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The common practice of sorting stocks into groups to test asset pricing inferences began with the
carliest tests of the CAPM (see Black, Jensen and Scholes (1972)). Although the information loss
from the sorting procedure has long been recognized (see Litzenberger and Ramaswamy (1979)),
only recently have researchers begun to formally analyze the theoretical basis for doing such sorts.
Lo and MacKinlay (1990) point out that if the sort is based on either a variable that is only known
to be empirically correlated with return or a variable measured within the sample, the test will
contain a data snooping bias. Liang (1997) argues that even when the sort is based on a variable
estimated using prior data, measurement error in this variable can lead to false conclusions. In this
paper we will focus on a different variation of the sorting technique analyzed in those papers.

The empirical procedure that is the subject of this paper closely resembles the Black, Jensen and
Scholes (1972) grouping procedure. There is, however, one crucial distinction. Like the standard
procedure, assets are sorted into groups using some criterion related to asset returns. However,
rather than forming portfolios out of the groups, the tests are run within the groups. It is shown
that this empirical procedure biases the results in favor of rejecting whatever asset pricing model

is being tested. In particular, we show that

1. the explanatory power of the model will always be smaller within a group than in the whole

sample and

2. by picking enough groups to sort into, a researcher can destroy the within group explanatory

power of even an economically correct asset pricing model.

To understand the intuition behind these results, consider the following thought experiment.
Assume that a researcher has uncovered a variable, =, that is cross-sectionally correlated with
returns. He postulates that he has uncovered an anomaly, that is, he claims that v is a better
predictor of return than a particular risk based asset pricing model, hereafter the “SOS” model.
The reason is that he has sorted stocks into groups based on v and shown that within any of these
groups the SOS asset pricing model has little or no explanatory power.

When stocks are first sorted into groups based on a variable, like v, that is known to be
correlated with returns the average return of each group will reflect this correlation. Consequently,
the procedure ensures a high between group variation in expected return. A standard result of
ANOVA hypothesis testing is that the total variance of the sample is the sum of the between group
and within group variance. Thus, the high between group variation in expected return implies a
low within group variation, so the cross-sectional variation of expected returns is lower within the
groups than in the whole sample.

Now, no economic model makes exact predictions. So the expected return predicted by the
SOS model will not equal the true expected return. Assume the SOS model is nevertheless a
good description of reality so that the SOS model’s error is unbiased. Then the prediction of the
model will be the true expected return plus mean zero noise. If the model error is distributed
independently of the sort variable, the sort will not affect the cross-section distribution of the

noise. The implication is that cross-sectional variance of the model error will be no different within



the groups than in the full sample. Thus, the within group ratio of the cross-sectional variance of
expected returns to the variance of the model error must be lower in the groups than in the full
sample. In short, the model’s signal to noise ratio is lower within the groups than the full sample.
Indeed, no matter how small the model error is, by sorting into enough groups, the variation in
expected returns can be reduced to the point that the error in the SOS model completely swamps
the explanatory power of the model. So long as the model cannot predict the expected return
of each stock exactly, it is possible for our researcher to demonstrate that the SOS model has no
explanatory power within the ~ sorted groups, even when the SOS model does in fact provide
economically useful predictions.

In a sense, one can think of this point as the converse of a point made originally in Black,
Jensen and Scholes (1972). There, the authors argued that to provide a powerful test of the CAPM
it is essential that the stocks are grouped into portfolios that have large cross-sectional differences
in expected returns. In this context, large cross-sectional differences in portfolio expected returns
implies that the cross-sectional variation in the expected return of the stocks that make up the
portfolios is small. Thus, if instead of proceeding as Black, Jensen and Scholes (1972) did, you
decided to test the CAPM within the stocks that make up the portfolios rather than on the portfolios
themselves, the opposite result holds. To increase the power of this test, the cross-sectional variation
within each portfolio group must be maximized, which implies the cross-sectional differences in the
portfolio expected returns must be minimized. Perhaps the simplest way to do this is to just not
group the stocks and use the full sample.

L one motivation for

Although the particular sorting procedure that we analyze is not new,
studying it derives from the fact that recently a number of studies that employ this procedure have
produced rather disturbing results. For instance, Daniel and Titman (1997) sort stocks into fractiles
based on their “characteristics” (book-to-market ratios and market values) and show that the factors
identified by Fama and French (1993) cannot explain the within fractile variation in realized return.
Based on this result, they conclude that asset returns are likely generated by a “characteristic” based
asset pricing model. If asset returns are indeed explained by a “characteristic” based model, then
this would upset some of the foundations of asset pricing theory.

The rest paper is organized as follows. In the following section we illustrate our results in the
context of a simple example. We take a single period economy in which the CAPM holds exactly
and sort stocks into portfolios based on the book-to-market ratio. We then derive the theoretical
results of a within group cross-sectional regression test and show that the model has little or no
explanatory power in all but the extreme groups. That is, even though the CAPM holds equally
well for all stocks, the test leaves the impression that the model only holds in the highest and lowest
portfolios. Section 2 then derives the main theoretical results. The implications of these results are
considered in Section 3. In Section 4 we illustrate some of these implications in the context of one

recent study — Daniel and Titman (1997). Section 5 concludes the paper. All proofs can be found

'Litzenberger and Ramaswamy (1980), for instance, employ this procedure.



in the appendix.

1 An Illustrative Example

Before we derive the main theoretical results in this paper it is useful to illustrate their potential
importance in the context of a simple example. Consider a one period world in which the CAPM
holds exactly. If the total return of stock i is R; then since the CAPM holds exactly,

E[Ri| =1+ Bi(E[Rn] — 1), (1)

where r is the risk free rate, §; is the beta of stock ¢ and R, is the total return of the market
portfolio.
Next, construct a cross-sectional test of this model. Of course, neither E[R;] nor §; are directly

observable. Instead of the expected return, the realized, or measured, return, Rq;, where,
Ri = B[R] + &, (2)

is observed. We will assume that since &; is the deviation from the expected return, it has mean
zero and variance w?, so that the distribution of & does not differ across stocks. Instead of the true

beta, §;, the measured beta, Bi, where,
Bi = Bi + €, (3)

is observed. Since ¢; reflects measurement error, we assume that it is Normal[0,0] and independent
of everything else in the economy.?

All that is left to specify is the cross-sectional distribution of firms in the economy. The cross-
sectional distribution of a firm’s expected cash flow will turn out, under the assumptions, not to
affect the results so we let it be arbitrary. We will assume that the cross-sectional distribution
of B; is Normal[l,0], so that the market portfolio will have a beta of one. For now, assume that
the cross-sectional covariance between beta and &; is zero, although in the next section we will
demonstrate in a more general setting that this must be the case. To abstract away from the
problems associated with small sample sizes, we will assume that infinitely many stocks exist. To
emphasize that only a small amount of measurement error is required to deliver the result we take
6% = 0.025 02, so the cross-sectional variance of Bz is a mere 2.5% larger than the cross-sectional
variance of f3;.

First, consider running a cross-sectional regression of the realized risk premium, R; — r, on the

2Since the value weighted sum of the measurement error must be zero, the independence assumption cannot be
satisfied in any finite economy. However, it is theoretically possible to make this assumption in an economy with
infinitely many assets because the variance of the value weighted sum of the measurement error converges to zero as
the number of assets goes to infinity.



measured beta, §;, in the full sample. The coefficient in this regression is,

cov(Ri=r.6) _ cov(BIR]+& 7. B+
var (Bq) var (5; + €)
cov (E[Ri] —r, )
var (3;) + var (¢;)
cov (Bi(E[Rpy) — 1), i)
var ([3;) + var (¢;)

0.2
= (BlBml =7) 5
2
= (E[Rn] - T)m = 0.976 (B[R] — 1), (4)

where the second line follows from the independence assumption, the third from (1) and the fourth
from the size of the sample. Because the attenuation bias is relatively small, the coefficient is close

to the theoretical value of E[Ry,] — r. Similar logic shows that the intercept is
0.024 (E[Ry) — 1)

which again is close to the theoretical value of 0. Finally, the R? coefficient is

0.9762 (E[Ru) — 7“)2 A var (Bq) +1 _ 00762 var (@) +1
var (Rq; - 7‘) + (E[Rp] —1)? var (3;) 4 var (&) + 1
2 p2
- 20°+0°+1
= 00762 7 7 (5)

If we assume that the expected return can be measured with at least the degree of accuracy of
3, that is if w < @, then we have that R? > 0.9762 = 95%. Given the fact that the model holds
exactly, and that the amount of measurement error is minimal, such results are not surprising.

Next we run a similar test, except this time the data are first sorted into N fractiles based on
the firms’ book-to-market ratios. That is, each fractile contains equally many stocks and the book-
to-market ratios within each fractile are strictly larger (smaller) than the book-to-market ratios of
the next lower (higher) fractile. Then within each fractile the same test is undertaken.

To keep the example simple we will assume that the terminal cash flow of each firm is propor-
tional to its scale. Consequently, the book value of assets, B;, is assumed to be proportional to the

terminal dividend or expected cash flow, E[C;] of each stock,
E[C;]=K B; (6)

where K > 0, the constant of proportionality is assumed to be the same for all firms. This

assumption implies that the book-to-market ratio will be correlated with expected returns. Since



the CAPM holds exactly the market value or price, p;, is given by,

_ ElG] E[C;]
P = BR) vt B[R] — 1) (7)

To compute the results of these regressions we need to know the cross-sectional variance of beta
conditional on being in a particular fractile. First define U(j) as the largest book-to-market ratio in
the j* fractile. Then, if o; is defined to be the cross-sectional variance of the true beta conditional

on being in fractile j,

7 = v (5 UG -1) < <UG))
E[C; )
- var(ﬁi U(j—1)<f(,£[C}]§U(J)>
= var (B |U"(j —1) <8 <U*(j)), (8)

where U*(j) = g[(ég]):: and U(0) = —oo. Let ¥(-) be defined to be the standard normal distribution

function. From (8), it follows that,

UM (G)—1 ,62
2 _ 2 7
9% = 9 /U*(j—l)—l \I,(U*(j)ﬂ) _ \I,(U*(J'*l)*l)dq!(ﬁ)

U*(i)=1 2
=t ﬂ
— 0'2 (./U*(J:l)_l \IJ(U*(j)fl) _ \F(U*(Jl)l)dqj(ﬂ)>
= % g(j), 9

where g(+) is defined implicitly above, is a function only of the fractile j and can be calculated from
the standard normal alone. Using (9) and following the same logic as before, the cross-sectional

regression coefficient within the j% fractile is,

o2 a’g(j
(Blfn] =) 7 o5 = Bl =1) 05 o
B a9l
- (E[Rm] )g(j)+0-025' (10)

e) 1ves \ \ ) = %
Table 1 gives the value of g*(j) = 3G +0.0%5
the number of total fractiles stocks are sorted into. The following results are apparent in all three

in each fractile for three tests that differ only in

tests. If the ¢g*(+)’s in the table are used to compute the regression coefficient and intercept (from
(10)), then: (i) all the within group coefficients (intercepts) are lower (higher) than the coefficient
obtained in the full sample and (ii) in most cases the coefficients (intercepts) are well below (above)

any reasonable cutoff for concluding that they provide support for the model. In all three tests only



Table 1: Within Fractile Regression Results: This table contains the within fractile value for
g (j) = %, 1 —g*(j) and R? for three different partitions of the data into 10 (Panel A), 20 (Panel B)
and 100 (Panel C) fractiles. To get the within fractile regression coefficient, the number in the first row of
each panel should be multiplied by E[R,,] — 7. Multiplying the number in the second row of each panel by
E[R,,] — r provides the intercept. The third row is the R? coefficient when w = @ which is (¢*(j))?. Except
for the 10 fractile partition, the table lists these values for a subset of the fractiles. The listed fractiles are

the column headings. The final column in the table gives the average of each variable over all fractiles.

A: Ten Fractile Partition
1 2 3 4 5 6 7 8 9 10  Average

g*(9) 0.87 0.39 0.25 0.20 0.18 0.18 0.20 0.25 0.39 0.87 0.38

1—-g*() 0.13 0.61 0.75 0.80 0.82 0.82 0.80 0.75 0.61 0.13 0.62

R? 0.76 0.15 0.063 0.039 0.031 0031 0.039 0.063 0.15 0.76 0.208

B: Twenty Fractile Partition
1 2 6 8 10 12 14 16 19 20 Average

g () 085 0.3 0.07  0.055 0.050 0.052 0.061 0.08 03 0.85 0.18

1—-9¢*(j) 015 0.7 093 0945 0950 0948 0939 0915 0.7 0.15 0.82

R? 0.72 0.091 0.0049 0.0030 0.0025 0.0027 0.0037 0.0072 0.091 0.72  0.087

C: Hundred Fractile Partition
1 2 30 40 50 60 70 80 99 100  Average

g*(j) 0.79 0.2 0.0028 0.0022 0.0021 0.0022 0.0027 0.0041 0.2 0.79  0.028

1—-9¢*(j) 021 0.8 0.9972 0.9978 0.9979 0.9978 0.9973 0.9956 0.8 0.21 0.97

R? 0.63 0.038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.038 0.63 0.014




two fractiles produce coefficients that are even remotely close to the theoretical value of one. In

all cases these two fractiles are the extremes — the lowest and the highest. Similar inferences can
be made about the explanatory power of the model. Consider the 10 fractile grouping. Under the
assumption that w = 6, which provided an R? of 95% in the full sample, the R? coefficient is given
by (g*(-))?. With the exception of the extreme groups, in all the other groups the R? coefficients
are below 16% and most are below 7%. Indeed, the lowest R? is a mere 3.1%. When the number of
groups is increased to 20 or more, the vast majority of R? coefficients essentially shrink to zero. A
naive interpretation of these results would be that if the CAPM holds at all, it only holds amongst
stocks with extreme book-to-market ratios. In fact, the CAPM holds equally well for all stocks by
assumption. Although this is merely an example, it does illustrate the main point of the paper.
By first sorting on variables such as book-to-market it is quite possible for the model to appear to
have little or no explanatory power even if it holds exactly.

In this example, by sorting stocks by a variable like book-to-market, that is known to be
correlated with expected returns, the researcher essentially does an expected return sort. Thus
when groups are formed based on this sort, the within group cross-sectional variation in expected
return is lower than in the whole sample. Since the model error (measurement error in beta) is
independent, it is unaffected by the sort, that is, the distribution of measurement error in beta is
no different within a group than in the whole sample. Thus, the signal to noise ratio — the ratio
of the variance of in expected returns to the variance of the model error — is lower within a group.
Since the within group cross-sectional variation in expected returns is decreasing in the number of
groups, by sorting into enough groups the relative importance of the model error can be increased
to the point that it accounts for almost all the variation in the model’s prediction of the expected
return.

It is worth noting that if, instead of testing the model within the groups, the Black, Jensen
and Scholes (1972) procedure is followed and equally weighted portfolios are formed out of the
stocks within a group, the returns on these portfolios would provide an exact fit of the CAPM. This
follows because under our assumption that infinitely many stocks exist, the betas of the equally
weighted portfolios would not contain any measurement error and so no model error would exist. In
the context of this example, by undertaking one simple variation of the Black, Jensen and Scholes
(1972) sorting procedure, the empiricist greatly biases the test in favor of rejecting the model under
consideration.

Although one might justifiably argue that this example is extreme, it does illustrate concisely
the main intuition of the paper. Our object in the next section is to establish conditions under

which these results will generally be true.



2 Theory

We take as a primitive an economy in which the observed or measured return at time ¢ of every
firm i is Rit, where

Rirs1 = B[R] + it (11)
Eit11 1s assumed to have mean zero. We will again assume that infinitely many stocks exist. Given
the information set at time, ¢, let Fi(-) be the cross-sectional distribution of Ei[Rj41]. Let the
mean and variance of this distribution be denoted i and atg. The cross-sectional variance of &;ry1
is denoted w?. Note that since &;11 is an expectational error it is uncorrelated to anything in the
information set at time ¢. Since E}[R;4+1] is in this information set, the cross-sectional correlation
between &1 and Ey[Rj41] is zero.

We further assume that an empiricist chooses to undertake a test of an asset pricing model in
this economy. Denote as R; 11 as the prediction of the model of Ey[R; 11], given the information
set at time t. Of course, like any economic model it is not eract — Rm_l # E[Rit+1] — the
expected return calculated using the model does not exactly equal the actual expected return. The
reason for this difference is not relevant — it could result from model misspecification, parameter
observability issues (e.g., an error-in-variables problem) or microstructure effects. The difference
simply reflects the fact that no economic model is capable of making predictions that are perfectly
accurate. Even the predictions of the true asset pricing model are affected by errors in measuring

the model’s parameters. Therefore, let

Rit11 = Et[Rit+1] + €it41, (12)

where €41 is distributed independently of everything else in the economy and Ei[e;q1] = 0. Let
the cross-sectional variance of €41, given the information set at time ¢, be denoted Htg. Under
these assumptions and given the information set at time ¢, the cross-sectional distribution of €;;41
is independent of the cross-sectional distribution of E¢[R;+1] as well as &;11. Thus, the nature of
the model error is such that it is unpredictable given any conditioning information — the pricing
model is good enough so that it does not systematically misprice stocks.

The advantage of focusing on the prediction of the asset pricing model, Ry 1, rather than the
model itself, is that this allows a greater degree of generality because we do not have to restrict the
functional form of the model itself. By definition, any asset pricing model must contain a prediction
for the expected return. Therefore, the results in this paper can, in principle, be applied to a test
of any of the standard linear models as well as other, possibly non-linear, asset pricing models not
yet derived.

One procedure for testing the asset pricing model is to cross-sectionally regress Rit+1 (the

observed return) onto Ri.1 (the prediction of the model) at each point in time.® Given the

3 Almost any cross-sectional test of an asset pricing model can be fit into this framework. For instance, this
procedure is equivalent to a cross-sectional test of a single factor model because the factor risk premium is common



information set at time ¢, the coefficient of this regression is

cov (R“Jr_l’ R““) _ cov (Ei[Rit+1] + Citg1, Er[Rirg1] + €it+1)
var (Rity1) var (Et[Rit+1] + €it4+1)

2

_ Ot

0P+ 67
1

- 13)

— (
1+ (%)

where the second line follows from the independence of ;11 and the fact that ;1 and Ey[Rj41]
are cross-sectionally uncorrelated. When the model holds exactly (6; = 0) the coefficient is one.
When the model does not hold exactly the coefficient is always less than one, and this attenuation is
an increasing function of the difference between the model’s prediction of, and the actual, expected
return. For expositional simplicity we will henceforth drop the explicit dependence on time (except
in cases where this would lead to ambiguity).

An important feature of the example in the previous section is that the sort is undertaken
using a variable, namely the book-to-market ratio, that is known, a priori, to produce groups with
different average returns. This is the key assumption required to deliver the result. Thus, instead of
running the above cross-sectional regression in the whole sample, at each point in time first group
the stocks into n non-empty fractiles, denoted j(n) = 1,...,n, for which it is known, a priori, that
the expected return in each fractile differs.* Note that exact procedure followed to construct the
fractiles is immaterial. For example, the groups can be produced by sorting by any variable that is
known to be correlated (though not necessarily perfectly) with returns.

Let the conditional cross-sectional distribution of expected return in fractile j(n) be denoted
FIM(E[R)) = F(E[R]i € j(n)) with Qjm) = ficjm dF- Then, define Eji,) as the expected

return (at time t) of all stocks within fractile j(n), i.e.,
By = / B[RRI, (14)
Jicj(n)

and 032,(”/) as the cross-sectional variance of the expected return (at time t) of all stocks within
fractile j(n), i.e.,
2 = N2 qFin) _ g2
Ot = E[R;])" dF’ EZy- 15

The (weighted) average cross-sectional variation of the within fractile expected return is strictly

smaller than the full sample variation. Furthermore, as the number of fractiles goes to infinity the

to all stocks. Thus regressing on the factor beta is equivalent to regression on the beta times the risk premium. If
the model being tested is a multi-factor model with factor risk premia Ay, then Ry = r + Zle bridk.

4Thus j(n) is the j'" group in a partition consisting of n groups. The reason for explicitly writing the group
number as a function of the number of groups will become clear shortly.



average within fractile variation goes to zero. The following lemma proves this:
Lemma 1 Given any 6 > 0,

1. for anyn>1, 370 =1 Qj(n)ayg(n) <o

2. for any 0 < 6 < o2, there exists an N such that for alln > N

Y Qim)Timy <6
j(n)=1

Now consider what might happen if the empiricist proceeds to run the cross-sectional regression
test within each fractile. Using the same logic that provided (13), the coefficient of the test in the

G fractile is,

2 .
j(n)
- 16)
2 2 2 (
Tyt 14 (—Ujfn))

An implication of the above lemma is that a grouping of stocks always exists in which every within
fractile coefficient (i.e. (16)) is less than the full sample coefficient (i.e. (13)). Furthermore, by
picking a large enough number of fractiles, the empiricist can make every within fractile coefficient
as close to zero as he wants.

Before we prove these facts we need some more definitions. Let a grouping be any partition of
the dataset into n > 1 fractiles for which the average expected return of each fractile is distinct. A
series of groupings is then any ordered set of groupings in which the number of fractiles, n, in each
grouping increases monotonically and each fractile in the n? grouping is a subset of a fractile in

the n — 1 grouping.

Proposition 1 Consider the set of all possible groupings with n fractiles. Then for any 0 > 0,

there is a non-empty subset of this set such that for all groupings in the subset,

1 1
5 <

o) ()

1 <j(n) <n.

The proof of this proposition shows that so long as the within fractile variation does not differ
by too much between fractiles, the regression coefficient within every fractile will be lower than
the coefficient for the whole sample. It is worth emphasizing the implications of this result. The
result requires the existence of some variation in expected returns between fractiles. Satisfying
this condition requires little more than identifying a variable known to be correlated to expected
returns and using this variable to form the fractiles. The magnitude of this correlation need not

be very large, in particular, it need not be one. The implication is that even for a variable that is

10



only weakly related to expected returns, the empirical procedure will subject to the bias identified

in the proposition if such a variable is used to form the fractiles,.

Proposition 2 Consider the set of all possible series of groupings. Take any 6 > 0. Then for any

0<n< ﬁ there exists a non-empty subset of this set and an N such that for alln > N

(5)"

1 .
g <n, 1<j(n) <n.

1+ (f’jfn))

The proof of the proposition shows that by picking enough fractiles (with similar enough within
fractile variation), the coefficients in all fractiles can be made arbitrarily close to zero. The R?

coefficient of each within group regression is

1 [ var (R)+p*\ _ 1 2 <02 + 05 1 )
" (a]fn))g var (R, ) + 42 1+ (a,-fn))Q T
< [t 2 <92 T U?(n))
U+ (%) : %jm)
1

2
1+ (52
* Uj(n))
Consequently, the following corollary follows immediately from Proposition 2.

Corollary 1 Consider the set of all possible series of groupings. Take any 6 > 0. Then for any

0<n< ﬁ, there exists a non-empty subset of this set and an N such that for alln > N every

o

within fractile R? coefficient will be strictly less than 7).

In words, regardless of how well the model fits the full sample, the empiricist can make the within
fractile fit arbitrarily bad by simply picking a large enough number of fractiles and making sure the
within fractile variance does not differ by too much between fractiles. The bottom line is that if
the empiricist proceeds naively by judging the explanatory power of the model within any fractile
using the same criteria as he does to judge the explanatory power in the full sample then simply

by judiciously picking enough fractiles he can reduce the model’s explanatory power to zero.

3 Implications

The results derived in the previous section rely on the fact that the average within fractile variance

of expected returns is always less than the full sample variance. Equation (19) in the proof of the

11



lemma formalizes this notion. It also shows that, regardless of the number of fractiles, the weighted
average variance of all the fractiles is always lower than the full sample variance. The amount of
this “loss” is given by the strictly positive term Z?(n):l Qj(n) (E;.‘(n)>2 or what is generally know at
the between fractile variation. This variation is a measure of how much “worse” the asset pricing
model will do within the fractiles. The implication is, the greater the cross-sectional differences in
expected returns across fractiles are, the worse the within fractile performance of the asset pricing
model will be. As was pointed out in the introduction, one can think of this point as the converse
of a point made originally in Black, Jensen and Scholes (1972). There, the authors argued that
to provide a powerful test of the CAPM it is essential that the stocks are grouped into portfolios
that have large cross-sectional differences in expected returns (see Huang and Litzenberger (1988,
Ch. 10) for an excellent discussion of this point). By (19), large cross-sectional differences in
portfolio expected returns implies that the cross-sectional variation in the expected return of the
stocks that make up the portfolios must be small. Thus, if you decided to test the CAPM within
the stocks that make up the portfolios rather than on the portfolios themselves, you should do
the opposite of what Black, Jensen and Scholes (1972) recommend. To increase the power of this
test, the cross-sectional variation within each portfolio group must be maximized, which implies
the cross-sectional differences in the portfolio expected returns must be minimized.

Lemma 1 shows that so long as there is any between group variance in expected returns, the
average within group variance will be lower within the groups. Consequently, the most effective
way to maximize the within group variance is to have only one group, in other words, do not sort
at all and use the full sample. There might, however, be valid reasons for not using the whole
sample. One frequent justification for this kind of sorting is to determine whether an asset pricing
model can explain a known characteristic of the data, for instance, a positive correlation between
a particular variable and return. An implication of the results is that the criteria for the sorts is
important in setting up this kind of empirical test.

Suppose a researcher wanted to test whether a particular asset pricing model, say the SOS
model, can explain an empirically observed cross-sectional relation between a variable, denoted +,
and average return. She therefore takes as her Null hypothesis the hypothesis that the SOS asset
pricing model is correctly specified and holds. A necessary condition for this hypothesis to hold
is that the SOS model explain the cross-sectional relation between v and average return. The
Alternative hypothesis is that the SOS model does not hold. The key point to note is that ~ is
related to average returns under both hypotheses. Consequently, if stocks are first sorted by =,
the ability of the SOS model to discriminate within the groups will be diminished under both
hypotheses. If the implications of the propositions are ignored then this could lead to a false
rejection of the Null. If, however, stocks are first sorted by the expected return predicted by the
SOS model, the within group relation between v and average returns will only be diminished under
the Null. This follows because under the Alternative, the model cannot differentiate stocks with
different expected returns and so there is no reason to expect between group variation in expected

returns. Thus the correct way to implement a test of this Null is to first sort by the prediction of
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the SOS model and then see whether, within the groups, ~ is still related to expected return.

There are at least two other reasons why researchers group data. First, grouping data can sig-
nificantly reduce the computational burden associated with the size of financial data sets. However,
in recent years advances in computational speed have significantly relaxed this constraint, so more
recently authors have argued for techniques that do not require grouping (see, for example, Kim
(1996)).

The other reason for grouping the data concerns the number of degrees of freedom in cross-
sectional studies that require estimating the variance-covariance matrix of returns. Given a typical
sample of 2000 stocks, this matrix has over 2 million elements. With only 70 years of data, there
is an obvious specification problem. Since this problem is unlikely to be solved in the foreseecable
future, it appears that grouping the data will always be an integral part of these studies. It is
therefore worth considering what implications the results in this paper has for those studies.

Our results rely on the assumption that there exists between group variation in expected returns.
Such variation can arise because the researcher chose to construct the groups in a sample in which
other studies already detected this variation. It can also arise because under one or more of the
hypothesis being tested, the between group variation is theoretically predicted. In this case, unless
the researcher explicitly accounts for the effect of this variation, the power of the test against this
hypothesis will be reduced.

In the next section we briefly illustrate the implications of our results in context of one of the

studies that use the sorting procedure studied in this paper.

4 An Application: Daniel and Titman

In a recent article, Daniel and Titman (1997) argue, based on their results, that a “characteristic”
based model does a better job explaining the cross-section of asset return than the Fama-French
factors do. In this section we will illustrate the implications of our propositions on this conclusion.
The part of Daniel and Titman (1997) that we will concentrate on are the results contained in
Table IIT in that paper (reproduced here as Table 2). To generate that table, Daniel and Titman
first sort stocks into nine different groups based on the market value and book-to-market ratio,
hereafter BM/SZ groups.” The authors knew, a priori, that such a sort would produce groups in
which the expected return of each group would differ because they used a sample in which it was
well know from past empirical studies (in particular, the study that motivated the research in this
arca — Fama and French (1992)) that these variables are highly correlated with realized returns.
The authors next proceed to test whether a factor model can distinguish stocks within each
BM/SZ group. The factors they use are the three factors previously identified empirically by Fama
and French (1993). They take each stock’s loading on one of these factors (HML) (i.e., the beta of

5They sort stocks by market value (book-to-market) and establish 33.3% and 66.6% break points. Based on these
break points, the authors define nine possible groups and sort stocks into these nine groups based on their market
value and book-to-market ratios.
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each stock on the HML factor), and within each BM/SZ group they sort stocks into five portfolios
based on this loading. They then calculate the return on these portfolios, and based on the fact
that, within each BM/SZ group, there is almost no systematic difference between the returns of
these portfolios, they conclude that once firm “characteristics” are controlled for, there is only a

weak relation at best between factor loadings and returns.

Table 2: Daniel and Titman — Table III: This table presents the mean excess returns of the 45
portfolios formed on the basis of market value (SZ), book-to-market (BM) and the estimated factor loadings
on the HML portfolio (i.e., the betas on the HML factor), for the period from July 1973 through December
of 1993. Each of the five factor loading portfolio columns provides the monthly excess returns of portfolios
of stocks that are ranked in a particular quintile with respect to the HML factor loading (with column 1
being the lowest and column 5 being the highest). The firm size and book-to-market rankings of the stocks
in each of the portfolios are specified in the 9 rows. For example, the top left entry in the table (0.148) is
the mean excess return of a value-weighted portfolio of the stocks that have the largest market value, the
lowest book-to-market, and the lowest expected loading on the HML factor. The last two columns of this
table do not appear in the corresponding table in Daniel and Titman. The second to last column is just
the average of the returns reported in the table of the five factor loading portfolios. The last column is the
difference between the sum of the reported returns for portfolios 4 and 5 and the sum of the reported returns
for portfolios 1 and 2.

Char Port Factor Loading Portfolio Average  Portfolio
BM SZ 1 2 3 4 5 (4+5)-(142)
1 3 0.148 0.287 0.396 0.400 0.830 0.4122 0.795
2 3 0.645 0497 0.615 0.572 0.718 0.6094 0.148
1 1 0202 0.833 0902 0.731 0.504 0.6344 0.200
1 2 0711 0.607 0.776 0.872 0.710 0.7352 0.264
3 3 0736 0.933 0571 0.843 0.961 0.8088 0.135
2 2 0847 0.957 0.997 0873 0.724 0.8796 -0.207
2 1 1.036 0.964 1.014 1.162 0.862 1.0076 0.024
3 2 1.122 1.166 1.168 1.080 0.955 1.0982 -0.253
3 1 1.211 1.112 1.174 1.265 0.994 1.1512 -0.064

Average 0.740 0.817 0.846 0.866 0.806

These results are reproduced here in Table 2, which is Table IIT in Daniel and Titman (1997,
p. 18) with two additions. Each row in the table shows the return of the five portfolios sorted
on HML factor loading for each BM/SZ group. We have added two columns, the average return
across the factor loading portfolios (second to last column) and the difference between portfolios 4
plus 5 and 1 plus 2 (last column). The first addition gives some idea of what the average return in
each BM/SZ group was and the second speaks to the ability of the factors to differentiate returns.
We have also changed the order of the rows so that the rows are now ordered increasing in realized
return.

There is one thing, in particular, that is worth noting about the table. The difference be-

tween the average realized return of the lowest and highest BM/SZ group is remarkably large
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(.74%/month). On an annual basis this difference works out to be about 9.24%. To the extent
that the large realized differences in average returns reflect large differences in expected returns
this sorting procedure reduces the cross-sectional variation in expected returns within each group.
Furthermore, even if these factors completely explain asset returns, since the factor loadings are
not observed directly, they are measured with error. This error alone is enough to ensure that the
condition that the model error is non zero, i.e., # > 0 is satisfied. There is however a potentially
more important source of model error. Since stocks are ranked on only one of three factors, the
contribution of the other two factors is “missing.” Thus the “missing” factors are additional sources
of model error — a high beta on the factor might not be associated with a high return because the
other betas on the factors not ranked are low. Under their Null, all three factors are hypothesized
to explain returns, so by leaving out two factors the authors are implicitly assuring that 6 is large
under the Null. The reduced within group cross-sectional variation in expected returns coupled
with the model error explains why these authors fail to find a discernible relation between the factor
loading and returns in the data set in which these factors were identified.

It is important to understand that not all of the implications of the Daniel and Titman study
rely on the results of the above sorts. For instance, they undertake a series of Black, Jensen and
Scholes (1972) type tests of the Null hypothesis that the Fama-French factors explain returns. Since
none of these tests are run within the BM/SZ groups, they are not subject to the bias discussed
in this paper. Under their Null hypothesis, the regression intercept should be zero, yet they find
that three of the nine intercepts have t-statistics above 2.0. Although they do not conduct a joint
test, at first glance anyway, it is hard to disagree with their conclusion that the intercept is non-
zero. Taking this result at face value, their inference that the Null hypothesis that the Fama—French
factors correctly price assets can be rejected, is justified. However, they also claim in the paper that
their “characteristics” based model does better than the Fama—French factors. The “evidence” in
the paper that supports this claim are the results of the sort analyzed above. Without this evidence

it is hard to justify this claim.

5 Conclusion

The results in this paper imply that the conclusions of empirical studies that first sort the data
into groups based on a variable known, a priori, to be correlated with returns, and then run tests
within the groups should be questioned. It is shown that such a procedure biases the test in favor
of rejecting the asset pricing model under consideration. We demonstrate that simply by sorting
into enough groups, it is possible for a researcher to reduce the explanatory power of even an
economically correct asset pricing model to zero.

The question of how the sorting techniques affect the statistical inferences of the studies that
employ them is important because, given the realities of the data, it is likely that financial re-
searchers will continue to using sorting techniques for some time to come. Although this paper

provides an in depth study of the effect of one particular technique, there are other techniques
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that could potentially be analyzed using the same methodology. Specifically, the result in this
paper relies on the fact that the total sum of the squared variation of a sample is fixed. What
any sort does is determine how this variation is apportioned between the within sample and the
between sample variation. This apportioning of the variation directly affects the power and size of
the statistical test, thereby affecting the statistical inferences. This basic idea can, in principal, be
applied to other sorting techniques. For example, Lo and MacKinlay (1990) have argued against
using variables identified within the sample as criteria for forming portfolios. Viewed from the
perspective of this paper, what Lo and MacKinlay (1990) argue is that by using these variables
to form the portfolio, the between sample variance is increased, or to put this another way, the
technique increases the variation in realized returns across portfolios. Because the sorting variables
are identified within the sample, part of this variation might be spurious. Thus the inability of an
asset pricing model to explain the between sample variation might result from this data mining
bias rather than reflect a fundamental problem with the model.

The use of sorted data in empirical studies has become so widespread that this procedure illicits
few econometric queries, and so little if no econometric justification for the technique is offered.
This study emphasizes, at least in the context of one sorting procedure, why such justification

might be important.
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Appendix

A  Proof of Lemma 1

Take a partition with n fractiles. Then from the definition of the variance:

5+ Ejmy) = /@,( )(E[RD dFIt), (18)

Multiplying both sides by Q) and then summing over Jj(n) provides,

Z QJ(“ ( n)+E(n)> = Z E[RitDQQj(n)dFj(”).

j(my=1 7SI

_ zn: / (E[Ry])2dF.

(n)=1 i€j(n)
= / (E[Ry))*dF
= 02+u2.
Rearranging terms,
Z Qj(n) J(n = Z Qj(n) ( j(n) — )
j(n)=1 n) 1
= Y Qo (4 By = ) - )
n) 1
-y Qs (Ejiny — 1) +2 > Qw (BEjm) — 1)
n) 1 J(n )—1
= Z Qjny (Bjmy ) +2p Z Q) Bjny — 21
7') 1 J(”)
2
= ; Qjtny (Ejimy — i ) Z Qa(n (E5m) -
(n)=1
where E;.‘(n) = Fj) — p- This implies that,
n 9 9 9
Y. Qi Tim = Z Qjn) ( j(n) <o (19)

i(n)=1 J(n)=1

which completes the proof of the first part of the lemma.
For the second part, take another partition with m fractiles where m > n and every fractile in

the new partition is a subset of a fractile in the old partition: for every j(m), there exists a j(n)
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such that j(m) C j(n). Now take the set of partitions that are a subset of j(n):

Z Qjm)(

F(m)Cj(n)

> Qiem (Bjy + (B

J(m)Cj(n)

J(m)Cj(n)

Z Qj(m) (

3(m)Sj(n)

J(m)Cj(n)

oy

Rearranging terms,

;

> Qi (B

m)Cj(n)

m

% %

j(n>))2

> Qi (B =) + X @ity ((Bjin))? + 2B (B -

J(m)Si(n)

(n) + Qj(n) ( a(m)g-

> Qi (B

J(m)=1

) >

Since it is assumed that the E]’.‘(n) are distinct,

These two facts and (19) imply that for all j(n)

which delivers the result.

Jim 37 Qe (

j(m)=1

B Proof of Proposition 1

lim o2

i) = 0;

n—oo

— Ej ))2 + 2B, (
Z Qj(m) ( ﬂ'<m _E;

)2> — Qj(n) (Efm))Q =

Since m > n, this inequality is strict for at least one j(n) so we have,

Z Qjm)E

J(m)Cj(n)

j(m

Z Qjm)(

)Ci(n)

) = Ejw)
Jj(m

)= Ejwy)

Z Qj(n) ( n))Q'

i(n)=

1

E?(na)Q = o

Consider a grouping with n fractiles. By part (1) of Lemma 1,

o’ > Z Qjn) ](n >H11n{ Tj(n)} Z Qj )—nnn{a )}

j(n)=1
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j(n)

2

)

Z Qjm)E

1Ci(n)

> 0.

(20)

(22)

(23)

(24)



Define
P =02 - H(lll’l{ i)t >0, (25)
J(n

and take any grouping such that,

H_l(&ﬁ({o‘ ()} — mln{a ny} < ®. (26)
j(n

(At least one such grouping exists because the grouping in which ojmy = K for all j trivially

satisfies this condition.) Then,
2 .
o =min{oi,) } + P > max{o;, 27
it sy toaen 27

which proves the proposition.

C Proof of Proposition 2

Consider the set of all possible series of groupings. Take the subset of series for which, for each

series in this subset, there exists an m such that for all n > m,

H%&X{ i(n)} — mln{ i)y < A (28)
j(n
where A < T By part (2) of the Lemma 1, for T' = T A, there exists an N such that
11 14
n n
forall n > N
r> Z Qj(n) in) = mln{a )} (29)
j(n)=1 i)
So,
r+A> H(lir)l{oj(n)} +A> m(aii{aj(n)}, (30)
j(n ijn

which completes the proof.
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