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Abstract

Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to
the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were
formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an active
and inducible mechanism of persister formation mediated by the SOS response, challenging the prevailing view that
persisters are pre-existing and formed purely by stochastic means. SOS-induced persistence is a novel mechanism by which
cells can counteract DNA damage and promote survival to fluoroquinolones. This unique survival mechanism may be an
important factor influencing the outcome of antibiotic therapy in vivo.
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Introduction

Persistence is the ability of a subpopulation of susceptible

bacteria to survive lethal doses of antibiotics. It is a transient and

non-hereditary phenotype unlike resistance, which is due to

genetic modification. The transient nature of persistence makes it

inherently difficult to study therefore the underlying molecular

mechanisms are still poorly understood.

Persisters are thought to be slow growing, non-growing or

dormant cells, which escape the lethal action of antibiotics because

their drug targets are inactivated due to the physiological state. In

an Escherichia coli high-persistence mutant, persisters to ampicillin

were shown to be non-growing prior to the addition of the

antibiotic [1]. In addition, a fraction of non-growing cells was

isolated from untreated exponentially growing E. coli and was

shown to be enriched in persisters to ofloxacin [2]. These studies

demonstrated that persisters can form independently of antibiotics.

The switch from growing to non-growing state or dormancy, is

thought to be a purely stochastic process [1,3,4].

Both genetic and phenotypic variability can have important

consequences on bacterial survival of antibiotic treatment. One of the

most prescribed broad spectrum antibiotics today are the fluoro-

quinolones (FQ), which target gyrase and topoisomerase. These

essential enzymes regulate supercoiling of genomic DNA during

replication and transcription [5,6]. FQs prevent ligation reactions of

gyrase and topoisomerase resulting in double-strand breaks (DSB)

[7]. DSBs are potentially lethal DNA lesions that occur under

physiological conditions through collapse of stalled replication forks,

overlapping repair tracts, spontaneous breakage of DNA, and other

mechanisms. E. coli efficiently repairs DSBs through a series of

reactions carried out by enzymes participating in homologous

recombination and replication [8]. Processing of DSBs leads to the

induction of the SOS response. SOS is a complex network composed

of more than 40 genes [9,10]. Many of these genes are essential for

efficient repair of various DNA lesions, including DSBs [11,12].

Even though fluoroquinolones are potent bactericidal antibiot-

ics they cannot sterilize a bacterial culture. The bulk of the

population rapidly dies in response to fluoroquinolones but a small

fraction persists. According to one model, persisters might survive

if gyrase and topoisomerase are inactivated due to cellular

dormancy [3]. Dormant cells might be expected to form

stochastically during growth of a culture, prior to the antibiotic

exposure [2,13–15].

Alternatively, the persister state might be inducible in a cell

subpopulation by exposure to the antibiotic, not stochastic and

pre-existing. This could be because either dormancy is inducible,

or persisters might be active and have more efficient drug efflux or

more efficient repair of DSBs due to the stochastic overexpression

of the genes involved in those pathways or due to the physiological

events leading to the activation of the same pathways.

In order to distinguish between these possibilities, we measured

numbers of persisters to the fluoroquinolone ciprofloxacin in

various genetic backgrounds with altered capacity for SOS

induction and DSB repair.

The majority of persisters were found to be formed upon

exposure to the antibiotic and formation was dependent on the

SOS DNA damage response. Contrary to the current view, a

majority of surviving persisters to ciprofloxacin are not pre-

existing, but induced by this antibiotic.

Results

Fluoroquinolones (FQ) induce DSBs by interfering with the

action of gyrase and topoisomerase [16]. The cellular response to

DSBs primarily consists of induction of the SOS-regulon and

ultimately in repair through recombination [17,18].
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According to the prevailing model [3], persisters are dormant

and are formed stochastically prior to the addition of antibiotic.

This suggests that persisters would not experience DSBs, would

not induce an adaptive response to that type of lesion, and

therefore would not need repair functions to survive. In order to

test these predictions, we wanted to determine whether persisters

experience DSBs and induce SOS.

We measured the persister levels in different genetic back-

grounds diagnostic of specific molecular events linked with DSBs

and SOS induction. The surviving fraction of a wild-type culture

treated with ciprofloxacin produces a typical biphasic pattern

(Figure 1A). This reflects the rapid killing of the bulk of the cells,

and a surviving persister subpopulation.

We examined some of the well-known DNA-repair pathways in

order to probe their possible role in formation of persisters. RecA

and RecBC are essential for repair of DSBs in E. coli [19]. In

strains lacking RecA and RecBC, DSBs are lethal. As expected,

the bulk of cells is more rapidly killed in both recA and recB

backgrounds, compared to the wild type, presumably because

DSBs could not be repaired (Figure 1A). However, the persister

fraction was also greatly reduced (40-fold in recA, 35- to 103-fold in

recB). In recB, persisters were extremely rare or entirely absent after

6 hours of incubation. This shows that the persisters experience

DSBs and hence depend on the repair functions.

RecA and RecB functions are essential not only for DSB-repair

but for SOS induction following processing of DSBs as well

[18,20–22], so in order to test whether persisters induce SOS we

constructed strains unable to induce SOS but proficient for

homologous recombination; one carrying a non-inducible SOS-

repressor (lexA3) [23] and the other a mutant RecA able to

function as a recombinase but unable to induce cleavage of LexA

(recA430) [24]. In both backgrounds the bulk of cells dies more

rapidly than in the wild type, confirming that SOS is efficiently

induced following exposure to ciprofloxacin and contributes to the

survival (Figure 1B). Interestingly, the persister level is decreased

43-fold and by 6 hours it is as low as in recA background. This

shows that the persistence to ciprofloxacin is largely dependent on a

functional SOS response.

XerCD site-specific recombinase resolves chromosome dimers

at a dif site [25–27]. Chromosome dimers are formed by an odd

number of recombination events. The absence of xerCD function

does not affect the proficiency for SOS induction, but is lethal in

cells in which chromosme dimers have formed. In xerC and xerD

mutants the persister level is reduced (7- and 9-fold, respectively,

taking into account the 3-fold reduction in viability of xerC and

xerD mutants compared to the wild-type), suggesting that most

persisters have undergone at least one successful recombination

event, most likely repairing a ciprofloxacin-induced DSB

(Figure 1C).

Taken together these results show that the formation of the

majority of persisters in the presence of ciprofloxacin is dependent

on the SOS-response. They also suggest that this antibiotic-

tolerant state is induced, rather than pre-existing. The formal

possibility that an SOS controlled function is essential for reaching

or exiting a pre-existing multidrug-tolerant state can be ruled out

because tolerance to ampicillin and streptomycin were not affected

in recA, recB or lexA3 strains (Figure 1D). We cannot rule out the

possibility that spontaneous SOS induction was required for

creating a pre-existing ciprofloxacin-tolerant state.

A strain lacking the SOS-inducible RecN protein is also SOS

proficient but partially deficient in DSB repair. recN mutant

exhibited increased sensitivity of the bulk whereas persistence was

largely unaffected (Figure 1F).

The entire population exposed to ciprofloxacin is expected to

induce SOS yet only a fraction survives. SOS is a gradual response

where the strength of induction reflects the extent and the

persistence of the damage [28,29]. Upon addition of ciprofloxacin

the number and the chromosomal location of DSBs will vary

across the population depending on the activity and position of

gyrase and topoisomerase molecules in any given cell. The

resulting distribution of DSBs is expected to translate into a

gradient of SOS induction. Therefore, it is possible that a specific

level of SOS induction is required for persistence. If this is the case,

persister levels are expected to change along with ciprofloxacin

concentration and the overall level of SOS induction.

We measured both the persister level and the induction of b-

galactosidase under the control of an SOS-inducible recA promoter

[30] as a population average of SOS induction for cultures

exposed to increasing concentration of ciprofloxacin. Indeed, as

shown in Figure 2, increased concentration of ciprofloxacin led to

an increased average SOS induction (Figure 2A) and decreased

persister level (Figure 2B).

A strain constitutively expressing SOS functions (lexA300(Def)),

also led to a 20-fold increase in persister level compared to the wild

type (Figure 1E).

In order to examine a difference in SOS induction between

persisters and the bulk at the single cell level, we followed a cI-cro

gal reporter strain after addition of ciprofloxacin [31]. In this strain

the cleavage of l repressor CI leads to a heritable genetic switch

rendering a cell gal+. gal+ cells can be detected as red colonies on

MacConkey galactose plates. Unlike LexA, which undergoes auto-

cleavage early in SOS induction, CI cleavage occurs only if there is

a high level of DNA damage and activated RecA [32]. Therefore,

the cI-cro system reports conditions of only strong SOS induction.

Following the addition of ciprofloxacin (.0.5 mg/ml) the propor-

tion of cells giving rise to gal+ colonies increases, peaking at around

20 minutes and declines thereafter (Figure 3). This timing means

that the massive amount of DNA damage occurs readily leading to

a strong SOS induction. Cells undergoing strong SOS induction

are able to withstand and repair the damage, if the ciprofloxacin is

removed by plating. However, upon extended exposure gal+ cells

become fewer (Figure 3), indicating that additional damage occurs

Author Summary

The frequent failure of antibiotic treatments is an acute
public health problem. Bacteria can escape the lethal
action of antibiotics by a mutation in the cell’s DNA,
leading to antibiotic resistance. Alternatively, they can
enter a physiological state in which the antibiotics do not
affect them. This phenomenon, referred to as persistence,
is different from resistance because there is no genetic
modification and because it is transient. Persisters are
believed to form stochastically prior to antibiotic treat-
ment. The presence of persister cells in bacterial biofilms
contributes to the difficulty in treating biofilm-related
infections. We investigated the persistence of Escherichia
coli to one of the most widely used antibiotics,
ciprofloxacin. We show that the majority of persister cells
are formed in response to this antibiotic, contrary to the
prevailing view of persister formation. Ciprofloxacin kills
bacteria by damaging their DNA. DNA damage activates a
SOS gene network, the result of which is the production
of various repair proteins. We uncovered a novel part of
this network that leads to the formation of tolerant
persister cells. The induced tolerance as a side effect of
antibiotic treatment is an effective bacterial survival
strategy and is likely to contribute to recalcitrance of
infections.

SOS-Induced Persistence
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and eventually becomes lethal. The persister subpopulation

consisted almost entirely of gal2 cells (Figure 3) showing that

persisters were not SOS-induced prior to ciprofloxacin treatment

(at least not highly induced) and also that they did not experience

high level of DNA damage nor strong SOS induction even in the

presence of the antibiotic. Because the persister level is greatly

reduced in strains unable to induce SOS (lexA3, recA430, Figure 1B)

we conclude that persisters undergo weak SOS induction. This is

in contrast to the bulk of cells, probably because fewer DSBs occur

in eventual persisters. Increased sensitivity of the bulk and

minimally affected persistence in a recN strain also supports this

conclusion (Figure 1F). SOS-inducible RecN protein promotes

efficient repair of DSBs. While it is dispensable for the repair of a

single break, it is essential for the repair of simultaneous multiple

DSBs [33].

Next we exposed cells treated with a range of ciprofloxacin

concentrations to a higher dose (1 mg/ml) of the same antibiotic

(Figure 4). Control cultures were exposed to 1 mg/ml of

ciprofloxacin for the duration of the experiment. The persister

fraction surviving exposure to 1 mg/ml was 10- to 40-fold higher in

the cultures pretreated with a low concentration of ciprofloxacin

(0.05–0.2 mg/ml), compared to the control (Figure 4B). A

Figure 1. Survival of the wild type and the mutants deficient in recombination and/or SOS induction after ciprofloxacin challenge.
Strains were exposed to ciprofloxacin in exponential growth phase. Viable counts were determined by plating. Graphs are representatives of at least
5 independent experiments. Error bars represent standard error.
doi:10.1371/journal.pgen.1000760.g001

SOS-Induced Persistence

PLoS Genetics | www.plosgenetics.org 3 December 2009 | Volume 5 | Issue 12 | e1000760



dramatic, 1200-fold increase was found in cultures pretreated with

sub-MIC (minimal inhibitory concentration) concentration of

ciprofloxacin (Figure 4B; compare full bar at 0.03 mg/ml and

the second dashed bar of the control). This shows that many of the

persisters are formed upon ciprofloxacin treatment rather than

pre-existing. If they were pre-existing, the fraction surviving the

exposure to the high concentration of ciprofloxacin (1 mg/ml)

would be the same regardless of the pretreatment.

It was important to learn whether SOS induction caused by

treatments other than FQ is able to induce persistence to

ciprofloxacin. In order to test this we measured persistence to

ciprofloxacin in cells exposed to mitomycin C. Mitomycin C

interacts with DNA by intercalation and adduct formation,

resulting in inter-strand crosslinks [34]. The cellular response is

a potent SOS-induction dependent on RecFOR pathway [35]. We

exposed exponentially growing cells to a sub-MIC concentration

of mitomycin C and compared the persister levels at two different

time points during the treatment. The results in Figure 5 show a

180-fold increase in persistence to ciprofloxacin in the culture

treated with mitomycin C for 4 versus 2 hours, confirming the link

between SOS induction and persistence to FQs, irrespective of the

nature of the SOS inducing treatment.

Persister levels are very low in early exponential phase and are

maximal in stationary phase [14]. We treated aliquots of growing

cultures with ciprofloxacin at different time points in order to

determine the persister levels between these two extremes and

establish the role of growth phase in SOS-induced persistence.

Figure 6 shows an exponential increase in persister levels when cell

densities reach around 56107 CFU/ml in both the wild-type and

the strain unable to induce SOS (lexA3). We conclude that the

SOS-induced persisters make up the majority of persisters to

ciprofloxacin regardless of the growth phase.

Discussion

The processes leading to genetic variability in bacteria,

mutagenesis and recombination, have been studied extensively

[36–38] and their role in evolution of bacterial antibiotic resistance

Figure 2. SOS induction and persister level during ciprofloxacin challenge in exponential growth phase. Graphs are averages of at least
3 independent experiments and error bars represent standard error. (A) Induction of the SOS-inducible recA gene expression measured by assaying
the b-galactosidase activity after 15 min of ciprofloxacin challenge. (B) Persister levels after 6 hours of ciprofloxacin challenge.
doi:10.1371/journal.pgen.1000760.g002
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by generating and disseminating mutations is well established

[39–46]. On the other hand, processes leading to phenotypic

variability, which is also an important factor influencing bacterial

ability to survive antibiotic treatments [47,48] have only recently

become a subject of systematic investigation. In contrast to the

well-understood mechanisms of bacterial resistance to antibiotics,

molecular mechanism(s) of persistence have so far remained elusive.

The current model of persistence assumes that persisters are non-

growing or dormant cells, formed by stochastic process(es)

independently of any physiological responses normally elicited

by antibiotics [1,3,4]. Studies involving persistence to two different

classes of antibiotics, a b-lactam ampicillin [1] and a fluoroquin-

olone ofloxacin [2] are consistent with this model, which was

therefore presumed to hold universally.

Here we show a mechanism of persister formation triggered by

DNA damage inflicted by the fluoroquinolone ciprofloxacin.

Formation of persisters in response to DNA damage reveals a

deterministic component in this bistability phenomenon. Bist-

ability is the stochastic production of two phenotypically distinct

cell types within a clonal population of genetically identical kin

cells. Bistability is observed in sporulation, competence, and

motility [49–51]. In all cases studied, there is both a stochastic and

deterministic component of bistability. Previous studies have

shown that persisters can form stochastically, prior to the addition

of antibiotics [1,14]. The present findings show that persister

formation can also be induced by an antibiotic, through an active

process. This sheds an entirely new light on the problem of

antibiotic tolerance and its role in infectious processes.

We also show that mutants defective in persistence to

ciprofloxacin have normal persister levels to amipicillin and

streptomycin (Figure 1D), therefore it is still possible that

persistence to b-lactams is purely stochastic and not inducible.

These results suggest that there are different mechanisms of

persistence to different antibiotics.

Ciprofloxacin induces DSBs in cells with active gyrase and/or

topoisomerase, which in turn leads to the activation of the general

DNA damage stress response, the SOS gene network. Our results

show that the majority of persisters to ciprofloxacin are dependent

on a functional SOS response.

DSBs and other SOS-inducing lesions occur under physiolog-

ical conditions so at any given time there is a fraction of a bacterial

population undergoing a certain degree of SOS induction [52,53].

However, we demonstrate that the SOS-dependent persister state

is induced upon exposure to ciprofloxacin. Manipulating the

extent of SOS induction by different antibiotic concentrations or

by sequential exposure to a higher dose dramatically affects

persister levels (Figure 2, Figure 4). This would not be the case if

the persisters were pre-existing in the population. If they were, the

bulk would be killed by any bactericidal concentration of

antibiotic, revealing the same pre-existing persister population.

In addition, increasing the basal level of expression of the SOS

regulon by genetic manipulation (Figure 1E) or by induction with

different treatment (Figure 5) also leads to an increase in persister

level.

Essentially all actively growing cells exposed to ciprofloxacin

induce SOS, but not all become persisters, suggesting that a

specific level of SOS induction is required for persister formation.

Figure 4. Ciprofloxacin-induced persistence. (A) Survival of wild-
type cells in exponential phase under different ciprofloxacin regimes.
Two cultures were treated with 0.1 mg/ml and 1 mg/ml, respectively, for
6 hours. Third culture was treated with 0.1 mg/ml for 3 hours after
which 1 mg/ml was added (indicated by an arrow). The data are
averages of 3 independent experiments and error bars indicate
standard error. (B) Wild-type cells in exponential phase were treated
for 3 hours with increasing concentrations of ciprofloxacin indicated on
x-axis. After the initial treatment, an additional 1 mg/ml of ciprofloxacin
was added to the cultures and incubated for another 3 hours as in (A)
(ciprofloxacin MIC is 0.05 mg/ml). As a control, a parallel culture was
exposed to 1 mg/ml for the duration of the experiment. Bars represent
the viability at 0, 3, and 6 hr of time course equivalents shown in (A).
Open bars; the initial viability count, grey bars; the viability after 3-hour
incubation with ciprofloxacin concentration indicated on the x-axis. Full
bars; the final viability count after additional 3-hour incubation with
1 mg/ml ciprofloxacin. Dashed bars; viability of the control culture at 3
and 6 hours. The data are averages of 3 independent experiments and
error bars indicate standard error.
doi:10.1371/journal.pgen.1000760.g004

Figure 3. Fraction of cells undergoing strong SOS induction
during ciprofloxacin challenge. Cells in exponential growth phase
were exposed to ciprofloxacin. A heritable epigenetic switch based on
the reciprocal repression of the phage l cI and cro genes fused with the
promotorless galactose operon allows detection of clones derived from
cells that have undergone SOS induction as red gal+ colonies on
MacConkey galactose plates. Data points are average of at least 3
independent experiments. Error bars represent standard error.
doi:10.1371/journal.pgen.1000760.g003

SOS-Induced Persistence

PLoS Genetics | www.plosgenetics.org 5 December 2009 | Volume 5 | Issue 12 | e1000760



SOS is a gradual response and depending on the nature of the

inducer, its concentration and the time of the exposure, different

sets of genes are induced [10,54,55]. Our data indicate that

persister formation requires a functional SOS response but a high

level of induction is not required (Figure 1B, Figure 3). Persister

formation also depends on functional DSB repair (Figure 1A) but

does not need RecN (Figure 1F), a function important for the

repair of multiple DSBs [33]. This implies that persisters are cells

that experienced few DSBs upon ciprofloxacin addition and

underwent weak SOS induction.

Consistent with this, constitutive, full expression of the SOS

regulon (equivalent to high induction) does not lead to the

tolerance of the entire population, but to an increased level of

surviving persisters (Figure 1E). Even in a lexA(Def) mutant,

expression levels of SOS genes appear to fall short of being truly

uniform throughout the population [52,53]. Persisters could be the

cells that express a certain SOS function at a specific high or low

level. Additionally, other regulatory pathways could allow a

persister formation function to be expressed only in certain cells

after induction. Turning on the SOS response constitutively would

increase the number of cells being able to express this function.

Persister levels are known to change with the growth phase [14].

It is low in early exponential phase and attains its highest level in

stationary phase. An exponential increase in persister levels begins

when the cell density reaches around 56107 CFU/ml (Figure 6).

The persister shoot up at similar cell density has been observed in

other studies under different antibiotic and growth conditions

[1,14]. A cell density of 56107 CFU/ml coincides with the point at

which the balanced growth of the culture ceases and a slowdown

of growth rate is observed, even though the population as a whole

still increases exponentially [56].

The extent of the DNA damage caused by ciprofloxacin would

be expected to reflect the activity levels of gyrase and

topoisomerase. These enzymes are active during replication and

transcription [6,57]; therefore their maximal activity would occur

in rapidly growing and replicating cells and would be lowest in the

non-growing state of stationary phase. Lending support to this,

transcription of gyrA and gyrB coding for gyrase subunits is at the

peak in the early exponential phase and the lowest in the

stationary growth phase [58,59]. It follows that ciprofloxacin

would inflict maximal damage, the irreparable chromosome

fragmentation, in the exponentially growing cells and fewer DSBs

in the cells that slow down when the medium cannot support

steady-state growth [60]. Indeed, no cells survive treatment to

ofloxacin, another FQ, when the culture is kept at low density in

constant exponential growth by repeated subculturing [14], in

other words no persisters are formed in that growth phase. On the

other hand, the surviving fraction increases dramatically between

the end of true exponential growth and stationary phase (Figure 6,

[14]). During that time the growth rate of the population decreases

from its maximum to zero, but because not all cells stop growing at

the same time the heterogeneity of growth rates across the

population is expected within that time frame. Those cells lacking

steady state equilibrium might be the ones which experience few

DSBs, weak SOS-induction and enter the tolerant state.

Consistent with this, the difference in persister level in SOS

proficient and deficient strains is minimal in early exponential

phase, whereas it increases after the cessation of steady state

growth (Figure 6).

Conditions for unrestricted growth are rarely met in natural

environments, and most bacteria are in a state of slow or no-

growth [61–63]. However, physical and chemical agents capable

of causing DNA damage are ubiquitous, therefore the SOS-

induced persister state is probably quite common. Furthermore, in

conditions of slow growth and frequent or lasting presence of DNA

damaging agents, damage prevention would likely be advanta-

geous over continuous active repair. The induction of the persister

state in response to DNA damage seems like such a strategy - the

avoidance of the damage build up as opposed to the costly repair.

SOS is induced in aging colony biofilms of E. coli [64] and in

intracellular biofilms formed by uropathogenic E. coli during

cystitis [65]. Biofilms are notoriously hard to eradicate even with

bactericidal fluoroquinolones, and this enhanced ‘resistance’ could

in fact reflect the SOS-induced tolerance.

Virtually all natural isolates of E. coli and many other bacteria

are lysogens and many prophages are DNA-damage inducible

[66–69]. Induction of l prophage in E. coli is a late SOS function.

In that light, SOS-induced tolerance could have evolved as a life-

saving strategy preventing prophage induction upon DNA damage

frequently encountered.

There are at least 43 genes in the E. coli genome negatively

regulated by LexA [9,10]. Many encode proteins participating in

Figure 6. Growth phase and persister formation. Wild-type strain
and strain unable to induce SOS (lexA3) were cultured with aeration at
37uC. A sample of each culture taken at the designated time points was
treated with ciprofloxacin for 3 hrs. Cell counts before and after the
antibiotic challenge were determined by plating. Data points are
averages of 4 independent experiments. Error bars represent standard
error.
doi:10.1371/journal.pgen.1000760.g006

Figure 5. Mitomycin C-induced persistence. Wild-type cells in
exponential phase were treated with mitomycin C for either 2 or
4 hours before being exposed to 0.3 mg/ml ciprofloxacin. Open bars;
total viable counts, gray bars; persister fraction. The data are averages
of 3 independent experiments and error bars indicate standard error.
doi:10.1371/journal.pgen.1000760.g005

SOS-Induced Persistence
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repair by homologous recombination and/or translesion synthesis

and about one third are of unknown function. Among those are

several genes encoding toxin-antitoxin modules that are attractive

candidates for persistence genes, as the overexpression of some

toxins has been shown to induce a dormant-like state [13,70].

Indeed, in a parallel study we identified an SOS inducible toxin/

antitoxin module, tisAB, as a function needed for persister

formation (Dörr T., Vulić M., Lewis K., submitted). However

we cannot exclude that other LexA-regulated genes also contribute

to SOS-induced tolerance.

SOS has been shown to induce formation of a senescence-like

state in which cells are viable but unable to form colonies [53].

Here we show SOS-dependant formation of persister cells. Both

states could be formed through the common mechanism, such as

expression of SOS-regulated toxins. In that case the strength of

SOS induction and hence the toxin expression levels would

determine which of these two states a cell reaches.

In conclusion, we have discovered an active, regulated

mechanism of persister formation, which is part of the SOS

response. SOS has been known to contribute to the survival of

antibiotic treatments by increasing the frequency of resistant

mutants through its mutagenic activities [44,71]. Here we show a

novel function of this response, the induction of a tolerant state.

SOS-induced persistence having an immediate impact on bacterial

survival is likely an important factor influencing the outcome of

antibiotic treatment.

Materials and Methods

Bacterial strains
Bacterial strains are listed in Table 1. Wild-type E. coli K-12

MG1655 was used as the parental strain. Different alleles were

moved into the parental background by P1 transduction [72]. The

kanamycin resistance cassette from the alleles originated from

KEIO collection [73] was cured when needed by expressing the

FLP recombinase from the helper plasmid pCP20 according to the

protocol in [74].

Persistence assay
Experiments were conducted at 37uC in Mueller Hinton Broth

(MHB) supplemented with 10 mg/L MgSO4 and 20 mg/L CaCl2
according to NCCLS (National Committee for Clinical Labora-

tory Standards) guidelines for susceptibility testing and 0.1 M

HEPES/KOH pH 7.2.

Persistence was measured by determining survival upon

exposure to 0.1 mg/ml ciprofloxacin (unless indicated otherwise),

100 mg/ml ampicillin and 25 mg/ml streptomycin during time

indicated on corresponding graph axes. All antibiotics were

purchased from Sigma.

Prior to the addition of antibiotic overnight cultures were

diluted 100-fold in 3 ml of fresh medium in 17- by 100-mm

polypropylene tubes and incubated for 1.5 hrs with shaking,

typically reaching ,26108 CFU/ml. For determination of CFU

counts, cells were washed in 1% NaCl solution, serially diluted and

plated on LB (Luria-Bertani medium) agar plates supplemented

with 20 mM MgSO4.

Persister fraction, reflected as a plateau in CFU counts, was

calculated as an average of CFU counts at 3- and 6-hour time

points. In lexA3 and recA430 strains the CFU counts stabilize later

than in the wild-type and in that case the CFU counts at 6-hour

time point were used as a representative of the persister fraction.

Measurements of SOS induction
For plate assays using the CI-cro-gal construct, overnight cultures

grown in LB medium at 37uC were diluted 1:200 in 15 ml of fresh

medium and incubated in 125 ml flasks for 1.75 hrs at 37uC with

shaking. Ciprofloxacin was added and aliquots of the culture were

taken at different time points, washed in 1% NaCl solution, serially

diluted and plated on LB agar plates supplemented with 20 mM

MgSO4 for total CFU counts and on MacConkey agar plates

supplemented with 1% galactose in order to determine the fraction

of gal+ cells.

For b-galactosidase activity measurement, overnight cultures

grown in supplemented MHB medium (see above) at 37uC were

diluted 1:100 in 3 ml of fresh medium in 17- by 100-mm

polypropylene tubes and incubated for 1.75 hrs at 37uC with

shaking. Ciprofloxacin was added and after 15 minutes an aliquot

of culture was taken and recA::lacZ expression was measured as

described in [72].

Mitomycin C treatment and persistence to ciprofloxacin
Overnight cultures in supplemented MHB medium were

diluted 1:1000 in 15 ml of fresh medium and incubated in

125 ml flasks for 1 hr at 37uC with shaking after which 0.25 mg/

ml of mitomycin C (Sigma) was added to the cultures. This

concentration did not inhibit the growth of the culture. After 2 hrs

the total CFU counts were determined by dilution and plating and

Table 1. Bacterial strains.

Strain Relevant genotype Parent strain Reference Source

MG1655 K-12 F2 l2

TD172 DrecA::kan JW2669 [73]

TD230 DrecB::kan JW2788 [73]

TD160 DrecN::kan JW2597 [73]

TD222 recA430 GY3448 [24,75] E. coli Genetic Stock Center, Yale

TD221 lexA3 malE300::Tn10 K996 [23] E. coli Genetic Stock Center, Yale

TD127 lexA300(Def) DsulA::FRT GW8018, JW0941 [73,76] Walker Lab, MIT, Cambridge

MV2033 DxerD::kan JW2862 [73]

MV2037 DxerC::kan JW3784 [73]

LLC3 (l cI+ cro+-gal2) MT1 [31] Radman Lab, Necker, Paris

MV1603 l d(recA::lacZ) cI(Ind2) AmpR AB1157 l d(recA::lacZ) cI(Ind2) AmpR [30] Radman Lab, Necker, Paris

doi:10.1371/journal.pgen.1000760.t001
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an aliquot of the culture was taken out and exposed to 0.3 mg/ml

of ciprofloxacin for 3 hrs. The number of survivors was

determined by plating on LB agar plates supplemented with

20 mM MgSO4 after washing in 1% NaCl solution. The same

procedure was repeated after 4 hours of exposure to mitomycin C.

Kinetics of persister formation
Overnight cultures in MHB medium were diluted 1000-fold in

100 ml of fresh medium in 500 ml flasks and incubated at 37uC
with shaking. At defined time intervals the cultures were serially

diluted and plated on LB agar for determination of total CFU

counts. In the same time 1 ml aliquots were transferred into 2 ml

eppendorf tubes and 0.1 mg/ml ciprofloxacin was added. After

3 hrs at 37uC cells were washed with 1% NaCl solution, serially

diluted and plated on LB agar plates supplemented with 20 mM

MgSO4. The colonies were counted after 40 hours incubation at

37uC.
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