
Under review as a conference paper at ICLR 2019

SORTING OUT LIPSCHITZ FUNCTION APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training neural networks subject to a Lipschitz constraint is useful for generaliza-
tion bounds, provable adversarial robustness, interpretable gradients, and Wasser-
stein distance estimation. By the composition property of Lipschitz functions, it
suffices to ensure that each individual affine transformation or nonlinear activation
function is 1-Lipschitz. The challenge is to do this while maintaining the expres-
sive power. We identify a necessary property for such an architecture: each of the
layers must preserve the gradient norm during backpropagation. Based on this, we
propose to combine a gradient norm preserving activation function, GroupSort,
with norm-constrained weight matrices. We show that norm-constrained Group-
Sort architectures are universal Lipschitz function approximators. Empirically,
we show that norm-constrained GroupSort networks achieve tighter estimates of
Wasserstein distance than their ReLU counterparts and can achieve provable ad-
versarial robustness guarantees with little cost to accuracy.

Constraining the Lipschitz constant of a neural network ensures that a small change to the input can
produce only a small change to the output. For classification, a small Lipschitz constant leads to bet-
ter generalization (Sokolić et al., 2017), improved adversarial robustness (Cisse et al., 2017; Tsuzuku
et al., 2018), and greater interpretability (Tsipras et al., 2018). Additionally, the Wasserstein distance
between two probability distributions can be expressed as a maximization problem over Lipschitz
functions (Peyré & Cuturi, 2018). But despite the wide-ranging applications, the question of how to
approximate the class of Lipschitz functions with neural networks remains largely unanswered.

Existing approaches to enforce Lipschitz constraints broadly fall into two categories: regulariza-
tion and architectural constraints. Regularization approaches such as double backprop (Drucker &
Le Cun, 1992) or the gradient penalty (Gulrajani et al., 2017) perform well in practice, but do not
provably enforce the Lipschitz constraint globally. On the other hand, norm-constrained architec-
tures place limitations on the operator norm (such as the matrix spectral norm) of each layer’s weight
matrix (Cisse et al., 2017; Yoshida & Miyato, 2017). These techniques provably satisfy the Lipschitz
constraint, but this comes at a cost in expressive power. E.g., norm-constrained ReLU networks are
provably unable to approximate simple functions such as absolute value (Huster et al., 2018).

We first identify a simple property that expressive norm-constrained 1-Lipschitz architectures must
satisfy: gradient norm preservation. Specifically, in order to represent a function with slope 1 almost
everywhere, each layer must preserve the norm of the gradient during backpropagation. ReLU
architectures satisfy this only when the activations are positive; empirically, this manifests during
training of norm-constrained ReLU networks in that the activations are forced to be positive most
of the time, reducing the network’s capacity to represent nonlinear functions. We make use of an
alternative activation function called GroupSort — a variant of which was proposed by Chernodub
& Nowicki (2016) — which sorts groups of activations. GroupSort is both Lipschitz and gradient
norm preserving. Using a variant of the Stone-Weierstrass theorem, we show that norm-constrained
GroupSort networks are universal Lipschitz function approximators. While we focus our attention,
both theoretically and empirically, on fully connected networks, the same general principles hold
for convolutional networks where the techniques we introduce could be directly applied.

Empirically, we show that ReLU networks are unable to solve even the simplest Wasserstein dis-
tance estimation problems which GroupSort can solve completely. Moreover, we observe that
norm-constrained ReLU networks must trade non-linear processing for gradient norm leading to
less expressive networks. We also train classifiers with provable adversarial robustness guaran-
tees and find that using GroupSort provides improved accuracy and robustness compared to ReLU.
Across all of our experiments, we found that norm-constrained GroupSort architectures consistently
outperformed their ReLU counterparts.

1

Under review as a conference paper at ICLR 2019

2 BACKGROUND

Notation We will use x ∈ R
in to denote the input vector to the neural network, y ∈ R

out the out-
put (or logits) of the neural network, nl the dimensionality of the lth hidden layer, Wl ∈ R

nl−1×nl

and bl ∈ R
nl the weight matrix and the bias of the lth layer. We will denote the pre-activations in

layer l with zl and activations with hl. The number of layers in the network will be L with y = zL.
We will use φ to denote the activation function used in the neural network. The computation per-
formed by layer l of the network will be:

zl = Wlhl−1 + bl hl = φ(zl)

Network Jacobian Using the chain rule, the Jacobian of a neural network can be expanded as
follows:

∂y

∂x
=

∂zL
∂hL−1

∂hL−1

∂zL−1
. . .

∂z2
∂h1

∂h1

∂z1

∂z1
∂x

= WLφ
′(zL−1) . . .W2φ

′(z1)W1 (1)

2.1 LIPSCHITZ FUNCTIONS

Given two metric spaces X and Y , a function f : X → Y is Lipschitz continuous if there exists
K ∈ R such that for all x1 and x2 in X ,

dY(f(x1), f(x2)) ≤ KdX (x1, x2)

where dX and dY are metrics (such as Euclidean distance) on X and Y respectively. In this work,
when we refer to the Lipschitz constant we are referring to the smallest such K for which the
above holds under a given dX and dY . Unless otherwise specified, we take X = R

n and Y =
R

m throughout. If the Lipschitz constant of a function is K, it is called a K-Lipschitz function.
Equivalently, if the function is everywhere differentiable then its Lipschitz constant is bounded by
the operator norm of its Jacobian. Throughout this work, we make use of the following definition,

Definition 1. Given a metric space (X, dX) where dX denotes the metric on X , we write CL(X,R)
to denote the space of all 1-Lipschitz functions mapping X to R (with respect to the Lp metric).

2.2 LIPSCHITZ-CONSTRAINED NEURAL NETWORKS

As 1-Lipschitz functions are closed under composition, to build a 1-Lipschitz neural network it
suffices to compose 1-Lipschitz affine transformations and activation functions.

1-Lipschitz Linear Transformations: Ensuring that each linear map is 1-Lipschitz is equiva-
lent to ensuring that ||Wx||p ≤ ||x||p for any x; i.e. constraining the matrix p-norm, ||W||p =
sup||x||p=1 ||Wx||p, to be at most 1. Important examples of matrix p-norms include the matrix

2-norm, which is the largest singular value, and the matrix∞-norm, which can be expressed as:

||W||∞ = max
1≤i≤m

m∑

j=1

|wij |.

Similarly, we may also define the mixed matrix norm, given by ||W||p,q = sup||x||p=1 ||Wx||q . En-

forcing matrix norm constraints naively may be computationally expensive. Fortunately, techniques
exist to efficiently ensure that ||W ||p = 1 when p = 2 or p =∞. We discuss these in Section 4.2.

1-Lipschitz Activation Functions: Most commonly used activation functions (such as ReLU
(Krizhevsky et al., 2012), sigmoid, tanh, maxout (Goodfellow et al., 2013)) are 1-Lipschitz, if they
are scaled appropriately.

2.3 APPLICATIONS OF LIPSCHITZ NETWORKS

Wasserstein Distance Estimation Wasserstein-1 distance (also called Earth Mover Distance) is a
principled distance metric between two probability distributions and has found many applications in
machine learning in recent years (Peyré & Cuturi, 2018; Genevay et al., 2017). Using Kantorovich-
Rubinstein duality (Villani, 2008), one can recast the Wasserstein distance estimation problem as a
concave maximization problem, defined over 1-Lipschitz functions:

2

Under review as a conference paper at ICLR 2019

W (P1, P2) = sup
f∈CL(X,R)

(
Ex∼P1

[f(x)]− Ex∼P2
[f(x)]

)
(2)

Since this dual objective resembles the discriminator objective for generative adversarial networks
(GANs), Arjovsky et al. (2017) proposed the Wasserstein GAN architecture, which uses a neural net
architecture to approximate the space of Lipschitz functions.

Adversarial Robustness Adversarial examples are inputs to a machine learning system which
have been designed to force undesirable behaviour (Szegedy et al., 2013; Goodfellow et al., 2014).
Formally, given a classifier f and a data point x, we write an adversarial example as xadv = x + δ
such that f(xadv) 6= f(x) and δ is small. A small Lipschitz constant can guarantee a lower bound
on the size of δ (Tsuzuku et al., 2018) and thus provide robustness guarantees. However, existing
approaches have both practical and theoretical limitations (Huster et al., 2018).

3 GRADIENT NORM PRESERVATION

When backpropagating through a norm-constrained 1-Lipschitz network, the gradient norm is non-
increasing as it is processed by each layer. This simple fact leads to interesting consequences when
we attempt to represent (scalar-valued) functions whose input-output gradient has norm 1 almost
everywhere. (Such functions are relevant to Wasserstein distance estimation, where an optimal dual
solution always has this property (Gulrajani et al., 2017).) To ensure the input-output gradient norm
is 1, the gradient norm must be preserved by each layer in the network during backpropagation.
Unfortunately, norm-constrained networks with common activations are unable to achieve this.

Theorem 1. Consider a neural network, f : R
n → R, built with matrix 2-norm constrained

weights (||W||2 ≤ 1) and 1-Lipschitz, element-wise, monotonically increasing activation functions.
If ||∇f(x)||2 = 1 almost everywhere, then f is linear.

As a special case, Theorem 1 shows that no 2-norm-constrained neural network with ReLU (or
sigmoid, tanh, etc.) activations can represent the absolute value function. A full proof can be found
in Appendix C. Informally, for ReLU layers, the gradient norm can only be preserved if every
activation is positive (with the exception of units which don’t affect the network’s output). But as
this holds for almost all inputs, the network’s input-output mapping must be linear.

This tension between gradient norm and nonlinear processing is also observed empirically. Fig-
ure 5 compares the activation statistics for MNIST classification networks with ReLU activations,
with and without matrix norm constraints on the weights. For the network with smallest Lipschitz
constant, around 10% of the units are “undead”, or always active (and hence do not contribute any
nonlinear processing). This suggests that the network is sacrificing nonlinear capacity in order to
maintain adequate gradient norm.

Another useful consequence of gradient norm preservation is that we may restrict all of the weight
matrices to have singular values of 1:

Theorem 2. Consider a neural network, f : Rn → R, built with matrix 2-norm constrained weights
and with ||∇f(x)||2 = 1 almost everywhere. Then, without changing the computed function, each

weight matrix W ∈ Rm×k can be replaced with a matrix W̃ whose singular values all equal 1.

Note that the condition of singular values equaling 1 is equivalent to the following: when m > k,

the columns of W̃ are orthonormal; when m < k, the rows of W̃ are orthonormal; and when

m = k, W̃ is orthogonal. For the remainder of this paper, we abuse terminology slightly and
refer to such matrices as orthonormal. The proof of Theorem 2 is given in Appendix C. With
these two results in place, we restrict our search for expressive Lipschitz networks to those that
contain orthonormal weight matrices (those with singular values all equal to 1) and activations which
preserve the gradient norm during backpropagation.

4 METHODS

We begin by observing that if we can learn any 1-Lipschitz function with a neural network then we
can trivially extend this to K-Lipschitz functions by scaling the output by K. With this in mind,
we focus on designing 1-Lipschitz network architectures with respect to the L2 and L∞ metrics by
requiring each layer to be 1-Lipschitz.

3

Under review as a conference paper at ICLR 2019

Figure 1: GroupSort activation with a grouping size of 5.

4.1 GRADIENT NORM PRESERVING ACTIVATION FUNCTIONS

As discussed in Section 3, commonly used activation functions such as ReLU are not gradient norm
preserving. To achieve norm preservation, we use a general purpose 1-Lipschitz activation function
which we call GroupSort. This activation function takes a column vector x ∈ R

n, separates the
elements into g groups, sorts each group into ascending order, and outputs the combined ”group
sorted” vector. This is shown graphically in Figure 1.

Properties of GroupSort GroupSort is a Lipschitz operation. Furthermore, it is norm preserving:
its Jacobian is a permutation matrix, and permutation matrices preserve every vector p-norm. Note
also that GroupSort is homogeneous, i.e. GroupSort(αx) = αGroupSort(x), since the sorting
order of the elements is invariant to scaling.

Varying the Grouping Size When we pick a grouping size of 2 for GroupSort, we call the op-
eration MaxMin. This is equivalent to the Orthogonal Permutation Linear Unit (OPLU) activation
(Chernodub & Nowicki, 2016), which was also motivated based on gradient norm preservation.
When sorting the entire input vector, we call the operation FullSort. GroupSort, MaxMin, and Full-
Sort are equally expressive, i.e. they can all be reduced to each other, such that the reduction obeys
the norm constraint on the weights (for any matrix p-norm). We present the details in Appendix A.
Compared to MaxMin, FullSort is able to represent certain functions more compactly, but we find
that it is typically more difficult to train via stochastic gradient descent.

Representing other activations Under the matrix 2-norm constraint, MaxMin can be seen as
equivalent to absolute value. We describe exactly how these activation functions can be transformed
into each other in Appendix A. Applying absolute value to the activations has the effect of folding
the space on each of the coordinate axes. Hence, a rigid linear transformation, followed by absolute
value, followed by another rigid linear transformation, can implement folding along an arbitrary
hyperplane. This gives an interesting interpretation of how MaxMin networks can represent certain
functions by way of implementing absolute value; an example is shown in Figure 10 in Appendix A.
Montufar et al. (2014) provide an in-depth analysis of the expressivity of neural networks built with
activations that can perform folding.

Without norm constraints, GroupSort can recover many other common activation functions. For
example, ReLU, Leaky ReLU, concatenated ReLU (Shang et al., 2016), and maxout. Details can be
found in Appendix A.

4.2 NORM-CONSTRAINED LINEAR MAPS

We discuss how to practically enforce the 1-Lipschitz constraint on linear layers for 2- and∞-norms.

4.2.1 ENFORCING ||W ||2 = 1 WHILE PRESERVING GRADIENT NORM

Several methods have been proposed to enforce matrix 2-norm constraints during training (Cisse
et al., 2017; Yoshida & Miyato, 2017). However, in the interest of preserving the gradient norm, we
go a step further and enforce orthonormality of the weight matrices in each layer. This is a stronger
condition, in that we require that all singular values be exactly 1, rather than bounded by 1.

We make use of an algorithm first introduced by Björck & Bowie (1971), which we refer to as Björck
Orthonormalization (or simply Björck). Given a matrix, this algorithm finds the closest orthonormal
matrix through an iterative application of the Taylor expansion of the polar decomposition. Given
an input matrix A0 = A, the algorithm computes,

Ak+1 = Ak

(
I +

1

2
Qk +

3

8
Q2

k + . . .+ (−1)p
(− 1

2

p

)
Qp

k

)
, (3)

4

Under review as a conference paper at ICLR 2019

where Qk = I − AT
kAk. Importantly, this algorithm is fully differentiable and thus has a pullback

operator for the Stiefel manifold (Absil et al., 2009) allowing us to optimize over orthonormal ma-
trices directly. A larger choice of p adds more computation but gives a closer approximation for
each iteration. In practice, we found that we could use p = 1 with 2-3 iterations per forward pass
and increase this to 15 or more iterations at the end of training to ensure a tightly enforced Lips-
chitz constraint. We discuss additional details of this algorithm including comparisons to Parseval
networks (Cisse et al., 2017) and spectral normalization (Miyato et al., 2018) in Appendix B.

Note that while we focus on fully connected layers, the same general principles apply to convo-
lutions. Convolutions can be unfolded and represented as a linear transformation. Up to constant
rescaling, the spectral norm of the filter then bounds the spectral norm of the unfolded operation.
We do not devote space to computing these constants but instead point readers to other resources
which address this question (Gouk et al., 2018; Cisse et al., 2017; Sedghi et al., 2018).

4.2.2 ENFORCING ||W ||∞ = 1

Due to its simplicity and suitability for a GPU implementation, we use Algorithm 1 from Con-
dat (2016) to project the weight matrices onto the L∞ ball in all of our experiments. Other more
sophisticated methods can be found in Condat (2016).

4.3 PROVABLE ADVERSARIAL ROBUSTNESS

A small Lipschitz constant limits the change in network output under small adversarial perturbations.
As explored by Tsuzuku et al. (2018), we can guarantee adversarial robustness at a point x by
considering the margin about that point divided by the Lipschitz constant. Formally, given a network
with Lipschitz constant K (with respect to the L∞ metric) and an input x with corresponding class
t that produces logits y, we define its margin by

M(x) = max(0, yt −max
i 6=t

yi) (4)

IfM(x) > Kǫ/2, then the network is robust to all adversarial perturbations δ with ||δ||∞ < ǫ, at x.
In this work we train networks with∞-norm constraints on their weights using a multi-class hinge
loss:

L(y, t) =
∑

i 6=t

max(0, κ− (yt − yi)) (5)

where κ controls the margin enforcement and depends on the Lipschitz constant and desired pertur-
bation tolerance (e.g. κ = 0.3×K).

5 RELATED WORK

Several methods have been proposed to train Lipschitz neural networks (Cisse et al., 2017; Yoshida
& Miyato, 2017; Miyato et al., 2018; Gouk et al., 2018). Cisse et al. (2017) regularize the weights of
neural networks to obey an orthonormality constraint and utilize Lipschitz activation functions. In
fact, the corresponding update to the weights due to this regularization term can be seen as one step
of the Björck orthonormalization scheme (Equation 3). Another approach, spectral normalization
(Miyato et al., 2018), employs an efficient implementation of power iteration to rescale each weight
by its spectral norm. We compare these methods to Björck orthonormalization in Appendix B.
Other researchers (Arjovsky et al., 2016; Wisdom et al., 2016; Sun et al., 2017) have explicitly
parameterized square orthogonal weight matrices using, for example, Householder transformations
(Householder, 1958).

Other regularization techniques penalize the network Jacobian, thereby constraining the Lipschitz
constant locally around the data (Gulrajani et al., 2017; Drucker & Le Cun, 1992; Sokolić et al.,
2017). While these methods have the advantage that it is typically easy to train neural networks
under such penalties, they do not provably enforce a Lipschitz constraint. Gulrajani et al. (2017)
apply the gradient penalty at randomly sampled points between two distributions, but as shown by
Gemici et al. (2018), this is often sub-optimal in the context of Wasserstein Distance estimation.

The Lipschitz constant of a neural network has been connected theoretically and empirically to
its generalization performance (Bartlett, 1998; Bartlett et al., 2017; Neyshabur et al., 2017; 2018;
Sokolić et al., 2017). Neyshabur et al. (2018) show that if the network Lipschitz constant is small
then a non-vacuous bound on the generalization error can be derived. Small Lipschitz constants

5

Under review as a conference paper at ICLR 2019

have also been linked to adversarial robustness (Tsuzuku et al., 2018; Cisse et al., 2017). In fact, ad-
versarial training can be viewed as approximate gradient regularization (Miyato et al., 2017; Simon-
Gabriel et al., 2018) which makes the function Lipschitz locally around the training data. Lipschitz
constants have been used to provide provable adversarial robustness guarantees. Tsuzuku et al.
(2018) manually enforce a margin depending on an approximation of the upper bound on the Lips-
chitz constant which in turn guarantees adversarial robustness. In this work we also explore provable
adversarial robustness through margin training but do so with a network whose Lipschitz constant is
known and globally enforced.

Classic neural network universality results use constructions which violate the norm-constraints
needed for Lipschitz guarantees (Cybenko, 1989; Hornik, 1991). Huster et al. (2018) explored uni-
versal approximation properties of∞-norm-constrained networks and proved that ReLU activations
cannot be used to approximate the absolute value function. In this work we also show that many ac-
tivations, including ReLU, are deficient with 2-norm constraints. However, we prove that Lipschitz
functions can be universally approximated if the correct activation function is used.

6 UNIVERSAL APPROXIMATION OF LIPSCHITZ FUNCTIONS

Universal approximation results for general continuous functions do not directly apply to Lipschitz
networks as the constructions typically involve huge Lipschitz constants. Moreover, Huster et al.
(2018) showed that it is impossible to approximate even the absolute value function with∞-norm-
constrained ReLU networks. In this section, we present theoretical guarantees on the approximation
of Lipschitz functions with norm-constrained neural networks. To our knowledge, this is the first
universal Lipschitz function approximation result for norm-constrained neural networks.

We will first prove a variant of the Stone-Weierstrass Theorem which gives a simple criterion for
universality. (A similar result is presented in Lemma 4.1 in Yaacov (2010).) We then construct a
class of networks with the GroupSort activation which satisfy this criterion. We now proceed with
the formal statements.

Definition 2. We say that a set of functions, L, is a lattice if for any f, g ∈ L we have max(f, g) ∈ L
and min(f, g) ∈ L (where max and min are defined pointwise).

Lemma 1. (Restricted Stone-Weierstrass Theorem) Suppose that (X, dX) is a compact metric space
with at least two points and L is a lattice in CL(X,R) with the property that for any two distinct
elements x, y ∈ X and any two real numbers a and b such that |a − b| ≤ dX(x, y) there exists a
function f ∈ L such that f(x) = a and f(y) = b. Then L is dense in CL(X,R).

Remark. We could replace | · | with any metric on R.

The full proof of Lemma 1 is presented in the appendix. Note that Lemma 1 says that A is a
universal approximator for 1-Lipschitz functions if and only if A is a lattice that separates points.
Using Lemma 1, we can derive the second of our key results. Norm-constrained networks with
GroupSort activations are able to approximate any Lipschitz function in Lp distance.

Theorem 3. (Universal Approximation with Lipschitz Networks) Let LN p denote the class of fully-
connected neural networks whose first weight matrix satisfies ||W1||p,∞ = 1, all other weight
matrices satisfy ||W||∞ = 1, and MaxMin activations. Let X be a closed and bounded subset of
R

n endowed with the Lp metric. Then the closure of LN p is dense in CL(X,R).

Proof. (Sketch) Observe first that LN p ⊂ CL(X,R). By Lemma 1, it is sufficient to show that
LN p is closed under max and min and has the point separation property. For the latter, note that
given x, y ∈ X and a, b ∈ R with |a− b| ≤ ||x− y||p, we can fit a line with a single layer network,
f , satisfying the 1-Lipschitz constraint with f(x) = a and f(x) = b.

Now consider f and g in LN p. For simplicity, here assume that they have the same number of
layers. We can construct h ∈ LN∞ by taking the weight matrix of the first layer to be the weight
matrices of the first layer in f and g vertically concatenated. For the following layers, instead of
vertically stacking, we build a block diagonal matrix from the weights of f and g. This network is in
LN p and the final layer of the network outputs [f(x), g(x)]. We then apply the GroupSort activation
to get [max(f, g)(x),min(f, g)(x)] and finally take the dot product with [1, 0] or [0, 1] to get the
max or min respectively.

We refer readers to Appendix D for the formal proof of Theorem 3 and a diagram of the constructed
network in Figure 14. One special case of Theorem 3 is for 1-Lipschitz functions in L∞ norm,

6

Under review as a conference paper at ICLR 2019

Figure 2: Approximating the absolute value
function via Lipschitz networks. The objective
values indicate the Wasserstein Distance esti-
mated by each network.

Figure 3: Approximating three circular cones
with slope 1 using Lipschitz networks. The ob-
jective values indicate the Wasserstein distance
estimated by each networks.

where all matrices now satisfy the same constraint: ||W ||∞ = 1. In this case, we may also extend
the restricted Stone-Weierstrass theorem in L∞ norm to vector-valued functions, and consequently
prove universal approximation in this setting. Formally:

Observation. Consider the set of neural networks, LNm
∞ = {f : Rn → R

m, ||W ||∞ = 1}, with
MaxMin activations. Then LNm

∞ is dense in 1-Lipschitz functions with respect to the L∞ metric.

While these constructions rely on the matrix∞-norm of the weight matrices being constrained, we
find in practice that constraining the matrix 2-norm makes the networks easier to train, and we have
not yet found a Lipschitz function which 2-norm constrained networks have failed to approximate.
However, it remains an open question whether 2-norm constrained GroupSort networks are also
universal Lipschitz function approximators.

7 EXPERIMENTS

Our experiments had two main goals. First, we wanted to test whether the norm-constrained Group-
Sort architecture can represent Lipschitz functions other approaches can not. Second, we wanted
to test if our networks can perform competitively with existing (heuristic) approaches on practical
tasks while maintaining the provable global Lipschitz guarantee. We present additional results in
Appendix F, including CIFAR-10 (Krizhevsky, 2009) classification and CelebA (Liu et al., 2015)
WGAN training. Other experiment details are found in Appendix G.

7.1 REPRESENTATIONAL CAPACITY

In this section, we investigate the ability of 2-norm-constrained networks with different activation
functions to represent Lipschitz functions.

7.1.1 QUANTIFYING EXPRESSIVE POWER VIA. WASSERSTEIN DISTANCE ESTIMATION

We propose a simple yet effective method to quantify how expressive different Lipschitz architec-
tures are. We first carefully pick pairs of probability distributions whose Wasserstein Distance and
(unique) optimal dual surfaces can be computed analytically. Then, we train neural networks to op-
timize the dual Wasserstein distance objective (Equation 2) using samples from these distributions
and compare the estimated Wasserstein distance and learned dual surfaces to the optimal, analyti-
cally computed ones. Expressiveness is measured by how closely the neural network can estimate
the correct Wasserstein distance. For 1D and 2D problems, the learned dual surfaces can also be
visualized, making it possible to inspect failure modes of non-expressive architectures.

In the following experiments, we trained networks to approximate the absolute value function, mul-
tiple two dimensional circular cones and single high dimensional circular cones. Appendix G.1
describes how pairs of probability distributions can be picked which have these optimal dual sur-
faces, and a Wasserstein distance of precisely 1. In all of the experiments in this section, we use
Björck orthonormalization to enforce the 2-norm constraints on the weights.

Approximating absolute value function: Figure 2 shows the dual surfaces approximated by
Lipschitz-constrained networks with various activation functions. The optimal dual surface is the

7

Under review as a conference paper at ICLR 2019

Figure 4: Jacobian spectral norm distri-
bution We compare the Jacobian spectral
norm of ReLU and GroupSort networks.

Figure 5: ReLU activation statistics Ratio
of activations which are positive more often
than the threshold value on the training data.

absolute value. It can be seen that non-GNP activation functions are incapable of approximating this
rather trivial Lipschitz function. While we observed that increasing the network depth helps ReLU
and MaxOut activations (Table 1), the representational bottleneck showcased in Figure 2 leads to
more severe limitations as the problem dimensionality increases.

Approximating multiple 2D cones: Figure 3 shows the dual surfaces approximated by neural
networks using various activations. The optimal dual surface is three consecutive circular cones
with a gradient of 1 everywhere. Here we observed an even more serious pathology with non-GNP
activations: by attempting to increase the slope, the non-GNP networks may distort the shape of the
dual surface. When training WGAN critics, this problem cannot be fixed by increasing the Lipschitz
constant, since optimal critics for different Lipschitz constants are equivalent up to scaling.

Approximating high dimensional circular cones: We evaluated the performance of architectures
built with different activation functions for higher dimensional inputs, on the task of approximating
high dimensional circular cones which have a gradient of 1 everywhere. As shown in Table 1, this
leads to significant drops in the Wasserstein dual objective for Lipschitz networks built with non-
GNP activations, and increasing the depth of the networks only slightly improves the situation. We
also observed that while the MaxMin activation performs significantly better, it also needs large
depth in order to learn the optimal solution. Surprisingly, the FullSort network has no difficulty
approximating high dimensional circular cones, even with only two hidden layers.

7.1.2 RELEVANCE OF GRADIENT NORM PRESERVATION IN PRACTICAL SETTINGS

Thus far, we have focused on examples where the gradient of the network should be 1 almost every-
where. But for many practical tasks we do not need to meet this strong condition. Then we should
ask, are these pathologies relevant in other settings?

How much of the Lipschitz capacity can we use? To understand the practical implications of
Theorem 1, we trained two 2-norm-constrained MNIST classifiers scaled to be 10-Lipschitz func-
tions. One with ReLU activations and the other MaxMin. Figure 4 displays the distribution of the
largest Jacobian singular value for each network over the training data. Both networks satisfy the
Lipschitz constraint but the GroupSort network does so much more tightly than the ReLU network.

Activ. Input Dim=128 Input Dim=256 Input Dim=512
Depth 3 7 3 7 3 7

ReLU 0.51 0.60 0.50 0.53 0.46 0.49
Maxout 0.66 0.71 0.60 0.66 0.52 0.56
MaxMin 0.87 0.95 0.83 0.93 0.72 0.88
FullSort 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Effect of problem dimensionality on expressiveness: Testing how well different activa-
tion functions and depths can optimize the dual Wasserstein objective with different input dimen-
sionality. The optimal dual surface obtains a dual objective of 1.

8

Under review as a conference paper at ICLR 2019

Model ReLU Maxout Maxmin GroupSort(4) GroupSort(9)
MNIST 1.65 2.32 2.57 2.73 2.69
CIFAR-10 3.00 4.02 4.38 4.54 4.59

Table 2: Estimating the Wasserstein Distance between the data and generator distributions using
1-Lipschitz feedforward neural networks, for MNIST and CIFAR-10 GANs.

The ReLU network was not able to make use of the capacity afforded to it and the observed Lipschitz
constant was actually closer to 8 than 10. In Appendix F.3 we show the full singular value distri-
bution which suggests that 2-norm-constrained MaxMin networks can achieve dynamical isometry
(Pennington et al., 2017) throughout training.

We studied the activation statistics of ReLU networks trained to classify MNIST digits with and
without 2-norm constraints in Figure 5. Given a threshold value, τ ∈ [0, 1], we computed the
proportion of activations throughout the network which are positive at least as often as τ over the
training data distribution. Without a Lipschitz constraint, the activation statistics were very sparse,
with almost no units active when τ > 0.4, even when using dropout (Srivastava et al., 2014). When
the Lipschitz constraint was enforced the activations were much less sparse with smaller Lipschitz
constants amplifying the effect. In the worst case, about 10% of units were “undead”, or active all
of the time, and hence did not contribute any nonlinear processing. It’s not clear what effect this has
on the network’s representational capacity, but such a dramatic change in the network’s activation
statistics suggests that it made significant compromises in order to maintain adequate gradient norm.

7.2 WASSERSTEIN DISTANCE ESTIMATION

We turn our attention to using norm-constrained GroupSort networks to estimate the Wasserstein
distance between the generator distribution of a GAN and the empirical distribution of the data it
was trained on. We note that optimal surfaces under the dual Wasserstein objective have a gradient
norm of 1 almost everywhere (Corollary 1 in Gemici et al. (2018)). Hence, the gradient norm
preservation properties discussed in Section 3 are critical. Appendix G.2 contains details on the
experiments described in this section.

7.2.1 LOWER BOUNDS ON MNIST AND CIFAR-10 GANS

In this experiment, we first trained a GAN variant on MNIST and CIFAR-10 datasets and then froze
the weights of the generator. Using samples from the generator and original data distribution, we
trained independent 1-Lipschitz neural networks to compute the Wasserstein distance between the
empirical data distribution and the generator distribution. As can be seen in Table 2, using norm-
preserving activation functions helps achieve a tighter lower bound on the Wasserstein distance for
both MNIST and CIFAR-10 generators.

Training WGANs We were also able to train WGANs using our proposed 1-Lipschitz activa-
tions and linear transformations. We borrowed the discriminator and generator architectures directly
from Chen et al. (2016), but switched the ReLU activations with MaxMin and replaced the stan-
dard convolutional and fully connected layers with their Björck counterparts. We also dropped the
batch normalization layers, as these would violate the Lipschitz constraint. Figure 6 shows MNIST
and CIFAR-10 samples generated using our WGAN variant. We leave further investigation of the
WGANs built with our techniques to a future study.

7.3 ROBUSTNESS AND INTERPRETABILITY OF LIPSCHITZ NETWORKS

We explored the robustness of Lipschitz neural networks trained on MNIST to adversarial perturba-
tions measured with L∞ distance. When training the networks we enforced an L∞ constraint on the
weights and used the multi-class hinge loss from Equation 5. We found this to be more effective than
the manual margin training used by Tsuzuku et al. (2018). We trained all networks with a Lipschitz
constant of K = 1000 and chose the margin κ = Ka where a was 0.1 or 0.3. Notably, this tech-
nique provides margin-based provable robustness guarantees as described in Section 4.3. We then
attacked these models using the FGS and PGD methods (Szegedy et al., 2013; Madry et al., 2017)
under the CW loss (Carlini & Wagner, 2016). The results are presented in Table 3 and Figure 8. The
Lipschitz networks with MaxMin activations were able to achieve better clean accuracy and larger
margins than their ReLU counterparts which led to considerably improved adversarial robustness.

9

Under review as a conference paper at ICLR 2019

Figure 6: Samples from WGANs whose critic
architectures were built using GNP atomic
units.

Figure 7: Gradients of input images with respect
to targeted cross-entropy loss. Left: standard
network, Right: 2-norm-constrained network.

Figure 8: Adversarial Robustness Accuracy
on PGD adversarial examples for varying per-
turbation sizes ǫ.

Figure 9: Theoretical Adversarial Robustness
Theoretical accuracy lower bound for varying
perturbation sizes ǫ.

With the strictly enforced Lipschitz constant, we can compute theoretical lower bounds on the ac-
curacy against adversaries with a maximum perturbation strength ǫ. In Figure 9, we show this lower
bound for each of the models previously studied. This is computed by finding the proportion of data
points which violate the margin by at least Kǫ. Note that at the computed threshold, the model has
low confidence in the adversarial example. An even larger perturbation would be required to induce
confident misclassification.

Tsipras et al. (2018) reported that networks trained using adversarial training learn robust features
which allow them to have interpretable gradients. We found that the same is true for Lipschitz
networks, even without using adversarial training. The gradients with respect to the inputs are
displayed for a standard network and a 2-norm-constrained network in Figure 7. The first row
shows the original images with following rows showing the gradient with different class targets
(0-9). Positive pixel values are red and blue is negative.

Model
Clean FGS PGD

Err. ǫ = 0.1 ǫ = 0.3 ǫ = 0.1 ǫ = 0.3
Standard ReLU 1.61 78.91 98.54 99.81 100.0
Standard MaxMin 1.47 79.60 99.81 99.91 100.0
Margin-0.1 ReLU 5.48 48.54 99.52 76.07 100.0
Margin-0.1 MaxMin 1.92 22.85 99.61 40.23 98.93
Margin-0.3 ReLU 15.20 46.49 98.28 61.33 100.0
Margin-0.3 MaxMin 5.02 14.16 51.57 15.14 59.67

Table 3: Adversarial robustness Classification error for varying L∞ distance of adversarial attacks.

8 CONCLUSION

We have identified gradient norm preservation as a critical component of Lipschitz network design
and showed that failure to achieve this leads to less expressive networks. By combining the Group-
Sort activation function and orthonormal weight matrices, we presented a class of neural networks
which are provably 1-Lipschitz and can approximate any 1-Lipschitz function arbitrarily well. Em-
pirically, we showed that our GroupSort networks are more expressive than existing architectures
and can be used to achieve better estimates of Wasserstein distance and provable adversarial robust-
ness guarantees.

10

Under review as a conference paper at ICLR 2019

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2009.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128, 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

PL Bartlett. The sample complexity of pattern classification with neural networks: the size of the
weights is more important than the size of the network. IEEE Transactions on Information Theory,
44(2):525–536, 1998.

Åke Björck and Clazett Bowie. An iterative algorithm for computing the best estimate of an orthog-
onal matrix. SIAM Journal on Numerical Analysis, 8(2):358–364, 1971.

Joan Bruna and Stephane Mallat. Invariant scattering convolution networks. IEEE Trans. Pattern
Anal. Mach. Intell., 35(8):1872–1886, August 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.
2012.230. URL http://dx.doi.org/10.1109/TPAMI.2012.230.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. arXiv
preprint arXiv:1608.04644, 2016.

Minmin Chen, Jeffrey Pennington, and Samuel S Schoenholz. Dynamical isometry and a mean field
theory of rnns: Gating enables signal propagation in recurrent neural networks. arXiv preprint
arXiv:1806.05394, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016.

Artem Chernodub and Dimitri Nowicki. Norm-preserving orthogonal permutation linear unit acti-
vation functions (oplu). arXiv preprint arXiv:1604.02313, 2016.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. arXiv preprint arXiv:1704.08847, 2017.

Laurent Condat. Fast projection onto the simplex and the lll1 ball. Mathematical Programming, 158
(1-2):575–585, 2016.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Harris Drucker and Yann Le Cun. Improving generalization performance using double backpropa-
gation. IEEE Transactions on Neural Networks, 3(6):991–997, 1992.

Mevlana Gemici, Zeynep Akata, and Max Welling. Primal-dual Wasserstein GAN. arXiv preprint
arXiv:1805.09575, 2018.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with Sinkhorn diver-
gences. arXiv preprint arXiv:1706.00292, 2017.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp.
1319–1327, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL http://proceedings.
mlr.press/v28/goodfellow13.html.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014.

11

http://dx.doi.org/10.1109/TPAMI.2012.230
http://proceedings.mlr.press/v28/goodfellow13.html
http://proceedings.mlr.press/v28/goodfellow13.html

Under review as a conference paper at ICLR 2019

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural networks
by enforcing Lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of Wasserstein GANs. In Advances in Neural Information Processing Systems,
pp. 5767–5777, 2017.

Leonard Hasenclever, Jakub M Tomczak, Rianne van den Berg, and Max Welling. Variational
inference with orthogonal normalizing flows.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Alston S Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM
(JACM), 5(4):339–342, 1958.

Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the Lipschitz constant as a
defense against adversarial examples. arXiv preprint arXiv:1807.09705, 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 12 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), 2015.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial train-
ing: a regularization method for supervised and semi-supervised learning. arXiv preprint
arXiv:1704.03976, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in Neural Information Processing Systems, pp. 5947–5956,
2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In Advances in neural information
processing systems, pp. 4785–4795, 2017.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. arXiv preprint
arXiv:1803.00567, 2018.

12

https://openreview.net/forum?id=Skz_WfbCZ

Under review as a conference paper at ICLR 2019

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. arXiv
preprint arXiv:1805.10408, 2018.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving
convolutional neural networks via concatenated rectified linear units. In International Conference
on Machine Learning, pp. 2217–2225, 2016.

Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou, and David Lopez-
Paz. Adversarial vulnerability of neural networks increases with input dimension. arXiv preprint
arXiv:1802.01421, 2018.

Piotr A Sokol and Il Memming Park. Information geometry of orthogonal initializations and train-
ing. arXiv preprint arXiv:1810.03785, 2018.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncertainty in
bayesian neural networks. In Artificial Intelligence and Statistics, pp. 1283–1292, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

Jamie Townsend. A new trick for calculating Jacobian vector products. https://j-towns.
github.io/2017/06/12/A-new-trick.html, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
There is no free lunch in adversarial robustness (but there are unexpected benefits). arXiv preprint
arXiv:1805.12152, 2018.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certifi-
cation of perturbation invariance for deep neural networks. arXiv preprint arXiv:1802.04034,
2018.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In Advances in Neural Information Processing Systems, pp.
4880–4888, 2016.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and Jeffrey Penning-
ton. Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla
convolutional neural networks. arXiv preprint arXiv:1806.05393, 2018.

Itaı̈ Ben Yaacov. Lipschitz functions on topometric spaces. arXiv preprint arXiv:1010.1600, 2010.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

13

https://j-towns.github.io/2017/06/12/A-new-trick.html
https://j-towns.github.io/2017/06/12/A-new-trick.html

Under review as a conference paper at ICLR 2019

Appendices

A GROUPSORT ACTIVATION

FullSort and MaxMin FullSort can implement MaxMin by simply ”chunking” the biases in
pairs. To be more precise, let xmax = sup

x∈X ||x||∞ where X represents the domain, and

b = [b1, b2, ..., bn]
T where xmax < b1 = b2 ≪ b3 = b4 ≪ · · · ≪ bn−1 = bn (≪ denotes

differing by at least xmax). We can write:

MaxMin(x) = FullSort(Ix+ b)− b,

where I denotes the identity matrix. Similarly, FullSort can be represented using a series of MaxMin
layers that implement BubbleSort; note that this construction obeys any matrix p-norm constraint
since it can be implemented using only permutation matrices for the weights.

MaxMin and absolute value MaxMin and absolute value can each represent eachother under
2-norm-constrained weights. The two operations are reduced to each other as follows:

[
max(x)
min(y)

]
=

[
1√
2

1√
2

1√
2

−1√
2

]
abs(

[
1√
2

1√
2

1√
2

−1√
2

] [
x
y

]
+

[
B
0

]
)−

[√
2B
0

]
(6)

abs(x) =
[

1√
2
− 1√

2

]
MaxMin(

[
1√
2

−1√
2

]
x) (7)

In Equation 6, the value of B is chosen such that 2x+
√
2B > 0 for all x in the domain. Note that

all the matrices in these constructions satisfy the matrix 2-norm constraint.

Figure 10: A rigid linear transformation, followed by absolute value, followed by another rigid linear
transformation, can implement folding along an arbitrary hyperplane. Here is an example where the
network represents a function consisting of a pair of square pyramids by folding the space three
times, until the function is representable as a linear function of the top layer activations.

GroupSort and other activations Here we show that GroupSort can recover ReLU, maxout,
and concatenated ReLU activation functions. We first show that MaxMin can recover ReLU and
concatenated ReLU. Note that,

MaxMin(

[
x
0

]
) =

[
ReLU(x)
−ReLU(−x)

]
(8)

Thus, by adding 0 elements to the pre-activations and then applying another linear transformation
after MaxMin we can output either ReLU or concatenated ReLU. If instead of adding 0 to the
preactivations we added ax we could recover Leaky ReLU by using a linear transformation to select
max(x, ax).

To recover maxout with groups of size k, we perform GroupSort with groups of size k and use the
next linear transformation to select the first element of each group after sorting (corresponding to
the max).

14

Under review as a conference paper at ICLR 2019

B IMPLEMENTING NORM CONSTRAINTS

When implementing the norm constraints it is possible to project the weight matrices after each
gradient descent step, or during the forward pass (if the projection is differentiable). For the Björck
algorithm we utilize the latter while Parseval networks use the Björck algorithm after each gradient
descent step. In any case, once training has completed we can project the weights to enforce the norm
constraint and use these as our fixed weights at test time - removing the computational overhead
required during training.

B.1 COMPARING BJÖRCK AND PARSEVAL

In Cisse et al. (2017), the authors motivate an update to the weight matrices by considering the

gradient of a regularization term, β
2 ||WTW − I||2F . By subtracting this gradient from the weight

matrices they push them closer to the Stiefel manifold. The final update is given by,

W ←W (I + β)− βWWTW (9)

Note that when β = 0.5 this update is exactly the first order (p = 1) update from Equation 3, with a
single iteration. Compared to our approach, the key difference in Parseval networks is that the weight
matrix update is applied after the primary gradient update. For our approach, we utilize the algorithm
in Equation 3 during the network forward pass to optimize directly on the Stiefel manifold. This
is more expensive but lets us ensure that the weight matrices are close to orthonormal throughout
training.

Choice of β We can relate the first order Björck algorithm to the Parseval update by setting β =
0.5. However, in practice Parseval networks are trained with very small choices of β, for example
β = 0.0003. As expected, when β is small the algorithm still converges to an orthonormal matrix
but much more slowly. Figure 11 shows the maximum and minimum singular values of matrices
which have undergone 50 iterations of the first order Björck scheme for varying choices of β < 0.5.
When β is much smaller than 0.5 the matrices may be far from orthonormal. We also show how
the maximum and minimum singular values vary over the number of iterations when β = 0.0003
(a common choice for Parseval networks) in Figure 12. This has practical implications for Parseval
training, particularly when using early stopping, as the weight matrices may be far from orthonormal
if the gradients are relatively large compared to the update produced by the Björck algorithm. We
observed this effect empirically in our MNIST classification experiments but found that Parseval
networks were still able to achieve a meaningful regularization effect.

B.2 COMPARING BJÖRCK AND SPECTRAL NORMALIZATION

Spectral Normalization (Miyato et al., 2018) enforces the largest singular value of each weight
matrix to be less than 1 by estimating the largest singular value and left/right singular vectors using
power iteration, and normalizing the weight matrix using these during each forward pass. While this
constraint does allow all singular values of the weight matrix to be 1, we have found that this rarely
happens in practice. Hence, enforcing the 1-Lipschitz constraint via spectral normalization doesn’t
guarantee gradient norm preservation.

We demonstrate the practical consequences of the inability of spectral normalization to preserve
gradient norm on the task of approximating high dimensional cones. In order to quantify approx-
imation performance, we carefully pick two n dimensional probability distributions such that 1)
The Wasserstein Distance between them is exactly 1 and 2) the optimal dual surface consists of an
n − 1 dimensional cones with a gradient of 1 everywhere, embedded in n dimensions. We trained
1-Lipschitz constrained neural networks to optimize the dual Wasserstein objective in 2 and checked
how well the architecture of choice is able to approximate the optimal dual surface, measured by the
Wasserstein Distance they estimate. Please refer to Section 7.1.1 for more experiments in this flavor
and Appendix G.1 for how these two probability distributions are picked.

Figure 13 shows that neural networks trained with Björck orthonormalization not only are able to
approximate high dimensional cones better than spectral normalization, but also converge much
faster in terms of training iterations. The gap between these methods gets much more significant as
the problem dimensionality increases. In this experiment, each network consisted of 3 hidden layers

15

Under review as a conference paper at ICLR 2019

Figure 11: Convergence of the Björck algorithm
for different choices of β. The largest and small-
est singular values are shown after 50 iterations
of the algorithm.

Figure 12: Convergence of the Björck algorithm
for increasing iterations with β = 0.0003. The
largest and smallest singular values are shown
after each iteration of the algorithm.

Figure 13: Comparing the performance of 1-Lipschitz neural nets using Björck orthonormalization
and spectral normalization to enforce the 2-norm constraint on the high dimensional cone fitting
task (Section 7.1.1). Note that networks using Björck orthonormalization both converge faster and
achieve higher final approximation accuracies, as measured by the estimated Wasserstein Distance.

with 512 hidden units per layer, and was trained with the Adam optimizer (Kingma & Ba, 2014)
with its default hyperparameters. Tuned learning rates of 0.01 for Björck and 0.0033 for spectral
normalization were used.

B.3 SUFFICIENT CONDITION FOR CONVERGENCE OF BJÖRCK ORTHONORMALIZATION

The Björck orthonormalization can be shown to always converge as long as the condition ||WTW−
I||2 < 1 is satisfied (Hasenclever et al.). When viewed in conjunction with the fact that the output of
this procedure is scale-invariant (BJORCK(αW) = αBJORCK(W)) (Björck & Bowie, 1971),
the aforementioned sufficient condition can be implemented by simply scaling the weight matrix so
that all of its singular values are smaller than or equal to 1 before orthonormalization.

16

Under review as a conference paper at ICLR 2019

A scaling factor can be computed efficiently by considering the following matrix norm inequalities:

σmax ≤
√
m ∗ n||W||max (10)

σmax ≤
√
n||W||1 (11)

σmax ≤
√
m||W||∞ (12)

Above, σmax corresponds to the largest singular value of the matrix and m and n stand for the
number of rows and columns respectively. Note that computing the quantities on the right hand side
of the inequalities involves at most summing over the rows or columns of the weight matrix, which
is a cheap operation.

C NON-EXPRESSIVE NORM-CONSTRAINED NETWORKS ARE LINEAR

Theorem 1. Consider a neural network, f : R
n → R, built with matrix 2-norm constrained

weights (||W||2 ≤ 1) and 1-Lipschitz, element-wise, monotonically increasing activation functions.
If ||∇f(x)||2 = 1 almost everywhere, then f is linear.

Proof. We can express the input-output Jacobian of a neural network as:

∂f

∂x
=

∂f

∂hL−1

∂hL−1

∂zL−1

∂zL−1

∂x
= WL

∂φ(zL−1)

∂zL−1

∂zL−1

∂x

Note that WL ∈ R
1×nL−1 . Moreover, using the sub-multiplicativity of matrix norms, we can write:

1 =

∣∣∣∣
∣∣∣∣
∂f

∂x

∣∣∣∣
∣∣∣∣
2

≤
∣∣∣∣
∣∣∣∣WL

∂φ(zL−1)

∂zL−1

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣
∂zL−1

∂x

∣∣∣∣
∣∣∣∣
2

≤ ||WL||2
∣∣∣∣
∣∣∣∣
∂φ(zL−1)

∂zL−1

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣
∂zL−1

∂x

∣∣∣∣
∣∣∣∣
2

≤ 1

for x almost everywhere. The quantity is also upper bounded by 1 due to the 1-Lipschitz property.
Therefore, all of the Jacobian norms in the above equation must be equal to 1. Notably,

∣∣∣∣
∣∣∣∣WL

∂φ(zL−1)

∂zL−1

∣∣∣∣
∣∣∣∣
2

= 1 and ||WL||2 = 1

We then consider the following operation:

||WL||22 −
∣∣∣∣
∣∣∣∣WL

∂φ(zL−1)

∂zL−1

∣∣∣∣
∣∣∣∣
2

2

=

n∑

i=1

(1−
(∂φ(zL−1)

∂zL−1

)2

ii
)(WL,i)

2 = 0 (13)

We have 0 ≤ ∂φ
∂zL
≤ 1 as φ is 1-Lipschitz and monotonically increasing. Therefore, we must have

either ∂φ
∂zL ii

= 1 almost everywhere, or WL,i = 0. Thus we can write,

zL =

m∑

i=1

WL,iφ(zL−1)i + bL =
∑

i:WL,i 6=0

WL,iφ(zL−1)i + bL

=
∑

i:WL,i 6=0

WL,izL−1,i + bL

Then zL can be written as a linear function of zL−1 almost everywhere and by Lipschitz con-
tinuity we must in fact have that zL is a linear function of zL−1. In particular, we can write
zL = WLWL−1hL−2 + (WLbL−1 + bL), thus collapsing the last two layers into a single lin-
ear layer, with weight matrix WLWL−1 ∈ R

1×nL−2 and scalar bias WLbL−1 + bL.

From here we can apply the exact same argument as above to φ(zL−2), reducing the next layer to
be linear. By repeating this all the way to the first linear layer we collapse the network into a single
linear function.

17

Under review as a conference paper at ICLR 2019

Theorem 2. Consider a neural network, f : Rn → R, built with matrix 2-norm constrained weights
and with ||∇f(x)||2 = 1 almost everywhere. Then, without changing the computed function, each

weight matrix W ∈ Rm×k can be replaced with a matrix W̃ whose singular values all equal 1.

Proof. Take a weight matrix Wi, for i < L. By the argument presented in the proof of Theorem 1,
this weight matrix must preserve the norm of gradients during backpropagation. That is,

1 =

∣∣∣∣
∣∣∣∣
∂f

∂zi
Wi

∣∣∣∣
∣∣∣∣
2

Using the singular value decomposition, we write Wi = UΣVT . We then define W̃i = UΣ̃VT

where Σ̃ has ones along the diagonal. Furthermore, define W
(t)
i = tWi+(1− t)W̃i. Now replace

Wi with W
(t)
i in the network. Then we have,

∂f

∂t
=

∂f

∂zi

∂zi
∂t

=
∂f

∂zi
(Wi − W̃i)hi−1 =

∂f

∂zi
U(Σi − Σ̃i)V

Thi−1

As the norm of ∂f
∂zi

is preserved by Wi we must have that u = (∂f
∂zi

U)T has non-zero entries only

where the diagonal of Σ is 1. That is, uj = 0 ⇐⇒ Σjj < 1. In particular, we have uTΣi = uT Σ̃i

meaning ∂f
∂t

= 0. Thus, the output of the network is the same for all t, in particular for t = 0 and

t = 1. Thus, we can replace Wi with W̃i and the network output remains unchanged.

We can repeat this argument for all i < L (for i = 1 we adopt the notation h0 = x, the input to the
network). For i = L the result follows directly.

D UNIVERSAL APPROXIMATION OF 1-LIPSCHITZ FUNCTIONS

Here we present formal proofs related to finding neural network architectures which are able to
approximate any 1-Lipschitz function. We begin with a proof of Lemma 1.

Lemma 1. (Restricted Stone-Weierstrass Theorem) Suppose that (X, dX) is a compact metric space
with at least two points and L is a lattice in CL(X,R) with the property that for any two distinct
elements x, y ∈ X and any two real numbers a and b such that |a − b| ≤ dX(x, y) there exists a
function f ∈ L such that f(x) = a and f(y) = b. Then L is dense in CL(X,R).

Proof. This proof follows a standard approach with small modifications. We aim to show that for
any g ∈ CL(X,R) and ǫ > 0 we can find f ∈ L such that ||g− f ||∞ < ǫ (i.e. the largest difference
is ǫ).

Fix x ∈ X . Then for each y ∈ X , we have an fy ∈ L with fy(x) = g(x) and fy(y) = g(y). This
follows from the separation property of L and, using the fact that g is 1-Lipschitz, |g(x) − g(y)| ≤
dX(x, y).

Define Vy = {z ∈ X : fy(z) < g(z) + ǫ}. Then Vy is open and we have x, y ∈ Vy . Therefore,
the collection of sets {Vy}y∈X is an open cover of X . By the compactness of X , there exists some
finite subcover of X , say, {Vy1

, . . . , Vyn
}, with corresponding functions fy1

, . . . , fyn
.

Let Fx = min(fy1
, . . . , fyn

). Since L is a lattice we must have Fx ∈ L. And moreover, we have
that Fx(x) = g(x) and Fx(z) < g(z) + ǫ, for all z ∈ X .

Now, define Ux = {z ∈ X : Fx(z) > g(z) − ǫ}. Then Ux is an open set containing x. Therefore,
the collection {Ux}x∈X is an open cover of X and admits a finite subcover, {Ux1

, . . . , Uxm
}, with

corresponding functions Fx1
, . . . , Fxm

.

Let G = max(Fx1
, . . . , Fxm

) ∈ L. We have G(z) > g(z)− ǫ, for all z ∈ X .

Combining both inequalities, we have that g(z) − ǫ < G(z) < g(z) + ǫ, for all z ∈ X . Or more
succinctly, ||g −G||∞ < ǫ. The result is proved by taking f = G.

18

Under review as a conference paper at ICLR 2019

Figure 14: Lattice construction for Lp universal approximation.

We now proceed to prove Theorem 3.

Theorem 3. (Universal Approximation with Lipschitz Networks) Let LN p denote the class of fully-
connected neural networks whose first weight matrix satisfies ||W1||p,∞ = 1, all other weight
matrices satisfy ||W||∞ = 1, and MaxMin activations. Let X be a closed and bounded subset of
R

n endowed with the Lp metric. Then the closure of LN p is dense in CL(X,R).

Proof. The first property we require is separation of points. This follows trivially as given four
points satisfying the required conditions we can find a linear map with the required Lp,∞ matrix
norm that fits them. It remains then to prove that we can construct a lattice under this constraint. We
begin by considering two 1-Lipschitz neural networks, f and g. We wish to design an architecture
which is guaranteed to be 1-Lipschitz and can represent both max(f, g) and min(f, g).

The key insight we will use is the idea that we can split the network into two parallel channels which
each computes one of f and g. At the end of the network, we can then select one of these channels
depending on whether we want the max or the min.

Each of the networks f and g is determined by a set of weights and biases, we will denote these

[Wf
1 ,b

f
1 , . . . ,W

f
n, b

f
n] and [Wg

1,b
g
1, . . . ,W

g
n,b

g
n] for f and g respectively. For now, assume that

these networks are of equal depth (we can lift this assumption later) however we make no assump-
tions on the width. We will now construct h = max(f, g) in the form of a 1-Lipschitz neural
network. To achieve this, we will design a network h which first concatenates the first layers of
networks f and g and then computes f and g separately before combining them at the end.

We take the first weight matrix of h to be Wh
1 = [Wf

1 W
g
1]

T , that is the weight matrices of f and

g stacked vertically. This matrix necessarily satisfies ||Wh
1 ||p,∞ = 1. Similarly, the bias will be

those from the first layers of f and g stacked vertically. Then the first layer’s pre-activations will be
exactly the pre-activations of f and g stacked vertically.

For the following layers, we construct the biases in the same manner (vertical stacking). We con-

struct the weights by constructing new block-diagonal weight matrices. That is, given W
f
i and W

g
i ,

we take

Wh
i =

[
W f

i 0
0 W g

i

]

This matrix also has∞-norm equal to 1. We repeat this for each of the layers in f and g and end
up with a final layer which has two units, f and g. We can then take MaxMin of this final layer and
take the inner product with [1, 0] to recover the max or [0, 1] for the min.

Finally, we must address the case where the depth of f and g are different. In this case we notice
that we are able to represent the identity function with MaxMin activations. To do so observe that
after the pre-activations have been sorted we can multiply by the identity and the sorting activation
afterwards will have no additional effect. Therefore, for the channel that has the smallest depth we
can add in these additional identity layers to match the depths and resort to the above case.

We have shown that the set of neural networks is a lattice which separates points, and thus by
Lemma 1 it must be dense in CL(X,R).

Note that we could have also used the maxout activation Goodfellow et al. (2013) to complete this
proof. This makes sense, as the maxout activation is also norm-preserving in L∞. However, this

19

Under review as a conference paper at ICLR 2019

does not hold when using a 2-norm constraint on the weights. We now present several consequences
of the theoretical results given above.

This result can be extended easily to vector-valued Lipschitz functions with respect to L∞ distance
by noticing that the space of such 1-Lipschitz functions is a lattice. We may apply the Stone-
Weierstrass proof to each of the coordinate functions independently and use the same construction
as in Theorem 3 modifying only the last layer which will now reorder the outputs of each function
to do a pairwise comparison and then select the relevant components to produce the max or the min.

Observation. Consider the set of neural networks, LNm
∞ = {f : Rn → R

m, ||W ||∞ = 1}, with
MaxMin activations. Then LNm

∞ is dense in 1-Lipschitz functions with respect to the L∞ metric.

Proof. Note that given two functions, g, f : Rn → R
m which are 1-Lipschitz with respect to the L∞

metric, their element-wise max (or min) is also 1-Lipschitz with respect to the L∞ metric. Consider
the element-wise components of such an f , written f = (f1, . . . , fm). We can apply the Stone-
Weierstrass theorem (Lemma 1) to each of the components independently, such that if the same
conditions apply (trivially extended to R

m) the Lattice is dense. Thus, as in the proof of Theorem 3,
it suffices to find a network h ∈ LNm

∞ which can represent the max or min of any other networks,
f, g ∈ LNm

∞.

In fact, we can use almost exactly the same construction as in the proof of Theorem 3. We follow
the same initial steps by concatenating weight matrices and constructing block-diagonal matrices
from the two networks. After doing this for all layers in the networks f and g, we will output
[f1, . . . , fm, g1, . . . gm]. We can then permute these entries using a single linear layer to produce
[f1, g1, f2, g2, . . . , fm, gm] finally we take MaxMin and use the final weight matrix to select either
max(f, g) or min(f, g).

E SPECTRAL JACOBIAN REGULARIZATION

Most existing work begins with the goal of constraining the spectral norm of the Jacobian and
proceeds to achieve this by placing constraints on the weights of the network (Yoshida & Miyato,
2017). While not the main focus of our work, we propose a simple new technique which allows us
to directly regularize the spectral norm of the Jacobian, σ(J). This method differs from the ones
described previously as the Lipschitz constant of the entire network is regularized using a single
term, instead of at the layer level.

The intuition for this algorithm follows that of Yoshida & Miyato (2017), who apply power iteration
to estimate the singular values of the weight matrices online. The authors also discuss computing
the spectral radius of the Jacobian directly, and related quantities such as the Frobenius norm, but
dismiss this as being too computationally expensive.

Power iteration can be used to compute the leading singular value of a matrix J with the following
repeated steps,

vk = JTuk−1/||JTuk−1||2,uk = Jvk/||Jvk‖2

Then we have σ(J) ≈ uTJv. There are two challenges that must be overcome to implement this
in practice. First, the algorithm requires higher order derivatives which leads to increased computa-
tional overhead. However, the tradeoff is often reasonable in practice, see e.g. Drucker & Le Cun
(1992). Second, the algorithm requires both Vector-Jacobian products and Jacobian-Vector products.
The former can be computed with reverse-mode automatic differentiation but the latter requires the
less common forward-mode. Fortunately, one can recover forward-mode from reverse mode by con-
structing Vector-Jacobian products and utilizing the transpose operator (Townsend, 2017). In this
setting, we can actually re-use the intermediate reverse-mode backpropagation within the algorithm
which further reduces the computational overhead. The algorithm itself is presented as Algorithm 1.

We present this algorithm primarily to be used for regularization but this could also be used to
approximately control the Lipschitz constraint by rescaling the output of the entire network by the
estimate of the Jacobian spectral norm in a similar fashion to weight spectral normalization Miyato
et al. (2018).

20

Under review as a conference paper at ICLR 2019

Algorithm 1: Spectral Jacobian Regularization

Initialize u randomly, choose hyperparameter λ > 0
for data batch (X,Y) do

Compute logits fθ(X)
Compute loss L(fθ(X), Y)

Compute g = uT ∂f

∂x
, using reverse mode

Set v = g/||g||2
Compute h = (vT ∂g

∂u
)T =

∂f

∂x
v, using reverse mode

Update u = h/||h||2
Compute parameter update from

∂

∂θ

(
L+ λuTh

)

end

ReLU MaxMin GroupSort-4 FullSort Maxout
Standard 1.61 1.47 1.62 3.53 1.40
Dropout 1.27 1.37 1.29 3.62 1.27
Björck 1.54 1.25 1.43 2.06 1.43
Spectral Norm 1.54 1.26 1.32 2.94 1.26
Spectral Jac 1.05 1.09 1.24 1.93 1.02
Parseval 1.43 1.40 1.44 3.36 1.35
L∞ 2.25 2.28 2.22 4.88 1.98

Table 4: MNIST classification Test error shown for different architectures and activation functions.

F ADDITIONAL EXPERIMENTS

In this section we present additional experimental results which the main paper did not have space
to support.

F.1 CLASSIFICATION

We compared a wide range of Lipschitz architectures and training schemes on some simple bench-
mark classification tasks. We demonstrate that we are able to learn Lipschitz neural networks which
are expressive enough to perform classification without sacrificing performance.

MNIST Classification We explored classification with a 3-layer fully connected network with
1024 hidden units in each layer. Each model was trained with the Adam optimizer (Kingma & Ba,
2014). The full results are presented in Table. 4.

For all models the GroupSort activation is able to perform classification well - especially when the
Lipschitz constraint is enforced. Surprisingly, we found that we could even apply the GroupSort
activation to sort the entire hidden layer and still achieve reasonable classification performance,
even when using dropout. When aiming to train good classifiers we found that spectral Jacobian
regularization was most effective (Appendix E).

While the Parseval networks are capable of learning a strict Lipschitz constraint this does not always
hold in practice. A small beta value leads to slow convergence towards orthonormal weights. When
early stopping is used, which is typically important to achieve good validation accuracy, it is difficult
to ensure that the resulting network is indeed 1-Lipschitz.

Classification with little data While enforcing the Lipschitz constraint aggressively could hurt
overall predictive performance, it decreases the generalization gap substantially. Motivated by the
observations of Bruna & Mallat (2013) we investigated the performance of Lipschitz networks on
small amounts of training data, where learning robust features to avoid overfitting is critical.

For these experiments we kept the same network architecture as before. We trained standard unreg-
ularized networks, networks with dropout, networks regularized with weight decay, and 1-Lipschitz

21

Under review as a conference paper at ICLR 2019

Data Size
Standard Dropout Weight Decay Björck

ReLU MaxMin ReLU MaxMin ReLU MaxMin ReLU MaxMin
300 12.40 12.14 7.30 10.64 11.06 10.81 8.12 7.81
500 8.57 9.13 5.54 6.15 7.33 7.50 5.96 6.98
1000 5.95 6.23 3.70 4.58 5.14 6.05 4.45 4.54
5000 2.54 2.51 1.84 2.15 2.31 2.55 2.23 2.31
10000 1.77 1.76 1.26 1.70 1.58 1.57 1.66 1.64

Table 5: MNIST Classification with limited training data Test error for varying architectures and
activations per training data size.

Standard Parseval Spec Jac Regularization
ReLU MaxMin ReLU MaxMin ReLU MaxMin

CIFAR-10 95.29 94.57 95.45 94.83 95.44 94.62

Table 6: CIFAR-10 Classification Test accuracy for Wide ResNets (Depth 28, Width 4) with vary-
ing activations and training schemes.

neural networks enforced with the Björck algorithm. In these experiments we are using a LeNet-5
architecture, with convolutions and max-pooling — the latter prevents norm preservation and thus
may reduce the effectiveness of MaxMin substantially. We found that Dropout was the most ef-
fective regularizer in this case but confirmed that networks with Lipschitz constraints were able to
significantly improve performance over unregularized networks. Full results are in Table 5.

Classification on CIFAR-10 We briefly explored classification on CIFAR-10 using Wide ResNets
(Depth 28, Width 4) (Zagoruyko & Komodakis, 2016; He et al., 2016). We performed these experi-
ments primarily to explore the effectiveness of the MaxMin activation in a more challenging setting.
We stuck with the optimal optimization hyperparameters for ReLU with SGD and performed a small
search over regularization parameters for Parseval and Spec Jac regularization. We present results in
Table 6. We found that MaxMin performed comparably to ReLU in this setting and hope to explore
this further in future work.

F.2 TRAINING WGAN-GP

We found that the MaxMin activation could also be used as a drop-in replacement for ReLU activa-
tions in WGAN architectures that utilize a gradient-norm penalty in the training objective. We took
an existing implementation of WGAN-GP which used a fully convolutional critic network with 5
layers and LeakyReLU activations. The generator used a linear layer followed by 4 deconvolutional
layers. We trained this model with the tuned hyperparameters for the LeakyReLU activation and
then used the same settings to train a model with MaxMin acivations. We defer a more thorough
study of this setting to future work but present here the output of the trained generators after 50
epochs of training on the CelebA dataset (Liu et al., 2015) in Figure 15.

F.3 DYNAMICAL ISOMETRY

Gradient norm preservation also enables our methods to represent functions whose input-output Ja-
cobian has singular values that all concentrate near unity (Pennington et al., 2017), a property known
as dynamical isometry. This property has been shown to speed up training by orders of magnitude
when enforced during weight initialization (Pennington et al., 2017; Sokol & Park, 2018), and ex-
plored in the contexts of training RNNs (Chen et al., 2018) and very deep convolutional neural net-
works (Xiao et al., 2018). Enforcing gradient norm preservation on each layer also effectively solves
the vanishing gradient problem, as the L2 norm of the back-propagated gradients are maintained at
unity throughout the neural network. Using our methods, (Björck Orthonormalization (Björck &
Bowie, 1971) and GroupSort), one can maintain dynamical isometry throughout training, reaping
the aforementioned benefits. Interestingly, ReLU networks are not capable of achieving dynamical
isometry (Pennington et al., 2017).

In Figure 16 we plot the distribution of all singular values of ReLU and GroupSort 2-norm-
constrained networks trained as MNIST classifiers. While the ReLU singular values are spread
in the range 4-8 the GroupSort network concentrates the singular values in range 9-10. Dynamical

22

Under review as a conference paper at ICLR 2019

(a) Leaky-ReLU Critic (b) MaxMin Critic

Figure 15: Generated images from WGAN-GP models trained on the CelebA dataset.

Figure 16: Jacobian singular values distribution We compare the Jacobian singular values of
ReLU and GroupSort networks.

23

Under review as a conference paper at ICLR 2019

isometry (Pennington et al., 2017) requires all Jacobian singular values to be concentrated around 1.
Typically this property is defined with respect to the initialization of the weights but using 2-norm
constraints and GroupSort activations we are able to approximately achieve dynamical isometry
throughout training. We leave further investigations into exploiting these benefits on practical prob-
lems to a future study.

G EXPERIMENT DETAILS

Here we present additional details of the experiments conducted in the main paper.

G.1 SIMPLE PROBABILITY DISTRIBUTIONS AND THEIR CORRESPONDING DUAL SURFACES

Absolute value: We pick p1(x) = δ0(x) and p2(x) =
1

2
δ−1(x) +

1

2
δ1(x), where δα(x) stands

for the Dirac delta function located at α. It can be shown that the optimal dual surface learned while
computing the Wasserstein distance between p1 and p2 is the absolute value function. This also
makes intuitive sense, as the function that assigns ”as low values as possible” at x = 0 and assigns
”as low values as possible” at x = −1 and x = 1 while making sure that the absolute value of the
slope of the function never exceeds 1, must be the absolute value function.

The Wasserstein distance obtained using absolute value as the dual function is 1. This becomes
clearer when viewed from the primal problem, as the transport plan that will minimize the primal
objective will simply be to map the center Dirac delta equally to the ones near it. This requires all
the unit masses to be moved by a distance of 1.

The networks we trained had 3 hidden layers each with 128 hidden units.

Multiple 2D Circular Cones: We describe the probability distributions p1 and p2 implicitly by
describing how we sample from them. p1 is sampled from by selecting one of the three points
((−2, 0), (0, 0) and (2, 0)) uniformly. p1 is sampled from by first uniformly selecting one of the
three points aforementioned, then uniformly selecting a point on the circle surrounding it, with
radius 1. Hence Wasserstein dual problem aims to find a Lipschitz function which assigns ”as high
as possible” values to the three points, and ”as low as possible” values to the circles with radius 1
surrounding the three points. Hence, the optimal dual function must consist of three cones centered
around (−2, 0), (0, 0) and (2, 0). The behavior of the function outside this support doesn’t have an
impact on the solution.

The Wasserstein distance between p1 and p2 is equal to 1. From the perspective of the primal
formulation, the optimal transport plan must simply consist of mapping the probability mass to
the nearby circles surrounding them uniformly. This leads to an expected transport (Wasserstein
distance) cost of 1.0.

The networks we trained had 3 hidden layers each with 312 hidden units.

n Dimensional Circular Cones: This is a simple extension of the absolute value case described
above.

Here, we check how the performance of architectures built with different activation functions as
we increase input dimensionality. We pick p1 as the Dirac delta function located at the origin, and
sample from p2 by uniformly selecting a point from high dimensional spherical shell with radius 1,
centered at the origin. Following similar arguments developed for absolute value and multiple 2D
cones, it can be shown that the optimal dual function is a single high dimensional circular cone and
the Wasserstein distance is also equal to unity.

G.2 WASSERSTEIN DISTANCE ESTIMATION

The GAN variants we trained on MNIST and CIFAR10 datasets used the WGAN formulation first
introduced in Arjovsky et al. (2017), and improved by Gulrajani et al. (2017) respectively. The
architectures of the generator and critic networks were the same as the ones used in(Chen et al.,
2016). For the subsequent task of Wasserstein distance estimation, the weights of the generator
networks were frozen after the initial GAN training has converged. For the norm-constrained critics
we used a shallow fully connected architecture (3 layers with 720 neurons in hidden each layers).

24

Under review as a conference paper at ICLR 2019

G.3 CLASSIFICATION

For the MNIST classification task we search of the hyperparameters are follows. For the Björck, L∞
constrained, and Spectral Norm architectures we try networks with a guaranteed Lipschitz constant
of 0.1, 1, 10 or 100. For Parseval networks we tried β values in the range 0.001, 0.01, 0.1, 0.5. For
spectral Jacobian regularization we scaled the penalty by 0.01, 0.05, or 0.1.

In order to scale the Lipschitz constant of the network, we introduce constant scaling layers in the
network such that the product of the constant scale parameters is equal to the Lipschitz constant.
As the activation functions are homogeneous, e.g. ReLU(ax) = aReLU(x), this is equivalent to
scaling the output of the network as described in Section 4.

G.4 ROBUSTNESS AND INTERPRETABILITY

For the adversarial robustness experiments we trained fully-connected MNIST classifiers with 3 hid-
den layers each with 1024 units. We used the L∞ projection algorithm referenced in Section 4.2. We
applied the projection to each row in the weight matrices after each gradient update, but found that
applying the projection during the forward pass worked equally well and had similar computational
overhead.

Our implementation of the FGS attack is standard but we found that the loss proposed by Carlini
& Wagner (2016) (in particular, f6 which the authors found most effective) was necessary to gen-
erate attacks for the Margin-0.3 MaxMin network (and produced stronger adversarial examples for
the other networks). PGD also had difficulty generating adversarial examples for the Margin-0.3
MaxMin network. We found it was necessary to run PGD for 200 iterations and to use a scaled
down version of the random initialization typically used: instead of randomly perturbing x in the ǫ
ball we perturbed it by at most ǫ/10 and then ran the usual scheme.

For the intepretable gradients in Figure 7 we used the same architecture, but trained the network
with 2-norm projections. We chose a random image from each class (0-4 only) and computed the
input-output gradient with respect to the loss function. In the image, We found that similar results
were achieved with ∞-norm projections (and hinge loss) but the uniform gradient scale made the
2-norm-constrained input-output gradients easier to visualize.

25

	Background
	Lipschitz Functions
	Lipschitz-Constrained Neural Networks
	Applications of Lipschitz Networks

	Gradient Norm Preservation
	Methods
	Gradient Norm Preserving Activation Functions
	Norm-constrained linear maps
	Enforcing ||W||2=1 while Preserving Gradient Norm
	Enforcing ||W||=1

	Provable Adversarial Robustness

	Related Work
	Universal approximation of Lipschitz functions
	Experiments
	Representational Capacity
	Quantifying Expressive Power via. Wasserstein Distance Estimation
	Relevance of Gradient Norm Preservation in Practical Settings

	Wasserstein Distance Estimation
	Lower Bounds on MNIST and CIFAR-10 GANS

	Robustness and interpretability of Lipschitz networks

	Conclusion
	Appendices
	GroupSort activation
	Implementing norm constraints
	Comparing Björck and Parseval
	Comparing Björck and Spectral Normalization
	Sufficient Condition for Convergence of Björck Orthonormalization

	Non-expressive norm-constrained networks are linear
	Universal Approximation of 1-Lipschitz Functions
	Spectral Jacobian Regularization
	Additional Experiments
	Classification
	Training WGAN-GP
	Dynamical Isometry

	Experiment Details
	Simple Probability Distributions and their Corresponding Dual Surfaces
	Wasserstein Distance Estimation
	Classification
	Robustness and Interpretability

