
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003 1

SOS: An Architecture For Mitigating DDoS Attacks
Angelos D. Keromytis, Member, IEEE, Vishal Misra, Member, IEEE, Dan Rubenstein, Member, IEEE

Abstract—We propose an architecture called Secure Overlay
Services (SOS) that proactively prevents DoS attacks, geared
toward supporting Emergency Services or similar types of
communication. The architecture uses a combination of secure
overlay tunneling, routing via consistent hashing, and filtering.
We reduce the probability of successful attacks by (i) performing
intensive filtering near protected network edges, pushing the
attack point perimeter into the core of the network, where
high-speed routers can handle the volume of attack traffic, and
(ii) introducing randomness and anonymity into the forwarding
architecture, making it difficult for an attacker to target nodes
along the path to a specific SOS-protected destination.
Using simple analytical models, we evaluate the likelihood that

an attacker can successfully launch a DoS attack against an
SOS-protected network. Our analysis demonstrates that such
an architecture reduces the likelihood of a successful attack
to minuscule levels. Our performance measurements using a
prototype implementation indicate an increase in end-to-end
latency by a factor of 2 for the general case, and an average
heal time of less than 10 seconds.

Index Terms—Denial of service attacks, overlay networks,
peer-to-peer networks, access control, packet filtering.

I. INTRODUCTION

ASECURE system meets or exceeds an application-
specified set of security policy requirements. For exam-

ple, in message delivery, the high-level requirements may be
that the correct information gets to the right person, in the right
place, at the right time. The details of “right” are determined
by the application’s needs. For example, during a crisis, the
network can be used to carry communications between widely
dispersed “static” sites (e.g., various federal, state, and city
agencies) and (semi-) roaming stations and users. Similarly,
timely message delivery is crucial for battlefield or stock-
trading tasks. Traditional security mechanisms have addressed
the first two parts of this informal definition of security, but
largely ignored the timeliness or service guarantee issue. One
threat to timely data delivery in a public network such as
the Internet is denial of service (DoS) attacks: these attacks
overwhelm the processing or link capacity of the target site (or
routers that are topologically close) by saturating it (them) with
bogus packets. Such attacks can seriously disrupt legitimate

Manuscript received November 15, 2002; revised June 1, 2003. This work is
supported in part by DARPA contract No. F30602-02-2-0125 (FTN program)
and by the National Science Foundation under grant No. ANI-0117738 and
CAREER Award No. ANI-0133829, with additional support from Cisco
Corporation. Any opinions, fi ndings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
Angelos D. Keromytis is with the Computer Science Department, Columbia

University. Email: angelos@cs.columbia.edu
Vishal Misra is with the Computer Science Department, Columbia Univer-

sity. Email: misra@cs.columbia.edu
Dan Rubenstein is with the Electrical Engineering Department, Columbia

University. Email: danr@ee.columbia.edu

communications at minimal cost and danger to the attacker,
as has been demonstrated repeatedly in recent years.
In the SOS architecture [1] we address the problem of

securing communication in today’s existing IP infrastructure
from denial of service (DoS) attacks, where the communication
is between a pre-determined location and a set of well-known
users, located anywhere in the wide-area network, who have
authorization to communicate with that location. We focus
our efforts on protecting a site that stores information that is
difficult to replicate due to security concerns or due to its dy-
namic nature. An example is a database that maintains timely
or confidential information such as building structure reports,
intelligence, assignment updates, or strategic information. We
assume that there is a pre-determined set of clients scattered
throughout the network who require (and should have) access
to this information, from anywhere in the network.
Contrary to the other approaches we review in Section VI,

which are reactive, our approach is proactive. In a nutshell,
the portion of the network immediately surrounding the target
(location to be protected) aggressively filters and blocks all
incoming packets whose source addresses are not “approved”.
The small set of source addresses (potentially as small as
2-3 addresses) that are “approved” at any particular time
is kept secret so that attackers cannot use them to pass
through the filter. These addresses are picked from among
those within a distributed set of nodes throughout the wide
area network, that form a secure overlay: any transmissions
that wish to traverse the overlay must first be validated at
entry points of the overlay. Once inside the overlay, the traffic
is tunneled securely for several hops along the overlay to the
“approved” (and secret from attackers) locations, which can
then forward the validated traffic through the filtering routers
to the target. The two main principles behind our design
are: (i) elimination of communication pinch-points, which
constitute attractive DoS targets, via a combination of filtering
and overlay routing to obscure the identities of the sites whose
traffic is permitted to pass through the filter, and (ii) the
ability to recover from random or induced failures within the
forwarding infrastructure or within the secure overlay nodes.
We discuss how to design the overlay such that it is secure

with high probability, given that attackers have a large but
finite set of resources to perform the attacks. The attackers
can also know the IP addresses of the nodes that participate in
the overlay and of the target that is to be protected, as well as
the details of the operation of protocols used to perform the
forwarding. However, we assume that (a) the attacker does
not have unobstructed access to the network core, and (b) the
attacker cannot severely disrupt large parts of the backbone.
Our architecture leverages heavily off of previous work

on IP security [2], IP router filtering capabilities, and novel
0733-8716/$17.00 c© 2003 IEEE

2 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003

approaches to routing in overlays [3] and peer-to-peer (P2P)
networks [4], [5]. To the extent possible, we strive to use
existing systems and protocols, rather than invent our own.
Our resulting system is in some ways similar to the Onion
Routing architecture [6] used for anonymous communications.
We perform a preliminary stochastic analysis using simple

networking models to evaluate the likelihood that an attacker
is able to prevent communications to a particular target.
We determine this likelihood as a function of the aggregate
bandwidth obtained by an attacker through the exploitation of
compromised systems. Our analysis includes an examination
of the capabilities of static attackers who focus all their attack
resources on a fixed set of nodes, as well as attackers who
adjust their attacks to “chase after” the repairs that the SOS
system implements when it detects an attack. We show that
even attackers that are able to launch massive attacks are very
unlikely to prevent successful communication. For instance,
attackers that are able to launch attacks upon 50% of the nodes
in the overlay have roughly one chance in one thousand of
stopping a given communication from a client that accesses
the overlay through a small subset of overlay nodes. We use
our prototype implementation with PlanetLab, a distributed
infrastructure for experimentation on overlay networks, to
measure the increase in end-to-end latency. We determine that
using SOS increases the latency by a factor of 2, which we
consider acceptable in comparison to the latency or lack of
communication when the when a debilitating DDoS attack is
successfully launched. Furthermore, we experimentally deter-
mine that the overlay can heal itself within 10 seconds of being
targeted by such an attack.

II. ARCHITECTURE DESCRIPTION

The goal of the SOS architecture is to allow communication
between a confirmed user and a target. By confirmed, we mean
that the target has given prior permission to this user. Typically,
this means that the user’s packets must be authenticated and
authorized by the SOS infrastructure before traffic is allowed
to flow between the user through the overlay to the target.
We use the techniques we developed in [2] for this purpose.
While we focus on the communication to a single target,
the architecture is easily extended to simultaneously protect
unicast communications destined to different targets. Both
peers can use the SOS infrastructure to protect bidirectional
communications; this is particularly important for “static” sites
(e.g., two branches of the same company). For mobile clients
the reverse direction’s traffic (from the target site to the client)
can be sent directly over the Internet, or it can also use the
SOS infrastructure.
SOS is a network overlay, composed of nodes that commu-

nicate with one another atop the underlying network substrate.
Often, nodes will perform routing functionality to deliver
messages (packets) from one node in the overlay to another.
We assume that the set of nodes that participate in the overlay
is known to the public and hence also to any attacker. In
effect, no node’s identity is kept hidden. However, certain roles
that an overlay node may assume in the process of delivering
traffic are kept secret from the public. Keeping participation

information of certain nodes hidden from the public could be
a means of providing additional security, but is not required.
Attackers in the network are interested in preventing traffic

from reaching the target. These attackers have the ability to
launch DoS attacks from a variety of points around the wide
area network that we call compromised locations. The number
and bandwidth capabilities of these compromised locations
determine the intensity with which the attacker can bombard a
node with packets, to effectively shut down that node’s ability
to receive legitimate traffic. Without an SOS, knowledge of
the target’s IP address is all that is needed in order for a
moderately-provisioned attacker to saturate the target site.
We assume attackers are smart enough to exploit features
of the architecture that are made publicly available, such as
the set of nodes that form the overlay. In this paper, we
do not specifically consider how to protect the architecture
against attackers who can infiltrate the security mechanism
that distinguishes legitimate traffic from (illegitimate) attack
traffic: we assume that communications between overlay nodes
remain secure so that an attacker cannot send illegitimate
communications, masking them as legitimate. In addition, it
is conceivable that more intelligent attackers could monitor
communications between nodes in the overlay and, based on
observed traffic statistics, determine additional information
about the current configuration. Protecting SOS from such
attackers is beyond the scope of this paper [7].

Beacon

Servlet
Secret

overlay
nodes

SOAP

Filtered region

Beacon

Servlet
Secret

Beacon

Servlet
Secret

SOAP

Source
Point

Target

Fig. 1. Basic SOS architecture.

Figure 1 gives a high-level overview of the SOS architecture
that protects a target node or site so that it only receives
legitimate transmissions. In the discussion that follows, we
first give a brief overview of the design process, and then
develop the architecture piece by piece. The reader can refer
back to the figure during the discussion.

A. Design Rationale

Fundamentally, the goal of the SOS infrastructure is to
distinguish between authorized and unauthorized (or, more
generally, unverified) traffic. The former is allowed to reach the
destination, while the latter is dropped or is rate-limited. Thus,
at a very basic level, we need the functionality of a firewall
“deep” enough within the network so that the access link to the
target is not congested. This imaginary firewall would perform
access control by using protocols such as IPsec.

KEROMYTIS, MISRA, AND RUBENSTEIN: AN ARCHITECTURE FOR MITIGATING DDOS ATTACKS 3

However, traditional firewalls themselves are susceptible
to DoS attacks. One way to address this problem is to
replicate the firewall functionality, in a manner similar to
that described in [8]. To avoid the effects of a DoS attack
against the firewall connectivity, we need to distribute these
instances of the firewall across the network. In effect, we are
“farming out” the expensive processing (such as cryptographic
protocol handling) to a large number of nodes. However,
firewalls depend on topological restrictions in the network to
enforce access control policy. Since our distributed firewall has
performed the access control step, it would seem obvious that
all we need around the target is a router that is configured to
only let through traffic forwarded to it by one of the firewalls.
However, a security system cannot depend on the identity of

these firewalls to remain secret. Thus, an attacker can launch
a DoS attack with spoofed traffic purporting to originate from
one of these firewalls. Notice that, given a sufficiently large
group of such firewalls, we can select a very small number
of these as the designated authorized forwarding stations:
only traffic forwarded from these will be allowed through the
filtering router, and we change this set periodically.

B. Architecture Overview
The forwarding of a packet within the SOS architecture,

depicted in Figure 1, proceeds through five stages:
• A source point that is the origin of the traffic forwards
a packet to a special overlay node called a SOAP that
receives and verifies that the source point has a legitimate
communication for the target.

• The SOAP routes the packet to a special node in the SOS
architecture that is easily reached, called the beacon.

• The beacon forwards the packet to a “secret” node, called
the secret servlet, whose identity is known to only a small
subset of participants in the SOS architecture.

• The secret servlet forwards the packet to the target.
• The filter around the target stops all traffic from reaching
the target except for traffic that is forwarded from a point
whose IP address is the secret servlet.

In the following discussion, we motivate why the SOS
architecture requires the series of steps described above.

C. Protecting the Target: Filtering
In the current Internet, knowledge of the target’s network

identifier (IP address) allows an attacker to bombard the
target location with packets that originate from compromised
locations throughout the Internet. To prevent these attacks, a
filter can be constructed that drops illegitimate packets at some
point in the network, such that the illegitimate traffic does not
overwhelm routing and processing resources at or near the
target. We assume that the filter can be constructed so that
attackers do not have access to routers inside the filtered region
(i.e., they cannot observe which source addresses can proceed
through the filter). Past history indicates that it is significantly
more difficult for an attacker to completely take over a router
or link in the middle of an ISP’s network than to attack an
end-host; intuitively, this is what we would expect, given the

limited set of services offered by a router (compared to, e.g.,
a web server or a desktop computer).
We assume that filtering is done at a set of high-powered

routers such that i) these routers can handle high loads of
traffic, making them difficult to attack, and ii) possibly there
are several, disjoint paths leading to the target, each of which
is filtered independently. This way, if one of these paths is
brought down, filtered traffic can still traverse the others and
ultimately reach the target. Essentially, we assume that the
filter can be constructed locally around the target to prevent
a bombardment of illegitimate traffic, while at the same time
allowing legitimate, filtered traffic to successfully reach the
target. Such filters need to be established at the ISP’s Point of
Presence (POP) routers that attach to the ISP backbone.

D. Reaching Well-filtered Target
Under the filtering mechanism described previously, legiti-

mate users can reach the target by setting the filter around the
target to permit only those IP addresses that contain legitimate
users. This straightforward approach has two major shortcom-
ings. First, whenever a legitimate user moves, changes IP
address, or ceases to be legitimate, the filter surrounding the
target must be modified. Second, the filter does not protect the
target from traffic sent by an illegitimate user that resides at
the same address as a legitimate user, or (more importantly)
from an illegitimate user that has knowledge about the location
of a legitimate user and spoofs the source address of its own
transmissions to be that of the legitimate user.
A first step in our solution is to have the target select

a subset of nodes, Ns, that participate in the SOS overlay
to act as forwarding proxies. The filter only allows packets
whose source address matches the address of some overlay
node n ∈ Ns. Since n is a willing overlay participant, it
is allowed to perform more complex verification procedures
than simple address filtering and use more sophisticated (and
expensive) techniques to verify whether or not a packet sent
to it originated from a legitimate user of a particular target.
The filtering function that is applied to a packet or flow can

have various levels of complexity. It is, however, sufficient to
filter on the source address: the router only needs to let through
packets from one of the few forwarding proxies. All other
traffic can be dropped, or rate-limited. Because of the small
number of such filter rules and their simple nature (source IP
address filtering), router performance will not be impaired [9],
even if we do not utilize specialized hardware.
This architecture prevents attackers with knowledge of legit-

imate users’ IP addresses from attacking the target. However,
an attacker with knowledge of the IP address of the proxy
can still launch two forms of attacks: an attacker can breach
the filter and attack the target by spoofing the source address
of the proxy, or attack the proxy itself. This would prevent
legitimate traffic from even reaching the proxy, cutting off
communication through the overlay to the target.
Our solution to this form of attack is to hide the identities

of the proxies. If attackers do not know the identity of a proxy,
they cannot mount either form of attack mentioned above
unless they successfully guess a proxy’s identity. We refer to
these “hidden” proxies as secret servlets.

4 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003

E. Reaching a Secret Servlet
To activate a secret servlet, the target sends a message to the

overlay node that it chooses to be a secret servlet, informing
that node of its task. Hence, if a packet reaches a secret servlet
and is subsequently verified as coming from a legitimate user,
the secret servlet can then forward the packet through the filter
to the target. The challenge at this point is constructing a
routing mechanism that will route to a secret servlet while
utilizing a minimal amount of information about its identity.
Here we take advantage of the dynamic nature and the

high level of connectivity that exists when routing atop a
network overlay. The connectivity graph of a network overlay
consists of nodes which are the devices (e.g., end-systems)
that participate in the overlay, and edges which represent
IP paths that connect pairs of nodes in the overlay. Unlike
the underlying network substrate whose physical requirements
limit the pairs of nodes that can directly connect to one
another, network overlays have no such limits, such that an
overlay edge is permissible between any pair of overlay nodes.
This added flexibility and increased number of possible routes
can be used to complicate the job of an attacker by making it
more difficult to determine the path taken within the overlay
to a secret servlet. In addition, since a path exists between
every pair of nodes, it is easy to recover from a breach in
communication that is the result of an attack that shuts down
a subset of overlay nodes. The recovery involves having the
overlay route around these nodes. The underlying assumption
is that network core links cannot easily be shut down.
There exists a straightforward but costly solution to reaching

a secret servlet without revealing the servlet’s ID to the nodes
that wish to reach it: have each overlay node that receives a
packet randomly choose the next hop on the overlay to which
it forwards a packet [10]. Eventually, the packet will arrive at
a secret servlet that can then deliver it to the target.

F. Connecting to the Overlay
Legitimate users need not reside at nodes that participate

in SOS. Hence, SOS must support a mechanism that allows
legitimate traffic to access the overlay. For this purpose, we
define a secure overlay access point (SOAP). A SOAP is a
node that will receive packets that have not yet been verified
as legitimate, and perform this verification. This verification
can be performed using off-the-shelf authentication protocols
such as IPsec or TLS. Allowing a large number of overlay
nodes to act as SOAPs increases the bandwidth resources
that an attacker must obtain to prevent legitimate traffic
from accessing the overlay. Effectively, SOS becomes a large
distributed firewall [8] that discriminates between “good”
(authorized) traffic from “bad” (unauthorized) traffic. By using
a large number of topologically-distributed firewall instances,
we increase the amount of resources (bandwidth) an attacker
has to spend to deny connectivity to legitimate clients. Note
that if an attacker manages to acquire a legitimate user’s
authorization material, he can use multiple SOAPs to mount a
DDoS attack from inside the overlay. In that case, the secret
servlet or the beacon can use a pushback-like mechanism [9]
to ask the SOAPs to revoke the user’s authorization.

Having a large number of SOAPs increases the robustness
of the architecture to attacks, but complicates the job of
distributing the security information that is used to determine
the legitimacy of a transmission toward the target. One can
imagine several ways in which SOAPs can be chosen. For
instance, different users (IP address origins) can be mapped to
different subsets of SOAPs. Given the relatively small number
of nodes that SOS requires, as we shall see in Section III, a list
of all SOS nodes may be publicized and used by all clients.
We plan to investigate SOAP selection in future work.

G. Routing through the Overlay
Having each overlay participant select the next node at

random is sufficient to eventually reach a secret servlet [10].
However, it is rather inefficient, with the expected number of
intermediate overlay nodes contacted being O(N/Ns) where
N is the number of nodes in the overlay and Ns is the number
of secret servlets for a particular target. Here, we discuss an
alternative routing strategy in which, with only one additional
node knowing the identity of the secret servlet, the route from
a SOAP to the secret servlet has an expected path length that is
O(log N). We use Chord [4], which can be viewed as a routing
service that can be implemented atop the existing IP network
fabric, i.e., as a network overlay. Consistent hashing [11] is
used to map an arbitrary identifier to a unique destination node
that is an active member of the overlay.

16+1: 17
16+2: 22
16+4: 22
16+8: 25
16+16: 1

1

3

10

12

17

22

30

25

16

7

7+1 : 10
7+2: 10
7+4: 12
7+8: 16
7+16: 25

17+1: 22
:
:

m = 5

Fig. 2. Chord-based overlay routing.

In Chord, each node is assigned a numerical identifier
(ID) via a hash function in the range [0, 2m] for some pre-
determined value of m. The nodes in the overlay are ordered
by these identifiers. The ordering is cyclic (i.e., wraps around)
and can be viewed conceptually as a circle, where the next
node in the ordering is the next node along the circle in the
clockwise direction. Each overlay node maintains a table that
stores the identities of m other overlay nodes. The ith entry in
the table is the node whose identifier x equals or, in relation
to all other nodes in the overlay, most immediately follows
x + 2i−1 (mod 2m), as shown in Figure 2. When overlay
node x receives a packet destined for ID y, it forwards the

KEROMYTIS, MISRA, AND RUBENSTEIN: AN ARCHITECTURE FOR MITIGATING DDOS ATTACKS 5

packet to the overlay node in its table whose ID precedes y
by the smallest amount. In the example, if node 7 receives a
packet whose destination is the identifier 20, the packet will
route from 7 to 16 to 17, When the packet reaches node 17, the
next node in the overlay is 22, and hence node 17 knows that
22 is responsible for identifier 20. Chord routes packets around
the overlay “circle”, progressively getting closer to the desired
node, visiting O(m) nodes. Typically, the hash functions
used to map nodes to identifiers do not attempt to map
two geographically close nodes to nearby identifiers. Hence,
often two nodes with consecutive identifiers are geographically
distant from one another within the network.
The Chord service is robust to changes in overlay member-

ship, and each node’s list is adjusted to account for nodes
leaving and joining the overlay such that the above stated
properties continue to hold. [12] discusses various security
considerations for peer-to-peer networks that use distributed
hash tables. Most of these do not apply here, since membership
in the SOS overlay is “closed” — the clients and the targets
are not considered part of the overlay, and can only interact
with it through a well-defined interface that requires strong
authentication and authorization.
SOS uses the IP address of the target as the identifier to

which the hash function is applied. Thus, Chord can direct
traffic from any node in the overlay to the node that the
identifier is mapped to, by applying the hash function to the
target’s IP address. This node, to which Chord delivers the
packet, is not the target, nor is it necessarily the secret servlet.
It is simply a unique node that will be eventually be reached,
regardless of the entry point. This node is called the beacon,
since it is to this node that packets destined for the target are
first guided. Thus, Chord provides a robust and reliable, while
relatively unpredictable for an adversary, means of routing
packets from an overlay access point to one of several beacons.
Finally, the secret servlet uses Chord to periodically inform

the beacon of the secret servlet’s identity. Should the servlet
for a target change, the beacon will find out as soon as the new
servlet sends an advertisement. If the old beacon for a target
drops out of the overlay, Chord will route the advertisements
to a node closest to the hash of the target’s identifier. Such a
node will know that it is the new beacon because Chord will
not be able to further forward the advertisement. By providing
only the beacon with the identity of the secret servlet, traffic
can be delivered from any firewall to the target by traveling
across the overlay to the beacon, then from the beacon to
the secret servlet, and finally from the secret servlet, through
the filtering router, to the target. This allows the overlay to
scale for arbitrarily large numbers of overlay nodes and target
sites. Unfortunately, this also increases the communication
latency, since traffic to the target must be redirected several
times across the Internet. If the overlay only serves a small
number of target sites, traditional routing protocols or RON-
like routing [3] may be sufficient. Other overlay routing
mechanisms can also be used, e.g., CAN [13].

H. Summary of Architecture
Before continuing on, we review the operational structure

of SOS. A site (target) installs a filter in its immediate vicinity

and then selects a number of SOS nodes to act as secret
servlets; that is, nodes that are allowed to forward traffic
through the filter to that site. Routers at the perimeter of the
site are instructed to only allow traffic from these servlets
to reach the internal of the site’s network. These routers are
powerful enough to filter on incoming traffic using a small
number of rules without adversely affecting their performance.
When an SOS node is asked to act as a secret servlet for

a site (and after verifying the authenticity of the request), it
will compute the key k for each of a number of well-known
consistent hash functions, based on the target site’s network
address. Each of these keys will identify a number of overlay
nodes that will act as beacons for that target.
Having identified the beacons, the servlets or the target

will contact and notify the beacons of the servlets’ identities.
Beacons verify the validity of the received information and
store that information which is necessary to forward traffic
for that target to the servlet.
A source that wants to communicate with the target contacts

an overlay access point (SOAP). After authenticating and
authorizing the request, the SOAP securely routes all traffic
from the source to the target via one of the beacons. The
SOAP (and all subsequent hops on the overlay) can route the
packet to an appropriate beacon in a distributed fashion using
Chord, by applying the appropriate hash function(s) to the
target’s address to identify the next hop on the overlay.
Finally, the beacon routes the packet to a secret servlet that

then routes it (through the filtering router) to the target.
This scheme is robust against DoS attacks because if an

access point is attacked, the confirmed source point can simply
choose an alternate access point to enter the overlay. If a
node within the overlay is attacked, the node simply exits
the overlay and the Chord service self-heals, providing new
paths over the re-formed overlay to (potentially new sets of)
beacons. Furthermore, no node is more important or sensitive
than others — even beacons can be attacked and are allowed
to fail. Finally, if a secret servlet’s identity is discovered and
the servlet is targeted as an attack point, or attacks arrive at
the target with the source IP address of some secret servlet,
the target can choose an alternate set of secret servlets.

I. Redundancy
Having a single SOAP, beacon, or secret servlet weakens

the SOS architecture, in that a successful attack on any one
of these nodes can prevent legitimate traffic from reaching
the target. Fortunately, each component is easily replicated
within the architecture. Furthermore, an attack upon any of
these components, once realized, is easily repaired.
Specifically, SOAP functionality is easily replicated. Any

overlay node can act as a SOAP as long as it has the ability
to check the legitimacy of a packet transmissions. If a SOAP is
attacked, it can exit the overlay. A legitimate user attempting
access need only contact another SOAP.
Furthermore, the target can choose multiple nodes as secret

servlets and set the filter to allow packets from only these
nodes to pass through the filter. If a secret servlet is attacked,
or its identity breached such that attack traffic with a secret

6 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003

servlet’s source IP address can proceed through the filter, the
target can remove the servlet whose identity is compromised
from its set of servlets and modify its filter appropriately. A
secret servlet under attack can also remove itself from the
overlay until the attack terminates.
Finally, multiple nodes can act as beacons for a target by

applying several hash functions (or several iterations of the
same hash function) over the target identifier. In addition, if a
beacon node is attacked, the node can remove itself from the
overlay, and the Chord routing mechanism will heal itself such
that a new node will act as a beacon for that hash function.
If the former beacon cannot communicate the secret servlet
information to the new beacon, then the new beacon must
wait for the secret servlet to contact it again (as part of a
keep-alive protocol) with its identity.
We note that when there are multiple beacons and secret

servlets, every beacon should know the identity of at least one
secret servlet so that the packets that each beacon receives
can be forwarded onward to a secret servlet. Thus, each hash
function is used by at least one secret servlet.
A last word on redundancy: since the secret servlets use

tunneling to reach the target, it is possible to use the backup
links of a multi-homed site to carry SOS-routed traffic (effec-
tively using tunneling as a source-routing mechanism). Thus,
all attack traffic will use the BGP-advertised best route to the
target, while traffic from the SOS infrastructure will use the
unused available capacity of the target site.

III. SECURITY ANALYSIS
In this section we develop simple analytical models to

evaluate the performance of SOS in the face of DoS attacks.
In our evaluation, we make certain assumptions: an attacker
knows the set of nodes that form the overlay, and can attack
these nodes by bombarding them with traffic. However, the
attacker does not know the precise functionality (beacons or
servlets) of the nodes, nor can it infer them (e.g., by monitoring
traffic through the overlay). The bandwidth available to the
attacker to launch attack upon the overlay and the target has an
upper bound. Furthermore, we assume that the attackers have
not breached the security protocols of the overlay, i.e., their
packets can always be identified by SOS as being illegitimate.
Finally, each legitimate user can access the overlay through
a limited number of SOAPs, but different users access the
overlay through different SOAPs.

A. A Static Attack
Our analysis begins by considering the following problem:

suppose some subset of nodes in the overlay are assigned
specific tasks for a given target, T . Let {S1(T), S2(T), · · ·,
Ss(T)} be the set of secret servlets with Us = |{Si(T)}|,
{A1(S), · · ·, Aa(S)} be the set of SOAPs that can be used by
a given source point S with Uo = |{Ai(S)}|, and {B1(T), · · ·,
Bb(T)} be the set of beacons used to receive transmissions
headed toward T : Ub = |{Bi(T)}| is a function of the number
of hash functions issued by T .
For our initial analysis, we assume that S can communicate

successfully with T as long as there exists an available access

point, an available beacon, and an available secret servlet that
can be used to complete the communication path. We also
assume that the selection of nodes to perform various duties
is done independently, such that a node can simultaneously act
as any combination of access point, beacon, and secret servlet.
We assume that all nodes implement the Chord routing service
(and hence can be part of the communication path).
Let Ph(a, b, c) be the probability that a set of b nodes

selected at random from a ≥ b nodes contains a specific
subset of c nodes. It is easy to show that Ph(a, b, c) =

(b
c

)
/
(a

c

)

when b > c,1 and Ph(a, b, c) = 0 when c > b. Let na be
the number of nodes that the attacker attacks. Let US,T be
a random variable that equals 1 if S can reach T during an
ongoing attack and 0 otherwise.

Pr[UT,S = 1] = (1−Ph(N,na, Us)) · (1−Ph(N,na, Ub)) ·
(1 − Ph(N,na, Uo))

1e-08

1e-06

0.0001

0.01

1

100

1 10 100 1000 10000 100000 1e+06 1e+07

P(
At

ta
ck

 S
uc

ce
ss

fu
l)

nodes attacked

N=100
N=1000

N=100000
N=1000000

(a) Varying number of attackers and nodes in the
overlay

1e-08

1e-06

0.0001

0.01

1

100

1 10 100 1000

P(
At

ta
ck

 S
uc

ce
ss

fu
l)

nodes that are beacons

f=0.01
f=0.1

f=1
f=10

f=100

(b) Varying number of beacons and secret servlets

Fig. 3. Attack success probability for the Static case.

Figure 3 plots the likelihood of an attack succeeding at
shutting down access to a site in the static case. In Figure 3(a)
we hold Us, Ub, and Uo fixed at 10 and vary na along the
x-axis. These numbers are quite conservative: we restrict the
source’s entry to only 10 possible access points and allow at
most 10 beacons and secret servlets to service its needs. An
increase in any of these numbers decreases the probability

1This follows from an algebraic reduction of Ph(a, b, c) =
(

a−c
b−c

)
/
(

a
b

)

KEROMYTIS, MISRA, AND RUBENSTEIN: AN ARCHITECTURE FOR MITIGATING DDOS ATTACKS 7

of a successful attack. The y-axis plots the probability of
a successful attack, with the different curves representing
different values of N , the total number of nodes in the overlay
system. In Figure 3(b), we hold N fixed at 104 and na fixed
at 103. We vary Ub along the x-axis, and again plot the
probability of a successful attack on the y-axis. The different
curves represent the probabilities for different values of Us,
where f = Us/Ub.
From these figures, we observe that the likelihood of an

attack successfully terminating communication between S and
T is negligible unless the attacker can simultaneously bring
down a significant fraction of nodes in the network. For in-
stance, Figure 3(a) demonstrates that when only ten nodes act
as beacons, ten nodes act as secret servlets, and ten nodes act
as access points, for an attack to be successful in one out of ten
thousand attempts, approximately forty percent of the nodes
in the overlay must be attacked simultaneously. Similarly,
Figure 3(b) shows that the likelihood of a successful attack
is significant only when either the number of secret servlets
or the number of beacons is small, but as we increase their
numbers the attack success probability rapidly falls beneath
minuscule levels. In summary, long-term static attacks upon
a moderately-provisioned SOS are unlikely. (Notice that the
number of overlay nodes is not limited by the number of POPs;
such nodes can be located anywhere throughout the network,
even at customer’s facilities. If co-located with routers, more
than one such node can be attached to each router.)

B. Dynamic Attacks and Recovery
Our previous model assumed that an attacker would select a

set of nodes to attack, and that SOS takes no repairing action
(e.g., by changing the node that acts as the secret servlet, or
by having nodes dropping from the overlay). We extend this
model to the case where SOS does take such action and the
attacker reacts to a repaired network by altering its attack.
As in the static case, we assume that the attacker has

enough bandwidth resources to bring down na nodes. When
SOS identifies an attacked node, that node is removed from
the overlay such that its being attacked does not prevent
communication between the source and target. The attacker
reacts after some time, and it redirects its attack toward a node
that still resides in the overlay. We assume that there is a repair
delay, Dr, that equals the difference in time from when a node
is first attacked until the time when SOS detects the attack
and removes the node. Also, there is an attack delay, Da, that
equals the difference in time between when an attacked node
is removed from the overlay to the time when the attacker
redirects the attack toward a new node in the overlay.
Our analysis assumes that when an attack on a node is

terminated, that node is immediately brought back into the
overlay. This is a reasonable assumption since a node can
detect when it is no longer being bombarded with traffic.
We define a random variable A(t) to be the number of

nodes that are under attack that have not yet been removed
from the overlay at time t. Since the attacker can attack
up to na nodes, we have that 0 ≤ A(t) ≤ na. Letting
πi = Pr[A(t) = i], we can extend our static case analysis

TABLE I
QUEUING MODELS FOR THE VARIANTS OF ATTACK AND REPAIR

PROCESSES.

Attack Repair process
process centr. distr.
centr. M/M/1/K M/M/K/K
distr. M/M/1//K M/M///K

to this dynamic case. Let US,T (t) be a random variable that
equals 1 if S can reach T during an ongoing attack at time
t and 0 otherwise. When i of the na nodes are active in the
overlay, then the total number of nodes that are active in the
overlay is N + i − na. Then, we obtain:

Pr[US,T (t) = 1] =
∑na

i=0
πi(1 − Ph(N + i − na, i, Us)) · (1 −

Ph(N + i − na, i, Ub)) · (1 − Ph(N + i − na, i, Uo))

where Ph(a, b, c) is set to equal Ph(a, b, a) when c > a.
We are interested in two variants of how we model the

SOS repair process. In the first, the ability to react to each
attacked node is performed sequentially. This would occur
when the decision to modify the overlay is made by a single
centralized authority. We refer to this variant as the centralized
repair process. Alternatively, there can be a distributed repair
process, where repairs can be performed in parallel. This
would occur when each node can independently perform its
repair process. Similarly, the attack process can be centralized,
where only one attack node can be modified at a time, or
distributed, where separate attackers are responsible for the
detection and movement of their individual attacks.
Because SOS is a novel architecture, we do not yet have a

detailed understanding of how the repair and attack processes
will function. Thus, we do not have models that accurately
capture the distributions of Da (attack delay) and Dr (repair
delay). Nonetheless, we are interested in gaining preliminary
insight into how the relative rate of change in the number of
successfully attacked nodes active in the overlay affects the
robustness of SOS. We achieve this insight by modeling the
framework as a closed queuing system with a finite customer
population. Customers arrive at the server(s), obtain service
and then after a certain delay or think time, return to get
serviced again. In these models, the number of jobs active
in the queuing system equals the number of nodes actively
under attack that remain in the overlay. The repair process
removes jobs (service) from the system and the discovery by
attacker and redirection places jobs back in the system. We
assume both Da and Dr are exponentially distributed random
variables with respective rates λ and µ.
Table I presents the queuing models used to capture the

four possible scenarios, given that both the attack and repair
processes can be either centralized and distributed. Each of the
four models is a birth-death process with K = na + 1 states,
where the process resides in state i when there are i nodes that
are active in the overlay that are being attacked, 0 ≤ i ≤ na.
When the attack is centralized, the rate of transition from state
i to state i+1 is λ. In the distributed case, the rate is (na−i)λ .
When the repair is centralized, the rate of transition from state

8 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P(
At

ta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(a) Centralized Attack, Centralized Recovery

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P(
At

ta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(b) Centralized Attack, Distributed Recovery

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100

P(
At

ta
ck

 S
uc

ce
ss

fu
l)

ρ

na=900
na=750
na=500
na=100

(c) Distributed Attack, Centralized Recovery

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100
P(

At
ta

ck
 S

uc
ce

ss
fu

l)
ρ

na=900
na=750
na=500
na=100

(d) Distributed Attack, Distributed Recovery

Fig. 4. Attack success probability for the Dynamic case.

i to state i − 1 is µ. In the distributed case, the rate is iµ.

In each model, πi is expressed as a function of ρ = λ/µ. See
[14] for the exact formulas. In Figure 4, we plot Pr[US,T (t) =
1], varying ρ = λ/µ along the x-axis. In each figure, the SOS
overlay contains 103 nodes, where 10 nodes are selected as
secret servlets, 10 nodes selected as beacons, and each user
can access the overlay through 10 SOAPs. Each curve plots
Pr[US,T (t) = 1] using a different value for na. We see that as
ρ grows large, Pr[US,T (t) = 1] grows asymptotically to the
corresponding value of the static case, Pr[US,T = 1]. As ρ
increases, attacks recover more quickly and repair takes longer,
such that the expected number of attacked nodes inside the
overlay approaches na. When ρ is small, Pr[US,T (t) = 1]
diminishes since the number of nodes successfully attacked
inside the system is reduced.

Not surprisingly, for a fixed ρ, attacks are most likely to
deny service to the target when the attack process is distributed
and the repair process centralized, and are least likely to
deny service when the reverse holds. When both processes
are distributed, the fraction of time for which the attack is
successful can be significant when a large fraction of nodes
in the overlay is attacked, even when ρ < 1. This can be
understood intuitively by comparing the respective birth-death
processes of the system when repair and attack processes are
both centralized and where they are both distributed. When
both processes are centralized, each upward transition’s rate
equals λ and each downward transition’s rate equals µ. In

the system where both processes are distributed, the upward
transitions’ rates of (na−i)λ are larger for states with smaller
i, whereas the downward transitions’ rates of iµ are smaller
with smaller i. As a result, when ρ < 1, the centralized-process
system is less likely to drift away from the smaller states.

C. Attacking the Underlying Network
To this point, we have assumed that to deny service to a

target protected by SOS, an attacker will deny service to nodes
in the overlay. Another alternative, however, is to launch an
attack at the core of the network. Rather than attacking the
edge nodes that make up the overlay, attackers can focus on
those core nodes that lie on paths between multiple overlays.
We measure attack severity in a scenario in which several

compromised zombie nodes, widely distributed over the net-
work, launch attacks on a target node. The attacks can be co-
ordinated, timer-driven or triggered by events like opening of
mailboxes, booting up of zombie machines, etc. For instance,
the triggering mechanism of the attack can either be (i) attack
immediately, or (ii) execute code at some specified time. For
(i), the timing of the attack depends on the infection vector: for
an email-based worm it is reasonable to assume that attacks
will go off at random times from zombie machines. For (ii),
we can assume the coordinated attacks to be a single “large”
attack. We next show that attacks that are a combination of
the two will overpower routers with low bandwidth capabilities
much easier than those with high bandwidth capabilities.

KEROMYTIS, MISRA, AND RUBENSTEIN: AN ARCHITECTURE FOR MITIGATING DDOS ATTACKS 9

As a simple first approximation, we can view the arrival of
the attacks from such clients (with coordinated attacks acting
as a single, “large” attack client) as a Poisson process, with an
arrival rate λa attacks per unit time. Note that we are modeling
the attack arrival as a Poisson process. The attack traffic
itself is assumed to be (high bandwidth) CBR. Each attacking
client is assumed to use up ba units of resources (typically
bandwidth) from a target while the attack is in progress. We
also assume that the duration of attacks from such clients is
exponentially distributed, with mean 1/µa (the attacks can
terminate for a number of reasons, for instance discovery
and shutdown of compromised clients by users/local system
administrators or discovery by some trace-back mechanism
and shutdown by access network filtering). We also assume
that legitimate traffic arrives at the node with rate λl, requiring
bl units of resource and a mean holding time 1/µl. Let us
assume that the target node has Ct units of resource available.
When all resources get tied up and arriving requests (legitimate
or not) are denied service, we consider the attack successful.
The system model is now abstracted into a Stochastic

Knapsack [15] framework. In a Stochastic Knapsack, Ct is
the total amount of resources available at the server, and
each arriving connection is mapped into an arriving call of
class m with resource requirement bm and mean holding time
1/µm. Calls in each class arrive at a rate λm. The knapsack
always admits an arriving object when there is sufficient room.
The probability of a successful DoS attack is the blocking
probability corresponding to the class of legitimate traffic.
The blocking probability Bm for a class-m call under

Poisson arrival assumption is [15]:

Bm = 1 −
∑

n∈Km

∏M
j=1 ρ

nj

j /nj !
∑

n∈K
∏M

j=1 ρ
nj

j /nj !
(1)

where ρj = λj/µj .

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load of attack traffic

Bl
oc

kin
g

pr
ob

ab
ilit

y
fo

r l
eg

itim
at

e
tra

ffi
c

DDoS performance in a test case

Fig. 5. Blocking probability for legitimate traffi c as a function of attack
traffi c load.

As an illustrative example, we consider a simple case where
we have only two classes of customers, one corresponding
to the DoS attacks and the other to legitimate traffic. In
a more accurate or generalized model, we can classify the
various clients according to their bandwidth capabilities, more
specifically their network access types like DSL, Cable, T1,
Dialup, etc., however that does not change the nature of the
results we present. We assume that an individual call in each
class uses up the same amount of bandwidth (motivated by
the idea that the compromised clients come from the same
population as the legitimate users). For a DoS attack to be

successful, the load level (ρj) for the class of attack traffic
has to be significantly higher than that of legitimate traffic. We
construct a test scenario where the target node has 20 units of
resource available, both the attack and legitimate traffic utilize
one unit of resource and ρ = λ/µ for the legitimate traffic is 1.
In Figure 5, we plot the probability that a legitimate connection
is denied service as a function of ρ of of attack traffic.
As we can observe, under our test scenario, where ρ = 200

for the attack traffic will cause 90% of the legitimate traffic
to be denied service. Under a massive attack, if the attack
load rises to 104, 99.8% of legitimate traffic is denied service.
Now we consider the effects of two key features of the SOS
architecture. First, when we push the attack point perimeter
into the interior of the core, then the traffic handling capability
of the attacked node increases (core routers can handle 10Gbps
line speeds per interface, compared to 155Mbps capabilities of
a typical high speed edge router). We consider the case where
the attack traffic load in our test scenario is 200, and we re-
compute the blocking probability for legitimate traffic as we
increase the capacity of the node by a factor r, i.e., Ctnew =
r ×Ctold . We denote the ratio of the old blocking probability
with the new blocking probability as the Bandwidth Gain (BG)
of the system. In Figure 6(a), we plot the BG of the system
as a function of r. As can be observed, a bandwidth increase
by a factor of 12 brings about a reduction in the blocking
probability by three orders of magnitude.

100 101
100

101

102

103

104

Bandwidth increase factor

Ba
nd

wi
dt

h
G

ai
n

(a) Increasing the capacity of the
attacked node.

100 101 102
100

102

104

106

108

1010

1012

Size of the overlay

Ra
nd

om
iza

tio
n

G
ai

n

(b) Increasing the anonymity of
the attacked node.

Fig. 6. Performance gains with SOS.

Next, we study the effects of anonymizing the attacked
node. If the attacker does not know the identity of the secret
servlet for a particular target, the attacks will be launched
randomly onto the overlay. Only a fraction of those attacks

10 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003

will reach the target servlet. Thus, the effective arrival rate of
the attacks becomes λa×f , where f is the fraction of the secret
servlets in the SOS for a particular node. We again compute the
ratio of the old probability with the new blocking probability
and denote it as the Randomization Gain (RG) of the system.
In Figure 6(b) we plot the RG of the system as a function of
the number of nodes in the overlay (as the number of nodes
in the overlay increases from left to right, a correspondingly
smaller fraction of the traffic reaches the target node). Placing
the target node randomly in a group of 30 brings down the
probability of attack by 4 orders of magnitude.

IV. PERFORMANCE MEASUREMENTS

In order to quantify the overhead associated with use of
SOS, we developed a prototype implementation using web
proxies as the SOS overlay nodes, and measured the time-
to-completion of https requests. That is, we measured the
elapsed time starting when the browser initiates the TCP
connection to the destination or the first proxy, to the time
all data from the remote web server have been received.
We ran this test by contacting 3 different SSL-enabled sites:
login.yahoo.com, www.verisign.com, and the Columbia course
bulletin board web service (https://www1.columbia.
edu/sec/bboard). For each of these sites, we measured
the time-to-completion for a different number of overlay nodes
between the browser and the target (remote web server).
Table II shows the results for the case of 0 (browser contacts

remote server directly), 1, 4, 7, and 10 overlay nodes. The
times reported are in seconds, and are averaged over several
HTTPS GET requests of the same page, which was not locally
cached. For each GET request, a new TCP connection was
initiated by the browser. The row labeled “Columbia (2nd)”
shows the time-to-completion of an HTTPS GET request that
uses an already-established connection through the overlay to
the web server, using the HTTP 1.1 protocol.

TABLE II
DIRECT CONNECTION VERSUS CHORD-BASED SOS OVERLAY.

Server Direct 1 node 4 nodes 7 nodes 10 nodes
Yahoo! 1.39 3.15 5.53 10.65 14.36
Verisign 3.43 5.12 7.95 14.95 22.82
Columbia BB 0.64 1.01 1.45 3.14 5.07
Columbia (2nd) 0.14 0.23 0.28 0.57 0.72

We used PlanetLab [16], a wide-area overlay network
testbed. The PlanetLab nodes are distributed in academic
institutions across the country, connected over the Internet.
We deployed our SOS proxies PlanetLab and ran the exact
same tests. We see that the time-to-completion in this scenario
increases by a factor of 2 to 10, depending on the number of
nodes in the overlay. The increase in latency can be directly
attributed to the delay in the links between the SOS nodes.
While the PlanetLab configuration allowed us to conduct a

much more realistic performance evaluation, it also represents
a worst-case deployment scenario for SOS: typically, we
would expect SOS to be offered as a service by an ISP,
with the (majority of) SOS nodes located near the core of

the network. Using PlanetLab, the nodes are distributed in
(admittedly well-connected) end-sites. We would expect that
a more commercial-oriented deployment of SOS would result
in a corresponding decrease in the inter-overlay delay. On
the other hand, it is easier to envision end-site deployment
of SOS, since it does not require any participation from the
ISPs. Finally, while the additional overhead imposed by SOS
can be significant, we have to consider the alternative: no web
service while a DoS attack against the server is occurring.
While an increase in end-to-end latency by a factor of 5–10 is
considerable, we believe it is more than acceptable in certain
environments and in the presence of a determined attack.
Table III shows the results (in seconds) when a shortcut

implementation was tested on the PlanetLab testbed, using
76 overlay nodes. In this variant, SOAPs use Chord routing
to contact the beacon and determine the identity of the
appropriate secret servlet. They then cache this information for
use with subsequent traffic between the source and the target,
and directly route traffic to the servlet. Thus, in this scenario,
the overlay itself is used only for signaling, with actual data
transfer requiring only two hops. The hops to the beacon
ranged from 4 to 8 and did not have a significant effect on
latency. This implementation provides significant performance
improvements, particularly on subsequent requests for the
same site because of the caching, with end-to-end latency
increasing by as little as a factor of 2. To simulate the effects of
an attack on individual nodes in the overlay, we brought down
specific nodes. The overlay healed itself within 10 seconds.

TABLE III
DIRECT CONNECTION VERSUS SHORTCUT-BASED SOS OVERLAY.

Server Direct Original
Request

Cached
Requests

Yahoo! 1.39 4.15 3.67
Verisign 3.43 7.33 6.77
Columbia BB 0.64 3.97 3.43
Columbia (2nd) 0.14 0.55 0.56

V. FURTHER DISCUSSION
Our study of SOS is admittedly in its early stages. There are

several issues that need to be addressed for the service to have
a viable impact within the Internet. In this section, we discuss
current limitations and suggest directions for future research.
Attacks from inside the overlay: We have assumed that no

malicious user can successfully bypass our protection perime-
ter. However, in practice, security management oversights or
development bugs could lead to situations where breaches
occur. An evaluation of the potential damages that can be
done from the inside, and approaches to limit these damages
warrants further investigation.
A shared overlay: We have presented SOS as a means

to permit communication from a single confirmed source
point to a single target. The architecture should easily scale
to handle numerous confirmed source points transmitting to
multiple targets. Users of the infrastructure should treat it as
an untrusted network in terms of privacy or integrity (i.e., if
their communications are of a sensitive nature, they should be

KEROMYTIS, MISRA, AND RUBENSTEIN: AN ARCHITECTURE FOR MITIGATING DDOS ATTACKS 11

appropriately encrypted) — SOS only attempts to address the
DoS problem; as such, it should be treated as a virtual WAN.
We note that in its current form, state for each target must be

maintained at the secret servlets and beacons that support those
targets as well as at access points (to confirm a source point’s
right to contact the target). Scalability is improved by limiting
the set of access points, secret servlets and beacons that offer
support to a given target. However, this makes the service more
prone to DoS attacks. The overlay becomes more efficient at
protecting users from DoS attacks as it grows. Hence, it would
be of interest for multiple organizations to utilize a shared
overlay. This would increase the likelihood of the overlay
being compromised from the inside. We intend to investigate
some form of sandboxing that could be constructed within the
shared overlay such that a breach in one organization’s security
system would not lead to breaches in other networks.
Timely delivery: To achieve security, SOS forces traffic

through a series of overlay points that perform different tasks.
We suspect that the latency across the path is far from minimal.
Preliminary simulations have shown the latency to be in the
order of 10 times larger than in the direct communications case
(in the absence of an attack). While this is a large overhead, it
may be acceptable in mission-critical systems. It would be of
interest to see if there are any “shortcuts” through the overlay
that do not compromise security, or to extend the architecture
such that it contains a “knob” that allows users to trade levels
of security with timely delivery.

VI. RELATED WORK

A fundamental design principle of the IP architecture is to
keep the functionality inside the core of the network simple,
pushing as much mechanism as possible to the network end-
points. This principle, commonly referred to as the “end-to-
end principle”[17], has been the basic premise behind protocol
design. However, as has been demonstrated in the past few
years [18], [19], [20], such mechanisms are inadequate in
addressing the problem of DoS attacks.
Unfortunately, as a result of its increased popularity and

usefulness, the Internet contains both interesting targets and
enough malicious and ignorant users that DoS attacks are sim-
ply not going to disappear on their own; indeed, although the
press has stopped reporting such incidents, recent studies have
shown a surprisingly high number of DoS attacks occurring
around the clock throughout the Internet [21].
The need to protect against or mitigate the effects of DoS

attacks has been recognized by both the commercial and
research world. Some work has been done toward achiev-
ing these goals, e.g., [9], [22], [23], [24]. However, these
mechanisms focus on detecting the source of DoS attacks in
progress and then countering them, typically by “pushing”
some filtering rules on routers as far away from the target
of the attack (and close to the sources) as possible. Thus,
they fall into this class of approaches that are reactive. The
motivation behind such approaches has been twofold: first, it
is conceptually simple to introduce a protocol that will be
used by a relatively small subset of the nodes on the Internet
(i.e., ISP routers), as opposed to requiring the introduction of

new protocols that must be deployed and used by end-systems.
Second, these mechanisms are fairly transparent to protocols,
applications, and legitimate users. Unfortunately, these reactive
approaches by themselves are not always adequate solutions.
Methods that filter traffic by looking for known attack pat-

terns or statistical anomalies in traffic patterns can be defeated
by changing the attack pattern and masking the anomalies that
are sought by the filter. Furthermore, statistical approaches will
likely filter out valid traffic as well. Since the Internet spans
multiple administrative domains and (legal) jurisdictions, it is
often very difficult, if not outright impossible, to shut down an
attack by contacting the administrator or the authorities closest
to the source. In any case, such action cannot be realistically
delivered in a timely fashion (often taking several hours). Even
if this were possible, it is often the case that the source of the
attack is not the real culprit but simply a node that has been
remotely subverted by a cracker. The attacker can just start
using another compromised node.
Using a “pushback”-like mechanism such as that described

in [9] to counter a DoS attack makes close cooperation among
different service providers necessary: since most attacks use
random source IP addresses (and since ingress filtering is
not widely used [25]), the only reliable packet field that can
be used for filtering is the destination IP address (of the
target). If filters can only be pushed “halfway” through the
network between the target and the sources of the attack,
the target runs the risk of voluntarily cutting off or adversely
impacting (e.g., by rate-limiting) its communications with the
rest of the Internet. The accuracy of such filtering mechanisms
improves dramatically as the filters are “pushed” closer to
the actual source(s) of the attack. Thus, it will be necessary
for providers to allow other providers, or even end-network
administrators, to install filters on their routers. Apart from the
very realistic possibility of abuse, it is questionable whether
such collaboration can be achieved to the degree necessary.
The same concerns hold for the case of collaborative action

by the ISPs: even easy to implement mechanisms such as
ingress filtering, that could reduce or even eliminate spoofed-
address DoS attacks, are still not in wide use. We believe it is
rather unrealistic to expect that cooperative providers would
even establish static filters to allow legitimate (paying) clients
to tunnel through their infrastructure with any assurance of
quality of service, and much less so for the case of mobile or
remote clients (as may be the case for emergency teams).
Another approach to mitigating DoS attacks against infor-

mation carriers is to massively replicate the content being
secured around the entire network. To prevent access to the
replicated information, an attacker must attack all replication
points throughout the entire network — a task that is con-
siderably more difficult than attacking a small number of,
often co-located, servers. Replication is a promising means
to preserve information that is relatively static, such as news
articles. However, there are several reasons why replication is
not always an ideal solution. For instance, the information may
require frequent updates, complicating large-scale coherency
(especially during DoS attacks), or may be dynamic by its
very nature (e.g., live audio or video). Another concern is the
security of the information: engineering a highly-replicated

12 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. XXX, XXX 2003

solution without information leaks is a challenging endeavor.

VII. CONCLUSION
In this paper, we addressed the problem of securing a

communication service on top of the existing IP infrastructure
from DoS attacks. It is envisioned that such a service would
be offered, among others, to emergency teams in the aftermath
of a disaster, to facilitate communication between the teams
and various agencies and organizations over the Internet.
We attack the problem with a proactive mechanism, which

is composed of aggressive packet filtering in a site’s network
periphery, an overlay network that can self-heal during (and
after) a DoS attack, and a scalable access control mechanism
that allows legitimate users to use the overlay network. We
call this architecture Secure Overlay Services, or SOS.
Through simple analytical models we show that DoS attacks

directed against any part of the SOS infrastructure have neg-
ligible probability of disrupting the communication between
two parties: for instance, when only ten nodes act as beacons,
ten nodes act as secret servlets, and ten nodes act as access
points, for an attack to be successful in one out of ten thousand
attempts, approximately forty percent of the nodes in the
overlay must be attacked simultaneously. Furthermore, the
resistance of a SOS network against DoS attacks increases
greatly with the number of nodes that participate in the overlay.
We believe that our approach is a novel and powerful

way of countering DoS attacks, especially in service-critical
environments. While there remain several issues to be solved,
our work should encourage researchers to investigate proactive
approaches in addressing the DoS problem.

REFERENCES
[1] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay

Services,” in Proceedings of ACM SIGCOMM, August 2002, pp. 61–72.
[2] M. Blaze, J. Ioannidis, and A. Keromytis, “Trust Management for IPsec,”

in Proceedings of Network and Distributed System Security Symposium,
February 2001, pp. 139–151.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
Overlay Networks,” in Proceedings of the 18th Symposium on Operating
Systems Principles (SOSP), October 2001.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applica-
tions,” in Proceedings of ACM SIGCOMM, August 2001.

[5] F. Dabek, M. F. Kaashoek, R. Morris, D. Karger, and I. Stoica, “Wide-
Area Cooperative Storage with CFS,” in Proceedings of ACM SOSP,
October 2001.

[6] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous
connections and onion routing,” IEEE Journal on Special Areas in
Communications, vol. 16, no. 4, pp. 482–494, 1998.

[7] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An Analysis of
the Degradation of Anonymous Protocols,” in Proceedings of the ISOC
Symposium on Network and Distributed System Security, February 2001.

[8] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implementing a
Distributed Firewall,” in Proceedings of Computer and Communications
Security (CCS), November 2000, pp. 190–199.

[9] J. Ioannidis and S. M. Bellovin, “Implementing Pushback: Router-Based
Defense Against DDoS Attacks,” in Proceedings of the Network and
Distributed System Security Symposium, February 2002.

[10] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web transac-
tions,” ACM Transactions on Information and System Security, vol. 1,
no. 1, pp. 66–92, 1998.

[11] D. Karger, E. Lehman, F. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relievig Hot Spots on the World Wide Web,” in Proceed-
ings of ACM Symposium on Theory of Computing (STOC), May 1997,
pp. 654–663.

[12] E. Sit and R. Morris, “Security Considerations for Peer-to-Peer Dis-
tributed Hash Tables,” in Proceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS), March 2002.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” in Proceedings of ACM
SIGCOMM, August 2001.

[14] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley-Interscience,
1975.

[15] K. W. Ross, Multiservice Loss Models for Broadband Telecommunica-
tion Networks. Springer-Verlag, 1995.

[16] L. Peterson, D. Culler, T. Anderson, and T. Roscoe, “A Blueprint for
Introducing Disruptive Technology into the Internet,” in Proceedings
of the 1st Workshop on Hot Topics in Networks (HotNets-I), October
2002. [Online]. Available: citeseer.nj.nec.com/peterson02blueprint.html

[17] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
System Design,”ACM Transactions on Computer Systems, vol. 2, no. 4,
pp. 277–288, November 1984.

[18] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and D. Zam-
boni, “Analysis of a Denial of Service Attack on TCP,” in Proceedings
of IEEE Security and Privacy, May 1997, pp. 208–223.

[19] L. Heberlein and M. Bishop, “Attack Class: Address Spoofi ng,” in Pro-
ceedings of the 19th National Information Systems Security Conference,
October 1996, pp. 371–377.

[20] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Conges-
tion Control with a Misbehaving Receiver,” ACM Computer Communi-
cations Review, vol. 29, no. 5, pp. 71–78, October 1999.

[21] D. Moore, G. Voelker, and S. Savage, “Inferring Internet Denial-of-
Service Activity,” in Proceedings of the 10th USENIX Security Sympo-
sium, August 2001, pp. 9–22.

[22] D. Dean, M. Franklin, and A. Stubblefi eld, “An Algebraic Approach to
IP Traceback,” in Proceedings of the Network and Dsitributed System
Security Symposium, February 2001, pp. 3–12.

[23] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network Support
for IP Traceback,”ACM/IEEE Transactions on Networking, vol. 9, no. 3,
pp. 226–237, June 2001.

[24] M. T. Goodrich, “Effi cient Packet Marking forLArg-Scale IP Traceback,”
in Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (CCS), November 2002, pp. 117–126.

[25] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distribtued DoS Attack Prevention in Power-Law Internets,”
in Proceedings of ACM SIGCOMM, August 2001, pp. 15–26.

Angelos D. Keromytis (M’97) received his Ph.D.
in Computer Science from the University in Penn-
sylvania, Philadelphia, PA, in 2001. He received
his B.S. in Computer Science from the University
of Crete, Heraclion, Greece, in 1996. Currently he
is an Assistant Professor of Computer Science at
Columbia University, New York, since July 2001.
His research interests include design and analysis
of network and cryptographic protocols, software
security and reliability, and operating system design.

Vishal Misra (M’97) is an Assistant Professor in
the Departments of Computer Science and Electrical
Engineering at Columbia University since 2001. He
received his BTech from IIT Bombay, and M.S.
and Ph.D. from the University of Massachusetts,
Amherst, all in Electrical Engineering. His research
interests are in the modeling, analysis and design
of algorithms for communication networks. He is a
recipient of CAREER awards from NSF and DoE.

Dan Rubenstein (M’97) has been an Assistant
Professor of Electrical Engineering and Computer
Science at Columbia University since 2000. He
received a B.S. degree in mathematics from M.I.T.,
an M.A. in mathematics from UCLA, and a Ph.D.
in computer science from the University of Mas-
sachusetts, Amherst. His research interests are in
network technologies, applications, and performance
analysis, with an emphasis on large-scale Internet
design for continuous media transmission. He re-
ceived a Best Student Paper Award for his ACM

SIGMETRICS 2000 paper entitled “Detecting Shared Points of Congestion via
End-to-end Measurement” and an NSF CAREER Award in 2002 to continue
his investigation of peer-to-peer and overlay networking systems.

