
SOUND ANALYSIS USING MPEG COMPRESSED AUDIO

George Tzanetakis

Computer Science Department
Princeton University

35 Olden Street, Princeton NJ 08544,USA
gtzan@cs.princeton.edu

Perry Cook

Computer Science and Music Deptartment
Princeton University

35 Olden Street, Princeton NJ 08544,USA
prc@cs.princeton.edu

ABSTRACT

There is a huge amount of audio data available that is
compressed using the MPEG audio compression standard.
Sound analysis is based on the computation of short time
feature vectors that describe the instantaneous spectral con-
tent of the sound. An interesting possibility is the calcula-
tion of features directly from compressed data. Since the
bulk of the feature calculation is performed during the en-
coding stage this process has a significant performance ad-
vantage if the available data is compressed. Combining de-
coding and analysis in one stage is also very important for
audio streaming applications.

In this paper, we describe the calculation of features
directly from MPEG audio compressed data. Two of the
basic processes of analyzing sound are: segmentation and
classification. To illustrate the effectiveness of the calcu-
lated features we have implemented two case studies: a
general audio segmentation algorithm and a Music/Speech
classifier. Experimental data is provided to show that the
results obtained are comparable with sound analysis algo-
rithms working directly with audio samples.

1. INTRODUCTION

In order to handle the increasing amounts of audio data
available, more structure-extracting tools are necessary. Al-
though there has been a lot of work on video analysis, the
work on audio analysis has been more limited. Recently, a
number of techniques for automatic analysis of audio infor-
mation have been proposed [1]. All these techniques involve
the calculation of short time feature vectors that describe
the instantaneous content of the sound.

MPEG audio compression has become the most com-
mon way to store audio files (the well-known .mp3 files). In
this work we explore the possibility of calculating short time
feature vectors directly from the compressed data. This
calculation can be done at the same time as the audio de-
compression or by itself without having to output audio
samples. That way significant time can be saved since the
bulk of the feature calculation is performed during the en-
coding stage. Combining decoding and analysis in one stage
is also important for audio streaming applications. Using
traditional analysis techniques that work with the audio
samples, the MPEG data would have to be decompressed
and then reprocessed for performing the analysis.

Auditory scene analysis is the process by which the au-
ditory system builds mental descriptions of complex au-
ditory environments by analyzing mixtures of sounds [2].
From an ecological viewpoint, we try to associate events
with sounds in order to understand our environment. Clas-
sification (what made this sound?), and segmentation (how
long did it last?) are two basic processes of auditory anal-
ysis. The decisions for sequential and simultaneous inte-
gration of sound are based on multiple cues. Although our
feature calculation does not attempt to model the human
auditory system, it does use multiple features as a basis
for classifying and detecting segmentation boundaries. As
an example of segmentation a general audio segmentation
system similar to [3] has been implemented. As an exam-
ple of classification a Music Speech discriminator similar to
[4] has been implemented. The experiments indicate that
the features selected contain enough information to be use-
ful for automatic classification and segmentation , and are
comparable with algorithms that operate directly on audio.

2. SHORT MPEG OVERVIEW

The MPEG audio coding standard is an example of a per-
ception based coder that exploits the characteristics of the
human auditory system to compress audio more efficiently.
Since there is no specific source model, like in speech com-
pression algorithms, it can be used to compress any type
of audio. In the first step the audio signal is converted
to spectral components via an analysis filterbank. Each
spectral component is quantized and coded with the goal of
keeping the quantization noise below the masking threshold.
Simultaneous masking is a frequency domain phenomenon
where a low level signal (the maskee) can be made inaudible
(masked) by a simultaneous occuring stronger signal (the
masker) as long as masker and maskee are close enough to
each other in frequency. Therefore, the dynamic bit allo-
cation in each subband is controlled by a psychoacoustic
model. Layer I,II,III offer different trade-offs between com-
plexity and compression ratio. More details can be found
in [5] and at the complete ISO specification [6, 7].

Like most modern coding schemes there is an assymetry
between the encoder and the decoder. The encoder is more
complicated, slower, and there is some flexibility in the psy-
choacoustic model used. On the other hand, decoding is
simpler and straightforward. The subband sequences are
reconstructed on the basis of blocks taking into account the

bit allocation information. Each time the subband sam-
ples of all the 32 subbands have been calculated, they are
applied to the synthesis filterbank, and 32 consecutive 16-
bit, PCM-format audio samples are calculated. The feature
calculation described in the following section is performed
before the common to all layers filterbank synthesis.

2.1. The filterbank

The digital audio input is mapped into 32 subbands via
equally spaced bandpass filters. A polyphase filter struc-
ture is used for the frequency mapping; its filters have 512
coefficients. The filters are equally spaced in frequency. At
a 22050 Hz sampling rate, each band has a width of 11025
/ 32 = 345 Hz. The subsampled filter outputs exhibit sig-
nificant overlap. The impulse response of subband k, hk(n)
is obtained by multiplication of a single prototype low-pass
filter, h(n), by a modulating function that shifts the lowpass
responce to the appropriate subband frequency range:

hi(n) = h(n)cos(
2i− 1
2M

+ φ(i));

M = 32; i = 1, 2, ..32; n = 1, 2, ...512; (1)

Although the actual calculation of the samples is per-
formed differently for performance reasons; the 32-dimensional
subband vector can be written into a convolution equation:

St[i] =
511∑
n=0

x[t− n] ∗ hi[n] (2)

where hi[n] are the individual subband band-pass filter re-
sponces. Details about the coefficients of the prototype fil-
ter and the phase shifts φ(k) are given in the ISO/MPEG
standard [6], [7].

3. FEATURE CALCULATION

For the experiments MPEG-2, Layer III, 22050Hz sampling
rate, mono, files were used. A similar approach can be used
with the other layers and sampling rates as well as with
any filterbank-based perceptual coder. The analysis is per-
formed on blocks of 576 samples (about 20msec at 22050Hz)
that correspond to one MPEG audio frame. A root mean
squared subband vector is calculated for the frame as:

M [i] =

√∑18
t=1(St[i]

2)
18

, i = 1..32; (3)

St are the 32-dimensional subband vectors. The result-
ingM is a 32-dimensional vector that describes the spectral
content of the sound for that frame. The characteristic fea-
tures calculated are:

Centroid is the balancing point of the vector. It can be
calculated using

C =

∑32
i=1 iM [i]∑32
i=1 M [i]

(4)

Rolloff is the value R such that
R∑
i=1

M [i] = 0.85
32∑
i=1

M [i] (5)

Spectral Flux is the 2-norm of the difference between nor-
malized M vectors evaluated at two successive frames.

RMS is a measure of the loudness of the frame. It can be
calculated using

RMS =

√∑32
i=1(M [i]

2)
32

(6)

This feature is unique to segmentation since changes
in loudness are important cues for new sound events.
In contrast, classification algorithms must usually be
loudness invariant.

The actual features used for the analysis are the mean
and variances of those features in a larger window (40 frames
about 1sec) of past frames. A circular buffer of the past 40
feature vectors is used for faster performance. In addition to
the means and variances of those features, a feature called
LowEnergy is used. It is defined as the percentage of frames,
in a 1sec window, that have less than the average power.
This feature is used for Music/Speech discrimination since
speech has large variations in energy levels. Finally, log-
transforms of the features are used to reduce the dynamic
range and make the clusters in classification more compact.

4. SEGMENTATION

In this work segmentation refers to the process of breaking
audio into regions based on what could be called “texture”
of sound. Some examples are a piano entrance after the or-
chestra in a concerto, a rock guitar solo, a change of speaker
etc. There are no assumptions about the type of audio and
no statistical class model of the data is made. For segment-
ing we follow the methodology described in [3]. The method
can be broken into four stages:

1. A time series of feature vectors Vt is calculated by
iterating over the sound file.

2. A distance signal ∆t = ||Vt − Vt−1|| is calculated be-
tween successive frames of sound. In our implemen-
tation we use a Mahalonobis distance given by

D(x, y) = (x− y)TΣ−1(x− y) (7)
where Σ is the feature covariance matrix calculated
from the whole sound file. This distance rotates and
scales the feature space so the contribution of each
feature is equal. Other distance metrics, possibly us-
ing relative feature weighting, can also be used.

3. The derivative d∆t
dt of the distance signal is taken.

The derivative of the distance will be low for slowly
changing textures and high during sudden transitions.
The peaks roughly correspond to texture changes.

4. Peaks are picked using simple heuristics and are used
to create the segmentation of the signal into time re-
gions. As a heuristic example, adaptive thresholding
can be used. A minimum duration between succes-
sive peaks can be set to avoid small regions.

1 2 3 4 5 6 7
55

60

65

70

75

80

85

INCREASE IN CLASSIFICATION PERFORMANCE

AS FEATURES ARE ADDED

Feature #

%
 C

or
re

ct
 C

la
ss

ifi
ca

tio
ns

Figure 1: 1,2,3 and 4,5,6 are the means and variances of
Centroid,Rolloff and Flux. Low Energy is 7.

The features used for segmentation are Low Energy and
the mean and variances of Centroid, Rolloff, Flux, Rms.

5. CLASSIFICATION

In order to evaluate the proposed features a multifeature
statistical Music/Speech classifier has been implemented.
It is based on the discriminator described in [4]. Two stan-
dard statistical pattern recognition classifiers were used for
the experiments. For a more complete description of these
classifiers and statistical pattern recognition in general refer
to [8].

The Gaussian (MAP) clasifier assumes each class can
be represented as a multi-dimensional normal distribution
in feature space. A labeled data set is used to train the
classifier by calculating the parameters for each particular
class. This classifier is typical of parametric statistical clas-
sifiers that assume a particular form for the underlying class
probability density functions.

Unlike parametric classifiers, the K-Nearest neighbor
classifier directly uses the training set for classification with-
out assuming any mathematical form for the underlying
class probability density functions. Each sample is classified
according to the class of its nearest neighbor in the training
data set. In K-NN, the K nearest-neighbors are calculated
and voting is used to determine the class. More compicated
classifiers like Gaussian Mixture and Neural Network classi-
fiers can be used to improve the performance of the system.
However, it is a known result that no matter what classi-
fier we use, we can never do better than to cut the error
rate in half over the nearest-neighbor classifier, assuming
the training and testing data represent the underlying fea-
ture space topology [8]. The features used for classification
are Low Energy and the mean and variances of Centroid,
Rolloff and Flux.

6. EVALUATION

6.1. Classification Evaluation

The data used for evaluating the Music/Speech classifica-
tion consists of about 2 hours of audio data. There are

GMAP K-NN(1) K-NN(5)
MPEG 82.2± 2.1% 84.6 ± 4.4% 86.2 ± 3.8%
PCM 84.8± 1.4% 89.5 ± 2.0% 90.0 ± 1.2%

Different Data Set
OTHER1 94.0± 2.6% 94.2 ± 3.6% 95.7 ± 3.5%

Different Data Set & Classifiers
OTHER2 77.1% 90.0% 94.2%

Table 1: Music/Speech percentages of frame-based classifi-
cation performance

Free 4± 1 8± 2
MPEG FB 55%, 31/56 58%, 25/43 54%, 38/70
PCM FB 62%, 35/56 51%, 22/43 62%, 44/70
MPEG BE 71%, 40/56 74%, 32/43 65%, 46/70
PCM BE 85%, 48/56 86%, 37/43 75%, 53/70

Table 2: Comparison of segmentation algorithms

45 minutes of speech, 45 minutes of music, and about 30
minutes of mixed audio. Radio, live recordings of speech,
compact disks and movies representing a variety of speakers
and music styles were used as data sources.

To ensure that the results would not be affected by the
choise of training/testing set, a robust evaluation was done
using a random 10% of the data for testing and 90% for
training. The process was repeated 100 times and the mean
and the standard deviation of the classification accuracy
were collected. In addition, soundfiles were not split into
training and testing data. This is important since there
is a good deal of frame-to-frame correlation in vectors of
the same file so splitting the file would give an incorrect
estimate of classifier performance for truly novel data. The
results are calculated on a frame basis without any integra-
tion. The regions detected by the segmentation algorithm
can be used for integration using a majority filter to achieve
better classification performance.

Further improvements in classification performance can
be achieved by integrating the results. For integration the
region detected by the segmentation algorithm can be used.

Figure 1, shows the improvement in classification per-
formance by the gradual addition of features. The order
used is mean Centroid, mean Rolloff, mean Flux, variance
Centroid, variance Rolloff, variance Flux and Low Energy.
Table 1 compares the performance of the MPEG based clas-
sification with PCM based systems. For the PCM line the
same dataset and a similar set of features calculated using
short time Fourier Transform were used. The OTHER1 line
is based on results by [4] and uses a different data set. The
OTHER2 line is based on results by [9] and uses a different
data set and different classifiers. The results indicate that
the proposed features can be used for classification without
significant decrease in accuracy.

6.2. Segmentation

The data used to evaluate segmentation consists of 10 sound
files about 1 minute long. A variety of music styles, tex-
tures, speech and singing are represented. The comparison
is based on the user experiments for audio segmentation

described in [3]. In those experiments, nine subjects were
asked to segment each sound file using standard audio edit-
ing tools in 3 ways. The first way called Free is breaking
up the file into any number of segments. The second and
third way constrain the users to a specific budget of total
segments 4± 1 and 8± 2. The segments that more than 4
of the 9 subjects agreed upon were retained for comparison
with the automatic segmentation algorithm. In table 2 the
performance of the MPEG-based segmentation algorithm
is compared with a similar algorithm based on short time
Fourier Transform analysis. The table shows the number
of regions that were marked by humans that were captured
by the system. FB (fixed-budget) refers to automatic seg-
mentation by requesting the same number of segments as
the salient human segments. BE (best effort) refers to the
best automatic segmentation achieved by incrementally in-
creasing the number of regions up to a maximum of 16.
Although the performance is lower than the PCM based
algorithm still a large number of segmentation boundaries
are captured by the algorithm. Most of the cases where the
algorithm missed boundaries compared to the PCM based
algorithm were in soundfiles containing rock or jazz music.
The reason is that the PCM based algorithm uses time do-
main zerocrossings that capture the transition from noise-
like signals to more harmonic signals.

7. IMPLEMENTATION

For the feature calculation an MP3 decoder was imple-
mented in C++. The source code is loosely based on the
Fraunhaufer institute reference software implementation and
other open source implementations. The feature calcula-
tion, classification and segmentation componenents were
integrated using MARSYAS [10] an object-oriented frame-
work for building audio analysis tools written in C++ and
JAVA. The combined decoding and classification/ segmen-
tation runs real-time on a Pentium II PC. The source code
for the feature calculation is available upon request.

8. FUTURE WORK

For statistical pattern recognition large amounts of training
data need to be collected. By doing the analysis on MPEG
compressed data the enormous resources available on the
Web can become available for training. We are planning to
implement a Web crawler to automatically gather .mp3 files
from the Web for this purpose. Other feature-based statisti-
cal pattern recognition applications that could use a similar
front-end are: speaker identification, male/female discrim-
ination, content based retrieval and instrument classifica-
tion. It might even be possible to use MPEG based features
for speech recognition directly on compressed data. The
features described in this work are not the only ones possible
and further investigation is needed in order to come up with
better features tailored to specific applications. In addition
to the subband analysis other types of information can be
utilized. For example in MPEG layer III a window switch-
ing scheme is used where the 32 subband signals are further
subdivided in frequency content by applying, to each sub-
band, a 6-point or 18-point modified DCT block transform.
The 18-point block transform is normally applied because

it provides better frequency resolution, whereas the 6-point
block transform provides better time resolution. Therefore
it is more likely to find semgentation boundaries in short
blocks and this information could be used to enhance the
segmentation algorithm.

9. SUMMARY

A short time feature calculation scheme that operates di-
rectly on MPEG audio compressed data during the decom-
pression stage has been described. The resulting features
have been used successfully for automatic Music/Speech
classification and general audio segmentation. The decod-
ing and feature calculation are performed in real-time since
a large part of the feature calculation has already been done
during the encoding stage.

10. ACKNOWLEDGEMENTS

The authors would like to acknowledge support from Intel,
Interval Research and Arial Foundation.

11. REFERENCES

[1] J. Foote, “An overview of audio information retrieval,”
ACM Multimedia Systems, vol. 7, pp. 2–10, 1999.

[2] A. Bregman, Auditory Scene Analysis, MIT Press,
1990.

[3] G. Tzanetakis and P. Cook, “Multifeature audio seg-
mentation for browsing and annotation,” in Proc.1999
IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, WASPAA99, New Paltz, NY,
1999.

[4] E. Scheirer and M. Slaney, “Construction and evalu-
ation of a robust multifeature speech/music discrimi-
nator,” IEEE Transactions on Acoustics, Speech and
Signal Processing (ICASSP’97), pp. 1331–1334, 1997.

[5] Noll Peter, “Mpeg digital audio coding,” IEEE Signal
Processing Magazine, pp. 59–81, September 1997.

[6] ISO/IEC JTC1/SC29, Information Technology-Coding
of Moving Pictures and Associated Audio for Digi-
tal Storage Media at up to about 1.5 Mbit/s-IS 11172
(Part 3, Audio), 1992.

[7] ISO/IEC JTC1/SC29, Information Technology-
Generic Coding of Moving Pictures and Associated Au-
dio Information-IS 13818 (Part 3, Audio), 1994.

[8] R. Duda and P. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, 1973.

[9] S. Rossignol, X. Rodet, et al., “Features extraction
and temporal segmentation of acoustic signals,” Proc.
ICMC 98, pp. 199–202, 1998.

[10] G. Tzanetakis and P. Cook, “A framework for audio
analysis based on classification and temporal segmen-
tation,” in Proc.25th Euromicro Conference. Work-
shop on Music Technology and Audio Processing, Mi-
lan, Italy, 1999, IEEE Computer Society.

