Figure 11(d)), or (c) by = b = be (only by was advanced, Figure 11(e)). In (a), it must be
that by = bj and by = b). So, e(ag) > e(b) and e(az) < e(bs). Hence, e(ag) < e(az) < e(by) = e(by) and
e(az) > e(ag) > e(b)) = e(bz). Therefore, e(ap) and e(az) are copied to the output and ag and as advanced.
Again, only previously uncopied elements are copied to the output and each is copied once. For subcase (b),
when b, was decremented to ba, aj, was incremented to ag, e(by) > e(az) and e(af)) < a(bf). Since by > b, all
elements of the second column have been copied to the output. We see that e(ag) < e(az) < e(bh) = e(bp).
So, e(ap) is copied and ag is advanced. Further, as a result of some previous comparison, by was advanced
to its current position from the present position of bs. So, there is an af < ag such that e(by) < e(af) <
e(ao) < e(az). Therefore, e(az) is copied and az advanced. Again, no previously copied element is copied to
the output and no element is copied twice. Subcase (c¢) is symmetric to subcase (b).

The final case has by > by + 1 (Figure 11(f)). From the proof of subcases by = by and by = by + 1, it follows
that this case cannot arise.

Case ap = az There are 4 subcases to consider—(a) by < ba, (b) by = ba, (¢) bp = ba + 1, and (d) by > by + 1
(Figures 11(g—j)). Subcase (a) is symmetric to the case ag < az and by = bs considered earlier. In subcase (b),
independent of the outcome of the comparison e(ag) : e(bg), which is the same as the comparison e(az) : e(ba),
e(ao) (equivalently e(az)) and e(by) (equivalently e(bz)) are copied to the output. For subcase (c), we notice
that when ag = ao, these two counters have had a cumulative advance of » — 1 from their initial values and
when by = by + 1 these two counters have together advanced by r. So, the 4 counters together have advanced
by 2r — 1 from their initial values. This isn’t possible as the 4 counters advance by a total of 2 in each
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Figure 11: Phase 3 counters

iteration of the for loop. So, subcase (c¢) cannot arise. Next, consider subcase (d). From the proof for the
case ag < as, we know that we cannot have by > by + 1 while ag < az. So, we must have got into this state
from a state in which ag = a2 and by < bs. It isn’t possible to get into this state from subcase (a) as subcase
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Algorithm Phase3(d,r)
{// merge the 4 sorted columns of d[0:r-1] into 2 sorted sequences
// use additional array t[0:r-1]
A= {0, 0, r-1, r-1}; // initialize a counters
B = {0, 0, r-1, r-1}; // initialize b counters
for (k = 0; k < r; i++) {
aData = mySpu_gatherA(d,A);
bData = mySpu_gatherB(d,B);
p = spu_cmpgt(aData,bData) ;
e = spu_equal(aData,bData);
e = spu-and(e, vector(0,0,-1,-1));
p = spuor(p, e);
min = spu_select(aData, bData, p);
max = spu_select(bData, aData, p);
t[k] = spu_shuffle(min,t[k],WBXD);
t[r-k-1] = spu_shuffle(max,t[r-k-1],AYCZ);
// update counters
notP = mySpu_not(p);
f1 = spu_and(p,vector(-1,-1,0,0));
s1 = spu_and(p,vector(0,0,-1,-1));
£2 = spu_and(notP,vector(-1,-1,0,0));
s2 = spu-and(notP,vector(0,0,-1,-1));
spu_sub(A,£2);
spu_add(A,s2);
spu_sub(B,f1);
= spu.add(B,s1);

w W = =
[

Figure 12: Phase 3 of merge sort

(a), at worst increases bg by 1 and decreases ba by 1 each time we are in this subcase. So, it is possible to
get into this subcase only from subcase (b). However, subcase (b) only arises at the last iteration of the for
loop. Even otherwise, subcase (b) either increments by by 1 or decrements by by 1 and so cannot result in
bo > by + 1.

Case ap > as + 1 From the proofs of the remaining cases, it follows that this case cannot arise.

From the proof of Theorem 1, it follows that when we are sorting numbers rather than multi-field elements with
numeric keys, algorithm Phase3 works correctly even with the statements
e = spu_equal (aData,bData);
e = spu.and(e, vector(0,0,-1,-1));
p = spuwor(p, e);
omitted.

4.3 Merge Sort Phase 4-Final Merge

For the Phase 4 merge, we employ 4 counters. Counters ag and a1, respectively begin at the first and last element
of the first sorted sequence (i.e., at the top of the first column and bottom of the second column, respectively) while
bo and by begin at the first and last elements of the second sequence (Figure 13). In each round, the comparisons
ap : bp and ay : by are done in parallel. e(ag) (e(b1)) is moved to the output if e(ag) < e(bg) (e(by) > e(aq)).
Otherwise, e(by) (e(a1)) is moved to the output. The sorted output is assembled in row-major order in the vector
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array t. We use the variables k and pos to keep track of the row and column in ¢ in which to place the output
element from the comparison e(ag) : e(by). The output element from e(aq) : e(by) goes into row (r — k — 1) and
column (3 — pos) of t. Figure 14 gives the algorithm for the case when the counters remain within the bounds of
their respective columns. mask[pos], 0 < pos < 3 is defined so as to change only the number in position pos of a
t[] vector.

Column 0 1 2 3

ao bo

a1 b1

Figure 13: Phase 4 counters

Algorithm Phase4(d,r)
{// partial algorithm to merge 2 sorted sequences of d[0:r-1]
// into 1 sorted sequence
// use additional array t[0:r-1]
A= {0, r-1, 0, 0}; // initialize a counters
B = {0, r-1, 0, 0}; // initialize b counters
k = 0; pos = 0;
while (no column is exhausted) {
aData = mySpu_gather12(d,A);
bData = mySpu_gather34(d,B);
p = spu_cmpgt(aData,bData) ;
e = spu_equal(aData,bData);
e = spu_and(e, vector(0,-1,0,0));
p = spuor(p, e);
min = spu_select(aData, bData, p);
max = spu_select(bData, aData, p);
max = spu_slquwbyte(max, 4);
t[k] = spu_shuffle(min,t[k],mask[pos]);
t[r-k-1] = spu_shuffle(max,t[r-k-1],mask[3-pos]);
// update counters
notP = mySpu_not(p);
f1
s1 = spu_and(p,vector(0,-1,0,0));
f2 = spu_and(notP,vector(-1,0,0,0));
spu-and (notP,vector(0,-1,0,0));
A = spu_sub(A,f2);
A = spu_add(4,s1);
B = spu_sub(B,f1);
B
k

spu_and(p,vector(-1,0,0,0));

n
N
L[}

= spu-add(B,s2);
+= (pos+1)/4;
pos = (pos+1)74;

Figure 14: Phase 4 of merge sort with counters in different columns
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As was the case in Phase 3, the statements
e = spu_equal(aData,bData);
e = spu.and(e, vector(0,0,-1,-1));
p = spuor(p, e);
may be omitted when we are sorting numbers rather than multi-field elements with numeric keys.

5 Experimental Results

We programmed our merge sort, brick sort, and shaker sort adaptations using the CBE SDK Version 3.0. For
comparison purposes, we used an AA sort code developed by us, the Cell sort code of [4], a non-vectorized merge
sort code developed by us, and the quick sort routine available in the CBE SDK. The codes were first debugged
and optimized using the CBE simulator that is available with the SDK. The optimized codes were run on the
Georgia Tech-STI Cellbuzz cluster to obtain actual run times. Figure 15 gives the average time required to sort n
4-byte integers for various values of n. The average for each n is taken over 5 randomly generated sequences. The
variance in the sort time from one sequence to the next is rather small and so the reported average is not much
affected by taking the average of a larger number of random input sequences. Figure 16 is a plot of the average
times reported in Figure 15. The shown run times include the time required to fetch the data to be sorted from
main memory and to store the sorted results back to main memory.

Number of Integers | AASort | Shaker sort | Brick Sort | Bitonic Sort | Merge Sort | Merge Sort (Sequential) | Quick Sort
128 52 53.6 53 73 50.8 6.6 1456
256 62.4 65.4 63.4 65.6 57.6 178.6 206.8
512 81.8 86.4 81.4 72.6 70.4 272.2 332
1024 123.8 142.2 116.8 125.4 97 315.4 605.6
2018 2228 262 190.2 165.8 25 513 1164
1096 1386 1943 332.6 2078 2654 989.8 2116.6
102 9124 1033.6 663.3 609.6 508 2011.2 1686.6
16384 1906.4 2228 1361 1331.2 1017 4103 9485.2

Figure 15: Average time (in microseconds) to sort 4-byte integers

Figure 16: Plot of average time to sort 4-byte integers

Our experiments reveal that a standard non-vectorized textbook implementation of merge sort takes about 4
times the time taken by the vectorized merge sort adaptation developed in this paper. Further, the quick sort
method that is part of the CBE SDK takes about 9 times the time taken by our merge sort adaptation. Brick sort
is the fastest of the shell sort like algorithms—AA sort, shaker sort and brick sort—considered in this paper, taking
about 71% the time taken by AA sort to sort 16384 integers. Although cell (bitonic) sort is slightly faster than
brick sort, it takes about 31% more time to sort 16384 integers than taken by merge sort.

6 Conclusion
We have developed SPU sorting algorithms based on merge sort, shaker sort, and brick sort. Our merge sort

adaptation is a stable sort whereas no other SPU sorting algorithm developed either by here in this paper or by
others is a stable sort. Experiments show that our merge sort adaptation takes about 53% the time taken by AA
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sort [8], 76% the time taken by Cell sort [4], and 10% the time taken by the quick sort method that is standard in
the SDK to sort 16384 4-byte integers. Further, merge sort is a stable sort while the remaining sorts are not. On
the down side, merge sort requires O(n) additional space to sort n numbers while the remaining methods require
only O(1) added space.
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