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Abstract

Introduction There is increasing interest in social digital

media (SDM) as a data source for pharmacovigilance

activities; however, SDM is considered a low information

content data source for safety data. Given that pharma-

covigilance itself operates in a high-noise, lower-validity

environment without objective ‘gold standards’ beyond

process definitions, the introduction of large volumes of

SDM into the pharmacovigilance workflow has the

potential to exacerbate issues with limited manual resour-

ces to perform adverse event identification and processing.

Recent advances in medical informatics have resulted in

methods for developing programs which can assist human

experts in the detection of valid individual case safety

reports (ICSRs) within SDM.

Objective In this study, we developed rule-based and

machine learning (ML) models for classifying ICSRs from

SDM and compared their performance with that of human

pharmacovigilance experts.

Methods We used a random sampling from a collection of

311,189 SDM posts that mentioned Roche products and

brands in combination with common medical and scientific

terms sourced from Twitter, Tumblr, Facebook, and a

spectrum of news media blogs to develop and evaluate

three iterations of an automated ICSR classifier. The ICSR

classifier models consisted of sub-components to annotate

the relevant ICSR elements and a component to make the

final decision on the validity of the ICSR. Agreement with

human pharmacovigilance experts was chosen as the pre-

ferred performance metric and was evaluated by calculat-

ing the Gwet AC1 statistic (gKappa). The best performing

model was tested against the Roche global pharmacovigi-

lance expert using a blind dataset and put through a time

test of the full 311,189-post dataset.

Results During this effort, the initial strict rule-based

approach to ICSR classification resulted in a model with an

accuracy of 65% and a gKappa of 46%. Adding an ML-

based adverse event annotator improved the accuracy to

74% and gKappa to 60%. This was further improved by the

addition of an additional ML ICSR detector. On a blind test

set of 2500 posts, the final model demonstrated a gKappa

of 78% and an accuracy of 83%. In the time test, it took the

final model 48 h to complete a task that would have taken

an estimated 44,000 h for human experts to perform.

Conclusion The results of this study indicate that an

effective and scalable solution to the challenge of ICSR

detection in SDM includes a workflow using an automated

ML classifier to identify likely ICSRs for further human
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Key Points

A machine learning classifier achieved substantial

agreement with a human expert when classifying

social digital media posts as valid individual case

safety reports

This level of performance could not be achieved with

a conventional rule and dictionary approach to

classification

Combining a machine learning approach with human

review has the potential to be an effective and

scalable solution to the challenge of identifying

individual case safety reports within social digital

media posts

1 Introduction

Safety surveillance in the premarket clinical trial process is

designed to identify common adverse events (AEs) and

drug reactions (ADRs) occurring in study populations.

Typical clinical development programs include sample

sizes between a few hundred to several thousand study

patients in total; allowing for identification of AEs occur-

ring between approximately 3% (i.e., 3/100) down to 0.3%

(i.e., 3/1000) by the ‘Rule of Three’ [1]. However, many

subsequent ADRs are identified after the drug is on the

market due to factors including exposure to an expanded

patient population, concomitant medication use, dosing

patterns, off-label usage, and intentional misuse [2, 3].

Effective postmarket pharmacovigilance, defined by the

World Health Organization as ‘‘the science and activities

relating to the detection, assessment, understanding and

prevention of adverse effects or any other drug-related

problem’’ [4], relies on swift, accurate, and comprehensive

reporting of ADRs through the submission of individual

case safety reports (ICSRs) to the appropriate regulatory

bodies. A streamlined, global approach to pharmacovigi-

lance increases the power of signal detection activities to

identify and supplement the initial safety profile based on

randomized controlled trials in the area of clinical safety.

This is facilitated by the application of the revised Guide-

line for Clinical Safety Data Management: Data Elements

for Transmission of ICSRs (E2B), which was developed by

the International Council for Harmonization and has been

widely adopted as the standard for ICSR reporting [5].

At a minimum, a valid ICSR must contain at least one of

each of the following four elements: (i) an identifiable patient,

(ii) an identifiable reporter, (iii) a suspected drug, and (iv) an

AE [6]. The currently accepted practice is for pharmaceutical

companies to review all spontaneous reports submitted

directly to the company or any of its employees [7]. This may

also include AEs detected during post-market studies,

reported in the scientific literature, or identified during eval-

uation of data that the company collected for unrelated pur-

poses. This improves the depth and breadth of data available

for signal detection compared with randomized controlled

trials, but there remain well known limitations including

under-reporting and selective reporting [8, 9].

In recent years, social-digital media (SDM) posts have

been proposed as a potential new source of data for ADRs

which can compensate for some of the limitations in the

existing spontaneous ICSR reporting system [10, 11].

Individuals commonly turn to the internet to find peer

communities through which they can gain insight into their

condition and with whom they can share their experiences

with therapeutics [12, 13]. These social media exchanges

and posts have the potential to offer a wellspring of insight

into potential risks and benefits of therapeutics and patient

education needs. The complexity, richness, diversity, and

scale of this content presents not only an opportunity for

garnering new insights into patient perspectives but also a

challenge to the current capacity for prompt reading and

digestion of this information [14].

Previous publications have shown that the majority of

digital media posts do not meet the minimum requirements

of a reportable ICSR, and the transient and anonymous

nature of the medium make follow up on incomplete posts

challenging, if not impossible [15]. In spite of this, the

large pool of SDM posts still has the potential to enable the

industry to detect or strengthen other safety signals. The

nature of social media offers a unique, direct, unaltered

reflection of a patient’s experience and is more likely to

reveal safety-relevant information in their own words (e.g.,

‘‘drug X makes me feel angry’’), than adverse reactions

diagnosed in a clinical trial setting. There is some evidence

that useful insights into drug misuse and abuse can also be

garnered from SDM, which may otherwise go undetected

in the more traditional post-market safety data [16]. For

these and other reasons, it is worth pursuing evaluations of

technology with the capability to pick out valuable safety

information from vast quantities of data.

Current EU regulations require marketing authorization

holders to track and report only ADRs derived from SDM

posts within their own website forums or otherwise brought

to their attention [16–18]. While the current regulatory

landscape does not mandate the pharmaceutical industry to

review noncompany-controlled SDM (as in ‘active

surveillance’), the regulator’s expectations to monitor such

data sources may change if a viable solution to the problem

of scaling is found.
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Computer automation is one potential mechanism for

creating a scalable solution for monitoring SDM sources in

pharmacovigilance activities; however, traditional rule-

based algorithms perform poorly at tasks that require

parsing natural language [19]. Machine learning (ML) is an

alternative programming approach that is widely used for

natural language processing and sentiment analysis. ML

has been evaluated for early detection of safety signals

from social media sources and in labeling ADRs within

Twitter posts [15, 20–22]. In this study, we investigated the

potential of ML to identify valid ICSRs relative to human

subject matter expert (SME) assessments of the same SDM

data.

Development of a program that can identify potential

AEs and determine if they are valid ICSRs within the

highly noisy platform of social media requires a deep

understanding of both pharmacovigilance and ML algo-

rithms. To address this complexity, we established a col-

laboration between Roche and IBM with the goal of

determining if ML could be leveraged to screen SDM posts

for potential ICSRs and reduce the burden on human

pharmacovigilance experts without sacrificing accuracy.

2 Methods

2.1 Scope

The objective of this proof-of-concept effort was to

develop and evaluate a computer program which could

classify English-language SDM posts as valid versus

invalid ICSRs. The objective was to start with an entirely

rule- and dictionary-based approach to classification and

strategically add in ML elements to address identified

deficiencies in performance. Due to the regulatory impact

of false-negative results and its intended role as a pre-

screening tool, we prioritized minimization of type II errors

(false negatives) at the expense of increased type I errors

(false positives) during the development phase. Our

approach was to optimize for high agreement between the

automated classifier and a human SME.

Valid ICSRs were those that contained, within the text

of the post, (i) an identifiable patient, (ii) an identifiable

reporter, (iii) a suspected drug, and (iv) an AE. Content

available through embedded links, pictures or non-text

sources will not be used to determine ICSR validity.

For this proof-of-concept study, we applied the follow-

ing limits to the project scope. First, the final classifier will

only assess posts it identifies as English language. Second,

it will only identify pure ICSRs (i.e., those containing AEs

related to noxious or unintended effects, off-label use,

overdose, misuse, abuse or medication errors). AEs related

to lack of effect or disease progression were considered out

of scope due to the complexity and subjectivity required for

determining reportability.

2.2 Data Collection and Management

A separate team within Roche had previously collected a

dataset of 311,189 SDM posts using the social media brand

monitoring platform Radian6 to identify posts that mention

Roche products and brands in combination with common

medical and scientific terms [23]. The social media outlets

from which these posts were collected included Twitter,

Tumblr, Facebook, and a spectrum of news media blogs.

Search terms included key words associated with the

pharmaceutical industry, Roche brand, and senior person-

nel. The lists included Roche product names, pharmaceu-

tical terminology (e.g., diabetes, oncology, drug approval,

FDA, influenza) and brands specific to Roche (e.g., Chugai,

Genentech). Negative searches were also applied such

‘NOT Roche-Posay’ (a separate cosmetic company). The

sourcing of data from the internet was indiscriminate

towards language and resulted in a dataset consisting of

over 44 different languages; however, the majority

(55–60%) were in English. A full list of search terms can

be found in electronic supplementary material 1.

A member of the Roche team (DD) loaded the full

dataset into an Oracle database and programmatically

searched and labeled the posts for Roche product names

and MedDRA preferred terms (PT) and lowest level terms

(LLT). This full dataset was supplied to both the IBM

team, to facilitate understanding of the dataset, and to the

Roche pharmacovigilance team for further processing and

curation. For training and testing purposes, DD randomly

selected three non-overlapping subsets (Set A, B, and C)

from the source data (Fig. 1). For each set, we have iden-

tified the number of posts excluded because either the

human pharmacovigilance SME or the software identified

them as non-English. The remaining posts were identified

as either valid or invalid ICSRs according to the methods

described in Sect. 2.3.

2.3 Ground Truth and Discrepancy Analysis

We established ground truth for set A by having three

pharmacovigilance SMEs (ZH, SC, and SM) independently

review the posts to determine if they met the criteria of an

ICSR. The SMEs reviewed all posts in the development set

regardless of whether a Roche product name or MedDRA

LLT or PT had been programmatically identified. We then

labeled posts as valid ICSRs if at least two out of three

SMEs flagged it as a complete ICSR.

For sets B and C, we established ground truth by having

the posts evaluated by a single pharmacovigilance SME

(ZH), who is also the Roche global expert for SDM. This
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reflected how an ML system would ideally be used in the

pharmacovigilance workflow, to supplant the need for an

initial human review of all social media posts. Since only a

single operator was used to establish ground truth for the

final test data, we had the two other pharmacovigilance

SMEs (SC and SM) and one ML SME (SP) perform a

subsequent discrepancy analysis to verify the accuracy of

the human operator and, where possible, to categorize the

reasons for both false positives and false negatives by the

classifier.

2.4 Structure of Individual Case Safety Report

(ICSR) Classifiers

All solutions presented in the paper utilize the same high-

level approach to structuring an ICSR classifier (Fig. 2).

First, three annotators identify the presence of the mini-

mum required ICSR entities: an adverse event, a drug, and

a patient. In social media, the reporter is assumed to be the

author of the post. The fourth annotator identifies rela-

tionships between the identified entities, and then the ICSR

detector takes the original post and annotated entities as

inputs and outputs the ICSR decision for the post. We

iteratively developed the components of the ICSR classi-

fication framework. This is due to three reasons: (i) avail-

ability of the SME annotated datasets, (ii) to establish and

communicate a common understanding between Roche and

the IBM team about the nuances of the problem, and (iii) to

receive feedback from pharmacovigilance SMEs for the

ICSR classification results.

2.5 Iteration I: Rule-Based ICSR Classifier

The Iteration I model used a set of dictionaries and a rule-

based approach to identifying potential ICSRs. Each of the

four annotators used a simple text matching approach to

identify AEs, drugs, patients, and relationships. The AE

annotator in this model used the MedDRA dictionary and

Fig. 1 Breakdown of source data and curated subsets. Blue boxes

indicate the data batches received by the software development team

in various stages of development. The green boxes contain the split

between valid, invalid, and excluded individual case safety reports

(ICSRs) in the respective dataset. Posts were excluded because they

fell outside the scope of the proof-of-concept study (see Sect. 2)

Fig. 2 Components of the

individual case safety report

(ICSR) classification

framework. AE adverse event
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terms like cause, deteriorated, worsened and aggravate to

identify the AEs. The drug annotator dictionary included

all generic and brand names for Roche pharmaceutical

products, and the patient annotator included variations of

80 pronouns such as I, my, mine, you, adult, patient, baby,

boy, and girl. The relationship annotator applied simple

rules to determine likely relationships between the three

elements above. For example, a text pattern like

‘DRUG_NAME cause MedDRA_TERM’ would suggest

that a medical condition described by MedDRA_TERM is

an AE reported to be caused by DRUG_NAME.

In this first approach, the ICSR detection module was

also developed as a rule-based solution. The following are

some of the rules that were applied to detect ICSRs in

iteration I:

If all ICSR elements are not present:

Not ICSR

If all ICSR elements are present:

Patient mention is not a first person pronoun:

Low confidence ICSR

Patient mention is first person pronoun but has a weak

relationship with other entities:

Low confidence ICSR

ICSR elements show strong relationship:

High confidence ICSR

Weak and strong relationships were characterized by the

absence or presence, respectively, of an explicit relation-

ship between the entities. If the entities were present within

the same sentence, but our pattern-based algorithm did not

find an explicit relationship, then they were marked as

having a weak relationship; whereas entities within the

same sentence with explicit relationships were marked as

having strong relationships.

2.6 Iteration II: Machine Learning (ML) Approach

to Adverse Event (AE) Annotation

In Iteration II, we supplemented the rule-based AE anno-

tator with a machine-learned AE annotator. All other

modules from iteration I remained unchanged. To train the

new AE annotator, we used a publically available Twitter

dataset of 1784 tweets previously annotated for adverse

events [21]. We selected an independent dataset for train-

ing the AE annotator to prevent overfitting of the ML

model. We specifically selected an annotated Twitter

dataset as it is closest to the grammatical, morphological,

and syntactic properties of the SDM posts that we are

focusing on in this study, and ML models are very sensitive

to the linguistic features exhibited by the text on which

they are trained [24]. We trained an instance of KnIT

pipeline [20–22] to detect adverse events in tweets by

exploiting their syntactic and semantic features. A more in-

depth explanation of the ML methods can be found in

electronic supplementary material 2. Example AEs from

the annotated training corpus are shown below.

• Drug A destroyed my entire body

• Drug A nearly killed me

• Drug A made me hungry, dizzy, and tired

• Drug A knocked me out

2.7 Iteration III: ML Approach to ICSR Detector

For Iteration III, we upgraded the ICSR detector from a

rule-based approach to an ML model. All other modules

were kept the same from iteration II to iteration III. We

used a support vector machine (SVM) algorithm to develop

the new ICSR classifier (electronic supplementary material

2). Before training the classifier, we processed the input

text to identify the portion of the text that potentially

contained the information related to the ICSR decision.

Namely, we extracted the sentences or text snippets of the

digital media posts that contained any drug or adverse

event mention as identified by the annotators. We call such

snippets ‘focus text’. Then we extracted commonly used

syntactic and semantic features from the focus text to train

the SVM. The features we used include n-grams, dictionary

look-up based features, word clustering based on word

vector embeddings, and brown clusters [25–28]. For

training and stability testing of the iteration III classifier,

we combined data subsets A and B to create a curated set

of 2404 posts. Of these, 112 were valid ICSRs, and 2292

were invalid ICSRs.

From this set, we built five cross-validation sets by

randomly assigning 170 posts to a training set, with a fixed

distribution of 80 valid ICSRs and 90 invalid ICSRs, and

assigning the remaining 2234 posts to the testing set.

Robustness of the classifier was evaluated by performing a

training and testing iteration on each of the five cross-

validation sets [29].

Before locking the Iteration III classifier for the final

performance test on subset C, it was trained on the entire

validated, combined data from subsets A and B.

2.8 Testing Method and Performance Metrics

Each version of the classifier was tested by predicting the

ICSR results to a subset of the available dataset and

comparing the model’s results to the ground truth estab-

lished by the SMEs. An early challenge we encountered

was establishing a common language for describing per-

formance because the domains of ML and pharmacovigi-

lance use different terms to refer to the same underlying

statistics. For instance, the typical table for displaying

agreement between two assessment methods is referred to

as a confusion matrix in the ML community but is known
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as a 2 9 2 contingency table in the pharmacovigilance

community. To ensure clarity of communication between

both domains, we built a conversion table for the two sets

of statistics and agreed upon three metrics for evaluating an

ICSR classifier: accuracy, area under the receiver operator

characteristic curve (AUC), and Gwet AC1 (Table 1 and

electronic supplementary material 3).

Accuracy is equivalent to the overall percent agreement

and is a useful metric when evaluating the performance of

classifiers with a rule-based ICSR detector. In contrast, for

the iteration III ML classifier, which provides a probability

value for each decision, AUC is a more appropriate metric

for evaluating performance [30]. For assessing agreement

between ground truth annotations and predictions gener-

ated by our solution, we selected the Gwet AC1 statistic

instead of the more common Cohen’s kappa. Cohen’s

kappa is a robust metric when the number of positive and

negative test elements are roughly equivalent. As the ratio

skews away from 1:1, the kappa statistic becomes highly

sensitive to single mismatches. The Gwet AC1 statistic is a

reliable alternative statistic for measuring agreement that is

less sensitive to the ratio of positive and negative test

elements [31, 32].

2.9 Fermi Estimation Human ICSR Identification

Time

As a final exercise, we undertook a simple ‘Fermi’ analysis

to estimate the likely time it could take human SMEs to

manually evaluate the entire bulk of SDM posts in this case

study [33]. Our approach consisted of combining an esti-

mate of the range of word volume per digital media posts

(estimated max and min of 10–10,000 words/post) with the

international human reading speed of 184± 29 (SD) words/

min [34]. We used the geometric mean (e.g., the square

root of the product of upper and lower bounds) approach to

‘Fermi Problems’ to estimate the mode. The Program

Evaluation and Review Technique (PERT) was then used

to model the likely human ICSR identification time in

minutes and hours, for the cumulative dataset, as an

approximate b function.

3 Results

3.1 Assessment of the Dataset

The data collection method collected 311,189 SDM posts

between 2012 and 2016. Roughly 80.47% were posted in

2016, 19.50% were posted in 2015, and 0.03% were from

before 2015. Because vernacular on social media varies

between sites, posts were aggregated from a variety of

sources to ensure the classification models were appropri-

ately challenged (Table 2).

A manual review revealed four common reasons that the

majority of the posts would not be classified as ICSRs,

despite containing both an adverse event term and a drug

name. First, the mentioned AE term may be the primary

condition being treated by the drug rather than a separate

adverse event occurring as a consequence of the drug.

Second, the post may be describing a positive patient

experience. Third, it may be an advertisement that happens

to include AE terms unrelated to a drug name. Fourth, the

post may be a general discussion of side effects but not an

individual experience. A small selection of contrived valid

and invalid SDM ICSRs can be found in Table 3.

3.2 Iterative Development of an ICSR Classifier

We built the Iteration I ICSR classifier by defining rules

over the presence of four required ICSR entities and their

relationships. When tested on a small dataset of 152 posts,

set A, the Iteration I classifier achieved an accuracy of 65%

and a Gwet AC1 of 46% (Fig. 3a). Critically, it missed

nearly two-thirds of the valid ICSRs according to the

ground truth established by our subject matter experts

(Fig. 3b).

Table 1 Performance metrics

Name Value

True positive (tp) No. of true positivesa

True negative (tn) No. of true negativesa

False positive (fp) No. of false positivesa

False negative (fn) No. of false negativesa

Accuracy (Acc) tpþtn

tpþfpþtnþfn

Gwet AC1 Acc�eðpÞ
1�eðpÞ

e(p) ð2tpþfpþfnÞ=2

tpþfpþtnþfn

n o2

þ ð2tnþfpþfnÞ=2

tpþfpþtnþfn

n o2

Area under the curve Trapezoidal method [30]

SME subject matter expert
aTrue positive, negative, etc are based on SME-determined ‘ground

truth’

Table 2 Breakdown of the social media sources of the core dataset

Social media site Number of posts

Twitter 168,745

Online news and blogs 106,336

Tumblr 32,961

Facebook 2754

YouTube 142

Other 251

Total 311,189

584 S. Comfort et al.



An evaluation of the missed ICSRs showed that the

dictionary-based approach to annotating AEs was particu-

larly ineffective. Specifically, the annotator failed to rec-

ognize or misinterpreted colloquialisms and slang;

therefore, for the Iteration II classifier, we adopted an ML

approach to annotating AEs. With the addition of the ML

AE annotator, the Iteration II classifier achieved an accu-

racy of 74% and a Gwet AC1 of 60% (Fig. 3a). The con-

fusion matrix shows a reduction in both false positives and

false negatives (Fig. 3c); however, the performance is only

moderate according to the standard benchmarking of

agreement [35]. Common performance metrics have been

calculated for each confusion matrix and are reported in

electronic supplementary material 4.

The earlier assessment of the dataset revealed that the

presence of all four elements was only marginally associ-

ated with identification of a valid ICSR. Analysis of the

performance of the iteration II classifier indicated that the

rule-based ICSR detector was ineffective at making the

types of distinctions identified in Sect. 3.1**. Therefore,

the next step in development was to replace the rule-based

ICSR detector with an ML solution. The new ICSR clas-

sifier could produce the probability values for its classifi-

cations. This allowed us to plot the receiver operator

characteristic curve (Fig. 4a) and calculate the AUC as a

measure of accuracy. We present the results averaged over

fivefolds of the dataset C. This classifier achieved an AUC

of 85± 2% and a Gwet AC1 of 78± 1% (Fig. 4b). The full

confusion matrix of the average performance on the five

cross-validation sets is reported in Fig. 4c.

3.3 Testing the ML Classifier

Next, we evaluated the iteration III model’s classification

of the 2500 posts that were not part of the training set (set

C—blind dataset). This is a critical component of validat-

ing an ML model, which ensures that it can perform

equally well on new data and is not overfit to the training

set. Of the 2500 posts, we excluded 1139 because either the

automatic language detection tool or the human reviewer

identified them as non-English. An additional three posts

were removed because they fell outside the scope of our

experiment because the ICSR type was a lack of effect or

disease progression (see Sect. 2.1).

The agreement between the iteration III classifier and

the human social media pharmacovigilance SME, as

measured by Gwet AC1, for the remaining 1358 posts was

78%. The full confusion matrix of results is reported in

Fig. 5a and common performance metrics have been

Table 3 Contrived examples of social media posts containing valid and invalid ICSRs

Valid ICSRs Invalid ICSRs

Got the DRUG NAME burn going on today This flu has laid me out, ready to get back to life…Thanks DRUG NAME

I feel like death after taking DRUG NAME ROCHE Cancer drug success adds to pressure on competitor

I took DRUG NAME and now I’m about to pass out The most common side effects of DRUG NAME are nausea and vomiting

The terms in italics indicate drug keywords and the terms in bold indicate potential adverse event keywords and phrases

ICSR individual case safety report

Fig. 3 Performance of Iteration

I and Iteration II classifiers.

a Graph of accuracy and Gwet

AC1 for both classifiers.

b Confusion matrix for Iteration

I classifier. c Confusion matrix

for Iteration II classifier
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calculated and are reported in electronic supplementary

material 4.

We reviewed the 234 discrepant results and grouped the

reason for discrepancy into eight buckets (Fig. 5b). The top

three reasons, which accounted for over two-thirds of false-

positive results, were unreported rationale for AE by the

classifier, AE term was contained within a word salad, and

term reported by the classifier as an AE was not an AE.

Unreported rationale refers to all the posts where the ML

ICSR detector incorrectly calculated a high probability that

the post contained an AE even though the AE annotator did

not identify an AE. Of the five valid ICSRs missed by the

iteration III classifier, two were comparatively long (392

and 1403 words), diluting the significance of individual

features, one had no explicit mention of a patient, one was

missed by the rules-based drug annotator, and one used an

unclear antecedent to link the patient to the drug.

As a final test, we ran the full dataset of 311,189

unannotated posts through the ML ICSR classifier. In its

current design, the algorithm was able to exclude over 88%

of the posts in\48 h. In contrast, our Fermi/PERT model

for plausible human curation time of the same dataset

predicts an expected effort of approximately 44,000 work

hours or 22 full-time individuals working for 2000 h over 1

year (Table 4). While the uncertainty range of our estimate

is large, the result suggests that human identification of

ICSRs from large volumes of digital material can require

significant resources.

4 Discussion

This proof-of-concept study demonstrated both the utility

and comparability of an ML approach to human SMEs for

screening SDM posts for potential ICSRs. The initial iter-

ation model established that a strict rule- and dictionary-

based approach to ICSR classification resulted in an

accuracy of only 65%. Of particular concern was the fact

that the initial rules-based model missed over two-thirds of

the valid ICSRs. Subsequently adding an ML-based AE

annotator for the second iteration improved the accuracy

and agreement and this performance was further improved

with the addition of an ML ICSR detector. On the final

blind test set of 2500 posts, the Gwet AC1 agreement

between the social media pharmacovigilance SME and the

ML classifier was 78%. The Iteration III model was suc-

cessful at identifying 92% of the valid ICSRs from a highly

diverse and noisy social media dataset. One noted obser-

vation is that the ICSR classifier was able to correctly

identify the ICSRs even when the annotators fell short in

identifying respective entities (false negatives) or incor-

rectly identified entities (false positives). This proves that

errors in upstream processes have minimal impact on the

overall classification task. This is due to the fact that the

ICSR detector has the capability to analyze the linguistic

features of the SDM post and determine its validity/inva-

lidity. The output of the annotators are just a few factors

among many in deriving the final outcome.

Fig. 4 Performance of Iteration

III classifier. a Plot of the

receiver operator characteristic

(ROC) curve of the Iteration III

classifier. b Graph of area under

the ROC curve and Gwet AC1

for the Iteration III classifier

(average ± SD). c Confusion

matrix of the five cross-

validation results for the

Iteration III classifier (average

± SD). AUC area under the

curve, SD standard deviation
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Social digital media presents many challenges for ICSR

identification for both manual and automated ICSR cura-

tion. Human curation is the current gold standard for

identifying valid ICSRs; however, the speed at which SDM

posts are generated, the bulk of which are often adver-

tisements, nonsense (e.g., ‘word salad’), or unrelated,

Fig. 5 Performance of the Iteration III classifier on a blind set.

a Confusion matrix of the blind testing set results for the Iteration III

classifier. b Chart of count of false-positive results by reason.

c Chart of average length of post by reason for false-positive result.

AE adverse event, Avg average

Table 4 Program evaluation and review technique estimate of time for a human to evaluate the digital media data collection

Variables Minimum Maximum Mode Exp SD L90%CI* U90%CI*

Posts (n) 311,189 311,189 311,189 311,189 0.0 311,189 311,189

Human reading speed (wpm) 136 232 178 180 16 153 206

Post length (words) 10 10,000 316 1879 1665 48 2101

Read/ID speed (min/post) 0.07 43.10 1.78 8.38 7.17 0.31 10.22

Total evaluation time (min) 22,882 13,413,319 554,001 2,608,701 2231,701 96,517 3,179,934

Total evaluation time (h) 381 223,555 9233 43,478 37,196 1609 52,999

Exp exponential, ICSR individual case safety report, L90%CI lower 90% confidence interval, SD standard deviation, U90%CI upper 90%

confidence interval, wpm words per minute

* PERT Beta Function Approximate Confidence Intervals
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makes a manual human-only process tedious and imprac-

tical for curation of large datasets. It may be that the

introduction of specific mobile applications for AE

reporting, such as the recent successful public–private

Web-RADR partnership, will make capturing safety events

from SDM users much easier [36]. However, it is unclear

what proportion of the total volume of SDM reporting

would go into these well designed reporting vehicles. Thus,

approaches that can sift through large volumes of raw

material to identify likely ICSRs are still useful.

Classical computer algorithms can rapidly process high

volumes of data; however, the nuances of tone, style, slang,

and context make non-ML-based algorithms insufficient

for uniquely identifying valid ICSRs. We believe that the

results of this effort indicate that an effective and scalable

solution includes a workflow using an automated classifier

to detect likely ICSRs for automatic classification or fur-

ther human SME review.

Finally, during evaluation of the final Iteration III

model, we identified several opportunities for further

model development, likely resulting in a performance

improvement. Specifically, the inclusion of additional fil-

ters for the removal of nonsense posts and enhanced lan-

guage identification would address recurrent issues in

parsing scrambled or irrelevant SDM posts from the more

likely valid ICSR posts. It may also be valuable to train the

AE annotator on more data from sources outside of Twitter,

which accounted for a large proportion of this project’s

dataset. The 140-character length restriction of Twitter

posts leads to altered linguistic patterns which may nega-

tively impact the annotator’s ability to identify AEs in

other less restricted forums [37, 38]. Another challenge to

overcome is the impact of heavy social media users, which

could lead to biased signal detection. Within a single

forum, it may be possible to prevent duplicate reporting by

tracking the commenter’s user IDs, but across platforms or

in venues that allow anonymous handles, other strategies

must be developed and employed to prevent ‘over sam-

pling’ of one or a few individual’s SDM posts.

Today we are looking at SDM as a growing source of

potential insight into patients’ experiences with illness and

therapeutics. Efforts such as the Innovative Medicines

Initiative WEB-RADR project, conducted by a consortium

of health authorities (e.g., MHRA, EMA, etc), industry

(e.g., Novartis, Bayer, etc), and academia, are beginning to

develop a clear regulatory framework of how SDM could

be used to advance patient safety [36]. This is compounded

by a 2016 study which suggested that both general public

(83%) and caregiver participants (63%) felt that SDM was

feasible for patient safety reporting [39]. However, the

complexity, richness, diversity, and volume of this data

requires novel technologies to digest it quickly, accurately,

and at scale.

While this pilot focused on safety-related insights, other

insights into benefits, adherence, educational needs, pref-

erences, and patient behaviors could enhance our ability to

not only detect safety issues quickly but also to support

patients more appropriately and completely and to even

detect new benefits. These social media outlets are likely to

change, as will what we term SDM. In the future, safety

data may be further supplemented by data from mobile

patient safety reporting applications, wearable devices such

as watches, exercise apps, and smart devices. As biometric

data begins to be uploaded by users, the volume and type of

data to review will grow nonlinearly. Future technical

solutions will need to read unstructured text from a host of

sources and combine those insights with ones from

exogenous structured data sources like wearable devices,

electronic medical records, claims data, and social media to

present a holistic view of patients’ experience with their

conditions, care, therapeutics, and lifestyles to inform not

only drug safety but all aspects of drug discovery and

development.

4.1 Limitations

There are several limitations to this study which bear con-

sideration. Foremost, although we had 311,189 posts at our

disposal, we were limited to manual review, which meant

that we were only able to establish the ground truth for a

subset of 5152 posts. In addition, the frequency of valid

ICSRs ranged from 1 to 5%, which is very limiting for both

development and testing purposes. To truly establish per-

formance metrics, we would need to establish the ground

truth for a much larger fraction of our available dataset.

Second, our dataset pulls exclusively from posts that men-

tion Roche products or keywords and as a result are weighted

towards the fields of oncology, and immunologic and

metabolic disorders. Performance on a broader dataset

cannot be easily extrapolated from performance on a Roche-

exclusive dataset. Specifically, the ICSR detector module in

the Iteration III classifier would need to be retrained on a

more diverse dataset before being applied to wider use.

Third, the initial filtering software incorrectly identified

several posts as non-English, which had to be excluded from

analysis. Depending on the accuracy of the language-filter-

ing software, it is possible that we excluded relevant posts

and introduced selection bias. Performance may be

improved with further optimization of language filtering.

5 Conclusions

In this paper, we presented the development of an ML tool

that we envision could potentially be used to prescreen

SDM posts for potential valid ICSRs. The final classifier
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had a sensitivity of 92.1% and a specificity of 82.3%.

Additional work must be done to improve the positive

predictive value to further reduce the burden on a human

workforce without increasing the false-negative rate. This

may be achieved through the application of gated filters

based on post length or other characteristic features and

training of the AE annotator on sources outside of Twitter.
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