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Abstract: Audio recognition can be used in smart cities for security, surveillance, manufacturing,
autonomous vehicles, and noise mitigation, just to name a few. However, urban sounds are everyday
audio events that occur daily, presenting unstructured characteristics containing different genres
of noise and sounds unrelated to the sound event under study, making it a challenging problem.
Therefore, the main objective of this literature review is to summarize the most recent works on
this subject to understand the current approaches and identify their limitations. Based on the
reviewed articles, it can be realized that Deep Learning (DL) architectures, attention mechanisms,
data augmentation techniques, and pretraining are the most crucial factors to consider while creating
an efficient sound classification model. The best-found results were obtained by Mushtaq and Su,
in 2020, using a DenseNet-161 with pretrained weights from ImageNet, and NA-1 and NA-2 as
augmentation techniques, which were of 97.98%, 98.52%, and 99.22% for UrbanSound8K, ESC-50,
and ESC-10 datasets, respectively. Nonetheless, the use of these models in real-world scenarios has
not been properly addressed, so their effectiveness is still questionable in such situations.

Keywords: audio classification; audio processing; deep learning; Convolutional Neural Networks;
transformers; attention mechanisms

1. Introduction

As a direct consequence of the growth of the urban population around the world, cities
are becoming increasingly more common as human organization structures (Syed et al. [1]).
Recently, smart cities are emerging to take advantage of all opportunities that cities can provide
to improve the lives of their citizens, such as taking advantage of the sensing architecture
spread around the city to create innovative services (Bello et al. [2]). Accordingly, one of the
main requirements concerns Urban Sound characterization, which encompasses several
tasks, such as sound classification and segmentation, and still poses different challenges
(Mushtaq and Su [3], Das et al. [4]). It is estimated that major cities must handle thousands
of co-occurring events, with rapid events that require immediate action passing unnoticed
by authorities (Mushtaq and Su [3], Das et al. [4]).

Among the environmental sounds, there are several categories, such as natural and
human-made sounds, like people speaking and music, and abnormal noises, such as the
sounds of gunshots. Urban sounds often associated with human-made noises unrelated to
speech or music interpretation are everyday urban noises such as horns and sirens, dog
barking and others, which can be classified as abnormal from an urban sound perspective
and may require special attention.

Efforts have been made to develop computational algorithms to automatically classify
urban sounds acquired at different instants, at the same location or at different ones, extract
sound features, and classify a set of particular sounds. However, limitations are still present
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regarding the combination of multiple classes of sounds, abnormal noise conditions, and a
wide range of co-occurring sound events (Mushtaq and Su [3], Das et al. [4,5]).

Earlier sound classification algorithms were traditionally based on handcrafted features
(Mu et al. [6], Giannakopoulos et al. [7], Luz et al. [8], Gong et al. [9]). Recently, the pro-
posed algorithms have been based on Deep Learning (DL) approaches, with the most suc-
cessful Deep Learning (DL) architectures being the Convolutional Neural Network (CNN)
(Mu et al. [6], Luz et al. [8]) and recently the Transformer (Akbari et al. [10], Elliott et al. [11], Wy-
att et al. [12], Park et al. [13], Koutini et al. [14]) architectures. In a Convolutional Neural Network
(CNN), the data are propagated through the included layers via convolutions and other op-
erations, e.g., pooling, flattening, and dropout, having the network the ability to learn both
local- and high-level information on the image space (Giannakopoulos et al. [7], Luz et al. [8]).
Sound classification based on Convolutional Neural Network (CNN)s has already been pro-
posed, with most of the current approaches exploring the use of pretrained Convolutional
Neural Network (CNN)s by redefining the last layers to tackle the sound classification problem
(Mushtaq and Su [3], İlker Türker and Aksu [15]) and, recently, using attention models (Akbari
et al. [10], Kong et al. [16]) and novel augmentation techniques (Mushtaq and Su [3], Salamon
and Bello [17]).

As to urban sound classification, which has as the main objective the detection of relevant
sound events acquired from urban scenarios, most of the proposed solutions are based on
Convolutional Neural Network (CNN)s. Some works are also based on Recurrent Neural
Networks (RNNs) (Kong et al. [16], Gimeno et al. [18]), particularly for sound events that
occur in sequence, but should be understood as only one sound event, e.g., footsteps (Kong
et al. [16]), by exploring Long-Short Term Memory (LSTM) models (Das et al. [5], Gimeno
et al. [18]), and recently attention mechanisms (Zhang et al. [19,20], Qiao et al. [21], Tripathi
and Mishra [22], Ristea et al. [23]). However, the optimal architecture for each application
has not yet been established, and many opportunities are still available. Furthermore, urban
sound understanding has not been addressed properly to operate in real urban scenarios and
distributed environments. Therefore, there is a bright future for Deep Learning (DL) applied
to urban sound systems, with huge potential to complement other forms of sensing, such as
imaging, which enables multimodal data understanding and applications not yet fully explored
(Das et al. [4]).

Figure 1 presents the evolution of the number of articles published by year for environ-
mental and urban sound processing or classification. From this figure, it is possible to infer
that the growth of Deep Learning (DL) has gained an increasing interest in the scientific
community of this area. Therefore, the most recent proposed approaches are based on Deep
Learning (DL) methods.

Concerning the subject of this study, works aligned in the context of urban sound man-
ifestations are emphasized, namely, works that explore datasets containing urban sound
categories such as car horns, sirens, dog bark, and jackhammer, among others. Therefore,
this review focuses on classification and audio segmentation methods to characterize urban
sound environments. The organization of this article is the following: in Section 2, we
describe the methodology employed to search and select the scientific works to be included
in this review; in Section 3, we present the findings of this review, mainly as to the architec-
tures used to perform urban sound classification and as to the different methods employed
to segment the audios; in Section 4, we list the applications identified in this review; in
Section 5, we present details about the most used datasets; and in the final section, we
discuss the main conclusions and point out the most promising lines of research.
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Figure 1. Evolution of the published articles based on deep learning or machine learning approaches
found in the Scopus database for environmental and urban sound processing or classification between
2010–2022.

2. Systematic Literature Review—Methodology

This section describes the methodology used to search and select the state-of-the-art
works included in this review. The major goal was to gain insight into the significant current
research on environmental and urban sound processing and classification. In addition, the
following additional features were taken into account:

• Used datasets.
• Proposed models’ architecture, particularly if it is original or modified.
• Metrics used to evaluate the models’ performance.

2.1. Search Method

A systematic literature search was conducted from June 2022 to September 2022 using
Scopus, Science Direct and Semantic Scholar databases with distinct combinations of the
ensuing keywords: “environmental sound”, “urban sound”, “classification”, “processing”,
“segmentation”, “machine learning”, “deep learning”, and “Transformers”. After removing
duplicated results, 1215 unique results were produced. An inspection of the title and
abstract led to the exclusion of 826 studies for being utterly unrelated to the subject of study.
Of the remaining studies, 301 works were excluded by applying the following criteria:
studies written in English and peer-reviewed studies, i.e., research articles, literature
reviews and book chapters. Finally, by carefully reviewing the body of the text of each
remaining work, only 26 studies were maintained. Figure 2 presents the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram of the performed
systematic search process.

2.2. Sound Classification Methods

Sound classification methods can be applied in several areas, including surveillance,
noise mitigation, and context-aware computing, just to name a few. Therefore, to most
accurately attribute a class to a specific sound, several Machine Learning (ML) models have
been developed to extract the nuclear characteristics of the audio samples under study
during training and then classify unseen audios highly confidently.

Neural Networks

Researchers have identified some limitations that prevented them from obtaining
good results on sound classification tasks. Therefore, Salamon and Bello [17] employed
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a Deep Convolutional Neural Network (DCNN) in combination with data augmenting
techniques, namely noise injection, shifting time, and changing pitch and speed, among the
training set to solve the scarcity of labeled data. On the other hand, Das et al. [5] used an
Long-Short Term Memory (LSTM) in combination with spectral features obtained from the
audio training segments.

Figure 2. PRISMA diagram of the performed literature search process (adapted from Page et al. [24]).

Das et al. [4] explored the use of a Convolutional Neural Network (CNN) model
with a specific Additive Angular Margin Loss (AAML) and more commonly used stacked
features, Mel Frequency Cepstral Coefficients (MFCC) and Chromagram in combina-
tion with a Convolutional Neural Network (CNN). Zinemanas et al. [25] used an Au-
dio Prototype Network (APNet) model composed by an autoencoder and a classifier.
Mu et al. [6] introduced a Convolutional Neural Network (CNN)-based model associated
with attention mechanisms, called Temporal-frequency attention based Convolutional
Neural Network (TFCNN).

3. Research Results

After revising all the works found on the subject under study, it was possible to under-
stand that there are three fundamental steps to perform sound classification: preprocessing,
feature extraction, and classification, as shown in Figure 3. Therefore, this literature review
presents the most promising works to address each step.
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Figure 3. Typical sound classification process.

The objective of the models is to have good generalization performance for unseen
data, which commonly requires large quantities of data to train the models effectively.
To deal with the scarcity of labeled data for Environmental Sound Classification (ESC),
Salamon and Bello [17] proposed four different augmenting techniques to apply to the
original training set:

• Time stretching: slows down or speeds up the audio samples, but the pitch remains un-
changed.

• Pitch shifting: the audio samples’ pitch is raised or lowered while keeping the dura-
tion unchanged.

• Dynamic range compression: compress the dynamic range of the audio using parameter-
izations from the Dolby E standard and the Icecast online radio streaming server.

• Background noise addition: mix background sounds’ recordings from different scenes
with the audio samples.

Furthermore, a detailed analysis of the different techniques is performed to determine
the impact of the various data augmentation techniques on the final accuracy, enabling the
quantification of the contributions of each of the data transformations employed on the
training data, suggesting that a class-conditional augmentation technique during training
would be beneficial.

Moreover, it is necessary to understand which features and models can achieve better
accuracy. Das et al. [5] presented a comparative study between a Convolutional Neural Net-
work (CNN) and a Long-Short Term Memory (LSTM) model using different combinations of
spectral features. First, the audio signal was preprocessed to reduce the amount of redundant
information; the Nyquist–Shannon theorem states that the sample rates should be at least twice
the value of the frequency of a continuous waveform. However, to reduce the training time,
the downsampling was achieved using the librosa library (McFee et al. [26]) default sampling
rate of 22,050 Hz. The next step corresponds to the extraction of spectral features such as
Mel Frequency Cepstral Coefficients (MFCC), Melspectrogram, Chroma Short-Term Fourier
Transformation (STFT), Chroma Constant Q-transform (CQT), Chroma Energy Normalized
Statistics (CENS), Spectral Contrast, and Tonnetz. The extracted spectral features combined
with data augmentation techniques of pitch shift, time stretch and pitch shift with time stretch,
with the final models employed in the classification of the sound events and with a detailed
evaluation of the respective accuracy, led to the following conclusions:

• An increase in the number of epochs led to an exponential decrease in the validation
error for training and testing data.

• Long-Short Term Memory (LSTM) model had better performance, in most cases than
the Convolutional Neural Network (CNN), which becomes more notable with the data
augmentation techniques because the Long-Short Term Memory (LSTM) memory cell
encompasses constant error backpropagation, which allows dealing better with noisy data.

• Focusing on the influence of the different used features, the one which led to the
best accuracy was the Mel Frequency Cepstral Coefficients (MFCC); however, it was
possible to outperform the achieved accuracy by using a stack of different features,
mainly of Mel Frequency Cepstral Coefficients (MFCC) and Chroma Short-Term
Fourier Transformation (STFT).

Besides the concerns with the type of model and the features that are the best per-
forming ones, it is also necessary to consider the used loss function, which can limit the
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potential classification accuracy of the used model. Das et al. [4] evaluated different loss
functions such as Softmax loss, angular Softmax loss, large margin cosine loss, and additive
angular margin loss on the model’s final accuracy. As input, the Mel Frequency Cepstral
Coefficients (MFCC) features used alone, and the stacked features of Mel Frequency Cep-
stral Coefficients (MFCC) and Chromagram were compared in terms of the model’s final
accuracy. A detailed analysis of the results showed a significant improvement in the perfor-
mance of the used models when the features were stacked together. Besides, it was possible
to conclude that there was a boost in the accuracy when a modified Softmax loss function
was used in comparison with the Softmax loss function, which led to the best model found:
the Convolutional Neural Network (CNN)-based model with additive angular margin
loss and the stacked features of Mel Frequency Cepstral Coefficients (MFCC) and Chroma
Short-Term Fourier Transformation (STFT) as input data.

In addition, it is essential to make the model predictable to identify which input
parameter drives the model’s decisions and reduce future malfunctions. To achieve this,
Zinemanas et al. [25] proposed an Audio Prototype Network (APNet) composed essentially
of two parts: an autoencoder and a classifier. The autoencoder was composed of the encoder,
formed by three convolutional layers. Following the initial two convolutional layers, max-
pooling layers were applied to get features at distinct time–frequency resolutions, and the
decoder part was formed by three transpose convolutional layers that allowed obtaining
audios with great quality in the reconstruction path by minimising the reconstruction
error given by the Euclidean mean square loss function about its input and output. Then,
the classifier comprised three layers: a prototype layer, a weighted sum layer and a fully
connected layer. The prototype layer was responsible for storing a collection of prototypes
representing each class and learned in the latent space. To allow the learning of the
prototypes in the latent space, it was necessary to minimise the loss function, which
happens when there is at least one similar training example for each learned prototype.
As a result, training examples agglomerate around prototypes in the latent space. So,
this layer outputs a similarity measure based on the separation between each prototype
and each instance of encoded data. The similarity measure had two steps: calculating
a similarity dependent on frequency and integrating the frequency dimension using a
learnable weighted sum. The prototypes can be based on the most important frequency
bins, calculated using the square Euclidean distance, followed by a Gaussian function. The
frequency-dependent similarity assigns a distinct weight to each frequency bin in the latent
space. The frequency dimension is then integrated to obtain Ŝ, and by using the following
weighted sum:

Ŝij =
F

∑
f=1

Hj[ f ]Sij[ f ], (1)

where H is the trainable kernel and F is the length of the vector for each prototype. The
network can learn the optimal way to weigh each frequency bin for each prototype, which
is due to the crucial role that the kernel plays in differentiating between overlapping sound
classes by concentrating on the most significant frequency bins for each prototype. Finally,
the fully connected layer, whose activation function is a Softmax to enable classification,
learnt the decisions to convert the similarity measure into the predictions. The bias term was
not used because it was expected that the network would give the prototypes associated
with the class more weight and produce more interpretable kernel weights. It is also
important to refer that the prediction process can be illustrated, even though it is carried
out in the latent space, by using Melspectograms of data instances and prototypes which,
by applying the decoder function, are converted from the latent space to the time–frequency
input representation. Therefore, the network had as input a time–frequency representation
of the audio signal, from where the autoencoder transformed into its representation in the
latent space of valuable features. Then, the classifier reused the encoded input to make a
prediction based on the resemblance between the encoded input and a series of prototype
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representatives of each class. Accordingly to the previous description, it is possible to
understand that this model provides an insight into the decision-making process, allowing
the elimination of redundant prototypes and channels, and determining which prototypes
are the more representative of each class, enabling to understand which operation is more
beneficial for the identification of a specific sound, leading to a direct improvement in
the results. However, this model allows interpretation of the decisions, providing a good
baseline. Nonetheless, it is not so competitive compared to the noninterpretative models
such as Convolutional Neural Network (CNN)s.

As different mechanisms can identify sounds, Mu et al. [6] proposed a Temporal-
frequency attention based Convolutional Neural Network (TFCNN) that, due to the fre-
quency and temporal attention mechanisms, can reduce the impact of background noise
and nonrelevant frequency bands. The authors also concluded that the classification per-
formance of transient sounds was enhanced by using temporal attention mechanisms. In
contrast, the classification of continuous sounds benefits more from a frequency attention
mechanism. Also, the weight combination of both attention mechanisms allowed more
attention to the useful information and improved the clarity and distinguishability of
the feature distribution of sound events. The model’s architecture consists of attention
generation and the backbone network. The generation of attention part seeks that the
calculations required for representation learning be concentrated in particular areas. This
is accomplished by paying different levels of attention to the frequency band and time
frame components of the extracted Log-Melspectrogram from the original data. So, the
temporal attention mechanism focuses on the semantically related time frame portion
and suppresses noise or silent frames. The frequency attention mechanism assigns more
weight to the active frequency bands with distinguishable information. Then, the backbone
network part of the model has three layers: a convolutional layer, a pooling layer and a fully
connected layer making it possible to extract time–frequency features from the spectrogram
processed by the attention mechanism and predict sound phenomenons. The results obtained
using this implementation were inferior to the ones of some Convolutional Neural Network
(CNN)-based models. Nevertheless, the authors find their model still advantageous since it
can ensure high accuracy while requiring little complexity regarding the network’s structure or
feature processing.

Table 1 resumes the most relevant aspects of the works found on audio classification
using Neural Networks.

3.1. Transformers

Other researchers have based their models on attention mechanisms, particularly
on a transduction model called Transformer (Vaswani et al. [27]), due to its several ad-
vantages such as the total required computational complexity per layer, the quantity of
computation that can be parallelized and the path length between long-range dependen-
cies in the network. This section presents some of the most prominent works based on
Transformer’s architecture.

Some researchers created models with a hybrid architecture combining Transformers with
Convolutional Neural Network (CNN) like Kong et al. [16], who proposed a Convolutional
Neural Network Transformer (CNN-Transformer) and an automatic threshold optimization
method. Others focused on models based only on Transformers, such as Elliott et al. [11] and
Wyatt et al. [12], who presented Bidirectional Encoder Representations from Transformers
(BERT) based models capable of performing sound classification at the edge. In the case
of Gong et al. [9], an Audio Spectrogram Transformer (AST) was developed, which is a
convolutional-free, purely attention-based model able to provide one output for a single
channel audio input. Park et al. [13] introduced the Many-to-Many Audio Spectrogram
Transformer (M2M-AST), a model based on Audio Spectrogram Transformer (AST) that
allows for multichannel audio inputs, multiple output resolution sequences. Akbari et al. [10]
presented a Video-Audio-Text Transformer (VATT) and a strategy to decrease the complexity
of the training with a slight drop in the final Transformer’s performance: the DropToken
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technique. Also, to reduce the computational and memory complexity, Koutini et al. [14]
introduced a method designated as Patchout.

Table 1. Resume of the research articles found on audio classification using Neural Networks.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Salamon and Bello
(2017) [17]

Deep Convolutional
Neural Network (DCNN)
combined with data
augmentation techniques
of time stretching, pitch
shifting, dynamic range
compression, and
background noise.

Overcomes the problem of
data scarcity; Shows that
Deep Learning (DL) models
produce better results due to
their representational power
and capacity combined with
data augmentation.

Some augmentation
techniques have a
negative impact on the
accuracy of some classes.

UrbanSound8K; Accuracy:
73% without data
augmentation and 79%
with data augmentation.

Das et al. (2020) [5]

Convolutional Neural
Network (CNN) and
Long-Short Term Memory
(LSTM) models are used
with a stack of multiple
features as input and data
augmentation techniques:
pitch shift, time stretch
and pitch shift along with
time stretch.

Increasing the number of
epochs leads to a decrease in
the validation error until
reaching convergence;
Long-Short Term Memory
(LSTM) deals better with
data noise; The single
feature input that allows the
best result is Mel Frequency
Cepstral Coefficients
(MFCC); however, the stack
of features of Mel Frequency
Cepstral Coefficients
(MFCC) and Chroma
Short-Term Fourier
Transformation (STFT) gave
the best results out of all
input features.

Needs large datasets;
Execution time of
37.14 min with a GeForce
RTX200 GPU with
6 Gigabytes of VRAM and
boost clock of 1.68 GHz,
consumes around
8 Gigabytes of RAM to
train both models and
requires large resources
for inference.

UrbanSound8K; Accuracy:
98.81% for Long-Short
Term Memory (LSTM)
model using data
augmentation and a stack
of Mel Frequency Cepstral
Coefficients (MFCC) and
Chroma Short-Term
Fourier Transformation
(STFT) as input.

Das et al. (2021) [4]

Convolutional Neural
Network (CNN) model is
used with a single feature
input (Mel Frequency
Cepstral Coefficients
(MFCC)) and with a stack
of features using as loss
function a modified
Softmax loss function.

The stack of Mel Frequency
Cepstral Coefficients
(MFCC) and Chroma
Short-Term Fourier
Transformation (STFT) as
input provided the best
results; A modified Softmax
loss function showed to be
more beneficial than the
Softmax loss function;
Additive angular margin
loss was the loss function
that gave the best results.

The sophisticated loss
functions created an
intelligible space to
separate the different
classes due to an increase
in the compactness
within classes.

UrbanSound8K; Accuracy:
99.60% of Convolutional
Neural Network (CNN)
model with an additive
angular margin loss
function without
data augmentation.

Zinemanas et al.
(2021) [25]

Audio Prototype Network
(APNet) is used with a
time–frequency
representation of the
audio signal as input;
prediction based on the
resemblance between the
encoded input and a
collection of prototypes.

Provides insights into the
decision-making process,
helping the design of better
models; Models are more
explicit, allowing the
possibility to understand
what are the prototypes
more representative of each
class and which operation is
more beneficial for
identifying a specific sound.

The obtained results are
not competitive with a
noninterpretative
Deep Learning (DL)
model.

Medley-Solos-DB, Google
Speech Commands,
UrbanSound8K; Accuracy:
65.8% for
Medley-Solos-DB, 89% for
Google Speech
Commands and 76.2% for
UrbanSound8K.

Mu et al. (2021) [6]

Temporal-frequency
attention based
Convolutional Neural
Network (TFCNN) model
is used, which is a
Convolutional Neural
Network (CNN) model
with temporal and
frequency attention
mechanisms.

Attention mechanisms
reduced the background
noise and nonrelevant
frequency bands influence;
Low network structure
complexity, and plain
feature processing.

Did not show a similar
improvement for all
classes, negatively
impacting the correct
classification of
some classes.

UrbanSound8K, ESC-50;
Accuracy: 84.4% for
ESC-50 and 93.1% for
UrbanSound8K.
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Motivated by the fact that Convolutional Neural Network (CNN) does not learn
the long-time dependencies in a full audio clip, and the labels of audio recordings are
typically weak, which requires the right thresholds to detect the sound events under
study, Kong et al. [16] developed a Convolutional Neural Network Transformer (CNN-
Transformer) and an automatic threshold optimization method. The proposed model has a
time–frequency representation, Log-Melspectrogram, as input to which a Convolutional
Neural Network (CNN) is applied to extract high-level features to get embedding vectors
along the time axis. Then, these embedding vectors served as input to the encoder part of
the Transformer, allowing the modelling of the dependencies without considering their
distance in the input sequence and the parallel computation. Finally, a sigmoid nonlinearity
preceded by a fully connected layer is applied to the output of the encoder part of the
Transformer to forecast, over time steps, the existence probabilities of the sound classes. To
solve the scarcity of strongly labeled data, weakly labeled datasets were proposed to train
the model, which can be categorized into two types: segmentwise training and clipwise
training. The distinction between them is that the audio clip is divided into numerous
segments for segmentwise training, each of which inherits the audio clip’s tags. However,
this can result in inaccurate segment tags because the segments may not include the sound
event. On the other hand, clipwise training overcomes the preceding issue by learning the
tags from a neural network’s hidden layer. Also, it allows the training to be end-to-end with
poorly labeled data by aggregating the segmentwise predictions and directly outputting
the clip-level prediction. In contrast to segmentwise predictions, latent representations are
learned by the neural network. Lastly, thresholds must be applied to the system’s output
and optimised to determine whether sound events are present or absent and their onset and
offset times. Therefore, the authors have proposed an automatic threshold optimization
method to select the optimal thresholds. This method consists of two steps: optimization
and evaluation of the system using metrics that do not rely on thresholds, e.g., mean average
precision, and next, optimization of the thresholds, for the trained system, regarding a
particular metric like F1-score or error rate. The optimization method was tested in several
Convolutional Neural Network (CNN)-based models, including the Convolutional Neural
Network Transformer (CNN-Transformer), and proved its effectiveness and advantage by
improving the results of the models.

However, effective Convolutional Neural Network (CNN)-based models require a vast
set of parameters, which is inefficient for working on edge devices, making such models
unsuitable for many real-life situations. To carry out the application in real-life cases,
Elliott et al. [11] evaluated various audio features extraction techniques on Bidirectional
Encoder Representations from Transformers (BERT)-based Transformers. Then, Wyatt
et al. [12] employed a trained Bidirectional Encoder Representations from Transformers
(BERT)-based tiny Transformer on a device with limited resources and deployed it in
noisy environments to perform Environmental Sound Classification (ESC). Both works are
based on Bidirectional Encoder Representations from Transformers (BERT) architecture
introduced by Devlin et al. [28], and consist of a multilayer bidirectional Transformer
encoder based on the original implementation proposed by Vaswani et al. [27], having as
input a given token summed with the position embeddings.

In the work of Elliott et al. [11], the main contribution was the evaluation of Transformers’
performance using several feature extraction methods and their convenience when applied at
the edge. Therefore, besides introducing several feature extraction techniques, namely amplitude
reshaping, curve tokenization, Vector-quantized varitional autoencoders (VQ-VAE), Mel Fre-
quency Cepstral Coefficients (MFCC), Melspectrogram, and the combination of Mel Frequency
Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficient (GFCC), Constant
Q-transform (CQT) and Chromagram, the authors also used eleven different augmentation
techniques, particularly amplitude clipping, volume amplification, echo, lowpass filter, pitch,
partial erase, speed adjust, noise, Harmonic Percussive Source Separation (HPSS), bitwise down-
sample and sampling rate downsample, on raw audio files. By analysing the obtained results, it
was possible to understand that, in general, the various data augmentations techniques lead to
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better accuracy results and that the best feature extraction method was Melspectrogram, which
outperformed all the others with the advantage of being reasonably computationally inexpensive.
Regarding Mel Frequency Cepstral Coefficients (MFCC), these models performed slightly better
than raw amplitudes, and by adding additional feature extraction methods, the accuracy was
improved. However, the cost of computing features using all four feature extraction methods
becomes prohibitive, leading to a prolonged training and inference time. The researchers also
found that models trained in traditional frameworks have relatively little support for models
running in edge devices. The accuracy results obtained with the Transformer based model
applied on datasets with a small number of examples per class led to an inferior performance
relative to the ones obtained by a Convolutional Neural Network (CNN)-based model.

In the work presented by Wyatt et al. [12], the goal was the development of a ro-
bust Environmental Sound Classification (ESC) model capable of working in operational
resource-constrained settings. The authors used a Raspberry Pi Zero with poor-quality
microphones to record office sounds to fulfil the purpose. The architecture of the used
model was based on the design implemented by Elliott et al. [11], which can be divided
into three main parts:

• An input transformation baseline allows for choice of the embedding dimension and
is constituted of a batch normalization layer, followed by a linear layer. This linear
layer allows it to scale up or down one of the dimensions of audio features to a chosen
dimension. After passing through the linear layer, a positional embedding is added to
the feature vector to incorporate positional information into the prediction.

• A classic Transformer body which is a downsized version of Bidirectional Encoder
Representations from Transformers (BERT).

• A prediction head, after which three layers: a mean, a linear and a Softmax are
used. The mean layer does a global average pooling of the output. The other two
layers enable the mapping of the features to output classes before training using
cross-entropy loss.

The methodology used to train the model was to employ a dataloader to augment,
with an aleatory quantity of noise between a selected noise threshold: a slice of audio
randomly selected from each audio file. The amount of noise added varied to make the
model robust to high and low signal-to-noise ratios, reducing overfitting. Therefore, the
training with noise could generalize to audio without noise, leading to better results than
its non-noisy counterpart. The direct incorporation of noise resilience into the model
avoided the need to incorporate specific complex noise filters, allowing it to be deployed
on thousands of low-power (1W) embedded computational node devices.

Subsequently, due to the need to have a Transformer model capable of having compet-
itive results with datasets that have few examples per class, can handle inputs of varying
length and do not require architecture changes to perform different tasks, Gong et al. [9]
proposed a convolutional-free and entirely based on attention model: the Audio Spectro-
gram Transformer (AST) model. This model has as input an audio spectrogram and is
capable, even in the lowest layers, of capturing long-range global context. Its architecture
consists only of the encoder part of the original Transformer’s architecture, which is simple
to implement and replicate and makes it easier to perform transfer learning. Furthermore,
the formats of audio and images can be addressed in similar ways, allowing cross-modality
transfer learning to be used. To accomplish that, it was used an off-the-shelf pretrained Vi-
sion Transformer (ViT) (Figure 4), since it has an architecture similar to Audio Spectrogram
Transformer (AST). However, some modifications were needed because Vision Transformer
(ViT) input is a 3-channel image. In contrast, Audio Spectrogram Transformer (AST)’s
input is a spectrogram with only one channel; therefore, it is necessary for the Vision Trans-
former (ViT) patch embedding layer’s weights for each of its three input channels to be
averaged. Then, they serve as the Audio Spectrogram Transformer (AST) patch embedding
layer’s weights. Furthermore, the input audio spectrogram is normalized to ensure that
the datasets’ mean and standard deviations are 0 (zero) and 0.5, respectively. Another
concern is the positional embedding that, during the training of the Vision Transformer
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(ViT), learns to encode the spatial information. Thus, a cut and bilinear interpolate method
was proposed to adapt the positional embedding. This method enables the transference of
the two-dimensional (2D) spatial knowledge from a pretrained Vision Transformer (ViT) to
the Audio Spectrogram Transformer (AST) even if the input shapes are distinct. Lastly, the
final classification layer of the Vision Transformer (ViT) is discarded, reinitiating a fresh
one for Audio Spectrogram Transformer (AST). These modifications make it possible for
Audio Spectrogram Transformer (AST) to use various pretrained Vision Transformer (ViT)
weights for initialization, leading to better results than a randomly initialized Audio Spec-
trogram Transformer (AST), which can be more notable when the training bulk is smaller
and confirms the reduction in the request for in-domain audio data. The authors also
found that Data efficiency image Transformer (DeiT), because it uses data augmentation
and a knowledge distillation token, improves data efficiency and model accuracy. Then,
regarding the impact of positional embedding adaptation, the importance of transferring
spatial knowledge was demonstrated. As for the impact of patch split overlap, it was
noticeable that enlarging the overlap length increases the model’s performance and the
computational overhead, which grows quadratically. Lastly, regarding patch shape and
size, splitting the audio spectrogram into rectangular patches in temporal order achieved
better results than splitting it into square patches, which cannot be in a temporal order.
However, researchers used squares patches because no pretrained model using the same
dataset as Vision Transformer (ViT) and rectangular patches was available. Ultimately, the
Audio Spectrogram Transformer (AST) model was tested using various datasets achieving
state-of-the-art results while maintaining the same architecture regardless of the input
audio length.

Figure 4. Architecture of Vision Transformer (MLP—Multilayer perceptron).

Despite producing good results, the previous approach could only produce one audio
classification output for single channel input. Thus, to handle a multichannel audio input
and have different resolution output sequences, Park et al. [13] proposed the Many-to-
Many Audio Spectrogram Transformer (M2M-AST), which is capable of doing sound event
localization and detection that comprises the following tasks: direction of arrival estimation
and sound event detection. The proposed model has a similar architecture to Audio Spec-
trogram Transformer (AST); the only differences are the input feature and the classification
token configuration. Many-to-Many Audio Spectrogram Transformer (M2M-AST) uses
as input features multichannel feature images obtained from 4-channel audio recordings
that are segmented into a patch sequence. Then, patch tokens are extracted for each patch
using a linear projection. Since the goal was to do sound event localization and detection,
the model should output a series of outputs. Thus, patch embedding involved appending
a sequence of classification tokens with the same length as the output sequence at the
beginning of the patch token sequence. Then, a learnable positional embedding was added
to the patch embedding to take advantage of the patch tokens’ position information. The
classification token sequence’ outputs compute self-attention between each patch token
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to learn the audio spectrogram representation. Finally, it uses a dense layer with an acti-
vation layer for each of the two tasks. Regarding transfer learning, Many-to-Many Audio
Spectrogram Transformer (M2M-AST) transfers the weights learned by Data efficiency
image Transformer (DeiT); however, some changes were necessary because of the layer
learning patch embeddings, which vary in size. Therefore, since Data efficiency image
Transformer (DeiT) uses 3-channel images as input, for Many-to-Many Audio Spectrogram
Transformer (M2M-AST), in the linear projection layer, the weight corresponding to each
channel uses the average weight of the three channels in Data efficiency image Transformer
(DeiT). Another change was in the positional embeddings for the patch tokens, which are
transferred as scaled values via cut and bilinear interpolation to map relative positions of
the positional embeddings in Data efficiency image Transformer (DeiT) to the input feature.
Lastly, some experiments were performed, and the results showed that longer inputs im-
proved both precision and recall, configuring dense patch segmentation with large overlap
helped improve performance, and for sound event detection, owing to median filtering, a
minor resolution resulted in small performance gains. However, the results did not change
considerably for the other task with variations in the output resolution. Finally, soft F-loss
performed slightly better than binary cross-entropy for sound event detection. For the
direction of arrival estimation, masked Mean Squared Error (MSE) improved performance
over binary cross-entropy.

Another concern is to reduce the training time while maintaining competitive re-
sults. To address that, Akbari et al. [10] introduced Video-Audio-Text Transformer (VATT)
and a technique for reducing training complexity at the expense of a slight decrease in
the final Transformers’ performance: the already mentioned DropToken technique. The
Video-Audio-Text Transformer (VATT) model is suitable for different downstream tasks in
audio, text and video fields. Its architecture is the same as the encoder part of the standard
Transformer’s architecture, except for the tokenization and linear projection layer, which
is different depending on the modality. Therefore, for each modality, the raw input is
projected to an embedding vector in the tokenization layer and fed into a Transformer.
However, for the video or audio modality, before feeding the token sequence into the Trans-
former, it was applied the DropToken technique, where a portion of the tokens is randomly
sampled and then only the sampled sequence is given to the Transformer. This technique
reduces the computational cost, and the training time, allowing to host of large models
on hardware with limited memory. This approach is based on the fact that Transformers’
complexity is strictly related to the input size in a O(N2), with DropToken reducing the
overall complexity. The model also presents two main settings: the backbone Transformers
separated and particular weights for every modality, and the single backbone Transformer
applied to any modality with shared weights. In both, the backbone extracts modality-
specific representations that are then mapped to common spaces via multilevel projections
to allow a comparison with one another using contrastive losses. So, the model optimiza-
tion is based on the backpropagation of the average loss calculated over a batch of samples.
The loss objective used to align video–audio pairs was: Noise Contrastive Estimation
(NCE), and to align video–text pairs was: Multiple Instance Learning NCE (MIL-NCE).
Regarding the results of several experiments with this model, the researchers concluded
that even when the model is shared across modalities, transformers successfully learn
semantic video, audio, and text representations. Multimodal self-supervised pretraining
has the potential to reduce the reliance on large-scale labeled data. DropToken proved to
decrease the pre-training complexity substantially and to have accuracy and training costs
comparable to or better than low-resolution inputs for audio and video modalities with
little impact on the model’s generalization.

Koutini et al. [14] introduced Patchout, which is a method to reduce the computational
and memory complexity for training Transformer models and, in addition, improves the
generalization of the models by acting as a regularizer. Therefore, its function is to drop
parts of the Transformer’s input sequence during training. First, small overlapping patches
are extracted from the input spectrograms to form the Transformer’s input sequence and
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projected linearly to vectors. Then, the patches are augmented with both frequency and time
encoding. Lastly, to reduce the sequence length and regularize the training process, parts of
the sequence are randomly dropped during training. However, the whole input sequence is
given to the Transformer during inference. Two types of Patchout methods were introduced:
the unstructured Patchout, which chooses the patches randomly regardless of their position,
and the structured Patchout, which randomly picks some frequency bins or time frames and
removes a whole column or row of extracted patches. The researchers also enhanced the models’
performance and prevented overfitting by making use of ImageNet pre-training and some
data augmentation techniques such as two-level mix-up, which mixes the final spectrograms
with random raw waveforms from the dataset; SpecAugment, which masks up to a certain
number of frequency bins and time frames; rolling, which rolls the waveforms randomly over
time; and random gain, which multiplies the audio waveform to change the gain by ±7 decibel
(DB). Thus, with the development of Patchout, it was possible to train Transformers on audio
spectrograms and achieve state-of-the-art results effectively.

Table 2 resumes the most relevant aspects of the works found on audio classification
using Transformers.

Table 2. Resume of the research articles found on audio classification using Transformers.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Kong et al. (2020) [16]

CNN-Transformer model
and an automatic
threshold optimization
method are used.

Computations are done in
parallel; Use weakly
labeled datasets to train
the model and outputs
directly clip-level
predictions; Automatic
threshold optimization
is employed.

Convolutional Neural
Network (CNN)-based
models need many
parameters.

DCASE2017 Task4;
F1-score: 64.6% for AT,
57.3% for SED; Precision:
69.1% for AT; Recall: 60.7%
for AT; Error rate: 68%
for SED.

Elliott et al. (2021) [11]

Bidirectional Encoder
Representations from
Transformers
(BERT)-based Transformer
for Environmental Sound
Classification (ESC) at the
edge
is used.

Evaluation of
Transformers’
performance using several
feature extraction
techniques and data
augmentation; Enables
Environmental Sound
Classification (ESC) on
edge devices.

Models trained in
traditional frameworks
have little support to be
converted to models that
run at the edge; Lower
competitive results when
trained with
small datasets.

ESC-50, Office Sounds;
Accuracy: 67.71% for
ESC-50, 95.31% for
Office Sounds.

Wyatt et al. (2021) [12]

Bidirectional Encoder
Representations from
Transformers
(BERT)-based Transformer
used for Environmental
Sound Classification (ESC)
on a resource-constrained
device applied in
noisy environments.

The model trained with
noise-augmented data can
generalize to audio
without noise and
prevents having to
construct custom acoustic
filters to apply the model
in real-life environments.

Needs large datasets; Only
employed on small
edge-end devices.

Office Sounds; Accuracy:
75.4% for non-noisy
dataset, 81.2% for noisy
dataset, Precision: 76.5%
for non-noisy dataset,
79.7% for noisy dataset,
Recall: 75.6% for
non-noisy dataset, 80.6%
for noisy dataset, F1-score:
75% for non-noisy dataset,
80% for noisy dataset.

Gong et al. (2021) [9]

Audio Spectogram
Transformer, a purely
attention-based audio
classification model,
is used.

Even in the lowest layers,
it can capture long-range
global context; Able to
handle different input
audio lengths without
changing the architecture;
Few parameters and
fast convergence.

Cannot use rectangular
patches due to the
inexistence of a
pre-trained model that
used the same dataset as
Vision Transformer (ViT);
Unable to use only an
AudioSet
pre-trained model.

AudioSet, ESC-50, Speech
Commands V2; mAP:
48.5% for AudioSet,
Accuracy: 95.6% for
ESC-50, 98.11% for Speech
Commands V2.

Park et al. (2021) [13]

Audio Spectrogram
Transformer that can
handle various output
resolutions is used.

Shows that Soft F-loss
performs better than
binary cross-entropy;
Designed to deal with a
multiplicity of
output resolutions.

Large model size;
Evaluates sound event
localization and detection
using only one dataset.

TAU-NIGENS Spatial
Sound Events 2021; Error
rate: 50%, F1-score: 65.7%,
Recall dominant score:
74.7%.
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Table 2. Cont.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Akbari et al. (2021) [10]

Transformers for
multimodal
self-supervised learning
from raw video, audio and
text are used.

Learns effectively
semantic video, audio and
text representations;
DropToken technique
reduces the pre-training
complexity, which reduces
computational costs, the
training time and enables
the hosting of large
models on
restricted hardware.

Needs large datasets to be
trained due to the large
size of the network.

Only 2 out of 10 datasets
were from the audio
domain: ESC-50,
AudioSet. mAP: 39.4% for
AudioSet, AUC: 97.1% for
AudioSet, d-prime: 2.895
for AudioSet, Accuracy:
84.9% for ESC-50.

Koutini et al. (2021) [14]

Audio Transformer with
Patchout which optimizes
and regularizes
Transformers on audio
spectrograms is used.

Patchout improves the
generalization and
reduces the computation
and memory complexity.

Increases the training time

AudioSet, OpenMIC,
ESC-50, DCASE20; mAP:
49.6% for AudioSet, 84.3%
for OpenMIC, Accuracy:
96.8% for ESC-50, 76.3%
for DCASE20.

AT—audio tagging, SED—sound event detection, mAP—mean average precision, AUC—area under the receiver
operating characteristic curve.

3.2. Sound Segmentation Methods

Proper sound segmentation is a pre-processing step in audio analysis. Its purpose
is mainly to identify and properly address the sound categories in a single audio chunk.
Usually, the task involves removing unwanted noises or irrelevant sounds to a particular
task. To be able to perform audio segmentation, some steps should be followed:

• Feature extraction: The audio input is divided into overlapping frames to allow
extraction of the parametric feature vector from each frame.

• Initial detection: It is an optional step where the objective is to remove the silent parts
and reject the parts of the signal that are not useful for the task.

• Segmentation: The vector sequence of features is segmented into sub-sequences with
common acoustic characteristics. Two main approaches can be employed: distance-
based and model-based techniques.

• Post-processing or smoothing: It is also an optional step where the goal is to cor-
rect the errors associated with detecting segments with a duration shorter than the
specified threshold.

Several metrics and algorithms can be used for the two main techniques mentioned in
the segmentation step. Some examples of distance-based metrics are the Euclidean distance,
the Bayesian Information Criterion (Neath and Cavanaugh [29]), Kullback Leibler KL2
distance (Joyce [30]), the generalized likelihood ratio (Narasimhan and Mah [31]), and
Hotelling’s T2 statistic (Holloway and Dunn [32]). In terms of models, Guassian Mixture
Model (GMM), Hidden Markov Model (HMM), Support Vector Machine (SVM), Artificial
Neural Network (ANN), Boosting Technology, k-Nearest Neighbor (k-NN), Decision Trees
and Fuzzy Logic have been used (Theodorou et al. [33]).

Next, some examples of segmentation based on models are introduced. Tax et al. [34]
presented a Deep Convolutional Neural Network (DCNN) model capable of learning the
log-scaled Melspectrogram transformation from raw waveform, providing a spectrum
visually similar, but slightly smoothed. So, this suggests that upon initializing the first
layers of an end-to-end Neural Network classifier with the learned transformation can
give comparable results to a model trained on the highly processed Melspectrograms.
Besides, due to the capacity of Convolutional Neural Network (CNN)s to approximate
complex mappings, it is possible to force the network to learn such transformation implicitly,
limiting the need for ad-hoc architectural choices. Therefore, these findings showed that
the performance of Neural Network-based models could be improved by incorporating
knowledge from established audio signal processing methods.
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Martín-Morató et al. [35] discussed two issues caused by the temporal uncertainty
of audio events: (1) the generation of errors at the decision level for models trained with
precisely annotated strong labels or flawlessly segmented audio events when applied in
real-world contexts where weakly segmented audio events and various amounts of back-
ground noise exists; and (2) systems trained with weakly labeled datasets deal directly
during training with the issue of temporal uncertainty. Therefore, to solve these problems,
the authors proposed a pooling layer. This pooling layer employs a non-linear transfor-
mation of the learned convolutional feature maps on the temporal axis, which respects a
uniform distance sub-sampling criterion in the learned feature space to compensate for
irrelevant information of audio events, and enables the information of the actual event to
be propagated more effectively through the network. The proposed pooling layer was an
advantageous method to learn from weakly labeled data without adding more parameters,
and to enhance the robustness in unfavourable scenarios involving significant training and
test mismatches.

On the other hand, Gimeno et al. [18] introduced a Bidirectional Long-Short Term
Memory (BLSTM) network with a new block incorporated onto the Neural Network,
named Combination and Pooling block, which seeks to minimize the repetitive tempo-
ral information by using a time pooling mechanism, while learning an appropriate rep-
resentation through a one-dimensional (1D) convolution layer. Thereafter, the system
consists of a Recurrent Neural Network (RNN) based classifier and an Hidden Markov
Model (HMM) re-segmentation module with combinations of Mel log filter bank, chroma
features, and also, first and second derivatives, as input. Adding chroma features im-
proves the accuracy of the classification task, as observed in ground truth boundary ex-
periments. On the other hand, the first and second derivatives incorporate the audio
signal’s dynamic information, which is more useful for creating the class boundaries than
for the classification task. The Hidden Markov Model (HMM) re-segmentation greatly
minimises the system error by enforcing a minimum segment length for the class labels.
It also showed that it is advantageous for the segmentation system when the output’s
temporal resolution is reduced. The introduction of the Combination and Pooling block
allows the implementation of the downsampling within the neural network. Then, to
configure the temporal pooling layers, a pooling factor regulates the length of the out-
put sequences in relation to the input length. Consequently, the pooling layers divide
an input sequence into several distinct non-overlapping sub-sequences of equal length.
After some experiences with multiple configurations changing the layers and the posi-
tion of the Combination and Pooling block concerning the Bidirectional Long-Short Term
Memory (BLSTM) allowed to conclude that having only a pooling layer in between the
two Bidirectional Long-Short Term Memory (BLSTM) layers is what makes it possible to
achieve better results without adding more parameters, and decreases the computational
complexity. Then, to improve the model’s results, it was used a data-agnostic data aug-
mentation routine, the Mixup routine, which creates novel virtual training examples (x̃, ỹ)
according to: {

x̃ = λxi + (1− λ)xj,
ỹ = λyi + (1− λ)yj,

(2)

where (xi, xj) are two feature vectors extracted at random from the training dataset, (yi, yj)
their respective one hot encoding labels and λ ∈ [0, 1].

Other methods, like the one introduced by Giannakopoulos et al. [7], focus on the
feature extraction step. The objective of Giannakopoulos et al. [7] was to employ Convolu-
tional Neural Network (CNN)s as a way of extracting context-aware deep audio features
capable of providing additional feature representations to any soundscape analysis classi-
fication, which proved, when combined with handcrafted audio features, to give a boost
in the classification accuracy without the need for Convolutional Neural Network (CNN)
training. The two distinct feature representation steps are combined in an early-fusion
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scheme and classified using Support Vector Machine (SVM) with a Radial Basis Function
(RBF) kernel. The handcrafted audio features aim to express the audio signal in a space
capable of discriminating an unknown sample concerning the audio classes involved. A
set of statistics calculated over short-term audio features is used to represent each signal.
Therefore, to process the feature sequence, first, it is necessary to divide the audio signal
into mid-term overlapping or non-overlapping windows; then, each one of those is pro-
cessed by short-term processing, and the feature sequence from each mid-term segment
is used for calculating the feature statistics. Each mid-term segment is represented by a
group of statistics from the time or frequency domains. Examples of such features used in
this work are the zero crossing rate, energy, entropy of energy, spectral centroid, spectral
spread, spectral entropy, spectral flux, spectral roll-off, Mel Frequency Cepstral Coefficients
(MFCC), chroma vector and chroma deviation. The context-aware deep features were
extracted using a supervised Convolutional Neural Network (CNN) that was trained using
input spectrograms from the Short-Term Fourier Transformation (STFT) of the segments,
allowing them to differentiate between distinct urban context sound classes. Thus, the final
fully connected layer’s output was employed as a feature extractor in the initial soundscape
classification task. By evaluating the model’s performance on the used datasets, it was
possible to show that the combination of handcrafted features with the context-aware deep
features culminates in a boost of the model’s results.

Luz et al. [8] proposed a small parameter space Convolutional Neural Network (CNN)
model to extract deep features and combine them with handcrafted features. In addition, a
feature selection step was used to minimize feature dimensionality, identify redundant and
inconsistent features, and recognize which group of handcrafted features can enrich deep
features to better discriminate between Urban Sounds. Thus, this step makes the training
process faster and less computationally expensive, making it suitable for mobile sound
recognition applications or embedded systems. The feature selection experiment outcomes
showed that combining perceptual, static, and physical features from frequency and time
domains with deep features significantly enhance classification performance.

Table 3 resumes the most relevant aspects of the works found on audio segmentation
based on models or/and handcrafted features.

Table 3. Resume of the research articles found on audio processing with segmentation based on
models or/and handcrafted features.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Tax et al. (2017) [34]

End-to-end Convolutional
Neural Network (CNN)
model classifier with the
first layers initialized is
used.

Training the first layers of a
Deep Convolutional Neural
Network (DCNN) model using
unlabeled data allows it to learn
high-level audio representation;
Incorporating knowledge from
audio processing methods can
enhance the performance of
Neural Network-based models.

Not able to outperform
the models trained on
processed features.

ESC-50;
Accuracy: around 50%.

Martín-Morató et al.
(2020) [35]

Convolutional Neural
Network (CNN)-based
models with an adaptive
pooling layer based on a
non-linear transformation
of the learned
convolutional feature
maps on the temporal axis
are used.

Distance-based pooling layer
to improve Convolutional
Neural Network (CNN)-based
models for audio classification
in adverse scenarios; Allows
the systems to a better
generalization for
mismatching test conditions;
Learn more robustly from
weakly labeled data; Enables a
better propagation of the
information about the actual
event across the network.

Only uses isolated
events with a clear
beginning and end.

UrbanSound8K, ESC-30,
DCASE2017 T4;
Macro-averaging accuracy:
77% for ESC-30, 73.96% for
UrbanSound8K, F1-score:
48.3% for DCASE2017 T4,
Precision: 68.2% for
DCASE2017 T4, Recall:
46.7% for DCASE2017 T4.
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Table 3. Cont.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Gimeno et al. (2020) [18]

Bidirectional Long-Short
Term Memory (BLSTM)
with a Combination and
Pooling block is used.

A combination of Bidirectional
Long-Short Term Memory
(BLSTM) modelling
capabilities with Hidden
Markov Model (HMM)
backend smooths the results
and significantly reduces
system error; Combination
and Pooling block reduces
redundant temporal
information.

Needs large datasets;
The proposed block
could not outperform
the model with Hidden
Markov Model (HMM)
re-segmentation.

3/24 TV, CARTV;
Segmentation error rate:
11.80% for 3/24 TV, 24.93%
for CARTV, Average class
error: 19.25% for 3/24 TV,
Accuracy: 16.05% for
3/24 TV.

Giannakopoulos et al.
(2019) [7]

Convolutional Neural
Network (CNN) is used to
extract context-aware deep
audio features and
combine them in an
early-fusion scheme with
handcrafted audio
features.

Using Convolutional Neural
Network (CNN) as a feature
extractor can improve the
performance of the audio
classifier by transference audio
contextual knowledge without
the need for Convolutional
Neural Network (CNN)
training.

Low accuracy results.

TUT Acoustic Scene (used
to train), UrbanSound8K,
ESC-50; Accuracy: 52.2%
for ESC-50, 73.1% for
UrbanSound8K.

Luz et al. (2021) [8]

Convolutional Neural
Network (CNN) model
used to extract deep
features that are combined
with handcrafted features.
As classifiers, Support
Vector Machine and
Random Forest were used.

Feature selection steps to
reduce feature dimensionality
and understand which
handcrafted features could
enrich deep features to better
distinguish between Urban
Sounds; Deep features hold
more important information
than handcrafted features.

Data augmentation
techniques were not
evaluated; To extract
features from the
Melspectrogram, only
one not-too-deep CNN
model was used.

ESC-10, UrbanSound8K;
Accuracy: 86.2% for
ESC-10, 96.8% for
UrbanSound8K.

Researchers have shown that deep features include more significant information than
handcrafted features, which translates into better results. To further improve the models’
performance, researchers have implemented attention mechanisms that allow focusing on
the semantically relevant characteristics. Therefore, the following section is focused on
studies that implemented different attention mechanisms.

3.2.1. Attention Mechanisms

Some studies are focused on incorporating attention mechanisms to improve Convo-
lutional Recurrent Neural Networks (CRNN) models’ performance, such as the research
works of Zhang et al. [19,20], Qiao et al. [21]. The study presented by Zhang et al. [19]
incorporated temporal attention and channel attention mechanisms; later, Zhang et al. [20]
used a frame-level attention mechanism. Both proposals used a Convolutional Recurrent
Neural Networks (CRNN) model of eight convolution layers to learn high-level repre-
sentations from the input log-gammatone spectrogram. The channel temporal attention
mechanism enhanced the representational power of Convolutional Neural Network (CNN).
Then, two layers of Bidirectional Gated Recurrent Unit (B-GRU) were used to learn the
temporal correlation information, to which the Convolutional Neural Network (CNN)-
learned features were given as input. Finally, the features are fed into a fully connected
layer with Softmax as activation function for the classification task. Also, some data aug-
mentation techniques were used to avoid overfitting, such as time and frequency masking
and Mixup techniques. These data augmentation techniques allowed the models to focus
on the semantically important frames and produce discriminative features. Also, it allows
to reach the following conclusions: to obtain better results, the attention mechanism should
be applied to lower layers rather than higher-level layers because the attention mechanism
can help preserve the lower-level features that normally carry basic and useful informa-
tion; applying attention for Recurrent Neural Network (RNN) layers allows to achieve the
highest accuracy result; and using sigmoid as scaling function generates better attention
weights than Softmax when applying attention at Convolutional Neural Network (CNN)
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layers. Furthermore, it was possible to understand that temporal attention reduces the
impact of background noise. Also, channel attention puts more attention on the filters,
which can identify the fundamental characteristics of the sounds. In contrast, frame-level
attention focuses on meaningful temporal events while reducing the impact of background
noise. Regarding the research of Qiao et al. [21], besides developing a Convolutional
Recurrent Neural Networks (CRNN) model with temporal-frequency attention mechanism,
the authors proposed a Convolutional Recurrent Neural Networks (CRNN) model using
sub-spectrogram segmentation-based feature extraction and score level fusion to highlight
the advantages of an attention mechanism. Consequently, the authors showed that the
sub-spectrogram segmentation mechanism can consider frequency domain characteristics,
but ignores the temporal domain ones. It is important to note that the sub-spectrogram
segmentation mechanism truncates the whole spectrogram into a certain number of parts,
instead of generating the log Gammatone spectrogram based on the entire frequency band,
and using score-level fusion to combine different classification results from different sub-
spectrograms. Also, the score level fusion improves the model’s accuracy compared to the
uniform weights assignment. Another conclusion is that low-frequency bands contain a
big proportion of the characteristics of environmental sounds. However, high-frequency
bands contain a few characteristics that are still indispensable for the classification task. On
the other hand, concerning the temporal-frequency attention mechanism, the following
advantages were highlighted: uses Convolutional Neural Network (CNN) layers to extract
temporal-frequency representations from the input log Gammatone spectrogram, shows low
complexity despite the capacity to learn more important information from the input, and
gives higher accuracy results by focusing on the most critical frames and frequency bands. To
conclude, SpecAugmented and Mixup data augmentation techniques were used to enhance
the diversity of the training significantly.

Tripathi and Mishra [22] introduced an attention-based Residual Neural Network
(ResNet) model that efficiently learns Spatio-temporal relationships in the spectrogram,
skipping the irrelevant regions. Regarding the augmentation techniques, the authors used
time shift, adding noise and SpecAugment. The proposed attention module allowed the
capture of long-range contextual information between the local features of the spectrogram,
improved compactness and addressed intra-class inconsistency, which corresponds to the
variations between spectrogram features extracted from the different signals belonging to
the same class, which can cause performance degradation. In addition, the study revealed
that the attention module provided the best accuracy results when affixed after the last
residual layer, so higher layers gave more helpful features to define the characteristics of a
sound, and the attention module preserves them.

Ristea et al. [23] developed an architecture that employs two Transformer blocks
in sequence, the first block attends to tokens within the same frequency bin (vertical
axis), and the second one attends to tokens within the same time interval (horizontal
axis) of the spectrogram. The proposed approach used noise perturbation, time shifting,
speed perturbation, Mixup and SpecAugment as data augmentation techniques. This
implementation linearly scales the number of trainable parameters with the input size,
which reduces the memory footprint. It can handle high-resolution spectrograms and
shown that performing attention only on one axis is insufficient. Thus, combining both
attentions gave a considerable performance boost regardless of the chosen order for the
vertical and horizontal block. The order only had a marginal influence on the results.

Table 4 resumes the most relevant aspects of the works found on audio processing
with attention mechanisms.
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Table 4. Resume of the research articles found on audio segmentation with attention mechanisms.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Zhang et al.
(2019) [19]

Convolutional Recurrent
Neural Networks (CRNN)
model with temporal and
channel attention
mechanisms
is used.

The two attention mechanisms
enhance Convolutional Neural
Network (CNN)’s representation
capabilities and lead it to
concentrate on the semantically
significant portions of the
sounds; The attention
mechanism allows better
outcomes when applied to lower
layers rather than the
higher-level layers.

Does not quantify the
robustness to noise.

ESC-10, ESC-50, DCASE2016;
Accuracy: 94.2% for ESC-10,
86.5% for ESC-50, 88.9% for
DCASE2016.

Zhang et al.
(2020) [20]

Frame-level attention
mechanism based on
Convolutional Recurrent
Neural Networks (CRNN)
is used.

The attention model
automatically focuses on the
semantically relevant frames and
produces discriminative features;
Low computational complexity.

Does not quantify the
robustness to noise.

ESC-50, ESC-10; Accuracy:
93.7% for ESC-10, 86.1% for
ESC-50.

Qiao et al.
(2021) [21]

Convolutional Recurrent
Neural Networks (CRNN)
model is used with
sub-spectrogram
segmentation based
feature extraction and
score level fusion;
Convolutional Recurrent
Neural Networks (CRNN)
model using
temporal-frequency
attention.

Score level fusion improves the
accuracy in comparison with the
uniform weights assignment; Low
complexity when generating the
temporal-frequency attention map
when using the attention
mechanism; High accuracy results
when using temporal-frequency
mechanisms.

Sub-spectrogram
segmentation
mechanism just
considers frequency
domain characteristics;
Multi-dimensional
search spaces are
needed to optimize
segmentation limits and
the number of segments,
which are, in general,
computationally
prohibitive.

ESC-50; Accuracy: 82.1% for
ESC-50 with sub-spectrogram
segmentation, 86.4% for
ESC-50 with
temporal-frequency attention.

Tripathi and
Mishra (2021) [22]

Attention-guided residual
network that efficiently
learns spatio-temporal
relationships of a signal’s
spectrogram is used.

The attention module resolves
the intra-class inconsistency;
Identifies more semantically
relevant parts of the spectrogram
and correctly highlights them
while providing a
visual description.

Does not quantify the
robustness to noise.

ESC-10, DCASE 2019
Task-1(A); For augmented
datasets: Accuracy: 92.16% for
ESC-10, 82.21% for DCASE
2019. For non-augmented
datasets: 92% for ESC-10, 82%
for DCASE 2019, Precision:
88.70% for ESC-10, 83.47% for
DCASE 2019, Recall: 89.80%
for ESC-10, 82.28% for
DCASE 2019, F1-score: 87.93%
for ESC-10, 82.39% for DCASE
2019.

Ristea et al.
(2022) [23]

Separable Transformer,
which separates the
attention for the
horizontal axis (time) from
the vertical axis
(frequency) of
spectrograms, is used.

Reduces the number of learnable
parameters, which reduces the
memory footprint; Able to
handle high-resolution
spectrograms.

Does not quantify the
robustness to noise.

ESC-50, Speech Commands
V2, CREMA-D; Accuracy:
70.47% for CREMA-D, 98.51%
for Speech Commands V2,
91.13% for ESC-50.

The following subsection presents some autoencoder implementations.

3.2.2. Autoencoders

Different types of autoencoders allow a multiplicity of applications, such as the one
in the work of Sudo et al. [36], where a multichannel environmental sound segmentation
method comprising the following blocks: Feature Extraction, Sound Source Localization
and Separation (SSLS), Sound Source Separation and Classification (SSSC) and recon-
struction, was implemented. In this work, the feature extraction is performed using the
short-time Fourier transform of the initial input signal, the magnitude spectrograms as
spectral features, and the sine and cosine interchannel phase difference as spatial features.
The Sound Source Localization and Separation (SSLS) block uses Deeplav3+, which has an
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encoder-decoder structure and improves the segmentation performance for environmental
sounds with different duration. Deeplav3+ allows the extraction of high-level features
to predict a spectrogram for every azimuth angle independently of the class. It creates a
feature map much smaller than the original spectrogram, allowing it to extract an extensive
variety of contexts without adding more parameters. The Sound Source Separation and
Classification (SSSC) block also uses Deeplav3+, but here, the input corresponds to each
spectrogram of the output of the Sound Source Localization and Separation (SSLS) block,
inserted one by one. This block surpasses the influence of the spatial features, preventing
the network from overfitting the relationship between the direction of arrival and the given
class. In conclusion, this approach allows to perform a multichannel environmental sound
segmentation without the need to define beforehand the number of sound sources that
prevent the overfit between the direction of arrival and the class, which is accomplished by
explicitly separating the Sound Source Localization and Separation (SSLS) and the Sound
Source Separation and Classification (SSSC) block. Also, the Sound Source Separation and
Classification (SSSC) block can separate sound sources coming from a near direction that
the Sound Source Localization and Separation (SSLS) block was unable to separate, which
improves the segmentation.

Other approaches do not rely totally on autoencoders, but just on a part of them, for
example, only on the encoder part, like the model presented by Venkatesh et al. [37]. The
authors proposed a system named You Only Hear Once (YOHO) that predicts the limits
of acoustic classes through regression. This model is a Convolutional Neural Network
(CNN), whose architecture is constituted by the MobileNet architecture, which allows the
time reduction and frequency dimension by presenting a decoder-like architecture with
some extra layers to flatten the last two dimensions. It is also considered a final layer that
performs a binary classification that detects the presence, i.e., the start, and the endpoints of
an acoustic class segment. The model’s input feature is the Log-Melspectrograms, and the
dimension of the input depends not only on the duration of the audio example, but also on
the specifications of the Log-Melspectrogram. For the post-processing, to smooth the output
and eliminate spurious audio events, threshold-dependent smoothing is used to allow the
removal of audio events, whose duration was too short, and the silence segments between
consecutive events of the same acoustic class, if they are also too short. In conclusion,
this model leads to a fast post-processing and smoothing process due to You Only Hear
Once (YOHO)’s ability to directly predict the acoustic class boundaries, resulting in a more
end-to-end setup. However, it is limited by the time resolution of the input; nevertheless, if
the input were raw audio instead of Log-Melspectrogram, the model would be entirely an
end-to-end Deep Learning (DL) approach.

Table 5 resumes the most relevant aspects of the works found on autoencoder-like
architecture for environmental sound processing.

Some techniques and steps of audio segmentation had already been referred to in
the previous section, such as feature extraction widely used by all the earlier models to
predict the class under study. Das et al. [5] used the librosa due to the default sampling
rate that allows a reduction in training time. Zinemanas et al. [25] suggested using an
autoencoder scheme to allow the extraction of features and predict the class by constructing
a latent space more capable of expressing the audio features. Mu et al. [6] introduced
self-attention mechanisms, combining a temporal and frequency attention mechanism, to
reduce the impact of background noise and non-relevant frequencies and focus on the
most important parts of the signal. Besides that, the researchers used Harmonic Percussive
Source Separation (HPSS) to separate harmonic and percussive components. For the models
based on Transformers, the majority took advantage of feature extraction. However, this
step is especially explored by Elliott et al. [11] by suggesting several different techniques,
as mentioned in the previous section. Kong et al. [16] presented a post-processing method
capable of automatically optimizing the values for the thresholds. Other researchers, such
as Akbari et al. [10] and Koutini et al. [14], introduced DropToken and Patchout techniques,
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respectively, which randomly drop part of the input sequence before feeding it to the
Transformer to reduce the training complexity.

Table 5. Resume of the research articles found on audio segmentation with autoencoder-like architecture.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Sudo (2021) [36]

Multichannel
environmental sound
segmentation method
constituted by a sound
source localization block
and a sound source
separation and
classification block is used.

No need to define in advance
the number of sound sources;
No overfitting between the
direction of arrival and the
class relationship; Sine and
cosine of interchannel phase
difference are optimum for
sound source localization and
separation.

Lack of sufficiently large
datasets with separated
sound source signals
and direction of arrival
labels.

The dataset is a
combination of 10 datasets
resulting in a dataset with
75 classes; Root Mean
Square Error: 18.59.

Venkatesh et al.
(2021) [37]

You Only Hear Once
(YOHO) model, which is
an end-to-end model with
a Convolutional Neural
Network (CNN)
architecture adapted from
the MobileNet
architecture, is used.

Converts the detection of
acoustic boundaries into a
regression problem; The fast
inference makes You Only
Hear Once (YOHO)
appropriate for real-time
applications; Directly outputs
the time boundaries.

Limited by the time
resolution of the input.

BBC Radio Devon and
MuSpeak, MIREX
music-speech detection,
TUT Sound Event
Detection, Urban-SED;
F1-score: 97.22% for BBC
Radio Devon and
MuSpeak, 90.20% for
MIREX, 44% for TUT
Sound Event Detection,
≈60% for Urban-SED;
Error rate: 75.17% for TUT
Sound Event Detection.

Some methods for spectrogram representation envisioning the enhancement of the
sound segmentation task are discussed in the following section.

3.2.3. Methods for Spectrogram Representation

In this section, the reviewed works present modifications of the input spectrogram
to be supplied to the deep learning models and evaluate several data augmentation tech-
niques. Therefore, Mushtaq and Su [3] presents a logarithmic scale transformation of the
Melspectrogram, named L2M, corresponding to the Log(Log-Melspectrogram), and L3M
corresponding to the Log(Log(Log-Melspectrogram)). Such parameters are particularly
useful for two novel data augmentation techniques: NA-1 and NA-2, based on Spectrogram
Image Features (SIF). NA-1 and NA-2 use a single image as a feature at a time, but NA-1
consists of the enhancement of Spectrogram Image Features (SIF) data by combining several
audio features based on spectrograms. At the same time, NA-2 is a vertical combination of
various accumulated features in the form of spectral images in pairs. Besides, trim silence
was used as a pre-processing technique due to the silent parts of the audio clips. Regarding
the transfer learning model, Dense Convolutional Network (DenseNet)-161 with ImageNet
weights was the chosen classifier, which was further fine-tuned by using individual optimal
learning rates combined with discriminative learning.

İlker Türker and Aksu [15] proposed a new time-convexity representation based on
graph representations of successive frames after segmentation with constant window
and hop-length parameters of the original sound signal. This representation, named
Connectogram, is a colourful graph-generator approach that includes three layers, each
derived with distinct undersampling rates where the horizontal axis stands for the time,
and the vertical axis for the signal fluctuations. So, it is an Red-Green-Blue (RGB) image
that the model can utilize as input. This approach seems to carry frequency-related info
pairs with amplitude information by having amplitude information of the original sound
as vertical fluctuations. The intensity of these fluctuations corresponds to the colours.
However, Connectogram is not a competitive representation, but can significantly im-
prove the representation capability of Melspectrograms, if generated with the same
segmentation parameters. The best accuracy result was obtained when a combination
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of two Melspectrogram with different parameters and a Connectogram was used as
input for the Residual Neural Network (ResNet)50 model. Concerning data augmenta-
tion, the input allows having two stages of augmentation, the first regards deformation
methods to the raw sounds, and the second includes image distortion methods that are
applied to the Connectogram, such as rotation, horizontal and vertical shift, brightness,
shear and zoom.

Table 6 resumes the most relevant aspects of the found works that employ new feature
extraction techniques.

Table 6. Resume of the research articles found on audio segmentation that introduce new feature
extraction techniques.

Authors/Year Model Features Contributions/Benefits Limitation(s) Dataset/Metrics

Mushtaq and Su
(2020) [3]

Dense Convolutional
Network (DenseNet)-161
fine-tuned with optimal
learning rates and
discriminative learning is
used.

Introduction of L2M and L3M
features; Novel data
augmentation techniques:
NA-1 and NA-2; Can achieve
high results with few training
epochs and less quantity of
original data.

L2M and L3M are
outperformed by
other Mel filter-based
features.
Computationally
heavy.

ESC-10, ESC-50, UrbanSound8K
(US8K); Accuracy: 99.22% for
ESC-10, 98.52% for ESC-50, 97.98%
for US8K, Error rate: 0.777% for
ESC-10, 1.476% for ESC-50, 2.018%
for US8K, F1-score: 99.25% for
ESC-10, 98.53% for ESC-50, 98.13%
for US8K, Recall: 99.25% for ESC-10,
98.53% for ESC-50, 98.13% for US8K,
Precision: 99.24% for ESC-10, 98.57%
for ESC-50, 98.14% for US8K, Kappa
score, Matthews Correlation
Coefficient, False Discovery rate,
Fowlkes-Mallows index, Miss rate.

İlker Türker and
Aksu (2022) [15]

Residual Neural Network
(ResNet)50 is used with a
combination of two
Melspectrogram with
different parameters and
Connectogram as input.

Introduces a time-convexity
graph-based representation for
sounds, Connectogram,
capable of being fused with
Melspectrograms to improve
their representation
capabilities.

Connectrogram is not
a powerful
representation when
used solely.

ESC-10;
Accuracy: 96.46% for ESC-10.

Table 7 resumes the results of all of the articles included in this literature review.

Table 7. Results summary of all models included in this literature review.

Authors Dataset Accuracy Other Metrics

Salamon and Bello [17] UrbanSound8k 79% -

Das et al. [5] UrbanSound8k (unofficial splits) 98.81% -

Das et al. [4] UrbanSound8k (unofficial splits) 99.60% -

Zinemanas et al. [25]
UrbanSound8k
Google Speech Commands
Medley-Solos-DB

76.2%
89%
65.8%

-

Mu et al. [6] UrbanSound8k
ESC-50

93.1%
84.4% -

Kong et al. [16] DCASE2017 Task 4 -

AT - F1-score: 64.6%, Precision:
69.1%, Recall: 60.7%
Sound Event Detection -
F1-score: 57.3%, Error rate: 68%

Elliott et al. [11] ESC-50
Office Sounds

67.71%
95.31% -

Wyatt et al. [12] Office Sounds 81.2% Precision: 79.7%, Recall: 80.6%,
F1-score: 80%
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Table 7. Cont.

Authors Dataset Accuracy Other Metrics

Gong et al. [9]
ESC-50
Speech Commands V2
AudioSet

95.6%
98.11%
-

-
-
mAP: 48.5%

Park et al. [13] TAU-NIGENS Spatial Sound Events 2021 - F1-score: 65.7%, Recall: 74.7%,
Error rate: 50%

Akbari et al. [10] ESC-50
AudioSet

84.9%
-

-
mAP: 39.4%, AUC: 97.1%,
d-prime: 2.895

Koutini et al. [14]

ESC-50
AudioSet
OpenMIC
DCASE20

96.8%
-
-
76.3%

-
mAP: 49.6%
mAP: 84.3%
-

Tax et al. [34] ESC-50 ≈50% -

Martín-Morató et al. [35]
UrbanSound8K
ESC-30
DCASE2017 T4

73.96%
77%
-

-
-
F1-score: 48.3%, Precision:
68.2%, Recall: 46.7%

Gimeno et al. [18] 3/24 TV
CARTV

16.05%
-

Segmentation error: 11.80%,
Average class error: 19.25%
Segmentation error: 24.93%

Giannakopoulos et al. [7] UrbanSound8K
ESC-50

73.1%
52.2% -

Luz et al. [8] UrbanSound8K
ESC-10

96.8%
86.2% -

Zhang et al. [19]
ESC-50
ESC-10
DCASE2016

86.5%
94.2%
88.9%

-

Zhang et al. [20] ESC-50
ESC-10

86.1%
93.7% -

Qiao et al. [21] ESC-50 86.4% -

Tripathi and Mishra [22] ESC-10
DCASE 2019 Task-1(A)

92.16%
82.21% -

Ristea et al. [23]
ESC-50
Speech Commands V2
CREMA-D

91.13%
98.51%
70.47%

-

Sudo et al. [36] 75-classes dataset combining 10 datasets - Root Mean Square Error: 18.59

Venkatesh et al. [37]

Urban-SED
TUT Sound Event Detection
BBC Radio Devon and MuSpeak
MIREX

-

F1-score: ≈60%
F1-score: 44%, Error rate:
75.17%
F1-score: 97.22%
F1-score: 90.20%
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Table 7. Cont.

Authors Dataset Accuracy Other Metrics

UrbanSound8K 97.98%

Error rate: 2.018%, F1-score:
98.13%, Recall: 98.13%,
Precision: 98.14%, Kappa score:
97.09%, MCC: 97.73%, FDR:
1.854%, FM: 98.14%,
Miss rate: 1.863%

Mushtaq and Su [3] ESC-50 98.52%

Error rate: 1.476%, F1-score:
98.53%, Recall: 98.53%,
Precision: 98.57%, Kappa score:
98.95%, MCC: 98.49%, FDR:
1.469%, FM: 98.55%,
Miss rate: 1.469%

ESC-10 99.22%

Error rate: 0.777%, F1-score:
99.25%, Recall: 99.25%,
Precision: 99.24%, Kappa score:
98.93%, MCC: 99.13%, FDR:
0.758%, FM: 99.24%,
Miss rate: 0.744%

İlker Türker and Aksu [15] ESC-10 96.46% -

TAT—Audio Tagging, mAP—mean average precision, AUC—area under the receiver operating characteristic
curve, MCC—Matthews Correlation Coefficient, FDR—False Discovery rate, FM—Fowlkes-Mallows index.

4. Applications

Several areas can benefit from sound classification methods, such as audio surveil-
lance, security, soundscape assessment, and monitoring biomedical, wildlife or urban
environments, just to name a few.

Regarding biomedical applications, sound classification methods allow more accurate
diagnosis, the detection of abnormal sounds, and for non-invasive and safer monitor-
ing of organ conditions such as lungs (Fraiwan et al. [38]) or heart (Tuncer et al. [39],
Er [40], Zeinali and Niaki [41]). For example, Grooby et al. [42] implemented a method to
predict the condition of heart and lungs based on a 5-level scale.

Wildlife monitoring is implemented to protect, preserve, and identify animal species
and possible problems related to the habitats or animal’s health. For instance, the works of
Soares et al. [43], which aimed to detect the queen bee presence to evaluate the
hive health, of Shen et al. [44,45], where models to detect pig cough were explored, of
Tuncer et al. [46], Zhang and Li [47], Hsu et al. [48] that were focused on birds sounds and
of Xie et al. [49,50], Brodie et al. [51] focused on frogs calls with the following purposes:
environmental and species monitoring, biodiversity assessment, species identification and
animal follow-up. On the other hand, examples of works tackling multiple animal species
identification are the ones of Zhong et al. [52], LeBien et al. [53], where species of birds and
amphibians were studied, and of Kim et al. [54], where sounds of anurans, birds and insects
were distinguished. Moreover, Ghiurcau et al. [55] explored the detection of intruders
to preserve wildlife regions. Bedoya et al. [56] and Wang et al. [57] introduced different
methods to infer the intensity levels of rainfall in different scenarios. Bedoya et al. [56] used
audio recordings in forests, whereas Wang et al. [57] used audios provided by surveillance
cameras deployed in urban scenarios.

Urban Sound classification methods are very important for smart cities (Bello et al. [2]),
in particular, for audio surveillance (Shreyas et al. [58], Laffitte et al. [59]) and noise pollution
mitigation (Arnault et al. [60], Bello et al. [61]). For example, Scarpiniti et al. [62] implemented a
method in construction sites to detect hazards and unmanned activity monitoring. Also, robotic
scene recognition (Aziz et al. [63]), drones (Ibrahim et al. [64]), siren detection, particularly to allow
the priority vehicles to arrive at its destination sooner (Pramanick et al. [65], Fatimah et al. [66]),
are some applications that can take advantage of urban sound classification systems.
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5. Datasets

Among the sound universe exists a wide range of possible sound categories. These
sounds can be categorized as urban sounds, speech expression emotions, spoken words,
human and animal sounds, and medical sounds, among many others.

Several workshops and challenges regarding sound themes have been especially
useful for the research community to develop and test their solutions. One of the widely
known workshops is the DCASE [67], yearly organized to address several sound-related
thematics categorized into different tasks. These tasks often encompass computational
environmental audio analysis, such as acoustic scene classification, sound event detection
and localization, audio tagging, and rare audio events detection.

Concerning the subject of this review, the datasets aligned in the context of urban
sound manifestations are emphasized, containing abnormal urban sounds such as car
horns, dog barking, and drilling. The main characteristics and brief descriptions of the
primarily identified datasets are summarized in Table 8.

Table 8. Summary of the urban sound datasets found in this literature review.

Reference Name Size #Classes Duration Description

Salamon et al. [68] UrbanSound8k 8732 10 ≤4 s Contains the metadata, Imbalanced classes

Piczak [69] ESC-50 2000 30 ≤5 s Contains the metadata, Balanced classes

Piczak [69] ESC-10 400 10 ≤5 s Contains the metadata, Balanced classes

Piczak [69] ESC-US 250,000 - ≤5 s Unlabeled Dataset

Koizumi et al. [70] DCASE Task 2 8 - ≤10 s Mechanical Anomalous Sounds

Cao et al. [71] CREMA-D 7442 - ≤10 s A selection of 12 sentences with emotions

Gemmeke et al. [72] AudioSet +2 Million 632 ≤10 s A large set of annotated sound categories

Mesaros et al. [73] TUT Sound Event 24 15 ≤15 s Chopped into small samples

Rachman et al. [74] MIREX 903 15 - Mood Dataset for Emotion Classification

Fonseca et al. [75] FSD50K 51,197 200 ≤30 s Human-labeled sound events

6. Conclusions

Urban sound classification presents unstructured characteristics filled with noise and
sounds unrelated to the sound event under study (Mu et al. [6]). Such facts make it a very
challenging problem since indoor and outdoor activities are involved. The need to identify
confusing acoustic scenes from everyday life, the sometimes multiplicity of overlapping
sound events and the existence of numerous sound sources also represent challenges. In
addition, the big distance between the sound acquisition’s microphone(s) and the audio
source makes the signal-to-noise ratio very small (Mushtaq and Su [3]), which might be
considered a drawback.

Usually, sound classification has three main steps: the pre-processing of the input audio
signal, the acoustic feature extraction from the pre-processed audio signal and the audio signal
classification (Das et al. [5]). Therefore, the researchers have proposed several models to address
this challenge, focusing on different steps of the task. Some try to develop or improve the
model’s architecture by using modified versions of the loss functions, methods to drop parts of
the input sequence, or by exploring various types of architectures such as Deep Convolutional
Neural Network (DCNN), Convolutional Recurrent Neural Networks (CRNN), Long-Short
Term Memory (LSTM), Residual Neural Network (ResNet), Dense Convolutional Network
(DenseNet) and more recently, Transformers. Most of the proposed approaches were based
on Deep Learning (DL) methods because even if it is more challenging to identify which
parameters drive the model’s decision, non-interpretative Deep Learning (DL) models show
superior results (Salamon and Bello [17], Zinemanas et al. [25]). Others have concentrated
more on the sound segmentation part of the task with approaches ranging from implementing
different feature extraction techniques. However, the combination of handcrafted features
allows typically to achieve better results (Das et al. [4,5]), particularly when handcrafted
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features are combined with deep features (Giannakopoulos et al. [7], Luz et al. [8]). Also, the
use of model-based techniques to segment the sound, like Convolutional Neural Network
(CNN)s or autoencoders, are capable of learning transformations from the raw waveforms
and able to provide comparable results to models trained on highly processed features (Tax
et al. [34]). Other examples are the introduction of new blocks or layers that reduce redundant
information (Gimeno et al. [18], Martín-Morató et al. [35]) or the employment of different
attention mechanisms to focus on the semantically relevant characteristics. The ones that
combine time and frequency attention mechanisms show more significant improvements.

Furthermore, a problem that researchers discuss is the scarcity of data, and several
audio data augmentation techniques are used to solve this problem and avoid overfitting.
On the other hand, some researchers have used cross-modality transfer learning by in-
troducing pre-trained models in the image domain. Such an approach allowed them to
use the weights knowledge to facilitate and accelerate the training process and enable the
implementation of data augmentation techniques from the vision domain.

Regarding the applications, even though many recognize the importance of urban
sound classification to improve noise monitoring, surveillance and security systems to pro-
vide accurate event detection invaluable time, very few have implemented their methods
in real-world applications.

The main objective of this literature review was to summarize the most recent works on
the subject to understand the current approaches in this area and identify their problems or
limitations. Out of the articles included in this review, the approach proposed by Mushtaq
and Su [3] was the one that gave the best results for the most popular Environmental
Sound Classification (ESC) datasets: 97.98% for UrbanSound8k, 98.52% for ESC-50 and
99.22% for ESC-10, which were evaluated according to the official splits by doing the k-fold
cross-validation evaluation of the results.

This literature review sheds light on the bright future that Deep Learning (DL) ap-
proaches can have, mainly the substantial improvements in the model’s accuracy based on
Transformers architecture, indicating that future developments for urban sound charac-
terization will be most likely leveraged by attention mechanisms present in Transformers.
Besides, transfer learning showed promising results in all architectures in each it was used.
Also, the employment of the models in real-world applications is suggested to assess their
feasibility in real-world scenarios better.
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Abbreviations
1D one-dimensional
2D two-dimensional
AAML Additive Angular Margin Loss
ANN Artificial Neural Network
APNet Audio Prototype Network
AST Audio Spectrogram Transformer
B-GRU Bidirectional Gated Recurrent Unit
BERT Bidirectional Encoder Representations from Transformers
BLSTM Bidirectional Long-Short Term Memory
CENS Chroma Energy Normalized Statistics
CNN Convolutional Neural Network
CNN-Transformer Convolutional Neural Network Transformer
CQT Constant Q-transform
CRNN Convolutional Recurrent Neural Networks
dB decibel
DCNN Deep Convolutional Neural Network
DeiT Data efficiency image Transformer
DenseNet Dense Convolutional Network
DL Deep Learning
ERDF European Regional Development Fund
ESC Environmental Sound Classification
GFCC Gammatone Frequency Cepstral Coefficient
GMM Guassian Mixture Model
HMM Hidden Markov Model
HPSS Harmonic Percussive Source Separation
k-NN k-Nearest Neighbor
LSTM Long-Short Term Memory
M2M-AST Many-to-Many Audio Spectrogram Transformer
MFCC Mel Frequency Cepstral Coefficients
MIL-NCE Multiple Instance Learning NCE
ML Machine Learning
MSE Mean Squared Error
NCE Noise Contrastive Estimation
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RBF Radial Basis Function
ResNet Residual Neural Network
RGB Red-Green-Blue
RNN Recurrent Neural Network
SIF Spectrogram Image Features
SSLS Sound Source Localization and Separation
SSSC Sound Source Separation and Classification
STFT Short-Term Fourier Transformation
SVM Support Vector Machine
TFCNN Temporal-frequency attention based Convolutional Neural Network
VATT Video-Audio-Text Transformer
ViT Vision Transformer
VQ-VAE Vector-quantized varitional autoencoders
YOHO You Only Hear Once
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