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Abstract

The objective of this research is to develop feature extraction and classification tech-
niques for the task of sound event recognition (SER) in unstructured environments.
Although this field is traditionally overshadowed by the popular field of automatic
speech recognition (ASR), an SER system that can achieve human-like sound recogni-
tion performance opens up a range of novel application areas. These include acoustic
surveillance, bio-acoustical monitoring, environmental context detection, healthcare
applications and more generally the rich transcription of acoustic environments. The
challenge in such environments are the adverse effects such as noise, distortion and
multiple sources, which are more likely to occur with distant microphones compared
to the close-talking microphones that are more common in ASR. In addition, the char-
acteristics of acoustic events are less well defined than those of speech, and there is no
sub-word dictionary available like the phonemes in speech. Therefore, the performance
of ASR systems typically degrades dramatically in these challenging unstructured en-
vironments, and it is important to develop new methods that can perform well for this
challenging task.

In this thesis, the approach taken is to interpret the sound event as a two-dimensional
spectrogram image, with the two axes as the time and frequency dimensions. This en-
ables novel methods for SER to be developed based on spectrogram image processing,
which are inspired by techniques from the field of image processing. The motivation for
such an approach is based on finding an automatic approach to “spectrogram reading”,
where it is possible for humans to visually recognise the different sound event signa-
tures in the spectrogram. The advantages of such an approach are twofold. Firstly,
the sound event image representation makes it possible to naturally capture the sound
information in a two-dimensional feature. This has advantages over conventional one-
dimensional frame-based features, which capture only a slice of spectral information
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within a short time window. Secondly, the problem of detecting sound events in mix-
tures containing noise or overlapping sounds can be formulated in a way that is similar
to image classification and object detection in the field of image processing. This makes
it possible to draw on previous works in the field, taking into account the fundamental
differences between spectrograms and conventional images.

With this new perspective, three novel solutions to the challenging task of robust
SER are developed in this thesis. In the first study, a method for robust sound clas-
sification is developed called the Spectrogram Image Feature (SIF), which is based on
a global image feature extracted directly from the time-frequency spectrogram of the
sound. This in turn leads to the development of a novel sound event image repre-
sentation called the Subband Power Distribution (SPD) image. This is derived as an
image representation of the stochastic distribution of spectral power over the sound
clip, and can overcome some of the issues of extracting image features directly from
the spectrogram. In the final study, the challenging task of simultaneous recognition
of overlapping sounds in noisy environments is considered. An approach is proposed
based on inspiration from object recognition in image processing, where the task of
finding an object in a cluttered scene has many parallels with detecting a sound event
overlapped with other sources and noise. The proposed framework combines keypoint
detection and local spectrogram feature extraction, with a model that captures the
geometrical distribution of the keypoints over time, frequency and spectral power.
For each of the proposed systems detailed experimental evaluation is carried out to
compare the performance against a range of state-of-the-art systems.
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Chapter 1

Introduction

The environment around us is rich in acoustic information, extending beyond the
speech signals that are typically the focus of automatic speech recognition (ASR)
systems. While speech is arguably the most informative sound event, this research
focuses on the recognition of more general sound events, such as doors closing or
bells ringing, which provide information and context for the environment beyond that
contained in the speech. This field of research is called sound event recognition (SER),
and can open up a range of novel application areas such as acoustic surveillance,
bio-acoustical monitoring, environmental context detection, healthcare applications
and more generally the rich transcription of acoustic environments. The objective of
this thesis is to develop novel feature extraction and classification techniques, which
address the significant challenges associated with the unstructured environments that
complicate the sound event recognition task.

1.1 Motivation
The goal of computational sound event recognition is to design a system that can
achieve human-like performance on a variety of hearing tasks. Lyon refers to it as
“Machine Hearing” [1] and describes what we should expect from a computer that can
hear as we humans do:

“If we had machines that could hear as humans do, we would expect them
to be able to easily distinguish speech from music and background noises,
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Chapter 1. Introduction

to pull out the speech and music parts for special treatment, to know what
direction sounds are coming from, to learn which noises are typical and
which are noteworthy. Hearing machines should be able to organise what
they hear; learn names for recognisable objects, actions, events, places,
musical styles, instruments, and speakers; and retrieve sounds by reference
to those names.”

The field described above has not received as much attention as ASR, despite the
range of novel applications that can be derived. Although they are based on similar
signal processing concepts, there are a number of aspects that set research on SER
apart from the traditional topic of ASR. Firstly, the characteristics of sound events
differ from those of speech, with a much wider variety in frequency content, duration
and profile compared to speech alone. Secondly, no sub-word dictionary exists for
sounds in the same way as for speech, where it is possible to decompose words into
their constituent phonemes. Finally, noise, distortion and overlapping sources are often
present in the unstructured environments in which sound events occur. Therefore, it is
important to develop new methods for SER that can perform well for this challenging
task.

Despite the differences between sound events and speech, many previous works on
SER have been based on existing ASR techniques. The most common approach is to
use a system based on one-dimensional frame-level features, such as Mel Frequency
Cepstral Coefficients (MFCCs), which are modelled using Gaussian Mixture Models
(GMMs), with temporal sequencing captured by a Hidden Markov Model (HMM).
However, the drawbacks of using this approach for SER are twofold. Firstly, there
is a wide variation in the time-frequency structure of different sound events, and this
information may not be best captured by an HMM which assumes independence be-
tween adjacent observations in time. Secondly, the frame-based features only capture
the sound event information within a narrow time window, and commonly represent
the full frequency spectrum. This causes problems in mismatched conditions, where
the features may contain elements from noise or multiple sources and it is challenging
to separate them. Therefore, while such systems typically have a high recognition
accuracy in clean conditions, they perform poorly in the unstructured environments
that are commonly found in SER applications.
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Recently, there has been a trend towards developing techniques for SER that cap-
ture the two-dimensional time-frequency sound event information [2, 3]. This is well
suited for sound events, since they have a more characteristic time-frequency signa-
ture compared to speech, and such techniques have shown an improved performance
compared to using traditional ASR methods. Extending this idea, a related research
field that similarly operates with two-dimensional data is image processing. Here, two
of the basic challenges are the classification of visual scenes and the detection of ob-
jects in cluttered images. By representing the sound event through its time-frequency
spectrogram image, the task of SER can be recast into one that shares a number of
similarities with the challenges faced in image processing. This provides the motivation
to develop novel methods for SER that are inspired by the related techniques in image
processing, taking into account the fundamental differences between spectrograms and
conventional images.

1.2 Contributions
In this thesis, three novel SER methods are proposed that can overcome the drawbacks
of conventional audio processing systems when applied to the challenging unstructured
environments found in SER. The inspiration for this comes from the idea of “spectro-
gram reading” [4], where it is possible for humans to visually recognise the elements
in the spectrogram belonging to different sources, even in the presence of noise or
multiple sources. This suggests that there is sufficient information in the sound event
spectrogram to perform SER by finding an automatic approach to spectrogram read-
ing. In this thesis, this is referred to as spectrogram image processing. With this new
perspective, the following novel solutions are developed to address the challenging task
of robust SER in unstructured environments:

Spectrogram Image Feature (SIF) [5] In the first study, a method is developed
for robust sound classification, which is based on a global image feature extracted
from the time-frequency spectrogram of the sound. Using a technique similar to
pseudo-colourmapping in image processing, the dynamic range of the spectral
power is quantised into regions, such that the characteristic, high-power spectral
peaks can be extracted separately to produce a robust feature. The experi-
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ments on a large database of environmental sounds show that this technique can
outperform a range of well-performing baselines, including those trained using
multi-conditional data.

Sub-band Power Distribution (SPD) image [6,7] Here, a novel sound event im-
age representation is developed that can overcome some of the issues of extracting
image features directly from the spectrogram. The SPD is designed to integrate
directly within the SIF framework described above, and improve the performance
in both clean and mismatched conditions. To this end, the SPD is derived as
an image representation of the stochastic distribution of spectral power over the
sound clip. The advantage of this representation is that the boundary between
signal and noise can be easily found, such that it simplifies the task of generat-
ing a missing feature mask for the SPD. When combined with a missing feature
classification system based on the SIF framework, the experiments show that
the method can achieve the high accuracy of the baseline methods in clean con-
ditions, while obtaining significantly more robust results in mismatched noise
conditions.

Local Spectrogram Features (LSFs) [8–10] In this final study, the challenging
task of simultaneous recognition of overlapping sounds in noisy environments
is considered. The proposed approach is based on the idea of object recogni-
tion from image processing, where the task of finding an object in a cluttered
scene has many parallels with detecting a sound event overlapped with other
sources and noise. The framework combines keypoint detection and local spec-
trogram feature (LSF) extraction, with a model that captures the geometrical
distribution of the keypoints over time, frequency and spectral power. During
recognition, the generalised Hough transform (GHT) is used as a voting mecha-
nism to generate sound event hypotheses from the LSFs the spectrogram. The
hypotheses are then sparse and separable in the Hough accumulator space. The
final step is verification, where the combination of hypotheses that best explains
the observed spectrogram is determined. Experiments show that this approach
performs well across a range of mismatched conditions. The LSF approach also
has the advantage over existing methods that it does not assume a fixed overlap
between a fixed number of sounds, hence can detect a arbitrary combination of
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overlapping sounds, including multiple instances of the same sound.

The work on the SIF is published in the journal: IEEE Signal Processing Letters [5],
while the work on the SPD is published in the journal: IEEE Transactions on Audio,
Speech and Language Processing journal [6], and in the conference: Interspeech 2011
[7]. The work on the LSF is published in the journal: Pattern Recognition Letters [8],
and in two conferences: Interspeech 2012 [9] and ICASSP 2013 [10].

1.3 Organisation of this Thesis
This thesis is organised as follows:

In Chapter 2, a thorough overview of the field of sound event recognition is provided,
followed by a review of the current state-of-the-art SER systems, and a discussion of
the limiting factors that affect the performance of such systems.

Chapter 3 then introduces the spectrogram image processing approach for sound
event recognition, and provides a background of the relevant state-of-the-art techniques
in image classification and object detection. The spectrogram image feature (SIF)
method is then proposed for robust sound classification, and detailed experiments are
carried out to analyse the performance.

In Chapter 4, the SPD image is proposed to improve upon the SIF framework, as the
SPD representation simplifies the process of separating the noise and signal compared
to the spectrogram. A missing feature classification system is developed, and the
experimental results demonstrate the strong performance of the method compared to
the best-performing baseline techniques.

Chapter 5 then introduces the problem of simultaneous recognition of overlapping
sounds, and reviews the current state-of-the-art techniques in this area. A discussion
of the current limitations leads to the development of the LSF approach, which takes
inspiration from object detection in image processing to develop a model of the sound
event that can recognise an arbitrary combination of overlapping sounds.

Finally, the thesis concludes in Chapter 6 with a summary of the contributions and
possible future research directions.
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Chapter 2

Introduction to Sound Event
Recognition

The field of sound event recognition (SER) is a novel application area that has devel-
oped from the more general fields of audio processing and pattern recognition. While
a range of techniques have been developed to address the specific challenges of this
domain, the field is generally less well understood than the popular field of automatic
speech recognition (ASR). Therefore, Section 2.1 of this chapter aims to provide an
introduction to the field of SER, by first describing what is meant by a “sound event”,
then introducing the wide range of applications that are possible, the challenges that
are faced, and an overview of a typical SER system. Then, Section 2.2 reviews a range
of state-of-the-art methods for SER, including those based on novel audio features and
auditory modelling, followed by a discussion on their limitations. Finally, Section 2.3
carries out a set of experiments to establish a baseline comparison for the proposed
techniques that are introduced later in this thesis.

2.1 Overview
Until recently, the field of non-speech SER has not received as much attention as
ASR, as the desire to achieve robust computer-interpreted speech has outweighed the
benefits of understanding the surrounding acoustic scene [1]. However, as the field of
ASR has grown, advances in audio processing have expanded the possibilities of SER,
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Figure 2.1: Number of publications per year on the topic of sound event recognition
or classification -(brain,language) found in Google Scholar.

and opened up a wide range of applications that have begun to be realised. These
include such diverse examples as identification of bird species [11], analysis of medical
drill sounds [12] and detection of meeting room sounds [13], among many others. On
one hand, the wide range of SER applications has introduced many opportunities for
developing novel approaches to the challenges faced. However, it also introduces its
own problem, in that the field of SER suffers from the difficulty in defining exactly
where it lies within a larger scope. Therefore, relevant publications are spread across
many different disciplines, and it is often difficult to compare different methodologies
as the underlying datasets are so different. This is unlike the comparatively closed
field of ASR, in which organisations have developed and provided standard corpuses,
such as Aurora-2 [14] and Switchboard [15], to test speech recognition performance.

Historically, the early investigations into SER as a separate topic from ASR be-
gan in the 1980s, with the analysis of underwater acoustic patterns [16, 17]. At this
point, the number of publications written on the topic of SER was relatively small,
and since then it has been growing steadily, as shown in Fig. 2.1. After the initial
investigations into underwater acoustics, further applications were quickly identified,
such as for recognising heart sounds for cardiac diagnosis [18, 19]. However, the next
step forward for the field came in the mid-90’s in the form of Bregman’s Auditory
Scene Analysis (ASA) [20, 21]. This described the human perception of the auditory

23



Chapter 2. Introduction to Sound Event Recognition

scene without specific focus on speech, which provided motivation for segmenting and
recognising sounds for novel purposes [22]. Later however, the field of Computational
Auditory Scene Analysis (CASA) would shift its focus to the problem of robust speech
recognition and separation [23], moving away from the generic framework described
by Bregman [24]. The next major advancement for SER was in 2001 with the inclu-
sion of sound recognition descriptors in the MPEG-7 toolkit [25]. This provided a
unified framework for feature extraction and indexing of audio using trained sound
classes in a pattern recognition framework [26]. Then, in 2006, the first challenge
designed specifically for sound event recognition in meeting room environments was
held [27], where a system based on perceptual features achieved the highest classifi-
cation performance [13]. More recently, the field has been growing rapidly, and many
novel state-of-the-art approaches have been proposed. In particular, there has been
growing interest in the time-frequency analysis of the sound events [2], as traditional
approaches in ASR are not well suited to capture the non-stationary nature and sharp
discontinuities found in many sounds [3].

The research topic of SER draws inspiration from a number of underlying fields,
including signal processing, machine learning, ASR, and CASA, as shown in Fig. 2.2.
The field of CASA is in turn inspired by both biological evidence from the human
auditory system, and from research on scene analysis from the field of image processing.
In this thesis however, the direct link is made between image processing and SER by
interpreting sound events as a two-dimensional spectrogram image representation and
taking inspiration directly from methods designed for conventional images. This allows
novel approaches to be developed that can capture the two-dimensional information
in the sound, without being constrained by conventional methods and systems from
ASR. This idea is further developed in Chapter 3 with the introduction of spectrogram
image processing, while the rest of this section aims to first provide a detailed overview
of the field of SER.

2.1.1 What is a Sound Event?

In this thesis, the focus is on “sound events” that have properties such as an onset, du-
ration and offset time. They also have a characteristic frequency content that typically
can be used to identify the source of the sound. Examples of such classes of sound
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processing, in this thesis a direct link is made between the two by representing sound
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event can include a phone ringing, the clash of cymbals, footsteps or a bell ringing,
among many others. The rich variety of these sound events that continually occur
all around us carry important information and cues, and can be processed to provide
knowledge about the environment. For example, valuable context can be gained from
sound events occurring in meeting rooms, such as people laughing or entering the room.

Unlike speech or music, it is difficult to summarise the general characteristics of a
sound event. This is firstly due to the wide variety of environments in which sounds
occur, and secondly that sound events can be generated by many different types of
interactions. Speech, on the other hand, is confined to the sounds that are produced
by the human vocal tract and tongue. While this has many variations due to different
speakers and their emotional state [29], it is still relatively well defined compared to
general sound events. A comparison of the acoustical characteristics of speech, music
and sound events is shown in Table 2.1. It can be seen that whereas speech and
music have clear definitions for each acoustical characteristic, sound events generally
are either undefined or can cover the full range of characteristics. For example, the
bandwidth of speech is narrow, with much of the energy concentrated in the lower
frequencies [30], while music is much broader, containing energy up to 20kHz and
beyond. However, the bandwidth of sound events can vary considerably between the
two, depending on the source and mode of excitation of the sound. Overall, this
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Acoustical
Characteristics Speech Music Sound Events

No. of Classes No. of
Phonemes No. of Tones Undefined

Length of Window Short (fixed) Long (fixed) Undefined

Bandwidth Narrow Broad Broad
Narrow

Harmonics Clear Clear Clear
Unclear

Repetitive
Structure Weak Weak Strong, Weak

Table 2.1: Comparison of the acoustical characteristics of speech, music and sound
events, adapted from [28].

explains why it is common to define a narrow scope for the problem of SER, such as
choosing a specific type of sounds, so that at least some of the characteristics can be
defined.

To bring structure to the domain, it is necessary to develop a sound taxonomy,
which separates sounds into several groups and sub-groups. This enables other re-
searchers to understand the data domain. An example is shown in Fig. 2.3, where
the class of hearable sounds is split into five categories [31]. Here, a non-speech sound
event would fall under the natural or artificial sound classes, depending on the source
of the sound. The classes are chosen to follow how humans would naturally clas-
sify sounds, and examples are given under each to describe the class. However, this
human-like classification can lead to ambiguity and it is also notable that while both
speech and music are well structured, natural and artificial sounds only act as gen-
eral groupings, without much internal structure to the class. Other attempts have
been made to develop sound event taxonomies that have similarities with the phoneme
structure of speech [32], however there is still ambiguity that depends on individual
human perception, hence this topic is open to further research.

One special group of sounds in Fig. 2.3 belong to the noise category. In this thesis,
noise is considered differently from sound events, as it has unique properties such as
a long duration and typically a slowly varying spectral content. A simple example of
noise would be background office noise, created by computer fans and air-conditioning
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units. Another example could be rain, which consists of many impulsive rain drop
sounds that combine together to produce a spectral content close to white noise. In
general, noise is quite subjective and depends on our individual perception of what
makes a sound undesirable to listen to [31]. Therefore, in this thesis, noise is simply
considered to have a long duration with slowly-varying spectral profile, while any sound
that has a well defined onset and offset is considered as a sound event that may carry
useful information. This includes sounds such as keyboard clicking, footsteps or doors
closing, which are often considered as impulsive noise in the field of ASR. However,
here they are considered as meaningful sound events that can be used in a range of
novel applications, which are now discussed in the next section.

2.1.2 Applications

The potential applications for sound event recognition (SER) are diverse, partly due to
the very general interpretation of a sound event, as introduced above. Because of this,
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there are few standardised datasets for comparison of different methodologies, and in-
stead many authors focus on a specific topic of interest to a particular application. This
is in contrast to the comparatively closed field of ASR, where there are international
benchmarks for comparing system performance, such as the Aurora-2 [14] and Switch-
board [15] corpuses. Therefore, it is necessary to compare and analyse the merits of
each system for their given task. To provide an overview of the typical applications for
SER systems, the approaches are grouped into three categories: environmental sound
event recognition, acoustic surveillance, and environment classification. These are now
introduced below.

Environmental Sound Event Recognition This is understood here as a chosen
subset of sounds that might be found in a given environment. The environment
of interest then determines the scope of the recognition problem. It is important
to note that although speech may be included as a sound event category, the
content of the speech would not be directly interpreted. Instead the detected
speech content may be passed to an ASR system for recognition.

One application environment that attracts research is in the area of healthcare
[12,33,34]. For example, the objective in [33] is to recognise and count coughing
sound events, to enable the automatic assessment of cough frequency over a long
period of time. To do this, an audio recording device is placed on the patient,
and the detected sound events are classified simply as cough or non-cough. In a
more recent work [34], the scope is expanded to include a wider set of healthcare
audio events, including falling-down-stairs, screaming and collapsing.

Another area that has attracted research is focussed on the detection and clas-
sification of sounds in a meeting room environment [35–39]. It is also one of
the only areas of SER research that has a standardised database for comparing
the performance of competing systems. This database is from the Classifica-
tion of Events, Activities and Relationships (CLEAR) 2006/7 workshop evalu-
ations [13, 40], which is part of the Computers in the Human Interaction Loop
(CHIL) project [41]. Here, the acoustic events of interest include steps, keyboard
typing, applause, coughing, and laughter, among others, while speech during
the meetings is ignored. It was found that achieving an accurate detection and
segmentation of the sound events from the continuous audio was the most chal-
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lenging task [40]. In particular, several systems have difficulties dealing with
overlapping sound events, which occur frequently in the meeting room environ-
ment [38].

Other works are focussed on detecting sound events in real-world recordings,
for example to tag a holiday recording as being at the “beach” playing with
the “children” and the “dog”. Several works in this area have directly utilised
conventional techniques from ASR [42, 43], using HMM to detect and segment
the sound events from the continuous audio stream. A second layer can also be
added to such approaches to improve the recognition performance. For example,
in [44] the first layer output, from a conventional HMM system, is rescored
using noise-adaptive SVM kernel classification to give an improved recognition
result. More recent works have also looked towards feature selection to improve
the performance of real-world SER systems [45], or incorporated semi-supervised
learning and novel classification methods [46].

Acoustic Surveillance While visual clues are standard for many surveillance and
monitoring scenarios, in some situations it may be easier to use only the audio
information for detection. In other situations it may be possible to use audio as
a complementary source of information. Therefore, this application has received
a considerable amount of research, and can be divided according to human or
animal surveillance.

Acoustic surveillance of human environments is the task of automatically de-
tecting abnormal situations based on the audio recorded from the environment.
Examples include monitoring of the office environment [47], or detection of ag-
gressive sound events, such as screams, explosions and gunshots [48–50]. Typ-
ically, acoustic surveillance systems use low-level audio features, such as those
found in the MPEG-7 standard [25]. However, a key problem is the robustness
of the system to noise. One approach to improve the robustness is to model
the steady-state environment, and use the principle of “novelty detection” to
detect sound events that differ from this normal [48]. Such systems can then be
further enhanced by using feature selection [50], or a hierarchical classification
structure [49].

Acoustic surveillance is also used in the monitoring of biological ecosystems,
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often with a particular focus on detecting and counting bird vocalisations [11,51,
52]. The advantage of such systems is that they allow for long term monitoring
of sensitive ecosystems without requiring the presence of an observer. Other
applications include the recognition of animal sounds [53] using a range of audio
pattern recognition approaches. While environmental noise again provides the
biggest challenges for these systems [11], in some cases the nature of particular
vocalisations can be utilised to improve the robustness. For example, certain bird
sounds can be detected by extracting a specific frequency content or searching
for a defined repetition rate [52].

Environment Classification This is the task of recognising the surrounding envi-
ronment from the audio signal, for example an office, street, or railway sta-
tion [54]. It is sometimes referred to as scene or context recognition in the
literature [55,56]. The idea of this application is that information can be gained
from the environment to be used for the next generation of context sensitive
devices. By recognising the environments, the device can gain valuable infor-
mation regarding the user’s current location and activity and adjust its settings
accordingly [56].

Environment classification can also be used in hearing aid systems, which can
tune parameters such as the audio compression and the use of directional mi-
crophones to yield the best listening experience for the user for the current en-
vironment [57–59]. A common approach for such systems is to directly utilise
approaches found in ASR [60,61], or to boost the performance by extracting ad-
ditional features [62]. However, performance comparison between these systems
is difficult, as there is no standardised database for evaluation of the different
methodologies.

2.1.3 Challenges

In the previous section, it can be seen that ASR techniques have sometimes been used
to address the challenges faced in SER applications. This is possible since they share
a similar system structure, and are both based on similar signal processing concepts.
However, the nature of the challenges faced in each domain are different, and SER
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Problem Faced Speech (ASR) Sound Events (SER)

Scope Language, emotion,
speaker, accent

Localisation, segmentation,
categorisation

Recording
Environment

More controlled,
often close-talk

Uncontrolled, variable
distance, low SNR

Detection Speech/non-speech,
long segments

Sound event/noise, short
segments, potential overlap

Feature
Extraction

Frame-based, captures
vocal information

Segment-based, wide range
of signal information

Pattern
Recognition

HMM,
connected phonemes

HMM/SVM/ANN,
unconnected events

Table 2.2: Comparison of the challenges faced in conventional ASR and SER systems.

systems should be specifically designed to address the problems at hand. A summary
of the challenges is given in Table 2.2, which also compares them to the equivalent
problem faced in ASR. These are grouped according to the key aspects involved in
designing a typical SER system, including the scope of the problem, the recording
environment, detection, feature extraction and pattern recognition. A discussion on
each of these challenges is now given, with comparisons made between the equivalent
problems faced in the field of ASR:

Scope of the Problem The scope of the task at hand is very different in ASR com-
pared to SER. This is because the underlying sound information in ASR has a
structure according to the language of the speech. Therefore, language modelling
is an important topic of research that can greatly improve the performance of
a system by using contextual knowledge about the words being spoken [63]. It
also gives rise to the sub-topic of language identification, which in turn gives rise
to machine translation [64]. There are also other aspects that contribute to the
variability of speech that must be considered. These include the speaking rate,
the emotion and accent of the speaker [29] and also code-switching of the spoken
language [65]. Further to this, there are also sub-topics such as speaker verifica-
tion for biometrics [66] and speaker diarisation, which is the task of identifying
“who spoke when” [67].

For SER, the underlying sound event information is even less structured, partic-
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ularly as no sub-word dictionary exists in the same way as for languages. Despite
this, it is possible in certain applications to use a prediction-driven approach to
infer a limited amount of context information from the sound event sequence [21].
However, research is typically focussed on other aspects such as localisation of
sound sources in the environment [68–70], and segmentation of sound events from
the continuous audio [71, 72]. In addition, the similarity and categorisation of
sounds is another topic of interest that aims to group sound sources that have a
similar behaviour and characteristics to bring about some ordering to the search
space [73, 74].

Recording Environment Despite recent advances in distant speech processing [75,
76], ASR traditionally focuses on speech recorded from close-talking microphones.
This increases the signal-to-noise ratio (SNR) and reduces the effect of the sur-
rounding environment [77]. However, most applications in SER are in uncon-
trolled environments, where the distance of the source, the degree of background
noise, and the nature of any interfering sources are all unknown. Therefore, noise
reduction or compensation is important, and SER systems are often evaluated
in mismatched training and testing conditions.

Detection In ASR, this module consists of a speech/non-speech classification system,
where any non-speech segments are often considered to be noise and rejected [78].
The detected speech segments may then have a relatively long duration, of the
order of several seconds, and contain several interconnected words. These can
be further decomposed into a sequence of phonemes, which cannot easily be
separated by any stand-alone detection mechanism.

In contrast, sound events are more commonly disconnected from one another, and
are less likely to have a strongly interconnected temporal structure in the same
way as phonemes in speech. This enables the use of a wider range of detection
modules to perform segmentation of the continuous audio. For example, one
approach is to use a novelty-detection system that considers any rapid change
against the long-term background noise to be a sound event [48]. An alternative is
to use a sliding window detector that performs classification on each fixed-length
segment in turn [79].
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Feature extraction Due to the physical nature of speech production, it is common
in ASR to extract frame-based acoustic features which capture the essential in-
formation about the vocal tract shape [80,81]. While SER can be based on such
features [60, 82], sound events contain a wider range of characteristics and non-
stationary effects, which may not be captured in such frame-based features [3].
Hence, it is common to incorporate additional features to better capture the
audio signal [2]. In addition, feature selection can also be used to derive an
appropriate set to improve the recognition of a particular sound class [83].

Pattern Recognition As the phonemes that occur in ASR are not isolated acoustic
events, it is common to use Hidden Markov Models (HMMs) to find the most
likely sequence of phonemes given a set of input features [84]. While such an
approach also works for SER, it is also possible to use segment-based features
that capture both spectral and temporal information. Such features capture the
information from a sound event that is contained within a segmented sound clip.
This allows a wider range of methods to be applied for classification, such as
Support Vector Machines (SVM) [38, 85], or Artificial Neural Networks (ANN)
[86].

Given these important aspects, it is clear that the design of an SER system should
be tailored to address the specific problems at hand. However, before reviewing these
state-of-the-art SER techniques, it is important to understand the design of a conven-
tional sound event recognition system. This is introduced below.

2.1.4 Typical Sound Event Recognition System

A typical SER system is composed of the following key modules: detection, feature ex-
traction and classification, as shown in Fig. 2.4. The idea is that the detection module
first segments sound events from the continuous audio signal, before feature extraction
is performed to characterise the acoustic information for classification. Finally, classifi-
cation matches the unknown features with an acoustic model, learnt during a training
phase, to output a label for the segmented sound event. Each module forms their own
distinct area of research, and face their own set of basic challenges. Therefore, this
section provides a review of the typical approaches for each module in the literature.

33



Chapter 2. Introduction to Sound Event Recognition

Audio

Segment

Recording

Environment Training

Detection
Feature 

Extraction
Classification

Output

Acoustic 

Model

Segment

Label

Label

Input

Audio Signal

Figure 2.4: The structure of a typical sound event recognition (SER) system

Additionally, the problem of noise robustness is important in the design of a typical
SER system, hence a range of solutions to this problem are also discussed.

Detection

The detection module is concerned with finding the start and end points of each sound
event, and segmenting it from the continuous audio stream. In general, approaches
can be assigned as belonging to one of two categories: detection-and-classification, or
detection-by-classification [79], where the latter combines detection and classification
into a single pattern recognition problem.

The detection-and-classification approach consists of a separate detection module
that extracts a sound event segment, of a variable length, from the continuous audio
signal. Low-level audio features are commonly used for this task, such as zero-crossing
rate, higher-order statistics, pitch estimation, or spectral divergence [78]. The resulting
segmentation does not try to interpret the data, but is a form of “novelty detection”
that aims to detect segments that are different from the underlying background noise.
This is achieved by comparing the feature values to a threshold that is learned from
the recent noise profile [79, 87]. The advantage of this approach is that a fixed length
segment does not need to be chosen in advance, which is beneficial in SER tasks
where the duration of different sound events may vary considerably. However, the
disadvantage is the difficulty in choosing a suitable threshold, as this is crucial and
may vary over time in non-stationary noise.

Alternatively, the detection-by-classification approach performs classification of se-
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quential segments extracted from the audio, where the detection window shifts forwards
over time [38]. The output at each time step is then a decision between noise, or one
of the trained sound events [44, 88]. The advantage of this approach is that only one
set of features needs to be extracted from the audio as the detection and classification
modules are combined. The disadvantage is in choosing an appropriate window size
and classification method that can work well across a range of experimental conditions.

Feature Extraction

The purpose of feature extraction is to compress the audio signal into a form that
characterises the important sound event information. A good feature should be able
to discriminate easily between different classes of sounds, while keeping the variation
within a given sound class small. It should also be insensitive to external influences,
such as noise or the environment.

The most popular approach is to extract a feature from sequential short-time win-
dowed frames, each around 25-60 ms in length [89]. These are known as frame-based
features, since each frame of the signal is represented by a single vector. The most
popular frame-based features are Mel-Frequency Cepstral Coefficients (MFCCs) [90],
which represent the discrete cosine transform (DCT) of the log-spectral power of the
signal mapped onto the non-linear Mel frequency scale. The zeroth coefficient, repre-
senting the mean energy, and the higher-order coefficients are often discarded, leaving
a compact representation of the spectral envelope. In addition to MFCCs, there are
a wide variety of other features that have been developed to capture the information
contained in the signal. These include features that can capture the temporal evolu-
tion of the signal, the harmonic or perceptual information, or the sound information
across time and frequency [91].

As certain features may be more suitable for recognising a particular sound event
class than others, it is often necessary to choose a feature set for a particular task.
While it is possible to use prior knowledge about the signal and the performance of
individual features to choose a feature set, it is more common to perform this selection
automatically. There are a variety of different feature selection algorithms to choose
from [92], but in general the idea is to select the most discriminative features for a
particular classification task [44, 45].
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Classification

The purpose of this module is to classify the extracted features to produce a label as-
signing an audio segment to one of classes presented during training. A basic approach
is to simply store the training features in a database, and use a distance measure to
compute the similarity between the database and the features observed during testing.
This is the basis for techniques such as k-Nearest Neighbours (kNN) and Dynamic
Time Warping (DTW). However, such techniques are sometimes less popular as they
require more computational cost than the equivalent model-based methods [63]. The
most popular techniques therefore create a model of the feature vector space dur-
ing training, and then measure the distance between the observed features and the
model during testing. This idea is found in each of the following techniques: Gaussian
Mixture Models (GMM), Hidden Markov Models (HMM), Artificial Neural Networks
(ANN), and Support Vector Machines (SVM) [93]. As these are fundamental to a
wide variety of state-of-the-art methods SER and ASR systems, they are now briefly
described below.

Gaussian Mixture Models – This method models the feature space as a mixture
of Gaussian density components, where the observed features for audio processing tasks
are typically real-valued vectors, y ∈ R

L. The distance between an observed feature
and the model, f(y), is then as follows:

f(y) =
M
∑

m=1

P (m)N (y;µm,Σm), (2.1)

where M is the number of Gaussian mixtures, P (m) is the prior weight of each mixture
component, and N (y;µ,Σ) is the Gaussian density with mean, µ, and covariance, Σ,
evaluated as follows:

N (y;µ,Σ) =
1

(2π)L/2|Σ| 12
exp

(

−1
2
(y − µ)′Σ−1(y − µ)

)

. (2.2)

For training, a set of features vectors, Y = {y1, yt, . . . , yT}, is used to determine the
above parameters using the Expectation-Maximisation (EM) algorithm. This starts
with an initial guess of the model parameters, and subsequently repeats the E-step, to
evaluate the current model, followed by the M-step to maximise the log-likelihood of
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the model.
Hidden Markov Models – The HMM extends the modelling ability of the GMM,

by modelling the temporal information of the features. This is achieved using a set of
interconnected hidden states, where the output probability distribution of each state
is modelled by a GMM, and the transitions between states are determined by a set
of probabilities [84]. Given a sequence of input feature observations, the aim is to
calculate the most likely sequence of states that could account for the observations
[94]. Mathematically, yt is defined as the observation at a given time instance, t, and
qt ∈ {1, . . . , K} as the hidden state, where there are K possible states in the model.
The HMM parameters, θ, that need to be estimated are therefore the initial state
distribution, π(i) = P (q1 = i), the transition matrix, A(i, j) = P (qt = j|qt−1 = i),
and the observation probability distribution P (yt|qt). This is performed using the
Baum-Welch algorithm to maximise the likelihood of the training data, Y :

θk+1 = argmax
θ

P (Y |θk) (2.3)

where the Baum-Welch can be seen as an implementation of an EM algorithm [84].
Testing requires the decoding of an observed sequence of vectors to find the most

probable state sequence that could have generated them. This process is called Viterbi
decoding, and the most probable state sequence, qbest, can be written as follows:

qbest = argmax
q

P (Y, q|θ) (2.4)

= argmax
q

P (Y |q, θ).P (q|θ). (2.5)

The HMM-based approach is popular in many audio processing application, since it
performs a kind of late-integration of the temporal information, hence can model the
time evolution of the frame-based feature vectors [92].

Support Vector Machines – This is a binary classifier that calculates the sepa-
rating hyperplane between two clusters of points in a high-dimensional space [95, 96].
Mathematically, each feature vector, y ∈ R

L, is treated as a point in an L dimensional
space. The set of training feature vectors Y = {y1, yt, . . . , yT}, is then represented
as a T × L data matrix, plus a label matrix d, where dt ∈ {−1,+1} indicating the
class label. Assuming the data is linearly separable, the separating hyperplane can be
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Figure 2.5: Diagram to show the problem formulation for linear SVM.

described by:
~w · Y + b = 0 (2.6)

where ~w is the normal to the hyperplane and b
‖~w‖

is the perpendicular distance from
the hyperplane to the origin, as shown in Fig. 2.5. The goal is to find parameters
~w, b such that the hyper-plane that best separates the two clusters is found, which
provides the maximum margin between the closest points of each class. The margin
is found using geometry to be 2

‖~w‖
. Hence, the task is to minimise ‖~w‖, subject to the

constraint that points should not fall into the margin. This problem can be solved by
the following quadratic program:

min 1
2
‖~w‖2 s.t. dt(yt ·W + b)− 1 ≥ 0 ∀i. (2.7)

While this SVM formulation considers only the linear separation of two classes, mod-
ifications can be adopted to add support for overlapping data, non-linear kernel map-
pings, and solutions for multi-class problems [95].

Noise Robustness

Many speech and sound event recognition systems are trained with data recorded
in environments with a high signal-to-noise ratio (SNR). However, previous studies
have clearly shown that increasing the difference in SNR between training and testing
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rapidly decreases the performance [97]. This decrease in performance is due to the
distortion of the spectral information by the noise, and can be summarised by the
MixMax principle [98]. This states that the interaction of two signals, s1, s2, in the
log-spectral domain can be written as follows:

log (|s1|+ |s2|) ≈ max (log |s1|, log |s2|) . (2.8)

The result is that certain spectral components become masked by the noise or changed
significantly enough to affect the feature vector for classification.

A simple solution to this problem is called “multi-conditional” training, which
provides the recognition system with data from a variety of different noise conditions
and SNRs during training. This allows the acoustic model to capture information about
how the sound events might be received in an unseen noise environment. The drawback
of this approach is that it requires a large amount of training data, which often is simply
simulated and may not match the real-life conditions of the testing environment. In
addition, multi-conditional training often reduces the recognition accuracy under high
SNR conditions, due to the reduced discrimination of the acoustic models.

Other conventional techniques for noise robustness typically fall into three cate-
gories: signal enhancement, feature compensation, and model adaptation. Each ad-
dress a different module of the typical SER system, as shown previously in Fig. 2.4.
Firstly, signal enhancement aims to reduce the amount of noise in the audio signal
captured in the recording environment. This enables the extracted features to be
closer to the clean training condition. Examples of signal enhancement approaches
include Wiener filtering, spectral subtraction [99] and the ETSI Advanced Front End
toolkit [100]. Secondly, feature compensation can carried out in the feature domain,
to transform the statistics of the noisy features to be closer to those of the clean fea-
tures. Examples include cepstral mean normalisation (CMN) and cepstral variance
normalisation (CVN) [101], which are simple but effective methods for improving the
performance in mismatched conditions. Finally, model adaptation can be applied to
adapt the acoustic models, trained on clean data, to provide a better representation
of the noisy features extracted from the signal during testing. Example of this in-
clude parallel model combination (PMC) and maximum likelihood linear regression
(MLLR) [102].
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An alternative approach for noise robustness is missing feature theory. This is
different from the above methods as it treats noise-corrupted regions of the feature as
unreliable, and therefore missing [103,104]. This effectively splits the feature vector, y,
into reliable, yr, and unreliable, yu, components to form a missing feature “mask” [105].
The challenge then is to accurately estimate this mask, with extensive research carried
out on this topic in the field of Computational Auditory Scene Analysis (CASA) [24].
Here, principles such as sequential organisation and grouping are used to segment the
spectrogram [106–108], with motivation provided by a study of human hearing mech-
anisms [20,23]. Missing feature classification is then performed either by restoring the
missing feature elements, or modifying the classifier to accept the missing feature ele-
ments [109]. These approaches are called imputation and marginalisation respectively,
and are summarised below.

Imputation – This proceeds by finding suitable replacements for yu by using
values drawn from the conditional distribution of the observation probabilities for a
given state, qi, given the reliable components. It is shown in [103] that this simply
equates to the weighted mean of the mixture components for the unreliable data:

ˆyu,i =
M
∑

m=1

P (m|yr, qi)µu|m,qi (2.9)

where P (m|yr, qi) are the “responsibility factors” for each mixture component, as fol-
lows:

P (m|yr, qi) =
P (m|qi)N (yr;µm,Σm|qi)

∑M
m=1 P (m|qi)N (yr;µm,Σm|qi)

(2.10)

where N (y;µ,Σ|qi) is the Gaussian density with mean µ and diagonal covariance Σ as
in (2.2), evaluated for state, qi.

Marginalisation – This aims to compute the output probabilities of each state
by integrating out the distribution of the unreliable components within the bounds of
the observed spectral information [103]. By utilising the independence of the GMM
mixture components, the reliable and unreliable parts of the feature vector can be
treated separately, allowing the unreliable components, yu, to be integrated out as
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follows:

f(yr|qi) =
M
∑

m=1

P (m|qi)N (yr;µm,Σm|qi)
∫

N (yu;µm,Σm|qi) dyu (2.11)

Marginalisation can also make use of soft masks, where each element is assigned a
probability that it is reliable rather than making a hard decision [104].

Both imputation and marginalisation can also utilise the observed noise energy as
an upper bound in the computation to improve the performance. The choice depends
on the application, since although marginalisation typically performs better [103], im-
putation has the advantage in that it reconstructs an estimate of the clean feature
vectors. These can then be used in subsequent processing by a conventional recogni-
tion system, such as extracting MFCCs from the restored data.

2.2 State-of-the-Art Approaches
In the previous section, an overview of sound event recognition (SER) was provided,
with a discussion on the potential applications, the challenges faced in SER, and the
design of a typical SER system. Next, a review of the state-of-the-art techniques
for SER and their limitations is provided. The aim is to give a deeper insight into
the range of recent techniques that have been developed specifically for SER, which
here are broken down into two categories. The first category focuses on extracting
novel features that can better capture the information in the sound events compared
to traditional ASR features, such as MFCCs. The second category focuses on novel
approaches to modelling the acoustic signal, which often draw on inspiration from the
human auditory system. The approaches in these categories are summarised in Fig.
2.6, and are discussed in detail below.

2.2.1 Audio Features

This group of state-of-the-art approaches is concerned with finding novel representa-
tions of the sound event information to produce discriminant features for classification.
The group can be further broken down into three sub-categories: low-level audio fea-
tures, temporal features and spectro-temporal features. Each of these are now reviewed
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Figure 2.6: Overview of a range of state-of-the-art approaches for sound event recog-
nition.

in detail.

Low-level Audio Features Sound events can be described through a common set
of characteristics, such as pitch, loudness, duration and timbre [110]. Although
common ASR features can capture these to an extent, they often do so implic-
itly, rather than designing a feature to capture a specific characteristic directly.
For example, MFCCs capture loudness through the zeroth coefficient, and pitch
and timbre are represented in the remaining coefficients. Hence, they may not
provide the best representation for the full range of sound characteristics, despite
providing a good SER baseline performance [111].

This leaves scope to develop novel ways of representing the sound event infor-
mation. In particular, timbre is important as it represents a range of distinctive
characteristics about the sound [110]. Therefore, several works focus on ex-
tracting novel features that characterise aspects of the sound event timbre. In
particular, these look to capture elements such as the spectral brightness, roll-
off, bandwidth and harmonicity [110, 112]. Brightness is defined as the centroid
of power spectrum, while spectral roll-off measures the frequency below which a
certain percentage of the power resides. Both are a measure of the high frequency
content of the signal. Bandwidth captures the spread of the spectral information
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around the centroid, while harmonicity is a measure of the deviation of the sound
event from the perfect harmonic spectrum [110]. Many of these novel sound fea-
tures are standardised in the MPEG-7 framework to provide a unified interface
for modelling audio information [25]. Other descriptors are also added, such as
spectral flatness, kurtosis, sharpness, slope, audio power, and fundamental fre-
quency [89]. MPEG-7 also includes an audio spectrum projection (ASP) feature,
which can be seen as a generalisation of the traditional MFCC approach, with
a class-specific basis projection used in place of the DCT [25]. However, it was
shown in [26] that MFCC features can still outperform MPEG-7 ASP features
on a simple sound recognition task.

Given such a large set of audio features to choose from, other works have focussed
on feature selection. These approaches aim to automate the process of selecting
a suitable feature set for a given sound class that can discriminate well against
other sounds. For example in [88], 138 low-level audio features are extracted,
and decision tree classifiers are used to select suitable features for modelling each
sound object. Another example, in [113], uses the correlation-based feature selec-
tion (CFS) method on a base set of 79 features, using the implementation in the
WEKA toolkit [114]. While such feature selection approaches try to determine
the best subset of features from a predefined subset, an alternative approach is to
generate a novel feature set by combining a library of elementary operators. This
is the approach taken in [83], where their extractor discovery system (EDS) can
explore a feature space of containing billions of possibilities. This is achieved by
combining up to 10 operators from a set of 76 basic operations, such as Fourier
transforms, filters and spectral measures including the centroid. Experiments
show that such feature sets generally achieve better performance than base fea-
tures such as MFCCs, or can achieve an equivalent performance but with fewer
features [83].

Temporal Features The varied nature of the acoustic signals means that represent-
ing their frequency content alone may not be sufficient for classification. A simple
approach is to combine frame-based spectral features, such as MFCCs, with their
delta and delta-delta coefficients to capture their local temporal transitions [115].
However, other features aim specifically to capture the important information in
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the temporal domain [116]. Fig. 2.7 demonstrates that this temporal information
can be extracted across a range of different time and frequency scales, including
capturing both spectral and temporal information in the feature. However, the
following methods focus solely on extracting the temporal information from the
signal as in Fig. 2.7b, while spectro-temporal features are discussed later in this
section.

An early approach for temporal feature extraction for ASR is called “temporal
patterns” (TRAPS), which extracts features over a long temporal window from
each frequency subband [117]. More recently, a number of related approaches
have been proposed for SER. One example can be found in [118], where the
aim is to characterise sound events through a “morphological” description of the
temporal information in the signal. This includes properties such as the dynamic
profile, e.g. whether the sound has an ascending or descending energy profile, the
melodic profile, describing the change in pitch, and the complex-iterative nature of
sound repetitions. The advantage of this approach is that it naturally describes
the sound events in a form that is similar to human description, making the
technique useful for indexing sounds for an audio search engine [118]. A differ-
ent approach is proposed in [85], where the aim is to characterise sound events
through a parametric representation of their subband temporal envelope. This
captures the distinctive spectro-temporal signature of the sound events, and al-
lows a comparison of sounds using a distance measure based on the parametrised
representation.

A different approach for capturing the temporal information in the signal is to
use temporal feature integration to transform a set of frame-level features into
a segment-level feature vector for classification [38, 110]. This is more common
in SER compared to ASR, as sound events more commonly occur in isolation
compared to the connected phonemes in speech. Typically, a statistical model of
the temporal information is used, where parameters such as the mean, variance
and higher-order statistics are captured [92]. However, these simple statistics
ignore the temporal dynamics among successive feature vectors. One solution
is to model the temporal information by fitting an autoregressive (AR) model
to the sequence [119]. Alternatively, a classifier such as HMM can be used that
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Figure 2.7: Schematic of frame-based, temporal, segment and local feature paradigms
for signal processing on the spectrogram.

performs a kind of “late” feature integration [120] by fitting a generative model
to the temporal evolution.

Spectro-Temporal Features A natural extension to both spectral and temporal
feature extraction is to consider features that jointly model the spectro-temporal
information. For ASR, this approach has been used to better capture certain
features of speech, such as formants and formant transitions [121]. The most
common approach is to use the correlation between a set of wavelet functions
and the time-frequency base representation to extract a conventional feature
for classification. The most popular wavelet representation is based on com-
plex Gabor functions [122], which are two-dimensional sine-modulated Gaussian
functions that can be tuned to model a range of spectro-temporal patterns.

Recently, there has been interest in extracting information from local time-
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frequency regions in the spectrogram, as shown diagrammatically in Fig. 2.7d.
One approach is to perform the two-dimensional Discrete Cosine Transform
(DCT) of each local time-frequency patch on a regular grid, which is equivalent
to performing correlation with a set of 2D-DCT bases [123]. The result can then
be concatenated together to form a frame-based feature, which can be improved
further by removing the higher-order components to provide both smoothing and
dimensionality reduction [124]. While such approaches often used a fixed set of
basis functions, a recent proposal aims to learn the spectro-temporal modulation
functions from the data [125]. Independent Component Analysis (ICA) is used
for this purpose, and it is shown that this approach can learn functions that give
an improved performance.

A related approach is based on decomposition of the time domain signal using
Matching Pursuit (MP) [126]. This provides an efficient way of selecting a small
basis set that represents the signal with only a small residual error. As before,
a Gabor wavelet dictionary is commonly used [127], as it can better capture the
non-stationary time-frequency characteristics in the signal compared to the one-
dimensional Haar or Fourier bases [28]. It has also been noted that the Gabor
bases are more effective at reconstructing a signal from only a small number of
bases [2]. Another advantage of using MP is that the decomposition has a denois-
ing effect on the signal [3]. This is because the residual from the decomposition
is discarded, which can be assumed to contain incoherent elements of the signal
that are not modelled by the basis functions.

2.2.2 Auditory Modelling

This group of state-of-the-art approaches is concerned with finding novel ways of mod-
elling the audio signal, often by drawing on inspiration from the human auditory sys-
tem. The group can be further broken down into three sub-categories: modelling of the
auditory front-end, computational auditory scene analysis (CASA), and brain-inspired
neural approaches. Each of these are now reviewed in detail.

Auditory Front-End The traditional method for acoustic analysis is to use the
short-time Fourier transform (STFT), combined with perceptual filtering through

46



Chapter 2. Introduction to Sound Event Recognition

a set of triangular-shaped Mel filters [128]. This forms the basis for traditional
MFCC features. However, the STFT has several drawbacks that may limit its
effectiveness, particularly when applied to sound events. Firstly, the method as-
sumes the signal to be stationary during the short-time analysis window, which
may not be true for highly non-stationary sounds. Secondly, there is a trade-off
between the time and frequency resolution of the STFT representation, as it is
closely linked to the size of the analysis window. Therefore, a recent trend has
been to find alternative ways of performing the time-frequency decomposition.

One popular method is inspired by studies into the auditory modelling in the
human ear, in particular the signal analysis performed by the human cochlear
[129, 130]. This is called as the gammatone filterbank decomposition [131], as
the filter function can be characterised as a sine-modulated gamma distribu-
tion function. As an approach for time-frequency analysis, gammatone filtering
overcomes the drawbacks associated with the STFT, since there is no longer a
trade-off between time and frequency resolution. In addition, it has the advan-
tage that the gammatone function has been shown to be highly correlated with
natural sounds [132], hence should provide an efficient representation.

A typical system, based on such auditory modelling, uses the gammatone time-
frequency analysis to enhance the traditional pipeline for audio signal process-
ing [36, 133]. The resulting features are called the Gammatone Cepstral Coeffi-
cients (GTCCs), since they simply replace the STFT and Mel filtering modules
used in MFCC extraction with Gammatone filtering [134]. For non-speech audio
classification, it has been shown that GTCCs can outperform both MFCCs and
MPEG-7 using both kNN and SVM classifiers [86]. Further to this, recent works
have also demonstrated improved performance through pitch-adaptivity [135] or
selection [136] of the gammatone filterbanks. For example, in [136], filterbank
channel selection is performed to adapt an SER system to changing environ-
mental conditions. This was shown to outperform both MFCC and selective
Mel-filterbank features.

An alternative to this is to use a more complete auditory model based on the
next stage of auditory processing in the cochlea. This is formed by the inner hair
cells (IHCs), which convert the movement of the basilar membrane into neural
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activity that is transmitted to the brain via the auditory nerve [137, 138]. An
example of a recent work based on this is the auditory image model (AIM) [139].
This model generates a stabilised auditory image (SAI), and the feature extracted
from this is shown to outperform MFCCs on a task involving different speaker
characteristics.

Computational Auditory Scene Analysis This is a field that originated in the
1990’s based on Bregman’s work on human perception of sound though Audi-
tory Scene Analysis (ASA) [20]. The term “scene analysis” is used in image
processing to encapsulate the problem of describing the contents of a picture of
a three-dimensional scene [140]. Bregman’s interpretation is that human sound
perception is like building up a picture of the “auditory scene”. This idea is
exemplified by the “cocktail party” scenario, where a human listener is easily
able to follow a conversation with a friend in a room with many competing
conversations and acoustic distractions. Through this work on ASA, cues were
discovered that the auditory system uses to understand sounds. The main two
effects present are “fusion”, where sound energy from different areas of the fre-
quency spectrum blend together, and “sequential organisation”, where a series of
acoustic events blend together into one or more streams [21]. It was found that
the main cue for fusion was having a common onset, within a few milliseconds,
while learned schema appeared to be the main cue for assigning disconnected
frequency elements to the same sound source.

This understanding has been utilised in audio processing in several ways. The
most notable of these has been for the process of mask estimation for missing data
classification [24], which was previously introduced in Section 2.1.4. CASA-based
mask estimation includes works based on onset-offset analysis [106,141], grouping
cues [23], pitch-based grouping [107], or top-down segmentation [142]. Much of
the work is focussed on speech perception in noise [134,142] or speech separation
from multi-talker mixtures [23, 107]. However, the performance of missing data
classification systems is highly dependant on the accuracy of the mask [103].
Therefore, more recent decoding methods have been developed to compensate
for the deficiencies inherent in the mask estimation. One approach is based on
speech fragment decoding [142, 143], whereby the mask is separated into a set
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of local fragments, where each fragment should belong to a single source. The
system then proceeds by searching for the best combination of fragments that
represent the target source. This can be further enhanced by utilising knowledge
about the noise present in the signal [144]. An alternative approach in [108] uses
an uncertainty decoder to allow for errors made in the mask estimation process.
Here, the unreliable elements are first reconstructed using a prior speech model,
and then transformed into cepstral features [134]. However, the uncertainties in
the reconstruction are also transformed into the cepstral domain, and are then
used to adjust the variance of individual Gaussian model components, which
gives improvement over the baseline system.

Brain-Inspired Approaches These approaches are based on biologically plausible
pattern recognition, such as emulating effects that have been found in the human
brain. The aim to understand the human physiology involved in the auditory
system [145–147], and build systems that replicate the processing mechanisms
that work very effectively for humans.

One approach is based on the simulated output of the inner-ear processing, in the
form of spike trains on the auditory nerve [137, 148]. These can then be used as
the input for a spiking neural network for brain-inspired pattern recognition. The
approach has been used for both sound [149] and speech [150, 151] recognition,
as well as to develop an efficient audio encoding scheme [152]. For example, [150]
uses a simple feature based on the sound onset, peak and offset times, and then
combines this with a spiking neural network for recognition. The system is
trained to produce a set of neurons that are all spiking at the same rate at a
particular time after the onset of the sound, causing a combined potential large
enough to trigger a detector neuron. If an untrained sound is presented, the
neuron firing never synchronises, and the combined output remains below the
threshold for detection.

Another approach is based on the measured Spectro-Temporal Response Field
(STRF) from the auditory cortex region of the brain [153, 154]. The STRF rep-
resents the characteristic response function of a particular neuron in the cortex
to a range of frequencies over time, and is found to bear some similarities with
Gabor functions [155]. It can be used as a quantitative descriptor for complex
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sounds, where it can be used to reconstruct sounds and act a measure of speech
intelligibility [155]. The STRF has also been used to discriminate speech from
non-speech in the presence of high levels of noise and reverberation, by trans-
forming the auditory STRF representation into a feature that can be used in
conventional pattern classification using SVM [156]. The reported results show
that the STRF approach compared well to two conventional systems on the same
task.

2.2.3 Limitations

The previous section introduced a range of state-of-the-art approaches for SER. How-
ever, while such techniques may perform well in matched experimental conditions,
there are limitations that may reduce their effectiveness in challenging unstructured
environments, where noise, multiple sources and distortion are present. Three com-
mon limitations are identified: the frame-based features used, insufficient temporal
modelling and the problems of missing feature mask estimation. These motivate the
research in this thesis to find an alternative approach to address the problems faced in
SER, hence are discussed below.

Frame-based Features These represent each short-time window from the continu-
ous audio signal with a vector of feature values, as shown diagrammatically in
Fig. 2.7a. It is the most commonly used approach in ASR, where MFCC features
are ubiquitous across many different systems. The limitation of frame-based fea-
tures is most evident when noise or multiple sources interact within the same
short-time window. In such cases, the noisy feature vectors will produce a low
score against the clean model, as the feature dimensions do not match with the
distribution found in the model trained on clean data.

This problem affects many of the state-of-the-art low-level audio features, such
as MPEG-7 [25, 50, 62], and spectro-temporal feature extraction methods [2, 3].
This is because such features are designed to extract more information from the
audio to achieve an improved performance, but are not inherently robust to mis-
matched conditions. Other auditory-inspired techniques also tend to suffer the
same problem, as they are commonly combined within the conventional frame-
based paradigm. Examples include auditory inspired the Gammatone Cepstral
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Coefficients (GTCCs) [86,134], which simply replace the front-end processing of
traditional MFCCs.

Temporal Modelling The modelling of spectral and temporal information in sound
events is important, and traditional features such as MFCCs do not capture the
temporal information sufficiently. Even when combined with existing temporal
feature integration methods, such as taking the mean and variance of the feature
vectors across time [92], this still does not fully capture the temporal ordering
of the sound. Also, while the temporal modelling of the frame-based features in
HMMs is an improvement, the feature vector transitions still follow an exponen-
tial distribution [63], which is a poor model of the sound information. Speech
is less affected by the deficiencies of the HMM modelling as the duration of the
average phoneme duration is short. On the other hand, some sound events can
have a quite stationary temporal distribution over longer time periods, which will
not be well modelled. Also, while brain-based techniques provide biologically in-
spired methods for SER, little is actually known about how the auditory cortex
models the temporal information [157]. Therefore, such systems often resort to
using traditional pattern classification techniques [156], or find other ways to
capture the temporal information [150].

Missing Feature Mask Estimation The problem of robust recognition with miss-
ing features has been studied extensively [103,104]. However, it has been shown
that the performance of these methods depends heavily on the accuracy of the
estimated mask [158]. This poses a significant problem for SER, where the non-
stationary nature of the noise across time, frequency and dynamic range makes
developing a reliable mask particularly challenging. This is compounded by the
difficulty in using feature-based mask estimation techniques [105], as it is difficult
to design a feature to reliably capture the wide variety of sound event charac-
teristics. Any noise elements that are incorrectly marked as reliable, such as
those with similar sharp peaks to the signal, will severely affect the classification
performance in real-life SER applications.
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2.3 Baseline Experiments
In the previous section, a range of recent state-of-the-art techniques was introduced,
including those based on novel audio features and auditory modelling. Due to the wide
variety of techniques and datasets, it is difficult to establish a solid baseline performance
amongst these methods from the literature. Experiments are therefore conducted in
this section to establish a baseline SER performance amongst both conventional audio
processing and more recent state-of-the-art techniques. This also includes methods
based on noise reduction, multi-conditional training, and missing feature techniques,
which are popular techniques for dealing with real-world environmental conditions.
Training is carried out using only clean samples, with the methods tested on a standard
database of environmental sounds in both clean and mismatched noise conditions.
These noise conditions, including speech babble and factory floor noise, are chosen to
simulate a more realistic testing environment.

The rest of this section first details the experimental setup and baseline methods
that are implemented, before discussing the results that are obtained.

2.3.1 Experimental Setup

Database

A total of 50 sound classes are selected from the Real Word Computing Partnership
(RWCP) Sound Scene Database in Real Acoustical Environments [159], giving a selec-
tion of collision, action and characteristics sounds. The isolated sound event samples
have a high signal-to-noise ratio (SNR), and are balanced to give some silence either
side of the sound. The selected categories cover a wide range of sound event types,
including wooden, metal and china impacts, friction sounds, and others such as bells,
phones ringing, and whistles. Many of the sound events have a sparse time-frequency
spectrogram representation, with most of the power contained in a particular frequency
band, while several others are more diffuse, such as the buzzer or sandpaper sounds.

For each event, 50 files are randomly selected for training and another 30 for test-
ing. The total number of samples are therefore 2500 and 1500 respectively, with each
experiment repeated in 5 runs.
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Noise Conditions

For each experiment, except for the multi-conditional method, the classification accu-
racy is investigated in mismatched conditions, using only clean samples for training.
The average performance for each method is then reported in clean and at 20, 10 and 0
dB SNR for the following four noise environments: “Speech Babble”, “Destroyer Con-
trol Room”, “Factory Floor 1” and “Jet Cockpit 1”, obtained from the NOISEX’92
database [160]. The noise segments are randomly selected from the above samples,
then scaled to the correct SNR and artificially added in the time domain. All four
noises have their energy concentrated in the lower frequencies, and represent realis-
tic non-stationary noise conditions. The average performance across all four noise
environments is reported at each SNR.

Conventional Methods

To establish a baseline performance for SER, a broad range of methods for sound event
recognition are investigated. The following conventional approaches are implemented:

1. Base Methods:

(a) MFCC-HMM, using 36-dimension frame-by-frame MFCCs, with 12 cepstral
coefficients, without the zeroth component, plus their deltas and accelera-
tions.

(b) MFCC-SVM, with temporal integration performed by extracting the mean
and variance of the MFCCs over the clip.

2. Noise Reduction:
This uses a system based on the MFCC-HMM method above, but noise is re-
moved for both training and testing using the following algorithms:

(a) Spectral Subtraction [99]

(b) Advanced Front End (AFE) [100].

3. Missing Features [103]:
Here, an HMM system is trained using 36-dimension Mel-frequency spectral co-
efficient (MFSC) features without deltas. A missing feature mask is then gener-
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ated using a noise estimate based on the first 10 frames. The following missing
feature methods are then implemented:

(a) Bounded Imputation.

(b) Bounded Marginalisation.

4. Multi-Conditional training:
Here, the baseline MFCC-HMM system is trained with features generated in both
clean and 10dB SNR noise, under 3 out of the 4 noise environments. Testing is
then carried out on the remaining noise environment.

Each of the HMM methods above uses 5 states and 6 Gaussian mixtures, as this was
found to provide a good trade-off between performance and computational complexity
in preliminary experiments. Training and testing are both carried out using the popular
hidden Markov model Toolkit (HTK) [161]. The only exception are the missing feature
methods, where testing is carried out with a local Matlab HMM decoder, which is
modified to perform the missing feature imputation and marginalisation.

State-of-the-Art Methods

In addition to the baseline methods above, a range of more recent methods are evalu-
ated to represent a cross-section of the state-of-the-art techniques introduced in Section
2.2. The following methods are implemented:

1. MPEG7-HMM [25]:
This method extracts 57 features from each frame including the audio power,
fundamental frequency, zero crossing rate, and the short-time spectrum envelope,
centroid, roll-off, spread and flatness. The dimension is reduced to 12 using PCA,
and combined with their deltas and accelerations to provide a 36 dimension
feature comparable to MFCCs.

2. Gabor-HMM [122]:
The best performing 36 Gabor features are selected using a feature finding neu-
ral network (FFNN) [121]. This consists of a linear single-layer perceptron in
conjunction with secondary feature extraction and an optimization rule for the
feature set.
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3. GTCC-HMM [134]:
Here, gammatone cepstral coefficients are extracted using a total of 36 gamma-
tone filters. The dimension is subsequently reduced to 12 using the DCT and
combined with deltas and accelerations to give a 36 dimension feature.

4. MP+MFCC-HMM [2]:
Matching-pursuit is used to decompose each signal window to find the top 5
Gabor bases. Four features are then derived, by finding the mean and variance
of both the frequency and scale parameters of the Gabor bases. These are con-
catenated together with conventional MFCC features, and combined with their
deltas and accelerations to give a (12 + 4)× 3 = 48 dimension feature vector.

As with the previous baseline methods, each system uses a 5 state HMM with 6
Gaussian mixtures, with both training and testing performed using HTK.

2.3.2 Results and Discussion

The experimental results for each of the methods is now presented, with the aim
to establish a solid baseline to provide a comparison with the work in this thesis.
The performance of the conventional methods is now analysed, followed by a further
comparison against the results achieved by the state-of-the-art methods.

Results: Conventional Methods

The performance of the conventional methods is reported in Table 2.3. Firstly, com-
paring the two base systems in the top segment of the table, it can be seen that MFCC-
HMM produces the best performance, with an average classification accuracy of 57.3%.
Compared to this, the MFCC-SVM system performs much worse than MFCC-HMM,
despite using the same base features. This is explained by the different kinds of tempo-
ral integration performed in each method. In particular, MFCC-SVM uses the mean
and variance of the features over the whole clip, which captures less of the temporal
information compared to the late-integration performed by MFCC-HMM.

Next, the performance gain achieved by using the two noise reduction techniques
is evaluated. The results show that the ETSI Advanced Front End (AFE) achieves
an average accuracy of 73.9%, which is marginally better than 72.5% achieved by

55



Chapter 2. Introduction to Sound Event Recognition

Group Method Clean 20dB 10dB 0dB Avg.

Base MFCC-HMM 99.4± 0.1 71.9± 8.5 42.3± 8.7 15.7± 4.2 57.3

MFCC-SVM 98.5± 0.2 28.1± 5.0 7.0± 2.4 2.7± 0.6 34.1

Noise
Reduc.

Spec-Sub 99.2± 0.1 89.3± 4.4 68.5± 8.3 33.1± 7.6 72.5

ETSI-AFE 99.1± 0.2 89.4± 3.2 71.7± 6.1 35.4± 7.7 73.9

Missing
Feature

Imputation 94.3± 0.5 90.3± 1.5 80.4± 4.7 60.5± 9.2 81.4

Marginalisation 93.6± 0.4 85.6± 2.9 74.7± 3.0 50.1± 7.4 76.0

Multi-Conditional 97.5± 0.1 95.4± 1.3 91.9± 2.7 67.2± 7.3 88.0

Table 2.3: Classification accuracy results for experiments on the conventional audio
processing methods. The standard deviation is also reported (±) across five runs of
the experiment and the four different noise conditions.

spectral subtraction. This is expected since the techniques used in the AFE, such
as double Wiener filtering, are much more sophisticated than simple noise reduction
using spectral subtraction. The performance is also a considerable improvement over
the equivalent MFCC-HMM system without noise reduction, despite a small drop in
performance in clean conditions.

The third segment of Table 2.3 shows the results for the two missing feature meth-
ods. It can be seen that both imputation and marginalisation approaches can out-
perform the noise reduction results, with a classification accuracy of 81.4% and 76.0%

respectively. However, it was found that the performance in clean conditions was less
than the previous methods. One of the factors contributing to this result may be that
the missing feature approaches are limited to the spectral domain, where the sparse
time-frequency spectrum of the sound events can cause particular mixture variances
to become very large, for example when a decaying time envelope was present. In such
cases, the likelihood of these mixtures could be high across a number of different sound
classes, causing confusion between similar sounds. Further to this, when these mix-
tures were marked as missing in the marginalisation approach, their likelihood would
be very low due to the narrow range of the integration compared to the variance. The
result is the poorer overall performance of marginalisation compared to the imputation
approach.

The results for the multi-conditional MFCC-HMM method are found in the final
segment of Table 2.3. Here it can be seen that the system achieves an average accuracy
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of 88.0%, which is a significant improvement compared to both the noise reduction and
missing feature methods. The computational cost is also much less than the missing
feature approaches, as it does not require any modification to the HMM decoding
process. However, it does not necessarily provide a fair comparison with the other
methods, as they performed testing in mismatched conditions, with only clean data for
training. In addition, the performance of the multi-conditional training method may
vary in practical applications, depending on how close the testing noise environment is
to those found in training. Despite this, it still achieves a state-of-the-art performance,
and provides a well-performing baseline that will be compared to future methods.

Results: State-of-the-Art

The performance of the four state-of-the-art SER approaches is reported in Table 2.4.
Here it can be seen that MPEG-7 gives the lowest overall performance, with an average
accuracy of just 33.6%. This can be compared to the best performing MP+MFCC
method that achieves 58.4% on average. The poor performance of MPEG-7 can be
explained by some of the features included, which may not be robust or well suited to
environmental sound events. For example, the audio power feature will vary according
to the SNR level, and the fundamental frequency feature may be difficult to estimate
accurately across the wide range of sound classes.

The results also show that both the Gabor and GTCC methods perform marginally
better than the basic MFCC-HMM system in clean conditions. In particular, the
Gabor method achieves the best performance with 99.8% of samples correctly classified.
However, both methods perform less well in mismatched conditions. For the Gabor
method, this can be explained by the feature selection process, which becomes strongly
tuned to the training conditions. This means the approach does not generalise as well
to the mismatched noise conditions, compared to the simple MFCCs .

Finally, the best overall performance is obtained by the MP+MFCC approach,
which uses matching pursuit to complement the MFCC features. As expected, the
MP method performs marginally better than the original MFCC-HMM, but with an
average improvement of just 1.1%. This is possible because each window of the signal is
decomposed into a small number of Gabor bases. These are expected to represent the
most prominent information in the signal, which will naturally be retained even under
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Method Clean 20dB 10dB 0dB Avg.
MPEG-7 97.9± 0.3 25.4± 2.1 8.5± 0.6 2.8± 0.7 33.6

Gabor 99.8± 0.1 41.9± 6.8 10.8± 2.8 3.5± 1.2 39.0

GTCC 99.5± 0.2 46.6± 10.0 13.4± 2.5 3.8± 1.2 40.8

MP+MFCC 99.4± 0.2 78.4± 5.7 45.4± 6.3 10.5± 2.3 58.4

Table 2.4: Experimental results for four state-of-the-art methods for sound event
recognition.

noisy conditions. The disadvantage is the additional processing required to perform
the decomposition, which could be high enough to offset the small gain in performance.

Conclusion

The experimental evaluation can now be used to establish a solid baseline for future
comparison. The results show that the best overall performance is achieved by the
multi-conditional MFCC-HMM method, with an average accuracy of 88.0%. However,
the multi-conditional method requires both clean and noisy samples for training, hence
does not provide a direct comparison between other methods that require only clean
samples for training. Therefore, another baseline method will be selected based only on
clean training data. For this, the ETSI-AFE is chosen, as it is a well known approach
for noise robust feature extraction and achieves a good performance of 73.9% on this
task.

It should be noted that the missing feature methods also require only clean data,
and achieve slightly better results than the ETSI-AFE. However, they are not selected
for the following reasons. Firstly, the performance in clean conditions was poor com-
pared to the other baselines, due to problems in modelling the sound events in the
spectral domain. Secondly, they require a significant amount of additional process-
ing, due to the additional calculations required during the HMM decoding process.
Together, this limits the effectiveness of the missing feature methods as a practical
system, meaning they do not provide a good baseline for comparison.
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2.4 Summary
This chapter has given an introduction to sound event recognition (SER) and the cur-
rent state-of-the-art. This was provided by first giving an overview of SER, including
the wide array of potential applications, and the challenges faced in building a suc-
cessful system. Then, an overview of a typical SER system was given, with a review of
the traditional approaches for detection, feature extraction, classification and noise ro-
bustness. Next, a range of state-of-the-art methods and their limitations for SER was
reviewed, with the techniques grouped into two categories. The first category is novel
audio features, which covers a range of techniques for producing discriminant features
for classification. The second category are auditory modelling approaches, which draw
inspiration from the human auditory system to introduce biologically plausible pro-
cessing methods to complement traditional systems. Finally, a set of experiments were
carried out to establish the baseline performance among both conventional and state-
of-the-art methods for SER. Together, this chapter motivates the work in this thesis
to find novel ways of capturing the sound information. The next chapter introduces
the proposed approach, where the idea is to extract features and perform classification
based on spectrogram image processing.
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Spectrogram Image Processing

In the previous chapter, an introduction to sound event recognition was given, including
a review of the current state-of-the-art techniques and their limitations in mismatched
conditions. Many of these techniques are based on a short-time frequency analysis of
the continuous audio signal, which can be visually represented as a two-dimensional
time-frequency image called the spectrogram. In this chapter, the idea of performing
SER by combining image processing approaches with the spectrogram representation
of the sound is introduced. This is referred to here as spectrogram image processing,
where features are extracted from the two-dimensional spectrogram image to jointly
characterise the time-frequency sound information.

The chapter is organised as follows. Section 3.1 first provides motivation for the
idea of spectrogram image processing, and discusses the differences between spectro-
grams and conventional images. Section 3.2 then reviews relevant techniques in image
processing that are used in state-of-the-art image classification and object detection
systems. Based on this, the Spectrogram Image Feature (SIF) approach is then pro-
posed in Section 3.3 for robust sound event classification in mismatched noise condi-
tions. Experiments are then carried out in Section 3.4 to compare the SIF against a
range of baseline techniques.
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3.1 Motivation
The time-frequency representation of an audio signal is commonly referred to as the
spectrogram, and it can be visually analysed by a trained researcher to recognise many
underlying sound events in a process called “spectrogram reading” [4]. However, this
has not become a popular approach for automatic classification, as the field is driven by
speech research where frame-based features are popular. As opposed to speech, sound
events typically have a more distinctive time-frequency representation, each containing
a unique mixture of harmonic, impulsive and diffuse spectral structures that can be
used to distinguish between each sound. In addition, sound events are more commonly
disconnected from one another, unlike the strongly interconnected temporal structure
of speech or music. Together, this makes sound events more suitable than speech or
music for classification based on their visual signature – an approach referred to in this
thesis as ”spectrogram image processing”.

This rest of this section provides the motivation for using image processing methods
applied to the spectrogram as a basis for sound event classification. First, an overview
of the idea is given, before introducing the advantages and disadvantages of the most
common spectrogram representations. Then, an analysis of the important differences
between the spectrogram and conventional images is provided, before reviewing the
small number of previous works that have utilised the idea of spectrogram image
processing.

3.1.1 Overview

Through visual inspection of the spectrograms of typical sound events, it is clear that
a large amount of information is contained in the joint time-frequency representation.
With careful analysis, it is possible to recognise similar sound events based on this
visual image information. An example of this is given in Fig. 3.1, which shows the
spectrogram images of a bottle being tapped in both clean and 0dB noise conditions.
Here, the spectral information belonging to the sound event is easily distinguished from
that of the background noise, as demonstrated by the highlighted areas in the figure.
This is due to the consistent appearance of the bottle sound, which contains charac-
teristic peaks and lines that are connected through a common onset corresponding to
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Figure 3.1: Examples spectrograms of a bottle sound in clean (left) and 0dB babble
noise (right). The highlighted area demonstrates how the sound information is still
represented clearly in severe noise conditions.

the moment of impact as the bottle was tapped. On the other hand, the noise forms
the background of the images and can easily be ignored.

In the early days of speech research, visual information in the spectrogram was
often studied by speech researchers, for example to analyse the phoneme structure of
speech [4]. However, “spectrogram reading” has not become an automatic classifica-
tion method in speech technology, due to the complicated lexicon structures of speech.
Unlike speech, with its connected phoneme structures, sound events often have shorter
durations but with more distinctive information contained in the time-frequency image
representation. It should therefore be possible to extract this information to provide
a discriminative feature for classification of the sound event. Such an approach, based
on spectrogram image processing, would also represent a significant departure from
conventional audio processing. Here, frame-based features such as MFCCs have his-
torically been dominant, but capture only the frequency information within a short
time window. Therefore, recently there has been growing interest in capturing joint
time-frequency information from the audio signal [2,3]. Such works have demonstrated
the potential advantages of operating in the spectrogram image domain, where the
two-dimensional sound event information is naturally represented.

A related field that is concerned with the extraction of two-dimensional information
is image processing. Here, two of the most important problems are to detect objects
in an image, or classify an image into a predefined category. These problems share
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many similarities with those faced in sound event classification, particularly when
considering classification based on spectrogram image processing. For example, the
whole spectrogram image could be classified by extracting low-level pixel information,
or alternatively a “sound object” could be detected by finding local correspondences in
the spectrogram between training and testing. This therefore opens up the wide range
of techniques that have been developed in image processing, which can provide both
the inspiration, and a solid basis for developing novel approaches for SER. However,
there are a wide range of spectrogram image representations that can be generated,
and each may have different advantages depending on the application. Therefore, these
are introduced in the next section.

3.1.2 Common Spectrogram Representations

Throughout this thesis, the spectrogram is referred to generally as a time-frequency
representation of the audio signal. However, there are a variety of different methods for
generating such representations, beyond the traditional short-time Fourier transform
(STFT). The most common techniques are introduced here, and the advantages and
disadvantages of each are discussed.

Short-Time Fourier Transform This is calculated using the discrete Fourier trans-
form (DFT) of a windowed frame from the continuous signal, xt[n], as follows:

Slin(f, t) =

∣

∣

∣

∣

∣

N−1
∑

n=0

xt[n]w[n] e
−i2π f

fs
n

∣

∣

∣

∣

∣

(3.1)

where N is the number of samples per frame, f = kfs/N is the frequency bin for
k = 1, . . . , N/2 + 1, w is a window function such as the Hamming window, and
t is the time frame index. It is more common to compress the dynamic range
of the linear power spectrogram using the log function to give the conventional
log power spectrogram. This is referred to simply as S(f, t) and calculated as
follows:

S ′
log(f, t) = log [Slin(f, t)]

S(f, t) = Slog(f, t) =max
[

S ′
log(f, t),max

f,t

(

S ′
log(f, t)

)

− 80dB
]

,
(3.2)
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Figure 3.2: Illustration of the Gammatone filterbank.

where a simple thresholding is employed to ensure a consistent log-scaled rep-
resentation. This is important as the logarithm can become a highly variable
quantity as the spectral values tend towards zero.

The advantage of the STFT is that it is simple and fast to compute. However,
it makes the assumption that the signal is stationary within each window, which
may not be true for many sound events that have sharp discontinuities. In
addition, there is a trade-off between frequency and time resolution, as choosing
a longer window gives better frequency resolution at the cost of reducing the
temporal resolution.

Gammatone This approach is derived from the cochlear filtering in the inner ear,
hence can also be referred to as the cochleagram [131]. The impulse response of
the filter is the product of a gamma distribution function and a sinusoidal tone
centred about a particular frequency, f , as follows:

g(t) = t(N−1)e−2πbtcos(2πft+ φ) (3.3)

where t is the time, N represents the order of the function, φ is the phase shift,
and b is related to the bandwidth of the gammatone filter. Typically the param-
eters N = 4 and φ = 0 are used, while the values for b can be calculated using
the equivalent rectangular bandwidth (ERB) scale as follows:

ferb = 24.7× (
4.37× f

1000
+ 1) (3.4)

b = 1.019× ferb (3.5)
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where ferb is the ERB frequency for the linear frequency f , using the parameters
as recommended in [162]. An illustration of this gammatone filterbank is given
in Fig. 3.2. To derive a digital filter for efficient audio processing, the Laplace
transform of the gammatone function is taken. For a fourth order filter this gives:

G(s) =
6(−b4 − 4b3s− 6b2s2 − 4bs3 − s4 + 6b2ω2 + 12bsω2 + 6s2ω2 − ω4)

(b2 + 2bs+ s2 + ω2)4

(3.6)
where ω = 2πf . This can then be implemented using an eighth-order digital
filter, where the output for each frequency channel f is as follows:

yf [n] = −
Ka
∑

k=1

af,kyf [n− k] +

Kb
∑

k=0

bf,kx[n− k] (3.7)

where af,k, bf,k are the filter coefficients for a given frequency and filter order.
Finally, the gammatone spectrogram, Sg(f, n), is produced by first taking the
magnitude of the filter output, followed by compression of the dynamic range by
taking the logarithm. This can be written as:

Sg(f, n) = log
∣

∣

∣
yf [n]

∣

∣

∣
(3.8)

where f represents the centre frequencies of the filters on the ERB scale and n

is the sample index of the input audio sequence.

The gammatone spectrogram has the advantage over the STFT that there is no
trade-off between time and frequency resolution. In addition it has been shown
that gammatone filters are highly correlated with natural sound signals [132],
which should produce a sparse, high resolution spectrogram of the sound event.
The disadvantage is the increased computational cost, and that the common
ERB scale has less resolution at higher frequencies, where a wider frequency
response is used to match that found in the basilar membrane.

Mel-Frequency Spectral Coefficients The Mel filterbank provides an approxima-
tion to the non-linear characteristics of the human ear, in a similar way to the
gammatone filterbank. It is also one of the processing steps used in the calcula-
tion of the popular MFCC feature [90]. Compared to the gammatone spectro-
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Figure 3.3: Illustration of the triangular Mel filterbank.

gram, more emphasis is placed on efficient signal processing and less on biological
plausibility. Hence a set of triangular-shaped filters is typically used to filter the
signal in the spectral domain. Filters are spaced evenly on the Mel frequency
scale [128], which is calculated as follows:

fmel = 2595 ∗ log (1 + f/700) (3.9)

where fmel is the Mel frequency for the linear frequency f . The width of each filter
extends to the centre frequency of the neighbouring filters, as shown in Fig. 3.3,
hence the filters become wider at higher frequencies. Log is also commonly taken
to give an equivalent spectrogram representation, Smel(f, t), where f represents
the centre frequencies of the Mel filters and t is the time frame of the STFT.

The Mel-frequency spectral coefficients (MFSCs) can also form the basis for an
MFCC image representation of the sound event. This is formed by taking the
DCT of the spectral coefficients across each time frame. The MFCC image isn’t
strictly a time-frequency spectrogram representation, since one axis represents
the DCT coefficients rather than frequency. However, it is included here as it
can still be considered as a sound event image.

Wavelet Scalogram This approach is often considered an alternative to the STFT
for describing the spectral information in an audio signal over time. It it per-
formed by filtering the signal with a wavelet function that is based on a pre-
defined “mother wavelet”. This is then scaled and shifted over time to provide
an analysis of the underlying audio signal. The wavelet transform can be written
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Figure 3.4: Example showing a bell sound with six different sound event image repre-
sentations.
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as follows [163]:

X(a, b) =
1√
a

∫ ∞

−∞

Ψ

(

t− b

a

)

x(t) dt (3.10)

where Ψ represents the mother wavelet, a is the scaling factor and b represents
the time shift factor. This is comparable to the STFT, since different values of a
represents different frequencies in the signal, while b represents the time at which
they occurred.

There are two methods of calculating the scalogram, by using either the contin-
uous or discrete wavelet transform. The continuous wavelet transform (CWT)
allows any valid combination of variables a, b to be used in (3.10). This requires
a large number of convolution operations to be performed, hence the CWT has
the disadvantage that it requires considerably more computation compared to the
STFT. On the other hand, the discrete wavelet transform (DWT) only enables
certain combinations of a, b to be used. This enables a more efficient imple-
mentation of the wavelet transform to be used, which repeatedly down-samples
the signal by a factor of two at each level. The drawback is that it results in
a trade-off between time and frequency resolution, where low frequencies have
good frequency resolution but poor time resolution and vice versa. Therefore,
the DWT is arguably better suited for use in signal reconstruction as opposed to
spectrogram visualisation.

A comparison of the STFT, Gammatone, MFSC, MFCC, CWT and DWT sound event
image representations is shown in Fig. 3.4. Although the visual signature of the bell
sound can be seen in each image, the nature of each image varies significantly. In terms
of the representation of the frequency information, the STFT in Fig. 3.4a provides
the highest frequency resolution. On the other hand, the MFSC, gammatone and
wavelet scalogram images all have similar non-linear frequency axes that emphasise
the lower frequencies and compress the higher frequency information. However, the
representation of the bell’s harmonic is quite different in each of the representations.
In particular for the gammatone and CWT scalogram, the shape is determined by the
correlation between the gammatone or wavelet function respectively. This produces
different results compared to the sinusoidal decomposition used in the STFT. Also, it
can be seen that the MFCC image in Fig. 3.4d does not display the frequency structure
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of the bell clearly in the image. This is due to the DCT, which mixes up the frequency
components producing a number of horizontal lines that all correspond to the bell’s
harmonic. In addition, it can be seen that the temporal resolution varies, with three
images based on the windowed STFT, and the other three are based on filtering in the
time domain. In particular, the gammatone and CWT scalogram images provide the
highest time resolution. Also, it is notable that the temporal resolution of the DWT
in Fig. 3.4f is linked to the frequency resolution, making it more difficult to visualise
the sound event clearly.

3.1.3 Spectrograms vs. Conventional Images

While the spectrogram is similar in some ways to a conventional image, it has some
important characteristics that make it unique. These differences limit the direct appli-
cation of the wide range of image processing techniques, since they may not be suitable
for capturing the information in the spectrogram. Analysis of these differences pro-
vides the inspiration for adapting these existing techniques to design a novel system
for SER. The comparisons are grouped into three categories: the image pixel informa-
tion, the sound event geometry, and the challenges that must be overcome. These are
discussed in detail below.

Pixel Information The word “pixels” is used here to refer to the elements of the
image. In the case of the spectrogram image, the pixels represent the log power
contained in each cell of the image, corresponding to the sound information
occurring within a particular time and frequency bin. The stronger spectral
elements belonging to a sound event thus have higher values than those with
less energy. This means that the spectral power values represented by each
pixel directly encode the relative importance of that pixel within the image. For
example, a local maxima may be useful for characterising a sound event, while
the gradient corresponds to changes in the perceived loudness of the sound.

For conventional images, each pixel corresponds to an intensity, such as a greyscale
or colour value, where colour pixels are typically composed of separate red, green
and blue (RGB) monochrome intensities [164]. The important difference is there-
fore that the pixel value does not directly relate to the relative importance of one
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pixel over another. As the pixel intensity may vary according to different shade
and lighting conditions, it is meaningless to try to base detection or segmen-
tation of important regions on individual pixels in the image. Hence in image
processing, the gradient of the pixel values is typically more important than the
intensity itself, as gradients are more repeatable under different environmental
conditions [165].

Sound Event Geometry The spectrogram of a sound event can simplistically be
seen as a set of lines, modulation curves and diffuse patterns, with a background
that is dependant on the particular environmental noise that is present. Ex-
amples include the distinctive lines that may represent harmonics, onsets or
speech formants [106,166], or the diffuse spectral pattern of an explosion or gun-
shot [167]. Due to the way sounds are generated, the patterns are of a highly
stochastic nature, and therefore may vary significantly between repeated obser-
vation of the same sound event [168]. Due to this variability, the information in
the extracted features is therefore typically captured through a statistical model,
such as a GMM.

For conventional images, a number of similarities can be found with the geome-
try found in the spectrogram. For example, an image of a tree contains similar
lines and diffuse patterns, such as those belonging to the trunk and leaves respec-
tively, and has a background that varies depending on the location of the tree.
However, while there may be small variations due to factors such as lighting, the
geometry of individual objects in the image are physically fixed. In addition,
many physical objects will have a convex geometry, meaning that they are en-
closed within a relatively well defined boundary. This is unlike sound events in
spectrograms, where the spectral information may be spread over a number of
disconnected regions. Together, the nature of physical objects makes it possible
to use deterministic structural models in image processing. For example, a face
can be modelled as containing eyes, nose and a mouth, and the eye could either
be present or absent depending on any occlusion [169].

Challenges Faced Although there are some similarities between the challenges faced
in conventional and spectrogram image processing, there are also some notable
differences. One example is the way in which noise affects spectrogram and con-
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ventional images differently. For conventional image processing, the predominant
sources are sensor noise and movement blurring, which causes variations in the
pixel intensities. However, for audio processing, noise is present through a cer-
tain level of ambient background sound that is present in environment and mixed
into the recorded sound signal. In the spectrogram, this is typically visualised as
regions of diffuse noise patterns that form the background of the image. In addi-
tion, some high power noise may mask certain areas of the target sound event, as
the mixing principle means that only the highest energy source is visible in each
frequency bin [98]. This leads to the problem of finding areas of the spectrogram
that belong to the noise rather than the signal, which is often termed “missing
feature mask estimation” [103].

Another example of a challenge that must be considered differently is the detec-
tion of objects or sound events in the image. For conventional image processing,
it must be possible to detect objects that have undergone substantial changes in
position, rotation and scaling [170]. A range of techniques have been developed
to overcome this, including the use of invariant feature representations [171,172].
For the spectrogram, the problem is simplified in some ways, since the frequency
dimension is fixed. However, while this removes the problem of rotation and
scaling, there still exists the significant problems of both time shifting and time
warping [168,173]. In addition, the time warping may be non-linear, unlike image
processing where physical constraints often limit the scaling of object dimensions
to a linear change.

3.1.4 Previous Spectrogram Image-based Approaches

A small number of previous works have found inspiration in applying techniques from
image processing to the spectrogram. However, only a few apply this to the task of
SER, hence the scope is expanded to include applications in both music retrieval and
ASR. The approaches commonly fall into the following three categories, depending on
the scope of the extracted feature. The first is global features, which typically extract
a single feature to represent the whole spectrogram image. The second is frame-based
features, which are designed to be similar to conventional features, such that they can
be combined with regular recognition systems. The final category is local features,
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where each feature represents a localised time-frequency region of the spectrogram.
These are now introduced below.

Global Features The following approaches extract a single feature to represent the
information in the whole spectrogram image. The most common approach in this
category is to extract low-level texture information from the spectrogram. An
early example of this is presented in [174], which extracts a global feature from
the spectrogram for music genre classification. The method uses a “texture-of-
texture” approach, which recursively filters the spectrogram and sums over the
whole image to measure the degree of correlation with each filter. An alterna-
tive approach to capture the texture information is to generate the grey-level
co-occurrence matrix of the spectrogram image, as in [175]. This measures the
relative frequency with which two nearby pixels, each having the same intensity
value, appear within the image. Low-level features, such as energy, contrast,
and homogeneity, are then extracted from the co-occurrence matrix to provide
a compact representation of the spectrogram image. This approach is applied
to an SER task to recognise both sports and gunshot sounds, with classification
performed using a neural network.

An alternative approach is to extract higher-level information from the spectro-
gram, for example to represent the peaks and lines in the image. One approach,
presented in [176], is based on using the straight-line Hough transform for word
spotting [177]. The idea is to convert the lines in the spectrogram into a set of bi-
nary seams that capture the important speech information. These are extracted
using an energy function, combined with a dynamic programming technique to
maximise the energy along the seam. The subsequent binary seam pattern is
transformed into the Hough space using the straight-line transform, and a sub-
section of the Hough space is then used for classification.

The disadvantage of these global approaches is that they cannot easily be com-
bined with traditional frame-based recognition systems. Therefore, the next
category of methods extract frame-based features, which can be used to replace
or complement traditional audio features.

Frame-based Features These approaches extract a feature to represent each time
frame of the spectrogram image. However, they often utilise the information over
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a longer segment of the spectrogram, to incorporate some temporal information
in the feature. Examples include the approach in [178] for music identification,
which uses a set of Haar wavelet-like filters, originally developed by Viola and
Jones for image processing [179]. Due to the large candidate filter set, a robust
subset is selected using the Adaboost framework to provide a compact audio
description. An improved approach is presented in [180], which uses a two-
dimensional wavelet analysis on each segment, as opposed to selecting a set of
pre-defined features. Due to the compressive properties of the wavelet transform,
only the top wavelets are required to generate a compact, robust representation
for each frame [181]. A different approach, in [182], uses a popular image process-
ing feature for the task of ASR. Here, a histogram of oriented gradients (HOG)
feature is extracted to represent each frame of the spectrogram. This is shown
to give an improved performance in noisy conditions over conventional MFCCs.

An alternative frame-based approach is to use non-negative matrix factorisa-
tion (NMF) to generate features from the basis encoding. This is similar to the
subspace decomposition approaches from image processing, such as the “eigen-
face” method for face identification. An example of the NMF approach is found
in [183], which uses basis selection combined with a robust method for inferring
the NMF encoding variables. A more recent approach is proposed in [3], which
extracts seven novel features from the NMF decomposition. These features aim
to capture characteristics such as sparsity and discontinuities, which represent
important time-frequency structures. In combination with MFCCs, the proposed
features are shown to produce a good performance on a large database of envi-
ronmental sounds.

Local Features This group of methods extracts regions of localised time-frequency
information from the spectrogram. This has the advantage, as in image pro-
cessing, that local features may be less susceptible to noise and occlusion than
the global feature methods. The methods typically fall into two categories: or-
dered and unordered, depending on whether they take into account the temporal
information contained in the ordering of the features.

When temporal ordering is not enforced, the local feature methods are often
termed “bag-of-visual words” (BOVW) methods. This is where a sparse vector
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Figure 3.5: Overview of parts-based modelling for speech recognition, inspired by
approaches developed for image processing (reproduced from [173]).

containing the counts of the local image features (visual words) is calculated
for the image. For example, the popular HOG features have been used for the
tasks of both music genre classification [184] and SER [185], with histograms of
descriptors calculated and classified using SVM. Another BOVW approach, in
[1], uses the passive-aggressive model for image retrieval (PAMIR) method with
features extracted from a “stabilised auditory image” (SAI) which is generated
using an underlying auditory model [139]. This outperformed conventional GMM
and SVM classifiers, and showed a significant advantage over traditional MFCC
features. Alternatively, [186] treats the spectrogram as a texture image, and
uses a random sampling of the image to extract features from image blocks to
capture the local time-frequency structures. The minimum matching energy of
each extracted block, scanned over the whole spectrogram, is then used as the
feature for classification.

When the temporal information in the local features is utilised, it captures in-
formation about the geometry of the underlying object structure. For example,
in [187], Viola and Jones features are used for ASR, where both the subset of bi-
nary features, and their time-frequency location, are selected using the Adaboost
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algorithm. A similar approach is used in [188], although here the features are
randomly selected during training, and a “pooling” approach is used during clas-
sification to find the best activation of each feature within a local time-frequency
window. Other approaches are more strongly linked with the geometry of the
sound information. For example, pairs of adjacent keypoints are selected in [189]
to form a geometrical “hash” that can be reliably repeated during testing. This
is shown to work well for music identification, and also well-structured sound
events such as alert sounds. However, the approach does not work well for
organic sounds, where the spectral and temporal structure may vary between
repeated occurrences [190]. Finally, a parts-based approach is presented in [173],
which uses a deformable template of local pattern detectors to extract the funda-
mental aspects of speech. An example of this is shown in Fig. 3.5 for the spoken
letter “B”, where the hand-labelled speech cues can be represented as a flexible
collection of local features.

Many of the above methods for extracting features from the spectrogram image have
been inspired by previous work in the field of image processing. Therefore, the next
section provides a detailed review of the most relevant methods that have been used
for both image classification and object detection. This provides a broader insight into
the available techniques, to help understand which methods may be best suited for the
task of spectrogram image processing in this thesis.

3.2 Review of Image Processing Methods
The previous section provided the motivation for representing sound events through
their spectrogram image, and introduced the idea of performing SER using spectrogram
image processing techniques. In this section, a review of the relevant methods from the
image processing domain is presented. The aim is to provide a better understanding of
the types of methods that are available, and which may be best suited to the problem
of SER. Together, this provides the foundation for the subsequent methods that are
proposed in this thesis.

The available techniques in image processing are broken down into the following
three categories: content-based image retrieval, feature-based methods and appearance-

75



Chapter 3. Spectrogram Image Processing

based methods. This is shown in the diagram in Fig. 3.6, which additionally lists some
of the most popular techniques in each area. Note that there are also previous works on
geometry-based methods for object detection, typically using active shape models or
geometric primitives such as boxes, spheres, etc [191, 192]. However, these are not in-
cluded here, as they are largely considered obsolete in the face of recent state-of-the-art
methods [193].

3.2.1 Content-based Image Retrieval

This is the problem of organising or categorising images in a large database, which can
subsequently be searched using keywords or a query image to find similar matching
images [194]. In general therefore, the task of content-based image retrieval (CBIR)
is to determine the similarity between two images. The aim is to replace the need
for manual annotation of images, since this becomes impossible on the ever-increasing
volume of image data available.

The most common solution to the problem of CBIR is to extract low-level features
that represent either the whole image or particular sub-regions of the image. The idea
is to capture the fundamental information in the image, such as colour, texture or
shape, which together can characterise the content of the image. For the purpose of
image retrieval, the extracted features are first organised into a single feature vector
to represent the query image. Then, the similarity between images stored in the
database can be calculated by measuring the distance between their corresponding
features [195]. The choice of distance measure depends on finding a method that best
captures the similarity between the specific features. For example, colour histograms
are commonly compared using histogram difference [196], histogram intersection [172],
or earth-movers distance [197]. Note that many of these CBIR features are contained
in the MPEG-7 standard [198], which contains descriptors for a variety of low-level
visual features.

The most basic features that can be extracted from the image are descriptors for
the colour content of the image. It is worth noting that colour information is generally
preferred over grey-level intensities, due to the advantage of increased illumination
invariance and discriminative power [199]. Common features for capturing colour in-
clude the colour moments [194], colour histogram [172], and colour layout features.
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Figure 3.6: Overview of the different methods in image processing.

For example, the colour layout feature partitions the image into an 8 × 8 grid, and
summarises the colour in each segment by taking the mean across each dimension of
the colour space [198]. Another set of features aims to characterise the texture infor-
mation, such as the coarseness, contrast, and directionality of the image pixel informa-
tion [195, 200]. Texture information can also be extracted through a Fourier [201] or
Wavelet [202] decomposition of the image, while time-varying texture from a sequence
of images may be captured using dynamic textures [203]. The final set of features
are shape descriptors, where the underlying shapes are typically characterised either
through the shape of the bounding contour or the region contained within [204]. For
example, shape regions can be characterised simply through their area, eccentricity,
and orientation [205], or in a more complex way by projecting the pixel distribution
onto a set of basis functions [204].

3.2.2 Feature-based Methods

This group of methods typically focuses on the problem of detecting and localising
trained objects in real-world images of cluttered scenes [206]. This is different from
CBIR in several ways. Firstly, only a particular sub-region of the image conveys
information about the desired object, whereas the rest of the image may be clutter. And
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secondly, information such as the number of objects, and both their size and position
in the image, is unknown. Therefore, it is no longer the case of simply measuring the
distance between the query image and the database, as a detection step is first required
to localise the objects in the query image. As highlighted in Fig. 3.6, the solution is to
extract local features from the image by first detecting interest-points, or “keypoints”,
on the object. These are intended to localise repeatable points on an object, and must
also be robust to scale and rotation. Classification is then typically performed using
either a sliding-window, Hough transform, or bag-of-visual-words (BOVW) approaches,
as shown in Fig. 3.7 and discussed below.

The first and most important aspect of these methods is to extract reliable local
features that represent the image information consistently. One factor is that the de-
tected keypoints must be repeatable across a range of illumination, scales, and affine
transformations. Therefore, considerable research has been carried out in developing
reliable detectors [165], with one of the most popular methods known as difference-of-
Gaussians (DoG). This method successively smooths the input image with a Gaussian
kernel, with the difference between different levels of smoothing used to localise impor-
tant image gradients [207]. Another factor is that the local features must be extracted
to represent the image information in a robust way. Among the many different tech-
niques, the histogram of oriented gradients (HOG) approach is often the most popu-
lar [208–211]. This feature counts the image gradient orientations in localised regions
of the image, hence is relatively robust to changes in lighting and colour. The HOG
also forms part of the popular scale-invariant feature transform (SIFT) object detection
approach [171], which extracts a local HOG feature in the regions surrounding the key-
point. Many enhancements to the SIFT approach have been proposed [212], including
principal component analysis (PCA-SIFT) and speeded-up robust features (SURF),
which offer improvements in illumination invariance and speed respectively [213].

The SIFT and many other approaches, use the generalised Hough transform (GHT)
for object detection. This is an extension of the original Hough transform, which had
the limitation that it could only be used for parametrised shapes such as lines, circle, etc
[177]. While the formulation of the GHT is somewhat different, it still uses a bottom-up
voting scheme similar to that of the original transform. In this way, the extracted local
features cast votes for possible object hypotheses in the Hough accumulator space [215],
with local maxima corresponding to potential object hypotheses. Hypotheses that are
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Figure 3.7: Examples of three different paradigms for feature-based object detection.
The GHT approach is taken from [206], then sliding-window approach is taken from
[214], while the BOVW approach is from [208].

consistent with an object detected in the image will receive many votes, hence the sum
of votes defines the final object score. In the SIFT approach, the Hough accumulator
space is discretised into broad bins, which are then searched for maxima, and an
affine transformation is subsequently used to confirm object hypotheses [207]. In [216],
contour fragments are used as local features in the GHT, giving the added advantage
that an accurate shape boundary segmentation can be achieved [217]. A more recent
approach, called the Implicit Shape Model (ISM) [206, 218], introduces probabilistic
Hough voting, and also avoids discretising the search space by finding maxima using
mean-shift mode clustering. An additional step can also be taken to place the Hough
transform in a discriminative framework, where the aim is to learn weights for the
probabilistic ISM voting that increase the separability of object detections [219].

An alternative paradigm for object detection uses a sliding-window to examine each
windowed region of the image, with a binary classifier, such as SVM, is used to detect
whether or not the target object exists in the window [220]. This approach forms
the basis for a number of popular systems, including the AdaBoost system of Viola
and Jones [179]. This method uses a large set of simple Haar-like difference features
that can be rapidly calculated using their “integral image” approach. It has also
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been shown that this approach can be enhanced by sharing common features between
multiple object classifiers [221]. In [222], the sub-window is partitioned into small
fixed-size regions and a one-dimensional HOG feature is extracted to characterise the
whole window. An alternative approach is to model objects as a subset of parts in a
deformable configuration within the window [223,224]. For example, in [214], template
parts are modelled using HOG features, and a multi-scale search is performed using
SVM for classification. However, compared to the GHT, the sliding-window paradigm
is arguably a less natural approach, since humans do not appear to scan an image
exhaustively to detect objects. In addition, it is less efficient to exhaustively search
every sub-window of the image at different scales and rotation, and it may also lead
to a large number of false detections.

While the above approaches have dealt with object detection, feature-based meth-
ods are also applied for image classification. This is referred to as the bag-of-visual-
words (BOVW) approach, particularly when the spatial ordering of the local features
is not rigidly enforced [209]. The most common BOVW feature is simply a histogram
of the number of occurrences of particular local feature clusters within a given im-
age [208]. Then for classification, SVM or naïve Bayes are often used, where SVM
has the advantage that many different kernels can be developed, such as using the
earth-movers distance [225] or pyramid histogram intersection kernel [226]. An al-
ternative classification approach is the passive-aggressive model for image retrieval
(PAMIR) [227], which has a fast and robust training procedure that uses a ranking-
based cost function to minimise the loss related to the ranking performance of the
model. This allows PAMIR to efficiently learn a linear mapping from a sparse BOVW
feature space to a large query space. More recent BOVW approaches have suggested
that incorporating some spatial information is beneficial to the overall image classi-
fication performance. For example, in [210, 211], the two-dimensional image space is
partitioned into a sequence of increasingly coarser grids, and then a weighted sum over
the number of matches that occur at each level of resolution is used as the feature. It
was also recently shown that performing clustering of local feature patterns to form the
visual-word codebook may be detrimental. For example, in [228], a naïve Bayes nearest
neighbour classifier is able to achieve state-of-the-art image classification performance,
while requiring no learning or quantisation.
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3.2.3 Appearance-based Methods

This group of methods are commonly used for both object recognition and image classi-
fication, and utilise only the appearance of the pixels in the image, as opposed to shape
or contour models. While this has similarities with the feature-based approaches, the
methods presented here typically interact directly with the pixel information, rather
than extracting features to characterise a region. Two different approaches are con-
sidered here. The first is based on modelling the pixel distribution and performing
classification with hidden Markov models (HMMs), while the second are subspace
methods, which decompose the image into a set of constituent bases.

Approaches that use the HMM technique have been previously used for face clas-
sification. Here, the two-dimensional image is transformed into a sequence of one-
dimensional feature vectors, and the statistical properties of the sequence are captured
in an HMM [229]. Analogous to similar systems in SER, the output of each state of
the HMM is modelled using a multi-variate GMM. The features can then be either the
raw image pixels [229], two-dimensional DCT coefficients [230], or wavelet decomposi-
tion coefficients [231]. The idea is that the face can be divided into a small number
of distinct regions, such as eyes, nose, mouth and chin, each of which corresponds to
one state in the HMM. Since the face is largely symmetrical, a horizontal strip can
be used as the observation vector, with the HMM state sequence proceeding from the
top to the bottom of the image. An extension to the above technique is to use a
pseudo two-dimensional HMM. Here, the observation densities of the vertical sequence
now become HMM super-states, and each row is now modelled by a one-dimensional
HMM [232]. Although this is more complex than the simple one-dimensional HMM, it
is more appropriate for two-dimensional data as it can capture more variation between
images [233].

The other common approach is based on a subspace decomposition of the image
pixel data. The idea is that the image data can be projected onto a small number
of orthogonal basis images, to provide a compact representation of the image. Then,
the original image can be reconstructed through a linear combination of the basis
images [234]. Common methods used to perform the decomposition include principal
component analysis (PCA), independent component analysis (ICA) or non-negative
matrix factorisation (NMF) [170]. The subspace approach first became popular with
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the introduction of the “eigenface” technique in [235], where the eigenvectors of the
PCA decomposition are used to define the subspace of face images called the “face
space”. Faces could then be detected within an image by measuring the distance
between each sliding window input and the reconstructed face space [236]. Non-face
images would be poorly reconstructed using the face space basis images, hence could
be easily rejected. However, the method is not limited to faces, and has more recently
been applied to both pedestrian [237] and generic object [238, 239] detection tasks,
among others. The drawbacks of the subspace approach are its limited robustness to
both noise, occlusion and cluttered background [240]. This is because the subspace
is a decomposition of the global image data, unlike localised features that have a
reduced probability of disruption. One solution to overcome this is to introduce a
robust hypothesise-and-test paradigm using only a subset of the image pixels [241,
242]. Another solution is to constrain the NMF decomposition to produce sparse basis
vectors that represent more localised image information [243].

Overall, each of these approaches has advantages and disadvantages depending
on the type of images used in each application, for example faces, objects, scenery,
etc. Therefore, careful consideration is required when applying these techniques to the
domain of spectrogram image processing. In the next section, an initial approach is
introduced based on a content-based feature extraction from the spectrogram. This
captures the visual signature of the sound event in a way that takes account of the
stochastic nature of the sound, and can perform well in mismatched conditions.

3.3 Spectrogram Image Feature for Robust Sound
Event Classification

Inspired by the idea of using visual techniques from image processing for SER, a
novel feature extraction method for sound event classification is now presented. The
motivation stems from the fact that spectrograms form recognisable images that can
be identified by a human reader, forming the basis for the idea of spectrogram image
processing. The proposed approach is called the spectrogram image feature (SIF)
[5], which extracts a visual signature from the sound’s time-frequency representation.
The idea of the SIF is to capture the stochastic nature of the spectrogram image
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content, while producing a feature that is robust to mismatched noise. To achieve
this, the method first quantises the dynamic range of the spectrogram into regions,
corresponding to the low, medium and high power spectral information in the sound
event. This process is analogous to pseudo-colouration in image processing, which is
commonly used to enhance the characteristic image information for human perception.
However, for machine classification it is found to improve the discrimination of the
extracted feature, by allowing higher weights to be assigned to the most reliable, high
power spectral regions. The rest of this section first gives an overview of the approach,
before describing in detail the image feature extraction and classification approach.

3.3.1 Overview

The idea behind the SIF is that the spectrogram naturally represents the joint spectro-
temporal information contained in the sound event signal, unlike frame-based features
that capture only a slice of frequency information at a given time. Therefore, it is
possible to extract a global image feature from the spectrogram to characterise the
sound event information for classification. This feature forms a distinct signature for
each sound event, and the distance between image features provides a metric for clas-
sification.

Inspiration for the feature extraction can be found from previous work in the field
of content-based image retrieval (CBIR), since this is the similar task of extracting
a robust feature to characterise the low-level pixel information. A popular CBIR
approach is to characterise the colour information in the image through the distribution
of image pixel intensity [172, 194]. This is preferred over grey-level intensities as it
provides increased illumination invariance and discriminative power for classification
[199]. It is also beneficial to capture the distribution information in local regions of
the image, since similar images will often have a consistent layout, such as the sky at
the top with buildings below. One approach for this is the colour layout descriptor
included in the MPEG-7 toolkit [198]. This partitions the image into local blocks, and
captures the colour information through the mean of the colour in each block [198].

The spectrogram can easily be normalised into a grey-scale image, by scaling the
dynamic range of the spectral information into the [0, 1] range. Also, due to the
stochastic nature of the sound events, characterising the spectrogram through the im-
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Figure 3.8: Overview of pseudo-colourmapping. The grey-scale spectrogram in the top
left has been transformed to a colour representation using the “Jet” colourmap shown
in Fig. 3.10a. This can then be broken down into the three RGB monochrome images
shown, each of which represents the intensity of a single colour in the image.

age pixel distribution should provide a reliable way of capturing the sound information.
It is also important to capture the sound event information in local time-frequency re-
gions, rather than the global statistics over the whole spectrogram. Therefore, the
colour layout approach could be applied to the grey-scale intensities to characterise
the distribution of spectral information in the image pixels.

However, a further step is proposed here to enhance the discriminative ability of
the SIF feature. The motivation comes from the pseudo-colourmapping procedure in
image processing, which is used to enhance the visual perception of grey-scale images
by increasing the contrast between regions of low and high intensity. A similar process
can be applied to the spectrogram, which quantises the dynamic range into regions
representing the low, medium and high power spectral information. The idea is to
utilise the fact that the energy of many sound events is often concentrated in a limited
number of time-frequency regions, due to the sparse nature of the spectral information.
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Then, the robust high-energy peaks of the sound event will be quantised into a separate
region of the dynamic range and mapped to different feature dimensions from the
low-energy background noise. These can then be assigned a higher weighting by a
discriminative classifier such as SVM.

An example of the mapping is shown in Fig. 3.8. Here, the grey-scale spectrogram
is pseudo-coloured to enhance the most important information. The colour image
is composed of the three RGB monochrome images as shown, where each can be
seen to represent information extracted from a different region of the dynamic range.
In particular, the “red” quantisation captures only the most important high-power
spectral information, and should be the most robust in mismatched noise conditions.
Together, the signal processing in the SIF can be summarised as follows:

1. The spectrogram is first normalised into a grey-scale image, with the dynamic
range of the spectral information adjusted to a value in the range [0, 1].

2. A process analogous to pseudo-colouration is then used to quantise the dynamic
range into regions representing the low, medium and high power spectral infor-
mation. Each region is then mapped to form a monochrome image representing
each “colour” region of the dynamic range.

3. Finally, the SIF is formed by capturing the layout and distribution statistics of
each monochrome image in a similar way to the colour layout feature. This re-
quires partitioning each image into blocks, then extracting the pixel distribution
statistics from each block to form the feature.

An overview of this process is shown graphically in Fig. 3.9, with a comparison made
to the processing steps for conventional MFCC features. Classification is performed
using SVM, which is preferred over other approaches such as kNN, since SVM assigns
higher weights to the most discriminative components of the feature and therefore
should lead to a more robust classification.
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Figure 3.9: Overview of the SIF feature extraction algorithm, with conventional MFCC
features as comparison. For the normalised spectrogram image, either (1) the linear
spectrogram, (2) the log spectrogram, or (3) the MFCC cepstrogram is used as the
input image.

3.3.2 Image Feature Extraction

Starting from the sound event spectrogram, S(f, t), the matrix is first normalised into
a greyscale intensity image, with the range scaled between [0, 1] as follows:

I(x = f, y = t) =
S(f, t)−min(S)

max(S)−min(S)
. (3.11)

where x, y are the vertical and horizontal indices of the image respectively, and I(x, y)

is a two-dimensional image representation of the sound event of size X × Y . The
spectrogram representation, S(f, t), can be either the linear spectrogram, Slin(f, t)

from (3.1), the log spectogram, Slog(f, t) from (3.2), or the MFCC cepstrogram.
The dynamic range of the greyscale sound event image, I(x, y), is now quantised

into separate regions that are then mapped into a higher dimensional space. Examples
of two common pseudo-colour mapping functions from image processing are shown in
Fig. 3.10. These map each value in the input image to three (RGB) monochrome
intensity values, representing information from a particular region of the dynamic
range. The mapping function is referred to here as qc, with the resulting monochromes
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Figure 3.10: Examples of common colourmaps from image processing. Here, each
greyscale image input value, I(x, y), is mapped to three (RGB) monochrome intensity
values.

written as follows:

mc(x, y) = qc(I(x, y)) ∀c ∈ (c1, c2, . . . cN) (3.12)

where c represents the quantisation region of the dynamic range, and the output,
mc, are a set of monochrome images, each of which is the same size as the input
image. Each quantised image is referred to here as a “monochrome” image, following
the common definition in image processing meaning that it represents the intensity of
single “colour” from a quantised region of the dynamic range.

The mapping operation can be seen as a generalisation of the pseudo-colourmapping
procedure from image processing, since the quantisation is not limited to the three
colours required in the colourmap for image processing. However, for the SIF, it was
found from initial experiments that three was a good trade-off between the accuracy
and computational cost, hence the three-level system is employed in the later exper-
iments. Therefore, several standard pseudo-colour mapping functions are considered
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here that are common in image processing. These are called “HSV” and “Jet”, which
can both be formally defined as follows:

qc(I(x, y)) =































I(x,y)−l1
l2−l1

, for l1 < I(x, y) < l2

1, for l2 ≤ I(x, y) ≤ u1

u2−I(x,y)
u2−u1

, for u1 < I(x, y) < u2

0, otherwise.

(3.13)

where the parameter set {l1, l2, u1, u2} defines the precise quantisations for each of
the colours in the mapping. For the Jet mapping in Fig. 3.10a, the parameters are
cred = {3

8
, 5
8
, 7
8
, 9
8
}, cgreen = {1

8
, 3
8
, 5
8
, 7
8
}, and cblue = {−1

8
, 1
8
, 3
8
, 5
8
}. While for the HSV

mapping in Fig. 3.10b, the parameters are cred = {2
3
, 85
100

, 1
5
, 1
3
}, cgreen = {0, 1

5
, 1
2
, 2
3
},

and cblue = {1
3
, 1
2
, 85
100

, 1}.
An image feature can now be extracted to characterise the information in each of

the monochrome images. The proposed feature is similar to the colour layout feature
in image processing [198], expect that the central moments are used to better capture
the local distribution of image pixel information. Each monochrome is first partitioned
into two-dimensional local blocks, Dx, Dy, giving a total of Dx×Dy blocks, as shown in
Fig. 3.11. Each block is therefore of size ( X

Dx
, Y
Dy

). The pixel distribution information,
xi,j, is then extracted from each local block from each of the monochrome images. This
is characterised here by the central moments of the distribution as follows, dropping
the c notation for clarity:

x
(k)
i,j =







E[Li,j], for k = 1

E
[

(Li,j − E[Li,j])
k
]

, for k = 2, 3, . . .
(3.14)

where Li,j are the pixels in the local block mi,j(x, y) as shown in Fig. 3.11, E is the
expectation operator, and for k > 1 the feature represents the kth moment about the
mean. Together, xi,j, characterises the distribution of the monochrome image pixels
in each block, such that both the time-frequency and dynamic range information is
captured. This therefore is used as the final image feature, where the indices are
concatenated to form a single high-dimension feature vector.

In preliminary experiments on the SIF, the second and third central moments, k =
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Figure 3.11: Schematic of the image feature partitioning used in the SIF with Dx =
Dy = 3. The underlying monochrome is partitioned into Dx ×Dy blocks with indices
i, j, with each block referred to as mi,j(x, y). The pixels of each local block are also
extracted into a vector, Li,j.

{2, 3}, were found to produce a good overall performance, hence are used throughout.
However, it is notable that in preliminary experiments, the classification accuracy
was increased when the mean was not used as part of the feature, especially in the
case of mismatched conditions. This may be caused by the increasing noise energy
causing a shift in the distribution statistics, while the shape of the distribution is
less affected. In addition, it was found that partitioning each image dimension into
Dx = Dy = 9 blocks gives a good tradeoff between performance and feature vector
size. It should be noted that overlapping blocks could be used, however it was found
that this did not significantly improve the results. Overall, the final SIF is a 486
(2x3x9x9) dimension vector, with three quantisation regions (c ∈ {cred, cgreen, cblue})
and two central moments (k ∈ {2, 3}) to capture the distribution statistics.

3.3.3 Classification Approach

Several different classification methods were considered that are common in image
processing, including kNN and SVM. In the following experiments, SVM is chosen, as
it provides more discrimination through optimisation, and is an efficient encoding of
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the class separation problem. It also provides a useful comparison to previous works
which have also utilised SVM for sound event classification [38, 176, 185]. A linear
SVM classifier is used [96], and the One-Against-One (OAO) binary configuration is
employed to solve the multi-class problem, with the max-votes-wins voting strategy
for classification. Note that the conventional non-linear Gaussian kernel was also
tested and achieved a similar classification accuracy to linear SVM. However, since the
Gaussian kernel is not well suited to high dimensional features, and has an increased
computational cost, linear SVM is preferred and is used throughout.

Also, it should be noted that if the proposed feature extraction method is seen as
a non-linear transform φ (x) from sample x, then the method can be considered as a
novel SVM kernel, where K (xi, xj) = φ (xj)

T φ (xi).

3.4 Experiments
In this section, experiments are conducted to compare the performance of the SIF
method with a range of baseline methods for sound event recognition, including the
baseline results established in Section 2.3. In addition to this, several recent SER
methods that also draw inspiration from the image processing field are implemented,
to provide a comparison between other methods more similar to the SIF. The methods
are tested on the same standard database of environmental sounds in both clean and
mismatched noise conditions, with training performed using only clean samples.

3.4.1 Experimental Setup

For comparison with the previous baseline methods, the same experimental setup is
used as in Section 2.3. Hence, the same 50 sound event classes are selected from the
RWCP database, and as before, 50 files are randomly selected for training and 30 for
testing in each of the five runs of the experiment. The classification accuracy for the
SIF is investigated in mismatched conditions, using only clean samples for training,
with the average performance reported in clean and at 20, 10 and 0 dB SNR across
four realistic noise conditions. The standard deviation is also reported (±) across the
five runs of the experiment and the four different noise conditions.
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SIF Evaluation Methods

Since the SIF approach is not limited to any particular two-dimensional sound event
image, three representations are explored here: the traditional log power spectrogram,
the linear power spectrogram, and the cepstrogram, which is an image formed by stack-
ing conventional frame-by-frame MFCC coefficients. This enables the experiments to
investigate the following factors in generating the SIF:

1. Greyscale vs. Pseudo-Colour Quantised

2. Linear vs. Log Power Spectrogram

3. Spectral vs. Cepstral (MFCC image) representation

Examples of the three representations, in clean and noisy conditions, are shown in
Fig. 3.12. In all cases, the same SIF extraction method is applied, as described
in Section 3.3.2, using the “HSV” mapping to perform pseudo-colour quantisation.
Preliminary experiments showed that the classification accuracy for the HSV mapping
was marginally higher than for Jet, hence it is used throughout. This may be explained
by the fact that HSV is a more discriminative mapping, with each input intensity value
mapped to two colour channels as seen in Fig. 3.10b. On the other hand, the highest
and lowest range of input values in Jet are mapped only to a single colour channel via a
roll-off in output intensity, as seen in Fig. 3.10a, and this may reduce its discriminative
ability.

Baseline Image Processing Inspired Methods

In addition to the baseline methods established in Section 2.3, a selection of previous
image processing inspired methods are also implemented to provide a more complete
comparison with the SIF. Since very few previous works have applied such methods to
the task of SER, image processing approaches for speech and music tasks are included,
as this enables a more complete comparison with a wider range of methods. Four
methods are implemented to cover the categories of techniques as discussed in Sec-
tion 3.1.4: global features, frame-based features, and local features, with and without
temporal information. These are as follows:
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(a) Linear spectrogram images
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(b) Log spectrogram images
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Figure 3.12: Examples of clean (left) and noisy (right) spectrograms from the “Cym-
bals” sound class, for each of the three different image representations considered for
the SIF. The images have been pseudo-colourmapped using the “HSV” colourmap from
Fig. 3.10b.
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1. Spectrographic Seam Patterns [176]
This is a global classification approach originally designed for word spotting.
The method transforms the spectrogram into a binary image, by extracting high-
energy vertical seams in the image, and then performs the straight line Hough
transform to give a feature for SVM classification. The best performance was
achieved using 25 seam patterns, as originally reported in [176].

2. Histogram of Oriented Gradients (HOG) Features [182]:
This is a frame-by-frame approach originally proposed for ASR. Here, HOG
features are extracted from each frame at fixed frequency locations, with the
idea to capture more temporal information than delta-MFCCs. The parameters
used are taken from [182], using 8 HOG descriptors per frame, each containing
32 features, and use PCA to reduce the dimension to 50 for classification using
HMM.

3. SIFT Bag-of-Visual-Words (BOVW) descriptor [185]:
This is a local feature approach designed for both music genre and sound event
recognition. The method extracts 128 dimension SIFT features from each local
16×16 region on a regular 8×8 grid, and computes the codeword uncertainty for
each feature to the codebook of 4096 visual words for classification using SVM.

4. Ordered Spectro-Temporal BOVW [186,188]:
This combines the techniques presented in [188] and [186]. Here, local time-
frequency patches are extracted at random during training, and during testing
the normalised minimum mean square error (MSE) is calculated, using a local
pooling operator on the time-frequency location, to give a feature for classifica-
tion using SVM. The implementation uses 1000 patches, extracted as in [186],
but incorporates the idea in [188] of using ordered BOVW to capture temporal
information, with a local pooling operator to find the minimum MSE in the local
region to provide robustness during matching.

Each of these methods was implemented in Matlab, and found to give comparable
performance to that reported by their authors on a similar sized dataset. For the HOG
method, the same HMM configuration is used as for the other baseline experiments,

93



Chapter 3. Spectrogram Image Processing

Image Dynamic
Range Clean 20dB 10dB 0dB Avg.

Linear
Greyscale

67.4± 0.4 67.4± 0.4 67.4± 0.6 61.7± 2.2 66.0

Log 74.9± 0.7 44.6± 7.5 21.3± 7.5 11.8± 4.2 38.2

Cepst 83.3± 1.1 33.0± 6.7 14.2± 3.3 6.1± 1.5 34.2

Linear
Colour

Quantised

91.1± 1.0 91.1± 0.9 90.7± 1.0 80.9± 1.8 88.5

Log 97.3± 0.2 81.1± 5.5 53.5± 10.2 26.4± 8.8 64.6

Cepst 97.3± 0.5 45.7± 9.5 20.5± 4.4 6.1± 1.3 42.4

Table 3.1: Classification accuracy results for the spectrogram image feature (SIF)
method, exploring the different sound event image representations that contribute to
give the best performance.

with 5 states and 6 Gaussian mixtures, and both training and testing are carried out
using HTK [161].

3.4.2 Results and Discussion

The results from the experiments on both the SIF and baseline methods are now pre-
sented. First, the important factors that contributed to the success of the SIF method
are analysed: greyscale vs. colour quantisations of the dynamic range, linear vs. log
power spectrogram images, and spectral vs. cepstral sound event image representa-
tions. Then, the performance of the best performing SIF method is compared to results
achieved by the baseline methods.

Colour Quantised vs. Greyscale SIF

Here, the effect of the quantisation is analysed by comparing the results obtained for
the greyscale and pseudo-colour quantised SIFs. It can be seen in Table 3.1 that the
quantised SIF outperforms the equivalent greyscale SIF in both clean and mismatched
conditions. This indicates that by mapping the dynamic range of the greyscale spec-
trogram into a higher dimensional space, in this case the three RGB quantisations,
the separability between the sound classes has increased. For the case of mismatched
noise, the robustness of the proposed feature can be explained by fact that the noise
is normally more diffuse than the sound and therefore the noise intensity is located in
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Sound
Event

Green
(Low)

Blue
(Medium)

Red
(High/Lowest) Greyscale

Bottle1 0.412 0.002 0.062 0.642
Cymbals 0.377 0.041 0.095 0.343

Horn 0.350 0.069 0.069 0.306

Table 3.2: Example distribution distances for greyscale and the three colour quanti-
sations between clean and 0db noise conditions

the low-power region of the spectrogram’s dynamic range. Therefore, the monochrome
images mapped from the higher-power range should be largely unchanged, despite the
presence of the noise. Since the discriminative components of the SIF should be as-
signed a higher weighting in the SVM classifier, the quantised SIF should be more
robust than the greyscale SIF in mismatched noise conditions.

The effect of the quantisation can be shown experimentally. Since the SIF is based
on the intensity distribution of the monochrome images, the distribution distance
between clean and noisy samples of the same sound event can be compared. A robust
feature should have a small distance, indicating that the distributions are similar.
Modelling the distributions as Gaussian, the Square Hellinger Distance [244] can be
used as a measure:

H2(P,Q) = 1−
√

2σ1σ2

σ2
1 + σ2

2

e
− 1

4
(µ1−µ2)

2

σ2
1+σ2

2 . (3.15)

Since the SIF feature uses the central moments to characterise the pixel distribution,
this effectively mean-normalises the distribution. Hence, with µ1 = µ2 = 0, (3.15)
simplifies to a ratio of the standard deviations. Example results are presented in Table
3.2, which show the mean distribution distances across the 9× 9 SIF blocks, averaged
over 50 samples using the linear power SIF. Although the distribution distance of
the green colour, representing the low region of the intensities, is relatively large, the
distributions of the other colours are less affected by the noise. It is suggested that
this, combined with the SVM weighting, allows the dynamic range regions that are
most susceptible to noise to be ignored.
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Linear vs. Log Power Spectrogram Image

From the SIF results in Table 3.1, it can be seen that one important experimental out-
come is the improved performance of the linear power SIF over the log power equivalent.
For the colour-quantised SIF, the two representations achieved an average accuracy of
88.5% and 64.6% respectively. This is significant, since a linear representation is not
commonly used in conventional audio processing systems, but performs significantly
better here. It should however be noted that in clean conditions the performance of
the linear power SIF is just 91.1%, compared to over 97.3% for the log power SIF.
This can be explained by the differences in the linear and log power representations,
as shown in Fig. 3.12. Here it can be seen that the linear representation is less affected
by the noise, since the spectrogram is dominated by the sparse high-energy elements
of the sound event that are an order of magnitude larger than the noise. This provides
significant robustness to noise, but leads to confusion between the most similar sounds,
which is reflected in the lower accuracy in clean conditions. On the other hand, the
log power reduces the dynamic range of the spectrogram, revealing the detail from the
low power frequencies. This provides better discrimination between sound events in
clean conditions, but also causes the detail of the noise to be magnified, leading to
changes in the feature that cannot be compensated for during classification. Hence,
the linear power spectrogram produces a much more robust basis for the SIF extraction
and classification in mismatched conditions, as the high power quantisation captures
only the most characteristic sound event information.

Spectral vs. Cepstral Representations

An interesting comparison to examine is how the SIF concept applies to the “MFCC
image”. Table 3.1 shows that while the cepstrogram performs well in clean conditions,
the accuracy falls rapidly for mismatched SNRs. This is explained by the way in
which noise causes variations in the cepstrogram, especially in the lower order cepstral
coefficients. This causes the cepstrogram image to appear significantly different, as
can be seen in the clean and noisy examples shown in Fig. 3.12c. This is because the
DCT transform mixes up the frequency components, breaking the assumption that
particular frequency components will still be visible in the noisy spectrum. Therefore
the performance is greatly degraded in mismatched conditions compared to that of the
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Group Method Clean 20dB 10dB 0dB Avg.

Base-
line

ETSI-AFE 99.1± 0.2 89.4± 3.2 71.7± 6.1 35.4± 7.7 73.9

Multi-Conditional 97.5± 0.1 95.4± 1.3 91.9± 2.7 67.2± 7.3 88.0

Image
Proc.

Spec. Seams 87.0± 1.6 43.2± 7.8 27.7± 5.2 15.5± 4.0 43.4

HOG frame-based 99.2± 0.1 68.9± 4.6 33.2± 7.2 9.3± 5.4 52.7

SIFT BOVW 89.0± 0.5 45.4± 5.2 25.8± 4.5 14.6± 4.4 43.7

Ordered BOVW 94.8± 0.6 63.3± 9.2 32.7± 7.7 12.8± 4.0 50.9

SIF
(linear power, colour quantised) 91.1± 1.0 91.1± 0.9 90.7± 1.0 80.9± 1.8 88.5

Table 3.3: Experimental results comparing the classification accuracy of the best
performing colour quantised SIF methods with both conventional and image processing
baseline methods.

standard SIF.

SIF vs. Baseline

The results in Table 3.3 show that the system with the best overall performance is the
linear power colour quantised SIF, with an average classification accuracy of 88.5%.
This is a 15% improvement over the ETSI-AFE baseline method from Section 2.3,
which uses noise reduction with only clean samples for training. It can also be seen
that the linear power SIF even achieves a small improvement in performance over the
multi-conditional MFCC-HMM baseline. The largest improvement is achieved in the
most severe 0dB mismatched conditions, with an improvement of 13.7%. This result
is significant, as the SIF only requires clean data for training, hence should achieve a
similar performance across a wide range of noise conditions. On the other hand, the
multi-conditional training method requires a large amount of data for training, and
may not perform well when the noise conditions during testing are different to those
observed during the training.

The performance of the SIF is also compared to the other image processing in-
spired approaches. From the results in Table 3.3, it can be seen the SIF compares
well to these methods, as it appears that none of the image-based methods is partic-
ularly robust to mismatched noise. In addition, the spectrographic seams and SIFT
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BOVW approaches appeared to be less discriminative than the conventional baseline
methods, with a classification accuracy of only 87.0% and 89.0% respectively in clean
conditions. While the ordered BOVW approach improves upon this by incorporating
temporal information, this only gives a small improvement in performance. Among
the four image-based baseline methods, the frame-based HOG method performed best,
and achieves the highest overall performance in clean conditions. Similar to the con-
ventional baseline methods, the HOG system uses a conventional HMM recogniser to
capture the temporal information in the sound events. However, it is not as robust to
noise compared to the SIF or conventional baseline methods. This should be expected,
since the local spectral gradients that are extracted to form the feature will be severely
corrupted by the noise.

A question that might be asked is why the SIF, a two-dimensional feature, can
be compared with frame-by-frame approaches such as MFCCs. Simply comparing the
feature dimensions, then at first this appears valid, as the SIF has 486 dimensions,
while the frame-by-frame features have just 36. However, once combined with HMMs,
the number of parameters increases dramatically. For the HMM system used in these
experiments, with 5 states and 6 Gaussians, there are 36×6×2×5 = 2160 parameters
for each HMM model, where the 2 represents the mean and variance of each Gaussian.
In addition, such frame-by-frame methods are considered state-of-the-art for acous-
tic recognition tasks, particularly in speech. Therefore the experimental comparison
carried out is considered to be sufficient.

3.5 Summary
This chapter introduced the idea of spectrogram image processing for SER. The idea
is to overcome the drawbacks of the state-of-the-art techniques by naturally captur-
ing the two-dimensional spectro-temporal information in the spectrogram image. To
establish the background, both the state-of-the-art in image processing, and existing
spectrogram image-based approaches for SER were reviewed. Motivated by these,
the spectrogram image feature (SIF) was then proposed for sound event recognition,
which quantises and maps the dynamic range of the spectrogram image to a higher-
dimensional space to produce a robust feature for classification. This was demonstrated
through a detailed set of experiments that compared the different aspects that con-
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tributed to the success of the SIF, and showed a strong performance against a range
of baselines from both conventional audio processing and image processing inspired
approaches. However, it was found that while the linear power colour quantised SIF
performed robustly in mismatched conditions, it could not match the performance of
the baseline systems in clean conditions. In the next chapter, this aspect is further
analysed, and a new sound event image is proposed to improve upon the existing SIF
framework.
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Generating a Robust Sound Event
Image Representation

In this chapter, a novel sound event image representation is proposed to improve
upon the SIF that was introduced in the previous chapter. This is motivated by
the drawbacks of the spectrogram image, where it is difficult to develop a reliable
missing feature mask that can distinguish the sound event from noise. The proposed
representation is called the subband power distribution (SPD) image [6, 7], which is a
novel two-dimensional representation that characterises the spectral power distribution
over time in each frequency subband. Here, the high-powered reliable elements of
the spectrogram are transformed to a localised region of the SPD, such that they
can be easily separated from the noise using a missing feature mask. The image
feature framework is then applied to the SPD to generate a novel feature called the
SPD-IF. Further to this, a non-stationary missing feature mask estimation process and
a kNN missing feature classifier are also proposed to marginalise the noise-affected
SPD-IF feature dimensions.

The chapter is organised as follows. Section 4.1 first describes the motivation
for finding a robust alternative to the conventional spectrogram image representation.
Section 4.2 then introduces the proposed SPD image, before detailing a novel noise esti-
mation technique and the proposed missing feature classification system. Experiments
are then carried out in Section 4.3 to compare the SPD-IF against the state-of-the-art
baseline techniques.
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4.1 Motivation
This section discusses the motivation to find an alternative sound event image represen-
tation that can improve upon the SIF approach from Section 3.3. The problem is that
the SIF is based on the spectrogram image representation, which leads to two issues in
mismatched noise conditions. Firstly, the noise directly changes the pixel values in the
spectrogram, which will affect the extracted image feature. Secondly, the way noise
affects the spectrogram makes it challenging to apply a robust classification system
to the SIF, such as a missing feature approach. These two aspects are now discussed
below, and lead to the development of the SPD sound event image representation in
Section 4.2.

4.1.1 Effect of Noise on the Spectrogram

Due to the physical nature of many sounds, it is typical for the sound event spec-
trogram to be sparse. This means that the sound energy is concentrated in a small
number of localised time-frequency regions that contain the most characteristic sound
information. This is in contrast to diffuse noise, where the spectral information is
typically spread more evenly across the frequency spectrum. When sound is captured
under noisy environments, the interaction between the signals in the spectrogram is
covered by the MixMax principle [98], as follows:

log (|s1|+ |s2|) ≈ max (log |s1|, log |s2|) (4.1)

where the stronger of the two signals, s1, s2, will dominate in the log-spectral domain.
An example of this can be seen in Fig. 4.1. Here, the sparse harmonic of the bell
sound can be clearly seen in both clean and noisy conditions, as highlighted by the
black oval overlaid on the spectrograms. However, the diffuse noise masks some of the
low power bell sound information, for example at the onset and towards the end of the
harmonic.

In the previous work on the SIF, the procedure was to extract a feature by quan-
tising and mapping the dynamic range of the spectrogram into separate regions, and
characterising each region independently. The idea was that the high-power spectral
information, such as that belonging to the bell sound in Fig. 4.1, would be mapped
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(a) Clean, where it is simple to separate the
bell sound from the background noise.
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(b) Noisy conditions, where regions of noise
may be mistaken for signal.

Figure 4.1: Example of the difficulty in generating a missing feature mask to separate
the target signal from the background noise.

into a separate region that would remain robust in mismatched conditions. Then,
while the low-power quantisations are likely to be affected by the mismatched noise,
the SVM classification would still be robust as it assigns a higher weight to the more
discriminative high-power components. However, in practice it was found that random
fluctuations in the noise may also be mapped into the high-power region, such as those
highlighted in red in Fig. 4.1b, which can affect the classification performance.

A further effect of the noise is that it makes the detection of the sound event much
less reliable. Under real-world conditions, the performance of the detection algorithm
may affect the onset and offset detection of the sound event from the continuous audio
stream. This causes an issue with the practical implementation of the SIF method, as
the length of the detected segment will affect the time-frequency partitioning of the
spectrogram. This in turn will cause a shifting of the feature dimensions, which could
lead to a mismatch in classification of the SIF against the clean training samples. One
possible solution to this problem is to use a fixed-length sliding window detector as
opposed to a feature-based detection algorithm. However, this may not be suitable in
cases where the sound events have a wide variation in duration, and may lead to an
increase in false detections. Hence an alternative solution is explored in this chapter.
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4.1.2 Robust Classification

One solution to the problem of mismatch between clean and noisy conditions is to
incorporate the SIF within a missing feature framework, referred to here as the MF-SIF.
This approach aims to marginalise the feature dimensions that are affected by the
noise, to leave only the reliable, high-power regions of the sound event as the basis for
classification. Such a missing feature approach has been shown to improve performance
in noisy conditions for tasks in both SER and ASR [103, 104], and was demonstrated
by the missing feature experiments in Section 2.3.

However, the biggest challenge for missing feature approaches is the task of mask es-
timation, which determines the feature dimensions that have been corrupted by noise.
Although this appears simple in theory, in practice missing feature mask estimation
poses a significant problem, particularly when based on the time-frequency spectro-
gram. This is because the non-stationary nature of the noise across time, frequency
and the dynamic range, makes developing a reliable mask challenging [104]. An ex-
ample of this can be seen in Fig. 4.1, where the bell sound is shown in clean and
noisy conditions. In clean conditions, it is simple to separate the regions of high power
belonging to the bell sound from the background. However, when the noise power
becomes comparable to the signal, as in Fig. 4.1b, the sound event is much more
difficult to detect as the random noise fluctuations can easily be mistaken as reliable
sound information. This severely reduces the classification performance under such
conditions.

Another difficulty with conventional missing feature approaches, is that existing
mask estimation methods may not work well with the wide variety of sound events.
This is particularly true of classifier-based mask estimation [105], since such meth-
ods require prior knowledge about the characteristics of the target signal and noise.
While this may work well for speech, it is difficult to design a feature set that can re-
liably discriminate the wide variety of sound event characteristics from noise. Hence,
classifier-based methods will not work well for sound events in practice. The other
common mask estimation approach uses local SNR estimates as a threshold for each
element in the spectrogram [105]. However, in many cases it may be impossible to
distinguish certain noise elements from the target sound, particularly in low SNR con-
ditions when the noise can have comparable energy and sharp peaks to the signal. In
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such cases, noise regions may be marked as reliable, and have a severe effect on the
classification performance. Also, as local-SNR methods assume that the noise is sta-
tionary over time, these approaches will not work well for more realistic non-stationary
noise environments.

Therefore, it is challenging to generate a missing feature mask which can be reliably
combined with the SIF based on the spectrogram image representation. Hence, the
approach taken in this chapter is to find an alternative sound event representation that
can overcome some of these drawbacks. This is called the subband power distribution
(SPD) image, and is introduced in the next section.

4.2 Subband Power Distribution Image Feature
In this section, the two-dimensional subband power distribution (SPD) image is in-
troduced as an alternative sound event image representation. This is motivated by
the challenges of extracting a robust image feature directly from the spectrogram, as
discussed in the previous section. The SPD captures the stochastic distribution of
spectral power over time in each frequency subband, such that the reliable, high-power
spectral information is transformed to a localised region of the SPD image. This then
allows an image feature to be extracted, called the SPD-IF, which can easily be com-
bined with a missing feature framework for robust classification. This section first
introduces the idea behind the SPD-IF framework, and then describes the algorithm
for generating the SPD and the proposed missing feature classification system.

4.2.1 The SPD-IF Framework

The SPD-IF framework builds upon the success of the SIF for robust sound event clas-
sification using image feature extraction from the time-frequency spectrogram. How-
ever, instead of performing image feature extraction directly on the spectrogram, the
sound event is first transformed into the SPD image representation before extracting
the image feature. An outline of this framework is shown in Fig. 4.2, which com-
pares the SPD-IF with the previous SIF method. The key aspect of this framework
is the novel sound event image representation called the subband power distribution
(SPD). This characterises the spectral power distribution over time, in each frequency
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Figure 4.2: Overview of the proposed SPD-IF approach compared to the previous
work on the SIF (the shaded boxes indicate the new contributions). First, a nor-
malised SPD image of the sound is generated, before an image feature is extracted for
classification. For the SPD, a missing feature kNN classification system is used, em-
ploying the Hellinger distance measure to compare the distribution distance between
image feature dimensions.

subband, forming a two-dimensional representation of frequency against normalised
spectral power. It can therefore be considered as a generalisation of the power spectral
density (PSD), since the PSD is a one-dimensional representation of the average power
present in the signal at each frequency bin [245].

A graphical illustration of how the SPD is assembled is shown in Fig. 4.3. First,
the distribution of normalised spectral power in each subband of the log-power spectro-
gram is calculated over time. In the example shown, the highlighted subband for the
bell sound in Fig. 4.3a is characterised by the distribution shown in Fig. 4.3b. Then,
each subband distribution is stacked together to form the two-dimensional SPD rep-
resentation in Fig. 4.3c, which visualises the distribution of normalised spectral power
against frequency. A final step is then taken is to enhance the contrast of the raw SPD
representation, to give the final SPD image in Fig. 4.3d. This is performed to nor-
malise the distribution information to a fixed range, and is important as it maximises
the amount of information extracted from the SPD, as explained later in Section 4.2.2.
The final SPD image forms the basis for image feature extraction, with the resulting
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(a) Normalised gammatone spectrogram of a
bell ringing sound event, G(f, n).
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(d) SPD Image, I(f, b), after contrast enhance-
ment has been performed.

Figure 4.3: Overview of generation of the SPD Image. The probability distribution
is taken over each subband, as shown by the example in (b), and are stacked to form
the raw SPD in (c). This undergoes contrast enhancement, to give the SPD in (d).
The red line in (d) indicates an upper estimate of the noise over the clip. Areas to the
right of this line are considered to contain only signal, while the rest is dominated by
the noise distribution.

feature called the SPD-IF.
The advantage of the SPD representation over the spectrogram is twofold. Firstly,

it is less affected by any time shifting of the sound event detection algorithm, as
the temporal information is characterised by the distribution of the spectral power.
This gives the SPD image a fixed size that is independent of the clip length, which is
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unlike the spectrogram where one dimension explicitly represents the time information.
Secondly, the signal and noise information are much more easily separated in the
SPD representation compared to the spectrogram. This is because the high-powered
reliable elements of the sound event are transformed to a localised region of the SPD.
This is due to the physical characteristics of many sound events that produce a sparse
spectrogram representation, meaning that a large proportion of energy is contained in
only a few frequency bands. By comparison, many noise conditions are diffuse, with
energy spread across the frequency spectrum. Hence, even for 0dB noise, the sparse
signal components will still be much greater than the noise energy, thereby satisfying
the MixMax principle and remaining separable from the noise.

From the SPD image, an image feature can be extracted using the same process
as for the SIF. This proceeds by first quantising and mapping the dynamic range into
separate regions, before partitioning the image into local blocks and extracting the pixel
distribution statistics from each block. The next step is then to separate the reliable
signal region from the noise in the SPD image, such that a missing feature mask can
be estimated for robust classification. This process is significantly simplified in the
SPD compared to the spectrogram, since the reliable high-power signal information
is transformed to a localised region of the SPD and can be separated from the noise
simply by a line. This is unlike the spectrogram where the boundary between noise
and signal forms a complex two-dimensional time-frequency surface. An example of
the separation between signal and noise in the SPD is demonstrated by the red line
shown in Fig. 4.3d. The signal information is represented in the SPD region to the
right of this line, while the noise dominates the region to the left of the boundary. This
noise boundary can be estimated either using conventional stationary noise estimation
methods, or using the SPD directly, as discussed later in Section 4.2.3. Any high-power
noise peaks, which could be easily mistaken for the signal in the spectrogram, as in
Fig. 4.1b, will appear much less significant after taking the distribution to form the
SPD image. This is because such peaks occur randomly across time and frequency,
and hence they will be assigned a very low value when the subband distribution is
taken across the whole sound segment. Therefore, even if these noise peaks fall into
the reliable region of the SPD image, they will not have such a significant effect on the
image feature that is extracted or the classification performance of the SPD-IF.

The final step in the SPD-IF framework is to perform classification of the sound
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event using a missing feature classification system. The idea is to marginalise the
components of the SPD-IF belonging to the noise, such that only the robust signal
information is used as a basis for classification. For classification, kNN is used with
the Hellinger distance measure, which is chosen as it naturally measures the similarity
between the pixel distribution information captured in the SPD-IF extraction process.
Together, the SPD provides the basis for a classification system that will be signifi-
cantly more robust than the equivalent system based on the spectrogram. The rest of
this section now describes each of the steps in the SPD-IF framework in detail.

4.2.2 Subband Power Distribution Image

Starting from a time-frequency spectrogram representation of the sound, the SPD
image is designed to represent the distribution of spectral power in each frequency
subband over time. As this captures the long term temporal distribution statistics,
it is desirable for the spectrogram to have a high time resolution, to better capture
the distribution. Therefore, the gammatone filterbank decomposition is chosen as the
model for time-frequency analysis, as previously introduced in Section 3.1.2. This
has the advantage that there is no tradeoff between time and frequency resolution,
which is a common drawback of the conventional short-time Fourier transform (STFT)
representation. Note that the log-power spectrogram is used as it compresses the
dynamic range of the sound event information in the SPD, which in turn increases the
discriminative power of the SPD-IF.

The gammatone spectrogram, Sg(f, n) from equation (3.8), is first normalised into
a grey-scale image, G(f, n), in the range [0, 1] as follows:

G(f, n) =











Sg(f,n)

max
f,n

(Sg(f,n))
∀ Sg(f, n) ≥ 1

0 otherwise
(4.2)

where f represents the centre frequencies of the filters and n is the time index. A bank
of F = 50 filters is used, with centre frequencies equally spaced between 100-8000 Hz
on the equivalent rectangular bandwidth (ERB) scale [162].

The SPD is then formed by finding the distribution, PGf
(z), of the normalised spec-

tral power, z = [0, 1], in each frequency subband over time. Here, P is the probability
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density function, and Gf is a random variable representing the normalised spectro-
gram, G(f, n) in the frequency subband, f . To estimate this distribution, the simplest
solution is to use a non-parametric approach based on the histogram. This has the
advantage of speed and simplicity, and benefits from the fact that the upper and lower
bounds of the histogram bins are fixed by the normalisation of the spectral power to
a grey-scale intensity. The subband distribution therefore becomes:

PGf
(b) =

1

N

N
∑

n=1

1b(G(f, n)), ∀ b = 1, . . . , B (4.3)

where N is the number of time samples in the segment, B is the number of histogram
bins, and 1b is the indicator function, which equals one for the bth bin if G(f, n) lies
within the range of the bin and is zero otherwise, as follows:

1b(G(f, n)) =







1, if y(b− 1) < G(f, n) ≤ y(b)

0, otherwise
(4.4)

where y(b) = b
B

is used to calculate the edges of the histogram bins, which are spaced
evenly across the [0, 1] range of the normalised spectral power, z.

The raw SPD, H(f, b), is then the two-dimensional representation that is formed
by stacking together each subband distribution vector over frequency to form a matrix,
as follows:

H(f, b) = PGf
(b) ∀f, b (4.5)

where the result is an F × B matrix. This forms an image representation of the
raw probability distribution information for each frequency subband over time, and
is constrained to lie in the range 0 ≤ H(f, b) ≤ 1. An example of this raw SPD
representation is given in Fig. 4.3c, where a total of B = 100 bins are used.

However, although the raw SPD, H(f, b), can already be considered as a grey-
scale image for image feature extraction, it was found that most of the distribution
information is contained within a small region of the dynamic range. This is due to
the physical nature of many sound events, which have an attenuating or otherwise
non-stationary spectrogram envelope. This means that, for a high enough number of
histogram bins, it is unlikely for the signal to be stationary enough to give a high
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Figure 4.4: The three monochrome quantisations, mc(f, b), are shown for the SPD
image, I(f, b), of the bell sound above. These quantisations are labelled red, green
and blue, to correspond with the RGB colours of the Jet mapping function from Fig.
3.10a. The dark areas of the monochromes indicate higher values of the quantisation,
while the white area contains zeros.

density value in any given bin. Therefore, it is desirable to enhance the contrast of
the raw SPD, to produce an enhanced SPD image, I(f, b), that better represents the
important signal information for classification. In image processing, this is referred to
as “contrast stretching” [164], and is performed here as follows:

I(x = f, y = b) =







H(f, b)× h, if H(f, b) < 1
h

1, otherwise
(4.6)

where h is an appropriate constant, and x, y represent the image indices for image fea-
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ture extraction, as in (3.12). This operation does not affect fully stationary subbands,
as these are still assigned a high value in the SPD image, hence this step was found
to significantly improve the classification performance over a broad range of sound
classes. Empirically, it was found that using h = 50 provides a sufficient enhancement
in contrast. Comparing Figs. 4.3c and 4.3d demonstrates the improvement provided
by the contrast stretching process. Here it can be seen that the bell sound information
is much more clearly represented in the SPD image in Fig. 4.3d, as the distribution
information has been stretched to cover the full dynamic range of the image.

The two-dimensional SPD image, I(f, b), now forms the basis for image feature
extraction in the same way as for the SIF, as previously introduced in Section 3.3.2.
For the dynamic range quantisation in (3.12), the “Jet” mapping function is used, as
this was found to give better results that the HSV mapping in preliminary experiments.
This may be explained by the confusion in the “red” HSV mapping, which represents
both high and low pixel values. An example of the RGB monochromes produced by
the “Jet” quantisation for a bell sound are shown in Fig. 4.4. It can be seen that
the “blue” quantisation captures the more non-stationary information from the sound
event, as shown by the black areas around the edge of the signal region. On the other
hand, the more stationary signal information is captured in the “red” quantisation,
as shown by the region of grey covering the region of the SPD corresponding to the
stationary background noise. The “red” quantisation should also be less susceptible to
random non-stationary noise fluctuations, which should also make it more robust for
classification.

The final step in the image feature extraction is to characterise the pixel information
in the monochromes using their distribution statistics. For the SPD-IF, the same
extraction process is used as for the SIF, which was detailed previously in Fig. 3.11
and equation (3.14). It was found in preliminary experiments that partitioning each
SPD dimension into D = 10 blocks, and using the mean and variance to represent the
distribution (k = {1, 2} from (3.14)) gave the best trade-off between performance and
feature vector size. Therefore, the total feature vector length is 10× 10× 3× 2 = 600,
since there are 100 local blocks, three monochrome mappings (c = 3), and two k

parameters representing the distribution of image pixels in each block.

111



Chapter 4. Generating a Robust Sound Event Image Representation

4.2.3 SPD Noise Estimation

One advantage of the SPD representation is that the noise and signal are transformed
to localised regions of the SPD image. They can then be separated simply by a
one-dimensional line, as discussed previously in Section 4.2.1. To find this separating
line, an estimate of the upper bound of the noise in the clip is required, as shown
in the previous example in Fig. 4.3d. Although it is possible to use conventional
approaches to find this estimate, in this section a novel method to estimate the noise
using the SPD representation is introduced. This has the advantage that it can adapt
to non-stationary noise conditions, and works by finding the cross-correlation between
a noise-only SPD and the SPD of the sound event in noise. This can then be used to
generate a missing feature mask for the SPD, which forms part of the missing feature
classification system described in the next section.

The most common approach for noise estimation in conventional audio processing
is to generate a noise model using an initial audio segment without any sound events
present [158]. From this, a missing feature mask is commonly estimated in the spectral
domain based on the local SNR, in a similar way to spectral subtraction [99]. This
is typically done by setting a threshold on the local SNR, δ, and denoting spectral
information that falls below this value as noise [103]. This then forms the boundary
between signal and noise, and can be written as follows:

n(f) = µ (G(f, nN)) + δ(f) (4.7)

where µ (G(f, nN)) is the noise estimate obtained from the spectrogram, G(f, nN),
over the noise-only segment with time samples nN . The threshold δ(f) can simply by
a constant, however a better estimate can be obtained by setting it to two times the
standard-deviation of the noise in each frequency subband:

δ(f) = 2σ (G(f, nN)) + ∆ (4.8)

where σ (G(f, nN)) is the standard deviation of the spectral information over the noise-
only time samples, and ∆ is a small constant added to account for unseen noise fluc-
tuations.

The problem with this type of noise estimation is that it is “stationary”, since it
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(c) Noisy bell sound SPD, H(f, b). The SPD
noise estimate, nspd(f), is estimated based on
the maximum subband cross-correlation, amax.

Figure 4.5: Overview of the SPD noise estimate approach. The SPD noise estimate,
nspd(f), is shown by the solid black line in (c), and has been shifted by amax to reflect
the increase in noise intensity. This can be compared to the stationary noise estimate,
n(f) from (4.7), shown by the dotted lines, which cannot adapt to the change in
non-stationary noise intensity over time.

is estimated based on an initial noise segment, and hence cannot track the noise well
in non-stationary noise environments. This is demonstrated in Fig. 4.5, which shows
a clip containing non-stationary wind noise and a bell sound. Here, the stationary
noise estimate is obtained from the noise-only period in Fig. 4.5a, and can be seen
initially to fit the noise profile well, as shown by the dotted line in the noise-only SPD
in Fig. 4.5b. However, as the noise is not re-estimated when the signal is present, the
stationary noise estimate provides a poor fit when the bell sound occurs, as shown in
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Fig. 4.5c. This may result in misclassification of the bell sound, since regions of the
SPD containing noise will be marked as reliable when it comes to the missing feature
classification.

To improve upon this, a noise estimation approach is proposed here that utilises
the information in the SPD representation, and can adapt to changes in non-stationary
noise conditions. This idea is based on the assumption that the characteristics of the
noise distribution remain the same over time, despite changes in the non-stationary
noise intensity. In the SPD representation, this change in intensity can be approx-
imated simply as a shift in normalised spectral magnitude of the noise distribution.
Therefore, the same initial noise segment provides an estimate of the shape of the
noise distribution, and then the correlation between the noise-only SPD, HN(f, b) and
the noisy-signal SPD, H(f, b) can be used to estimate the change in non-stationary
noise intensity. This is illustrated in Fig. 4.5b and 4.5c, where the increase in non-
stationary wind noise is labelled amax, and the SPD noise estimate can be shifted to
better track the noise boundary in the SPD. Note that the raw SPD, H(f, b), is used
for the noise estimate as opposed to the SPD image, I(f, b). The reason is that in
this case the noise is more important than the signal, and hence there is no need to
apply the contrast enhancement step, which may also distort the noise information in
certain circumstances and result in a lower overall performance.

To generate the proposed SPD noise estimate, the first step is to obtain a noise-only
SPD, HN(f, b), from a segment containing only noisy time samples, nN , calculated
using (4.3). An upper bound of the noise in the noise-only SPD is then estimated to
provide an initial noise estimate. This is calculated as the maximum occupied bin for
each frequency subband, as follows:

nmax(f) = argmax
b

(HN(f, b) > 0) (4.9)

where b represents the bins across the normalised spectral power dimension of the
SPD, and nmax(f) is the bin that represents the upper bound of the noise region. This
is further smoothed to avoid sharp discontinuities across frequency using a moving
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average filter, as follows:

n̂spd(f) =
1

M

i=f+M/2
∑

i=f−M/2

nmax(i) (4.10)

where M is the order of the filter, and n̂spd(f) is the initial SPD noise estimate repre-
senting the upper bound noise estimate for the noise-only segment, as shown in Fig.
4.5b.

Then, given an noisy-signal SPD containing a sound event clip, H(f, b), the noise
intensity change, amax, is found by calculating the subband cross-correlation between
HN(f, b) and H(f, b), as follows:

[amax, fmax] = argmax
a,f

(

H(f, b) ⋆ HN(f, b+ a)
)

, ∀ − B < a < B (4.11)

where ⋆ represents the cross-correlation across the subband bins, and the range of a
is determined by the size of the raw SPD image. Note that the cross-correlation is
performed separately on each SPD subband, f , as H(f, b) is a mixture of the noise
and signal distributions and hence the highest correlation should occur between two
noise-dominated subbands. The final SPD noise estimate, nspd(f) is then simply:

nspd(f) = n̂spd(f) + amax. (4.12)

where n̂spd(f) is the initial noise estimate calculated from the noise only segment in
(4.10). Note that amax is not limited to be positive, as the noise intensity can both
increase or decrease, as shown by the shape of the wind noise example in Fig. 4.5a.

4.2.4 Missing Feature Classification

A missing feature classification system is now proposed for the SPD-IF. The idea is
to utilise the SPD noise estimate found in the previous section to generate a missing
feature mask for the SPD image. A missing feature classifier is then used to marginalise
the unreliable feature dimensions, such that classification is based only on the reliable
signal information. These two processes are now described below.
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Mask Estimation

When generating the SPD image, I(f, b), the sparse, high-power signal components are
transformed to a continuous region of the image. Therefore, there exists a boundary,
∂I, between clean and noisy regions, where the image region above this boundary is
derived only from the signal. To generate the missing feature mask, an approximation
of this noise-signal boundary is required. However, it is clear that the reliable SPD
boundary, ∂I, can be simply approximated by the noise estimate in the clip, nspd(f),
since this is also an upper bound on the noise distribution in the SPD image. Therefore,
the reliable region of the SPD, Ir(f, b), can be assigned as follows:

I(f, b) →







Ir(f, b), if b > nspd(f).

Iu(f, b), otherwise.
(4.13)

where the subscripts r, u denote reliable and unreliable image regions respectively.
This mask can now be applied to the SPD-IF feature. If a sub-block of the SPD

image, denoted Lij, is intersected by the noise estimate, nspd(f), the whole block
must be assumed to be unreliable. This is because the feature, xij, is based on the
distribution statistics of the image pixels within the block Lij, which will be affected
by any noise pixels contained within the block. Hence, the reliable feature vector, xr,
can be assigned as follows:

xij →







xr,ij, ∀I(p, q) ⊂ Lij → I(p, q) ∈ {Ir} .
xu,ij, otherwise.

(4.14)

where the sub-block with indices ij can only be considered reliable if all the pixels
in the block, I(p, q) ⊂ Lij, belong to the set of reliable pixels {Ir}. The reliable
feature vector, xr, is subsequently concatenated to form a single vector. Meanwhile,
the unreliable feature dimensions, xu, can now be marginalised as they do not contain
useful signal information.
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Classification

Here, kNN is used for classification, which, although uncommon in the acoustic field, is
relatively common in image processing and can achieve comparable performance with
SVM [228]. However, an important advantage of kNN is that it can be easily combined
with a missing feature framework, as this is not straightforward for the SVM classifier.
It also offers flexibility in the choice of distance measure, and here the Hellinger dis-
tance is chosen as it measures the similarity between two distributions derived from the
data. This fits naturally with the SPD-IF, which models the distribution of pixels in
each monochrome image subblock. This is preferred over the conventional Euclidean
distance, which measures the distance between mean and variance parameters inde-
pendently as elements of the feature vector, rather than using them to calculate the
distribution distance. Among the probabilistic distances, the Hellinger distance has su-
perior properties, as it is bounded, symmetric non-negative and skew insensitive [246],
hence is preferred for this task.

As the feature information in the SPD-IF is characterised by a normal distribution,
using the mean and variance of the image pixels, the Hellinger distance between two
SPD-IF vectors, x1, x2, can be written as follows:

dH(x1, x2) =
Nr
∑

k=1

(

1−
√

2σ1,kσ2,k

σ2
1,k + σ2

2,k

e
− 1

4

(µ1,k−µ2,k)2

σ2
1,k

+σ2
2,k

)

1
2

(4.15)

where Nr is the number of reliable dimensions, and µ, σ are the mean and variance
parameters respectively that are extracted as part of the SPD-IF. Note that for certain
feature dimensions, the variance may be small or even zero. Therefore, a floor is applied
to the variance such that a measure of the similarity between these dimensions can still
be obtained. This is set at 1e−3, which is equivalent to having only a single non-zero
pixel.

The conventional Euclidean distance between the SPD-IF vectors can also be cal-
culated as follows:

dE(x1, x2) =
1

Nr





(

Nr
∑

k=1

(µ1,k − µ2,k)
2

)

1
2

+

(

Nr
∑

k=1

(σ1,k − σ2,k)
2

)

1
2



 (4.16)
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This measures the distance between mean and variance parameters independently as
elements of the feature vector, rather than using them to calculate the distribution dis-
tance. The Euclidean distance is used for experimental comparison with the proposed
Hellinger kNN in the next section.

4.3 Experiments
In this section, experiments are conducted to compare the performance of the SPD-IF
method with both the SIF and baseline methods for SER. The same database of
environmental sounds is used as in Section 2.3, with testing carried out in both clean
and mismatched noise conditions to simulate a more realistic testing environment.
Training is performed using only clean samples, while testing is carried out across a
range of noise conditions.

4.3.1 Experimental Setup

For comparison with the previous baseline methods, the same experimental setup is
used as in the previous experiments in Section 2.3. Hence, the same 50 sound event
classes are selected from the RWCP database, and as before, 50 files are randomly
selected for training and 30 for testing in each of the five runs of the experiment. The
classification accuracy for the SPD-IF is investigated in mismatched conditions, using
only clean samples for training, with the average performance reported in clean and
at 20, 10 and 0 dB SNR noise conditions. The standard deviation is also reported (±)
across the five runs of the experiment and the four different noise conditions.

SPD-IF Evaluation Methods

This set of experiments is designed to analyse the SPD-IF method in detail, and to
compare each step of the process separately. Therefore, the following experiments are
carried out:

1. SPD image representation vs. Spectrogram (SIF)

2. Hellinger vs. Euclidean distance measure
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3. SPD vs. Stationary noise estimate

In all cases, the same image feature extraction and kNN classifier is used, with the
parameter k = 5 set for the class decision, which is used throughout. For the first case
of SPD vs. Spectrogram, it is important to ensure a fair comparison by generating
a missing feature mask for the spectrogram, with the approach called MF-SIF. The
noise mask for the MF-SIF is derived in an analogous way to that of the SPD-IF,
albeit across the time, frequency and dynamic range dimensions of the log-power STFT
spectrogram. For testing, the “Factory Floor” noise condition is used, as this was found
to be the most challenging noise condition for each of the above methods.

Baseline Methods

The performance of the SPD-IF is also compared against both the SIF and the best
performing baseline methods from the evaluation in Section 2.3, as follows:

1. Spectrogram Image Feature (SIF), using the best performing raw-power STFT
spectrogram and SVM classifier.

2. Baseline MFCC-HMM with Advanced Front End (AFE) noise reduction [100].

3. Baseline multi-conditional MFCC-HMM.

Both of the MFCC-HMM methods above use 36-dimension frame-by-frame MFCCs,
with 12 cepstral coefficients, without the zeroth component, plus their deltas and
accelerations. The HMM uses 5 states and 6 Gaussian mixtures, with both training
and testing carried out using HTK [161].

The two baseline methods are chosen to provide a meaningful comparison with the
previously evaluated techniques. In particular, the AFE method is chosen to provide
a fair comparison with the SIF and SPD-IF, as it uses the same clean data for training
and gave the best performance in the earlier baseline experiments. In addition, the
multi-conditional MFCC-HMM method was found to give the best baseline perfor-
mance overall, although it requires noisy data for training, as opposed to only clean
data for the proposed SPD-IF.

119



Chapter 4. Generating a Robust Sound Event Image Representation

4.3.2 Results

The results from the experiments on the SPD-IF are now presented. The important
factors contributing to the success of the SPD-IF method are first analysed, before
comparing the best performing SPD-IF method against the baseline techniques.

SPD vs. Spectrogram

The results comparing the SPD-IF and MF-SIF, using the same kNN missing feature
classification approach with Euclidean distance, are shown in Fig. 4.6. It can be seen
that the average improvement for the SPD-IF over the MF-SIF is around 6%, and this
is found to be consistent across all noise conditions, as shown in the detailed results
from Table 4.1.

The reason for this result is that the SPD representation transforms the reliable,
high-power sound event information to a continuous region of the SPD image, unlike
the spectrogram where the same information is spread across time and frequency. The
signal region of the SPD can then be easily separated from the noise region, as the
boundary is simply the estimated upper bound of the noise in the clip. However for
the MF-SIF, the mask must be applied across both time, frequency, and the dynamic
range mappings of the image feature, making it less reliable in non-stationary noise.
In addition, the MF-SIF has only a coarse dynamic range quantisation, with just three
mapping dimensions as in pseudo-colouring in image processing. Hence, it was found
that the noise estimate could label some signal regions as unreliable, even when only
a small amount of noise corrupted that region of the spectrogram. On the other hand,
the SPD-IF has a finer partitioning of the dynamic range, hence the noise mask can
better separate the noise and signal regions of the SPD.

Hellinger vs. Euclidean Distance Measure

From the results in Fig. 4.6 and Table 4.1, it is also possible to compare the effect of
utilising the Hellinger distance measure for the SPD-IF. It can be seen the Hellinger
distance measure gives an average improvement of around 3% over the Euclidean dis-
tance, but in particular gives a larger increase in severe noisy conditions. For example,
for the SPD noise estimate, an improvement in classification accuracy of 8% is observed
for the 0dB noise condition when using the Hellinger distance measure.
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Method kNN Noise Mask Clean 20dB 10dB 0dB Avg.

SPD-IF
Hellinger SPD 98.8± 0.3 98.0± 0.3 96.5± 0.5 88.4± 0.7 95.4

Stationary 99.0± 0.3 98.4± 0.2 96.5± 0.4 82.6± 0.8 94.1

Euclidean SPD 98.9± 0.2 97.8± 0.1 94.5± 0.2 80.4± 0.9 92.9

Stationary 97.0± 0.4 95.9± 0.2 91.5± 0.7 79.9± 0.9 91.1

MF-SIF Euclidean SPD 92.8± 0.3 90.2± 0.5 89.8± 0.4 74.3± 0.7 86.8

Stationary 95.6± 0.6 90.4± 0.8 77.3± 0.8 69.1± 0.8 83.6

Table 4.1: Results comparing the performance of the image feature methods in mis-
matched noise conditions for the “Factory Floor” noise. The experiments also explore
the proposed SPD vs. Stationary noise mask and Euclidean vs. Hellinger kNN classi-
fication.

These improvements should be expected, since the image features are capturing the
pixel distribution information. It is therefore more natural to compare the distribution
distance between each block of the image feature, rather than measuring the Euclidean
distance between the parameters of the distribution. In the noisy conditions, it is sug-
gested that while the noise may shift the pixel distributions, the change in distribution
distance is less than the Euclidean distance since the reliable parts of the distribution
are unchanged.

SPD vs. Stationary Noise Estimates

Comparing the results in Fig. 4.6, it can be seen that the proposed SPD noise estimate
consistently outperforms the conventional stationary noise estimate by around 1−2%.
In addition, from Table 4.1, it can be seen that the most significant improvement is
found at 0dB, where the improvement for the kNN Hellinger distance SPD is almost
6% using the SPD noise estimate. This highlights the ability of the SPD noise method
to adapt to non-stationary noise conditions, since these experiments are carried out in
the most challenging Factory Floor noise condition.

SPD-IF vs. Baseline

The results in Table 4.2 compare the performance of the proposed SPD-IF against
both the SIF and the best performing ETSI-AFE and multi-conditional MFCC-HMM
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Figure 4.6: Classification accuracy results analysing the components of the SPD-IF
method. Results comparing the SPD vs. spectrogram are represented in the SPD-IF
and MF-SIF results. The SPD-IF is also implemented using both the Euclidean and
Hellinger distance measures for kNN classification, while the stationary and SPD noise
estimates are also compared from equations (4.7) and (4.12) respectively.

baselines. These results demonstrate that the SPD-IF performs significantly better
than all three baselines, with an average classification accuracy of 95.9%. This is an
improvement of over 6% compared with the best performing SIF and multi-conditional
MFCC-HMM baselines. For the individual noise conditions, it can be seen that the
SPD-IF outperforms the baselines in almost every case.

Importantly, the SPD-IF overcomes the drawback of the lower performance of the
SIF in clean conditions, which was a result of the linear-power spectrogram used in the
SIF, as opposed to the log-power representation used in the other methods. The SPD-
IF also comes close to the performance of the AFE MFCC-HMM in clean conditions,
with a difference of around 0.3%. This is significant given the strong performance of
this baseline method in matched conditions. This reflects the discriminative nature of
the SPD representation for a wide variety of sound event classes, since a large database
of 50 sound event classes was used in these experiments.

The performance of the SPD-IF in noisy conditions also demonstrates the robust-
ness of the representation, combined with the ability to easily separate the noise and
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Group Method Clean 20dB 10dB 0dB Avg.

Base-
line

SIF 91.1± 1.0 91.1± 0.9 90.7± 1.0 80.9± 1.8 88.5

ETSI-AFE 99.1± 0.2 89.4± 3.2 71.7± 6.1 35.4± 7.7 73.9

Multi-Conditional 97.5± 0.1 95.4± 1.3 91.9± 2.7 67.2± 7.3 88.0

SPD-IF (Hellinger-kNN
and SPD noise estimate) 98.8± 0.3 98.0± 0.3 96.6± 0.4 90.3± 2.0 95.9

Table 4.2: Classification accuracy results comparing the SPD-IF with the SIF and
best performing baseline methods.

signal regions of the SPD. For example, in 0dB noise, the SPD-IF achieves an av-
erage accuracy of over 90%, which is around 10% higher than than the next closest
result for the SIF, and is a 23% improvement over the multi-conditional MFCC-HMM
baseline technique. Overall, the SPD-IF equals or outperforms the best performing
baseline at every noise condition, with the proposed SPD noise estimate and Hellinger
kNN classification system contributing significantly to the demonstrated performance.

4.3.3 Discussion

Several interesting aspects of the SPD-IF system are now discussed, including the effect
of the spectral content of sound events, the missing feature classification system, and
how the SPD-IF can be applied in an online recognition system.

Spectral Content of Sound Events

While the SPD captures the long-term temporal statistics of the sounds through the
subband distribution, it does not explicitly model the temporal structure of the sound.
Therefore, it may be possible to generate artificial sounds, such as simple upward and
downward transients, that have similar SPD representations but could be distinguished
easily in the spectrogram. However, in practise, natural sound phenomena rarely
conform to such simple examples, as they typically have distinct increase/release energy
cycles, which may be different across frequency subbands. Therefore, classification
using the SPD-IF is able to distinguish between a wide variety of natural sounds,
which is demonstrated by the experiments on a large database containing 50 classes
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SPD-IF Conventional Techniques
Marginalisation Imputation

Classifier kNN HMM-GMM
Distance Measure Hellinger Mahalanobis

Mask Two-dimensional Frame-by-frame
Missing Features Remove unreliable dimensions Replace

Bounded No Yes (optional)
Computation Low High

Table 4.3: Comparison between missing feature approaches

of sound events. The SPD-IF also performs well in noisy conditions, provided that
the sound spectrogram contains a few characteristic, high-power components that can
be mapped to give a reliable region of the SPD for classification. Due to the physical
nature of sounds and noise, this should be the case down to very low SNRs, as the
noise energy is diffuse across the spectrum. This is demonstrated by the performance
of the SPD-IF in 0dB non-stationary noise conditions, where it achieves a classification
accuracy of over 90%.

Missing Feature Classification Systems

Table 4.3 shows a comparison between the proposed SPD-IF missing feature classifi-
cation approach and the two conventional techniques that can be applied for HMM-
GMM. It can be seen that the SPD-IF approach is fundamentally different, as a single
feature is extracted from the two-dimensional SPD image to represent the whole sound
clip. This is opposed to the conventional HMM-GMM methods that operate frame-
by-frame in the time-frequency spectrogram domain. One advantage of the SPD-IF
system is that the mask estimation is much simpler in the SPD domain compared
to the spectrogram, and hence the approach can overcome the key drawback of con-
ventional missing feature classification. Another advantage is the low computational
complexity, since the HMM-GMM approach must evaluate the whole model at each
time frame, and also incurs a considerable cost in integrating out the missing feature
values. Together, the SPD-IF can achieve an improved classification performance with
a low computational complexity, as shown in the previous experiments.
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Online Recognition System

Many applications of SER require real-time performance. For investigation of the
performance of the SPD-IF in real-time systems, it has been implemented in C#.
Here, it is found that the feature extraction and classification of the SPD-IF, with 50
sound classes, runs around 10 times faster than real-time on a 2.0GHz Intel Core 2
Duo processor. This is comparable in speed to the MFCC-HMM baseline using HTK.
For comparison with conventional missing feature approaches, the implementation
of missing feature marginalisation in the CASA-Toolkit (CTK) [247] was found to
run at around one times real-time on the same experiment. This means that a one
second sound clip requires a further one second before the classification result becomes
available. This may not be acceptable depending on the application.

An additional advantage of the SPD-IF for online systems is that retraining is ex-
ceptionally fast, since the kNN classification algorithm only requires feature extraction
and storage. It also does not require a large number of samples for training, which
makes the SPD-IF suitable for applications requiring a quick initial training setup,
followed by additional training to be added later. This is not possible with HMM
methods, which require the whole model to be recalculated, and in general require
more time and data for training. In addition, there are algorithms which can speed
up high-dimensional kNN searches, and while these are not employed here, they can
solve the potential problem of having a very large training database.

4.4 Summary
This chapter proposed the subband power distribution (SPD) image representation,
to improve upon the previous work on the SIF to represent sounds through a two-
dimensional image feature. The SPD is a two-dimensional representation of the distri-
bution of normalised spectral power over time against frequency, where the temporal
information is captured implicitly through the distribution information. The advan-
tage of the SPD over the spectrogram is that the sparse, high-power elements of the
sound event are transformed to a localised region of the SPD, unlike in the spectrogram
where they may be scattered over time and frequency. This enables a missing feature
mask to be easily applied to the SPD-IF, and the missing elements of the image fea-
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ture can be marginalised in a kNN missing feature classification system. Experiments
were carried out to validate the proposed approach, and compare the results to those
previously achieved by both the SIF and the best performing baseline techniques. This
demonstrated that the SPD-IF is both discriminative in clean conditions, and robust to
noise, achieving an average classification accuracy of almost 96%, which is a significant
improvement over the baseline techniques. The biggest improvement in performance
was in severe noise, where the SPD-IF achieved an accuracy of over 90% in 0dB noise,
which is a 23% improvement over the best-performing multi-conditional MFCC-HMM
baseline.
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Chapter 5

Simultaneous Recognition of
Overlapping Sounds

In this chapter, we turn our attention to the challenging task of simultaneous recog-
nition of overlapping sound events from single channel audio. This problem naturally
occurs in the unstructured environments found in SER tasks, in addition to the prob-
lem of noise robustness that has been studied in the previous chapters.

The approach taken in this chapter is motivated partially by the limitations of
the current state-of-the-art techniques, in particular those of frame-based approaches
where each time frame contains a mixture of information from multiple sources that is
difficult to separate. Additional inspiration comes from the field of image processing,
where the problem of object detection in cluttered environments can be seen to have
many similarities with detecting overlapping sounds embedded in background noise.
Together, this leads to the development of a solution based on local spectrogram fea-
tures (LSFs) in the spectrogram, which capture the joint spectro-temporal information
surrounding keypoints detected in the spectrogram [8–10].

The chapter is organised as follows. Section 5.1 first provides the motivation for us-
ing spectrogram image processing to address the challenging task of overlapping SER.
Section 5.2 then introduces the proposed LSF recognition system based on local fea-
tures and the generalised Hough transform (GHT) detection mechanism. Experiments
are then carried out in Section 5.3 to evaluate the performance on an overlapping SER
task with noise and channel mismatch.
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5.1 Motivation
Acoustic information occurring in real-life unstructured environments is unlikely to be
captured as a stream of isolated sound events. Hence, it becomes a challenging task to
detect and segment overlapping sounds from a single continuous audio stream. Many
state-of-the-art SER systems are not designed for this purpose, since they generate
a model of the sound that assumes each event will occur in isolation. Those that
do address the problem, such as Factorial HMMs (FHMMs) [248, 249], often have
limitations such as computational complexity or a fixed number of overlapping sources.

It should be noted that an alternative approach to the problem of overlapping
signals is to make multiple simultaneous recordings of the auditory scene using a mi-
crophone array. This enables multi-microphone techniques, such as beam-forming [76]
and statistical independence [250], to be used. However, such techniques often require
assumptions about the nature of the environment, and the performance may also de-
grade rapidly in noise [251]. In addition, the methods are often designed to recover the
sources for human listening, and therefore may contain considerable distortions that
make them unsuitable for the task of SER. Therefore, these multi-microphone tech-
niques are not considered any further, since the focus in this chapter is the arguably
more challenging task of simultaneous recognition of overlapping sound events from a
single microphone.

The rest of this section now discusses the motivation for addressing the problem
of overlapping SER, including the limitations of the state-of-the-art and inspirations
that can be found from both human hearing and image processing.

5.1.1 Problem Description

Two sounds that occur simultaneously will be received as a mixture of the two by a
listening device such as a microphone. This happens frequently in practically every
real-life environment, including applications occurring in indoor spaces such as offices
or meeting rooms, and outdoor places such as restaurants or train stations. For a
human listener, the task of separating and recognising these overlapping sounds is
intuitive and simple. For speech, it is commonly referred to as the “cocktail party
effect”, where a person is able to follow a particular conversation from a room filled
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with competing speech and sounds [252].
For sound events, the problem remains essentially the same. For example, an acous-

tic surveillance system may have the task of detecting gunshot sounds from a crowded
public place with a range of background noise. However, the problem of overlapping
sounds is often overlooked in most SER systems, where the more general problem of
noise robustness is more thoroughly researched. An example of this trend can be seen
in results for CLEAR evaluation of sound events occurring in the meeting room en-
vironment [13, 27]. Here, it was found that overlapping segments were responsible for
70% of the errors produced by the majority of the competing systems [38]. This result
should have been expected, since the majority of the systems were not designed for
anything other than isolated sound events. This is despite the significant implications
of developing a system that can achieve simultaneous recognition of overlapping sound
events in practical applications.

The difficulty faced by conventional systems for SER is that the training often
occurs in a controlled environment, without any examples of overlapping sound events.
This means that the sound event model captures only information about the sound
in isolation, and hence overlapping sound events will produce a low score against
all of the trained models. In addition, most conventional systems use frame-based
features such as MFCCs, which represent a complete slice of the frequency spectrum
at each increment in time. This leads to a problem, since the combined spectral
information is made up of contributions from each source according to the MixMax
interaction between the two signals [98], as previously detailed in equation (4.1). The
resulting feature therefore represents a mixture of the different sources, which can be
extremely difficult to separate using conventional mask estimation methods without
prior knowledge of one of the signals.

An example of the overlapping problem is given in Fig. 5.1. This shows the spec-
trogram of three sound events – bell, horn and whistle – which are strongly overlapped
in time, and additionally are captured in the presence of background noise. The spec-
trogram shows that the harmonic of the bell becomes completely overlapped by the
stronger whistle sound at around frame time t = 40, such that the bell sound is com-
pletely masked and can no longer be heard. In addition, this mixture is overlapped
with a horn sound between frames t = 30 − 100, although most of the horn’s energy
is occurring at a different frequency. This type of challenging scenario is the focus of
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this chapter.

5.1.2 Limitations of the State-of-the-Art

Although the topic of simultaneous recognition of overlapping sound events from a
single audio stream is important, it has not been the subject of extensive research [38].
The small number of previous works that do exist can be separated into three different
methodologies: direct classification, spectrogram decomposition and computational
auditory scene analysis (CASA). These approaches are introduced in this section, along
with a discussion of their limitations that may reduce their effectiveness in practical
applications.

Direct Classification This is where a conventional acoustic modelling technique is
used, but either the training or testing approach has been modified to compen-
sate for the presence of overlapping sound events. An early example of this,
originally developed for overlapping speech in ASR, is Factorial HMMs (FH-
MMs) [248, 249]. A conventional GMM-HMM model is used, but the Viterbi
decoding process is modified to find the best combination of hidden mixture
states to explain the observed feature. It can also be simplified as a MixMax-
GMM, which is equivalent to FHMM but using only one hidden state [253]. The
disadvantage is that the combinatorial nature of the problem results in extremely
high computational complexity, which limits the number of simultaneous sources
that can be recognised in practice.

A simpler approach is therefore to modify the training to include a category con-
taining different combinations of overlapping sound events, then perform con-
ventional classification [254]. This is the approach taken in [38], where the first
SVM classification stage assigns the input as either isolated events or a com-
bined “overlapped” class. This is then expanded in a second hierarchical SVM
to identify the overlapped combination. The disadvantage of this approach is
that it requires sufficient training samples of the overlapped sounds in advance.
These should cover each possible degree of overlap, hence may not always be
available. It also requires a different class for all the possible overlapping sound
event combinations, which in practice limits the number of simultaneous sounds
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(a) Example of bell, horn and whistle sound events overlapping with non-
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Figure 5.1: Example of three overlapping sounds in the presence of non-stationary
background noise. This demonstrates the challenging problem of simultaneous recog-
nition of overlapping sound events.
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to just one or two due to the increasingly large number of combinations. Other
approaches include detecting ridges in the spectrogram and extracting features
by combining different segments to form hypotheses [255, 256]. An alternative
idea is to fuse audio and video features to provide complimentary information
during overlapping regions [39]. More recently, an approach has been devel-
oped to transform the probabilistic distribution of the subband information to
a new domain that is sparse and additive [257]. The idea is that overlapping
sound events form separate peaks in the new representation, such that SVM can
be used to detect these peaks corresponding to the overlapping sound events,
within a confidence interval. However, it is noted that this approach may not be
suitable for all combinations of sound event classes, especially those which have
similar subband spectral distributions.

Spectrogram Decomposition This is a form of blind source separation that uses
factorisation to decompose the input signal into its constituent sources. Since the
log-spectral values in the spectrogram can easily be made to be fully positive, the
most common approach is to use non-negative matrix factorisation (NMF). This
is an unsupervised decomposition similar to PCA, but with different constraints.
The approach in [258] is to use NMF to decompose a spectrogram containing
overlapping sound events into four components, where different sound events may
be separated into different components for recognition. This is shown to improve
upon a similar system that performs simple recognition without factorising the
input audio stream [43]. A more recent NMF approach decomposes the frames
in the spectrogram into a set of templates, such that the activation of these
templates during testing can be used as a measure to detect the overlapping sound
event classes [259]. The approach also applies additional constraints, such as
sparsity, to the NMF to improve the decomposition. This can help to improve the
factorisation during testing, particularly in cases where the system is presented
with mixtures containing unknown sound events or noise. It is noted however
in [258] that the problem of controlling the outcome of the factorisation is one
of the major difficulties with the NMF approach, and is an ongoing topic of
research.

Computational Auditory Scene Analysis This was previously introduced in Sec-
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tion 2.2.2 as a state-of-the-art method for robust SER. However, it can also be
applied to the problem of overlapping sound events. The idea is to generate a
set of masks that can segment the spectrogram into regions corresponding to
the different overlapping sources [20]. The segmentation is typically achieved by
grouping the spectrogram elements based on their observed properties and cues,
for example regions that share a common onset and offset time [21]. The masks
can then be used in a missing feature recognition system [103, 104], with one
pass required for each sound source to be recognised. As discussed in Section
2.2.2, the problem with such systems is that it is difficult to reliably generate
the mask, and errors in this stage significantly affect the subsequent recognition.
The problem of mask estimation is also magnified for simultaneous sound event
sources, as the problem cannot be simplified by assuming a single source in the
presence of background noise.

Together, each of the techniques discussed above has their advantages and disadvan-
tages. Therefore the challenging task of simultaneous recognition of overlapping sound
events remains an open and interesting research topic.

5.1.3 Inspiration from Object Detection

Although the spectrogram has important characteristics that make it different from
conventional images, some of the fundamental problems faced in SER are similar to
those in image processing. In particular, the problem of recognising sound events that
are overlapped with other sound events and noise can be seen as being similar to the
problem of detecting overlapping objects in a cluttered scene. This is the task of object
detection, which has been extensively studied in the field of image processing.

An example of a typical object detection problem is given in Fig. 5.2. This image
shows a scene containing several objects placed on a chair in the corner of a room.
When compared to the spectrogram in Fig. 5.1, which contains three sound events
overlapping in the presence of background noise, the following similarities can be ob-
served:

location – in both cases the location of the object or the sound event is not known
in advance, hence must be detected. It should be noted however that while
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Figure 5.2: Example of the problem of object detection. Here, the box can be detected
from the cluttered scene using the SIFT method from [207], where the blue lines
indicate the matches with the training image.

the object location is typically two dimensional, the location of the sound in the
spectrogram is largely constrained by the frequency content, hence only the onset
of the sound in time needs to be detected.

occlusion – for conventional images there is occlusion when objects overlap with each
other, such that the closer object to the viewpoint will physically obscure any
that are further away. In the spectrogram, sound events merge with each other
as opposed to occlude each other. However, due to the MixMax principle [98],
the sound event with the highest energy in a given time-frequency region can
be assumed to mask any lower energy sounds in a way that is equivalent to
occlusion.

background – while the stochastic noise forms the variable background of the spec-
trogram, the background of a conventional image may also vary depending on
the location of the scene. In both cases, the background is often less important
than the sound event or object to be detected.

Each of these factors introduce challenges in designing a suitable recognition system.
However, many of these have already been addressed by research in the field of object
detection. An example of one such approach is shown in Fig. 5.2, where the SIFT
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system from [207] can be used to detect the box in the scene. The method finds cor-
respondences between the training image and the new scene, as demonstrated by the
blue lines overlaid on the figure, and can allow for changes in size or rotation of the
target object. The key to SIFT, and several other state-of-the-art approaches, is to
use local features that are extracted from the area surrounding keypoints detected in
the image [206,217–219]. This is important, because an individual local feature is less
likely to be affected by either occlusion or changes in the background, compared to one
that characterises the pixel information across the whole image. The problem of recog-
nition is then to find the geometrical correspondences between the sets of local features
extracted in training and testing. One solution is called the generalised Hough trans-
form (GHT), which can find the geometrical correspondences using a voting procedure
based on the independent local features extracted from the image [177,215]. The idea
is that a distribution function can be associated with each local feature, and then used
as a voting function that is summed in the Hough accumulator. A local maxima in
the accumulator will then be generated if a number of local features belonging to the
same object all vote for the same pose. As the GHT is fundamental in both SIFT, and
several other state-of-the-art object detection systems [206,218,260], a brief review of
the technique is now given below.

Hough Transform

The Hough transform was originally designed to detect parametrised lines and curves
[177], and was only expanded later to cover arbitrary shapes through the GHT [215].
To understand the detection mechanism, consider the simple example shown in Fig.
5.3a, which contains two lines against a noisy background. Here, each point Pi = [xi, yi]

is considered as a local feature, and therefore casts votes into the Hough accumulator
in Fig. 5.3b. The voting function is simply the distribution of all possible straight lines
that the point could belong to, covering all possible rotations: −90 < θ < 90. Using
the polar equation of a straight line, the Hough accumulator, H(r, θ), is therefore as
follows:

H(r, θ) =
∑

Pi







1, ∀r = xi cos θ + yi sin θ

0, otherwise,
(5.1)
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Hough transform.

Figure 5.3: Simple example of the Hough transform for overlapping straight lines in
noise. The result is two strong local maxima in the Hough accumulator indicating the
hypotheses for the two lines.

where r is the perpendicular distance from the origin and θ the angle from the horizon-
tal axis, as shown in Fig. 5.3a. Local maxima in the Hough accumulator correspond
to the combined evidence, from the individual points lying on the line, for a line hy-
pothesis with a given (r, θ). Importantly, the Hough accumulator space is sparse and
separable, such that two distinct hypotheses will not overlap, even if they are over-
lapping in the original image space. This is desirable for both object detection and
overlapping sound event recognition.

The extension of the Hough transform to the GHT allows for the detection of
arbitrary shapes that cannot be represented as an analytical equation. The GHT
requires a codebook of local feature information to be learnt during training, which
stores both the local feature template and a geometrical voting function. This voting
function models the geometrical distribution of the codebook entry in the training
images, relative to an anchor point, for each class of object to be detected. Then, during
testing, the matched codebook entry for each local feature casts votes for possible
locations of the anchor point into the Hough accumulator for each object class. Then, as
before, the local maxima in the accumulator correspond to hypotheses for a particular
object. This therefore maintains the key principles of the Hough transform, such as
independent voting of local features and a sparse and separable accumulator space.
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Extension to Overlapping Sound Event Recognition

A similar process can be used to develop a sound event recognition system that is robust
to overlapping sounds, noise and distortion. This could use local features, similar to
those used in object detection systems [206,260], and then use their geometrical infor-
mation to connect independent glimpses of sound events occurring across disconnected
regions of the spectrogram [261]. However, it may not be appropriate to directly apply
such object detection techniques to overlapping SER, due to the differences between
the spectrogram and conventional images. Therefore, the following extensions can be
used to take advantage of the information available in the spectrogram:

reference point – assuming that the sound event cannot shift in frequency, or rotate
like an conventional object, the reference point can simply be the onset of the
sound, since this often carries important information about the sound.

keypoint detection – this can be simplified, since the most important and reliable
keypoints in the spectrogram are simply the sparse peaks of the sound event that
carry the most energy.

three-dimensional modelling – the geometrical distribution of the local features
(LSFs) can be modelled over time, frequency and spectral power. This captures
more information than simply the two image dimensions, as it models the full
trajectory of the sound including increasing and decaying spectral profiles.

local missing feature mask – as background noise may affect the spectral informa-
tion in the LSF extracted from the keypoint, a local missing feature mask can
be estimated to allow reliable matching with the codebook. Unlike traditional
mask estimation, this can be estimated independently for each keypoint, which
means that any errors in the noise mask will only affect a single keypoint and
have a negligible effect on the overall result.

mixmax occlusion – regions of the sound event that are missing can be evaluated
according to the MixMax relation between overlapping signals. This is different
from object detection, where opaque occlusion between objects does not allow
for such additional reasoning.
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Combining these aspects can produce a more robust system for overlapping sound
event recognition, as introduced in the next section. It also provides a novel and
significant departure from conventional frame-based approaches that are common in
the domain of audio processing. It also has an advantage over conventional HMM
recognition systems, in that a sound can still be recognised even when a proportion of
features is missing or corrupted due to noise or overlapping sounds. This is because
the GHT is a summation of independent evidence, unlike HMM where the likelihoods
are multiplicative, such that noise or overlapping sounds affecting one part of the
feature has an adverse affect on the whole recognition. It also has further advantages
compared to state-of-the-art techniques for overlapping SER, in that it does not require
any assumptions about the possible overlapping combinations or require training on
samples with different degrees of overlap between different sound events [38,253,257].
The idea of using local features from the spectrogram also has parallels with research
into the human understanding of speech [262]. Here it is suggested that the human
auditory system may be based on the partial recognition of features that are local and
uncoupled across frequency. Together, this inspiration can therefore be used to develop
a recognition system that is robust to noise and distortion, by connecting glimpses of
sound events occurring across disconnected regions of the spectrogram [261]. This is
the approach taken in this chapter, which is further developed in the next section.

5.2 Local Spectrogram Feature Approach
In this section, an approach for simultaneous recognition of overlapping sound events
is introduced, based on the idea of using Local Spectrogram Features (LSFs). The aim
is to overcome the limitations of the current state-of-the-art methods, which commonly
have to make limiting assumptions about either the overlap between the sound events,
the decomposition of the spectrogram, or the missing feature mask. The LSF approach
is developed based on the concept of spectrogram image processing, and inspired by
previous works on object detection. This section first gives an overview of the LSF
approach, followed by a detailed description of each step in the algorithm, includ-
ing keypoint detection, local feature extraction and the generalised Hough transform
(GHT) recogniser that is key to the success of the system.
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5.2.1 Overview

The LSF approach takes inspiration from several state-of-the-art image processing
techniques that use local features combined with the generalised Hough transform
(GHT) to detect objects in cluttered real-world scenes [171,206,260]. The advantage of
such approaches is that local features are less likely to be occluded or distorted by other
objects in the image, compared to taking a global or segment-based view of the image.
When applied to sound event recognition, the idea is that each local spectrogram
feature (LSF) should contain a glimpse of the spectral information coming from a
single sound source [261]. This provides a key advantage over state-of-the-art audio
processing techniques, where global or frame-based features can contain information
from multiple sources that may be difficult to separate without prior knowledge of
the overlapping sources. It is also a natural progression of the work in this thesis, by
moving from the global view of the sound event image in the SIF and SPD methods,
to a local view of the information in the spectrogram in the LSF approach.

The challenge then is to recognise the sound event based on a set of LSFs extracted
from the spectrogram. This is solved through the use of the GHT, where each sound
event is modelled through the geometrical distribution of the LSFs in the spectrogram,
relative to the sound onset. During recognition, the GHT performs a summation of the
independent evidence from each LSF into the Hough accumulator space. When a set
of LSFs are similar enough to the geometrical distribution observed during training,
a sharp peak will be observed in the Hough accumulator corresponding to the onset
of the sound event. As there is a separate Hough accumulator for each sound event
model, an arbitrary combination of overlapping sound events can be detected simply
by finding local maxima in each accumulator space.

The LSF approach can now be summarised by breaking the approach down into
separate training and testing processes. Fig. 5.4 gives an overview of the training
process, which consists of the following steps:

1. Local feature extraction: in this step, “keypoints” are first detected in the spec-
trogram to locate characteristic spectral peaks and ridges. For each keypoint, an
LSF and local missing feature mask are extracted to represent the local spectral
region.

2. LSF clustering: this is performed to generate a codebook of local feature infor-

139



Chapter 5. Simultaneous Recognition of Overlapping Sounds

(2) Spectro-Geometrical

sound event modelling

(1) LSF Clustering

K-Means clustering 

for LSFs

Keypoints and LSFs extracted 

from all classes Keypoint-cluster 

assignments, λi k

GMM modelling for 
keypoint-cluster 

occurrences, Pi
X

Keypoint-cluster 

distributions, pk
X
([f,t,s])

Codebook, C

Keypoints and LSFs

for specific class, X

(3) Scoring Parameters
Spectral weighting for 

each cluster, Ck

Cluster scoring 

parameters, vk and wk

STFT Spectrogram Keypoint Detection

Local Spectrogram Feature (LSF) Extraction

L
o

c
a

l
F

e
a

tu
re

 

E
x

tr
a

c
ti

o
n

Keypoints: time-frequency location, 

spectral power, LSF, mask

Figure 5.4: Overview of the geometrical sound event modelling used in the LSF ap-
proach. Here, the extracted LSFs are first clustered to form a codebook, then the
geometrical distribution of each codebook is modelled over time, frequency and spec-
tral power in a GMM.

mation.

3. Geometrical sound event modelling: each sound event is now modelled through
the geometrical distribution of the codebook clusters in the training spectrograms
over time, frequency and spectral power, relative to the sound event onset.

4. Scoring parameters: these are also extracted for each cluster to provide a thresh-
old for verification during testing.

For recognition, it is assumed that the combination of sound events in each clip
is not known in advance, and that the onset and relative magnitude of the sound
events may have changed between training and testing. Hence, it is not possible to
directly fit the geometrical distribution models learnt during training to the observed
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Figure 5.5: Overview of the proposed LSF recognition system.

keypoints, without first detecting the onset of the sound. However, the clustering in
step (2) of the training enables each LSF to be represented by the information contained
in the closest matching codebook entry. In particular, the geometrical distribution
information associated with the codebook entry can be used as a voting function to
provide a detection mechanism using the GHT. This must be followed by further
scoring and verification that can take account of changes in magnitude between training
and testing, and any keypoints that may be missing due to overlapping sound events.
The testing process therefore consists of the following steps, as outlined in Fig. 5.5:

1. Detection using the GHT : the LSFs are first matched onto the codebook to pro-
vide a mapping to the geometrical distribution information learnt during training.
This is then used as a voting function for the GHT, which generates sound event
hypotheses by finding local maxima in the Hough accumulator space. Each hy-
pothesis consists of a class label, the estimated onset time of the sound event,
and the set of keypoints that contributed to the hypothesis.

2. Hypothesis scoring and decision: each hypothesis is examined by first estimating
the relative magnitude of the sound event between training and testing. This
is performed using a second GHT based on the conditional distribution of the
observed log-spectral power difference given the hypothesised sound event onset.
Finally, the keypoints that contributed to the hypothesis can then be scored
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against the full sound event model over time, frequency and spectral power.
Missing keypoints are also allowed to contribute to the hypothesis score by using
prior information about each cluster that is learnt in training. Together, the
output score is compared to the thresholds obtained during training to produce
a decision.

The idea is that a sound event can only be recognised if both the LSFs match to the
correct codebook clusters, and the keypoints have the same geometrical distribution
as found during the training. Then, even if random fluctuations in the stochastic
noise incorrectly match a particular codebook cluster on the background, this will not
generate a strong hypothesis as they will not combine with other keypoints to match
the localised geometrical distribution of the clusters found during training. The rest
of this section now describes each of the training and testing steps in detail.

5.2.2 Local Spectrogram Feature Extraction

Extraction of Local Spectrogram Features (LSFs) is based on the log-power Short-Time
Fourier Transform (STFT) representation of the sound, S(f, t), where f represents the
frequency bin and t is the time frame. Each spectrogram, S(f, t), is of size F × T ,
where the frequency dimension, F = 129, is determined by the sampling frequency
of 16kHz and a 16ms time window with a 50% overlap. The time dimension of the
spectrogram, T , varies according to the length of the clip, with approximately 125
frames per second. The LSF extraction then consists of two steps: (1) detecting
keypoints in the spectrogram and then (2) characterising the local region surrounding
each keypoint with an LSF.

In image processing, many previous methods have been developed for both key-
point detection [165] and local feature extraction [213]. However, these approaches
may not be the best for the spectrogram, as there are important differences between
spectrograms and conventional images, as discussed previously in Section 3.1.2. In par-
ticular, the intensity of each cell in the spectrogram is directly related to the energy
and information contained in the signal. This is unlike in image processing where local
gradients are typically more important than intensity or colour values [165]. Therefore,
keypoints can be detected simply by finding the local maxima in the spectrogram that
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correspond to the characteristic sparse peaks in the sound event. A local SNR can also
be used as a measure for filtering out the less important keypoints.

The sound information can also be characterised directly in a feature based on the
local spectral region surrounding each keypoint. Therefore, both keypoint detection
and LSF extraction can be combined into a single extraction step that is based on
the same local spectral information. The shape of the local region is then important
for defining the local information that is extracted from the spectrogram. In partic-
ular, it is important to ensure that the LSF contains information from only a single
sound source, even in the case of overlapping sounds, as otherwise the LSF may not
match against the correct codebook entry. Therefore, it is not suitable to capture the
surrounding 2D region using a square or circle shape as this will contain information
from overlapping sounds. An example of this can be seen clearly in Fig. 5.6a, where
the bell and phone ringing sounds are overlapped. Therefore, here it is proposed to
use a “plus-shaped” local region to form the basis for both the keypoint detection
and LSF extraction, as shown schematically in Fig. 5.6b. The idea is that the plus
shape is composed of the local spectral and temporal shape separately, such that it
gives a “glimpse” of the local spectrogram information in two dimensions [261]. This
ensures that keypoints can be detected on both short impulsive sounds, which appear
as vertical lines in the spectrogram, as well as on harmonic sounds that appear as
horizontal lines. It is also more likely to capture information from a single sound from
an overlapping mixture due to the spars nature of the sound events. An example of
this can be seen for the bell sound in Fig. 5.6a. Here, although the local region is
dominated by the phone sound, the keypoint highlighted in red can still be detected on
the harmonic of the bell, and the extracted LSF provides a glimpse of the bell sound
from the overlapping mixture.

The plus-shaped local region for the LSF is composed of the local horizontal and
vertical spectral shapes within a radius D of the central point, as follows:

QT (f, t, d) = S(f, t+ d)

QF (f, t, d) = S(f + d, t)
for −D ≤ d ≤ D (5.2)

where QT and QF separately capture the local time and frequency dimensions respec-
tively. From preliminary experiments it was found that D = 6 was small enough to

143



Chapter 5. Simultaneous Recognition of Overlapping Sounds

20

40

60

80

100

120

20 40 60 80 100 120 140 160

F
re

q
u
e
n
c
y
 b

in
, 
f

Time frame, t

Bell Ringing

Phone Ringing

1
3

5
7

9
1
1

1
3

F
re

q
u

e
n

c
y
 b

in

1 3 5 7 9 11 13
Time frame

X = Keypoint

b) Detail of each LSF

QF ↓

QT→

D=6

a) Spectrogram showing a bell and phone sound event

overlapping.

Figure 5.6: Example of bell and phone ringing sounds overlapped, where × represents
the detected keypoints. The highlighted region on the right gives an example of the
proposed plus-shaped LSF, where the yellow boxes indicate the local horizontal and
vertical spectral information that is used to form the feature. In the example shown,
the LSF is able to provide a glimpse of the bell from amongst the mixture with the
phone sound.

localise the spectral peaks, but large enough to provide a feature for clustering, hence
is used throughout. With a radius of D = 6, each LSF represents a local region with
a frequency range of approximately 800Hz and a time window of 100ms.

The task of keypoint detection is then defined as selecting a set of points in the
spectrogram as follows:

Pi = {fi, ti, si} , (5.3)

where i is the index of the keypoint and si = S(fi, ti) is the log-spectral power. These
are detected at locations that are local maxima across either frequency or time, subject
to a local signal-to-noise ratio (SNR) criterion, as follows:
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S(fi, ti) ≥



















max
d

(

QT (fi, ti, d)
)

, or

max
d

(

QF (fi, ti, d)
)

, and
∀ 1 ≤ |d| ≤ D

η(fi, ti) + δSNR

(5.4)

where η(f, t) is the local noise estimate, and δSNR = 5dB is the local SNR threshold
[103] that must be exceeded for the keypoint to be detected. The local noise estimate
is generated as follows:

η(f, t) =
1

2D
min

(

∑

1≤|d|≤D

QT (f, t, d),
∑

1≤|d|≤D

QF (f, t, d)
)

. (5.5)

This represents the minimum of the two means over the horizontal and vertical lo-
cal spectral dimensions, such that an approximate local estimate of the noise can be
obtained.

For each detected keypoint, Pi, an LSF, Li, is extracted from the local spectrogram
region surrounding the detected keypoint. Here, the normalised plus-shaped local
region is used, such that the LSF characterises only the local spectral shape and not
the magnitude of the sound. This is important, as the magnitude of the sound may
vary between training and testing. Instead, the magnitude information is captured
in the geometrical distribution model of the sound, which is described later. The
proposed LSF can therefore be written as follows:

Li(d) =

[

QT (fi, ti, d)

si
,
QF (fi, ti, d)

si

]

, ∀ 1 ≤ |d| ≤ D (5.6)

where si = S(fi, ti) is the spectral power at the keypoint. This is concatenated into a
single vector, Li(z), of length 4D, where z = 1, . . . , 4D is a new variable introduced to
denote the dimensions of the LSF vector.

As noise may distort the local spectral information between training and testing, a
missing feature mask, Mi, is also extracted for each LSF as follows:

Mi(z) = sign
(

Li(z)−
η(fi, ti)

si

)

(5.7)

where z = 1, . . . , 4D is the variable representing the LSF dimensions and η(f, t) is the
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local noise estimate from (5.5). Note that Mi(z) = −1 denotes the unreliable LSF
dimensions.

5.2.3 Geometrical Sound Event Model

The next step is to train a geometrical model of each sound class, based on the key-
points and LSFs extracted from the spectrogram. This process consists of three steps,
as shown previously in Fig. 5.4: (1) all extracted LSFs are clustered to form a code-
book of local spectral information that is independent of the sound class, and then
(2) the geometrical distribution of keypoints assigned to each cluster are modelled for
each sound class to provide a voting function for the GHT during recognition, and
finally (3) several scoring parameters are extracted to provide a threshold to control
the verification of matches during testing. While this algorithm is inspired by the ob-
ject detection approach of [206], unlike in image processing it is possible here to model
the sound geometry over three dimensions: frequency, time and spectral power. This
captures the full trajectory of the sound in the spectrogram, and enables the approach
to distinguish between rising and falling tones occurring with the same LSF patterns.

Codebook Clustering

For this first step, K-means clustering is used, where the output is a set of K codebook
entries, Ck, where k = 1, . . . , K, such that λi→k denotes the assignment of LSF Li to
cluster Ck. Each dimension of the codebook entries, Ck(z), is modelled as a Gaussian
distribution, with the mean, µk, and variance, σ2

k. The idea is to capture information
about the distribution of spectral values associated with each dimension of the LSF
codebook entries. This enables the use of missing feature marginalisation to perform
robust matching when noise corrupts the local signal information. The codebook
entries are calculated as follows:

µk(z) =
1

nk

∑

λi→k

Li(z)

σ2
k(z) =

1

nk

∑

λi→k

[

Li(z)− µk(z)
]2

(5.8)
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where z = 1, . . . , 4D are the LSF dimensions, and nk represents the number of LSFs
assigned to cluster Ck. The number of clusters, K, must be chosen such that the code-
book is able to model the LSF patterns sufficiently well. In preliminary experiments,
it was found that as long as K is large enough, for example K = 200, the performance
did not vary significantly and the clustering produced compact clusters with a small
variance. Hence this number is used throughout.

Geometrical Keypoint Distribution Model

The next step is to model each sound class, X, through the geometrical distribution
of the observed keypoints, PX

i , assigned to each cluster in the training samples. For
this, a reference point for the temporal distribution of keypoints is required, as this
normalises the distribution information from different samples of the same sound class.
In object detection, typically a central point on the object is used as a reference point.
However, for sound events, the onset time is a more suitable reference point, since
many sounds are impulsive and carry important information at the onset. Therefore,
the keypoints in each training sample are first normalised to have the same onset, such
that:

t′i = ti − tON , (5.9)

where tON is the onset time. As clean isolated samples are used for training, the first
keypoint detected in each sample is used as the sound onset.

The geometrical cluster occurrence distribution of sound class X is then modelled
over frequency, f , time, t, and spectral power, s. This is achieved using a three-
dimensional GMM probability density function (PDF), which can be written as fol-
lows:

pXk
(

[f, t, s]
)

=

mk
∑

m=1

ckmN
(

[fi, t
′
i, si]; ν

X
km,Σ

X
km

)

(5.10)

where mk is the number of mixture components in cluster k, ckm is the weight of
the mth component and N ([f, t, s]; νX

km,Σ
X
km) is a multivariate Gaussian model, with

mean vector ν and covariance matrix Σ. The PDF is estimated using the algorithm
from [263], which uses a Kurtosis-based mode splitting method that does not require
any prior knowledge about the number of mixtures required to model each cluster.

A graphical illustration of the geometrical modelling is given in Fig. 5.7 for the bell
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Figure 5.7: Example of the cluster geometrical occurrence distributions (marginal over
time and frequency) for the top three clusters from the model of a bell sound.

ringing sound event that formed part of the previous overlapping mixture in Fig. 5.6.
The figure shows both the matching of local features onto the codebook, and a model
of their geometric distribution, for the top three clusters from the sound event model.
It can be seen that both the onset and the harmonic of the bell can be neatly modelled
by a small number of localised clusters, as it is found that the neighbouring LSFs have
a similar spectral shape. This shows that it is possible to characterise sound events
firstly through the matching of the LSFs onto a codebook, and secondly the geometrical
distribution of the corresponding keypoints in the spectrogram relative to the sound
onset.

Due to the fact that the codebook clustering takes place over LSFs extracted from
all sound event classes, not every cluster in the codebook will appear for every class.
Therefore, it is only necessary to model a subset of clusters that contributed the
highest numbers of keypoints for the given class, nX

k . This ensures that only the most
consistently occurring clusters are used to model the sound. Here the cut-off for the
number of keypoints is chosen such that the trained model explains 95% of the observed
keypoints in the training samples.

Cluster Scoring Parameters

The final step in the modelling process is to extract scoring parameters, which are
used as a threshold for hypothesis verification during testing. The first parameter is
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the voting count of the cluster, vXk , which represents the average log-spectral power
assigned to the cluster:

vXk =
1

N

∑

λX
i→k

si (5.11)

where N is the number of training samples provided for the class, X, and λX
i→k repre-

sents LSFs from class X assigned to codebook cluster, Ck.
The second is the cluster score, wX

k , which represents the relative weight that the
cluster contributes to the sound class:

wX
k =

vXk
∑K

k=1 v
X
k

(5.12)

where K is the number of clusters in the codebook. Note that the spectral power is
used, as opposed to simply the number of keypoints, as this gives more weight to the
peaks in spectrogram, which carry more sound information than those with a lower
spectral power.

During recognition, vXk is used as a cluster decision threshold, which must be ob-
tained before the cluster k can be determined to have existed in the sound clip. Then,
wX

k is used to score the hypothesis by summing together the scores of the detected
clusters. Since

∑K
k=1 w

X
k = 1 for each sound class, a threshold can be set for accepting

a hypothesis to provide the desired tradeoff between false rejection and acceptance.
In addition to this, there may be keypoints missing during testing due to over-

lapping regions with other sound events or noise. Therefore it is desirable to enable
information from these missing keypoint locations to contribute to the cluster score.
The solution employed here is to calculate the expected spectral magnitude of each
cluster at time-frequency keypoint locations that have the highest likelihood in the geo-
metrical sound event model. This expected magnitude value is then used as a threshold
during testing to determine if a keypoint may be missing. In particular, if the observed
spectral magnitude at these locations is greater than the threshold, without a keypoint
being detected, then the expected keypoint magnitude is allowed to contribute to the
cluster score. This scoring process is detailed further in Section 5.2.5, while the ex-
pected magnitude of each cluster, SX

k (f, t), is calculated during training over a set of
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time-frequency locations as follows:

SX
k (f, t) =







argmax
s

pXk

(

[f, t, s]
)

, if pXk ([f, t]) > βk

0, otherwise.
(5.13)

where βk is a likelihood threshold that is set such that only the most likely 75% of
cluster locations are searched for possible missing keypoints during testing. This was
to found to produce good results in preliminary experiments.

5.2.4 Detection using the Generalised Hough Transform

Given the sound event model from the previous section, the GHT is now employed
to perform sound event detection. It does this by performing a summation of the
distribution functions from each LSF-cluster match into the Hough accumulator. The
idea is that all keypoints belonging to the same sound event in the spectrogram will
share a common onset reference point. Hence, it is possible to accumulate evidence
for the sound event based on the geometrical distribution models of each sound class.
This is because the distribution will only have a maximum value at the correct onset
time when the keypoint geometry matches the distribution found in the training.

A graphical illustration of this idea is shown in Fig. 5.8 for the example of a bell
sound that is heavily overlapped with the sound of a phone ringing. The process
consists of two steps: (1) match each LSF onto the codebook, and then (2) sum
the cluster distribution functions in the Hough accumulator. The figure shows that
the LSFs can be matched to the correct clusters from the geometrical model in Fig.
5.7, despite the overlap with the phone sound event. It can also be seen that strong
evidence for the bell sound onset has been accumulated, as indicated by a sharp peak
in the Hough accumulator corresponding to the onset time of the sound event. In this
way, it allows the system to recognise an arbitrary combination of sound events in the
spectrogram, including cases where two different sound events occur at the same time,
or two instances of the same sound class overlap in each other with a small time offset.
The two steps are now described in detail below.
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Figure 5.8: Schematic of the GHT voting process for the top three clusters of the bell
sound shown in Fig. 5.7. The method proceeds by first matching the LSFs onto the
codebook, then performing a GHT by summing the geometrical cluster distribution in
the Hough accumulator.

Codebook Matching

The first step is to match the LSFs against the codebook generated in equation (5.8).
The idea is to assign each LSF to the closest cluster, such that each keypoint can now
be represented by the information contained in the codebook entry. In particular, the
geometrical keypoint distribution model of the cluster, for each sound class, will later
be used as a voting function for the GHT.

To ensure a consistent performance in mismatched conditions, each LSF, Li, has
an associated missing feature mask, Mi from (5.7), where Mi(z) = −1 represents
the unreliable dimensions that may have been corrupted due to noise or overlap. To
utilise this information, bounded marginalisation is performed against the codebook.
This uses the observed spectral information as an upper bound for the probability
distribution, and has been shown to perform better than completely marginalising
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the missing dimensions [103]. Together, the reliable and unreliable dimensions sum
together to give an overall log-likelihood score, li,k, as follows:

li,k =
∑

z∈{Mi(z)=1}

logN
(

Li(z);µk(z), σ
2
k(z)

)

+

∑

z∈{Mi(z)=−1}

log

Li(z)
∫

−∞

N
(

Λ;µk(z), σ
2
k(z)

)

dΛ
(5.14)

where Λ represents the normalised spectral power in the LSF, as calculated in (5.6).
Each LSF, and its associated keypoint, Pi, is then assigned to the winning codebook
cluster, as follows:

λi→k = argmax
k

(li,k) (5.15)

where λi→k denotes keypoint Pi assigned to cluster Ck.

GHT Detection Mechanism

Given the assignments between each keypoint and a codebook cluster, λi→k, the class-
specific geometrical distribution model associated with the cluster, pXk , can now be
used as a voting function for the GHT. For each observed keypoint occurring at time
ti, the distribution of the reference onset time, relative to the keypoint, can be writ-
ten as pXk ([f, ti − t, s]). Since the relative magnitude between training and testing is
still unknown, the marginal distribution over frequency and time is used as the voting
function for the GHT. This voting function can be written as follows:

gXi (t′) = pXk

(

[f, ti − t] | f = fi

)

(5.16)

where pXk is the geometrical model from (5.10), fi, ti, are the frequency and time coordi-
nates of observed keypoint, and t′ = ti− t is the variable representing the hypothesised
onset time relative to the keypoint.

The Hough accumulator, HX(t′), for class X at time t′, is then the summation of
the voting functions as follows:

HX(t′) =
∑

λi→k

gXi (t′) (5.17)
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Figure 5.9: Example of the output from the LSF recognition system for the bell sound
extracted from the mixture of two sounds in Fig. 5.8. The detection hypothesis is
indicated by the sparse peak in the Hough accumulator in (a) at t = 13, which is then
scored against the trained model given the estimated relative magnitude from (b).

where λi→k are the keypoint-cluster assignments. Local maxima in the Hough accu-
mulator correspond to the combined evidence over a set of independent keypoints for a
sound onset. An example is shown in Fig. 5.9a, where the Hough accumulator for the
bell sound clearly shows a sparse peak indicating the onset from the mixture. These
local maxima can be found using the gradient-based approach of [264], since the Hough
accumulator is a sum of weighted GMM distributions. Each local maxima generates a
hypothesis, hy, as follows:

hy = {Xy, tON,y, P
y
i } (5.18)

where y is the index for the hypothesis, and each hypothesis is specified by its class,
Xy, onset time, tON,y, and set of contributing keypoints, P y

i . A minimum threshold
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is also set at 20% of the mean peak values obtained during training. This defines a
minimum amount of observed evidence for a hypothesis to be generated. In addition,
the contributing keypoints allow for a segmentation of the detected sound event to be
generated. An example of this is shown in Fig. 5.9c for the bell sound from the mixture,
and is generated by reconstructing the spectrogram using the codebook centres from
the keypoint-cluster assignments.

5.2.5 Hypothesis Scoring and Decision

The output of the GHT detection is a set of sound event hypotheses, hy, including their
onset times and contributing keypoints. However, the relative magnitude transfer
function of the sound between training and testing is still unknown, and must be
estimated before the hypotheses can be scored against the full distribution model from
training. The advantage of this step is that it enables the LSF system to detect
sound events even when the mixing proportions are unknown, or in the presence of
an unknown channel distortion. The scoring process is therefore as follows: (1) the
relative magnitude transfer function between training and testing is estimated for each
hypothesis, then (2) the hypotheses are scored against the sound event model, and
finally (3) a decision is made by comparing the score against the thresholds from
training. These steps are now described in detail.

Relative Magnitude Estimation

Assuming the sound is subjected to an unknown convolutive channel distortion in the
time domain, this becomes additive in the log-power STFT domain, as follows:

S(f, t) +R(f, t) ≈ S(f, t) +R(f) (5.19)

where S(f, t) represents the log-power STFT of a clean training sample, and R is the
transfer function between the observed spectrograms in training and testing. Here,
it is assumed that the response time of the channel is short, hence R(f, t) can be
approximated as R(f), such that the channel distortion does not vary with time. Note
however that the transfer function is permitted to vary across frequency, since this is
common in many real-life room or microphone impulse responses.
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The relative magnitude, R(f), can be estimated using the trained sound model,
pXk from (5.10). Since the onset for the hypothesis is already known, the conditional
distribution of the difference in log-spectral power is used as a voting function for a
second GHT. For each keypoint with index i, this is written as:

gyi (s
′) = p

Xy

k

(

[f, t, si − s] | f = fi, t = t′i

)

(5.20)

where s′ = si−s is the variable representing the spectral power difference and fi, t
′
i, si is

the three-dimensional location of the keypoint i in frequency, time and spectral power,
where t′i = ti − tON,y is the time relative to the hypothesised onset.

As in (5.17), the Hough accumulator, Hy
f (s

′), is the summation of the voting func-
tions. As R(f) may vary over frequency, the summation of the voting function is
performed separately for each subband, as follows:

Hy
f (s

′) =
∑

λy
i→k

gyi (s
′), ∀f = fi (5.21)

where λy
i→k are keypoint-cluster assignments for hypothesis hy.

The maximum value of the accumulator in each frequency subband can now be
found, which corresponds to combined evidence for a given relative magnitude transfer
function, R(f), in that subband. This is written as:

R(f) = argmax
s′

Hy
f (s

′) (5.22)

Note that R(f) = 0 represents an observed sound event with the same spectral power
as the training, and that values are permitted to be positive or negative since this
indicates a sound with a high or lower intensity relative to the training.

As some frequency subbands may contain very few keypoints, they do not represent
reliable evidence to estimate R(f). Therefore, subbands with less than 10% of the
maximum are replaced with the mean of the transfer function across the remaining
reliable values. Finally, the transfer function is smoothed using a moving average filter
of radius D = 6, since it is expected that there will be a smooth variation in R(f) over
frequency. An example is shown in Fig. 5.9b, where the bell sound is estimated to be
1dB less than the training samples on average, with the bell’s harmonic up to 2.5dB
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quieter than in training.

Hypothesis Scoring

Starting with the hypothesis, hy, that explains the largest number of keypoints, the
next step is to evaluate the observed keypoints and spectrogram for the hypothesised
class, Xy, and onset time tON,y against the trained model from (5.10). However, due
to the masking effect that occurs between overlapping sounds or noise, some keypoints
and LSFs may be missing. Missing keypoints are defined here as regions of the cluster
distribution where the expected magnitude, SX

k (f, t) as calculated in (5.13), is less than
the observed magnitude, S(f, t). To account for this, the scoring process allows missing
keypoint locations to contribute to the cluster score. Therefore, the cluster scores
are calculated separately for the observed keypoints, vyk,O, and the missing keypoint
locations, vyk,M , where the indices O,M refer to the observed and missing keypoints
respectively. The weighted sum of the scores is then used to find the final hypothesis
score, which can be compared to the score obtained during training to make a decision,
as described below.

First, the cluster voting score for the observed keypoints, vyk,O, is calculated by
summing together the spectral power of keypoints that contributed to the hypothesis.
This is analogous to the score obtained during training in (5.11), except keypoints are
not considered if they have a likelihood less than a threshold. This ensures that low
quality matches do not bias the output score, as these are more likely to have been
matched on the background. The cluster score is therefore calculated as:

vyk,O =
∑

λy
i→k







s′i, if pXy

k

(

[fi, t
′
i, s

′
i]
)

> γ
Xy

k

0, otherwise,
(5.23)

where λy
i→k are keypoint-cluster assignments for hypothesis y, γXy

k is a likelihood thresh-
old, and both t′i = ti − tON,y and s′i = si + R(fi) are set to align the keypoints with
the trained model using the hypothesised relative magnitude and onset time. The
threshold, γXy

k , is set for each cluster based on the likelihood distribution of keypoints
found during the training, such that 95% of keypoints are matched.

Next, missing keypoint locations that had a high likelihood in the training are
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allowed to contribute to the cluster score. As the keypoint is missing, the vote is based
on the expected keypoint magnitude for the cluster at that time-frequency location, as
follows:

vyk,M =
∑

S
Xy
k

(f,t)>0







S
Xy

k (f, t), if S(f, t′) > S
Xy

k (f, t)

0, otherwise.
(5.24)

where t′ = t− tON,y is the time relative to the hypothesised sound onset, and SX
k (f, t)

is the expected cluster magnitude, as calculated in (5.13), that must be exceeded for
the keypoint to be determined to be missing.

The final hypothesis score, score(hy), is then calculated as the sum of the cluster
weights, wX

k , but only for clusters that exceed a threshold in the voting score compared
to training. This is calculated as follows:

score(hy) =
K
∑

k=1







wX
k , if

(

vyk,O + α1v
y
k,M

)

> α2v
X
k

0, otherwise.
(5.25)

where vXk , wX
k were found during training using (5.11) and (5.12), α1 = 0.8 is a weight-

ing factor to balance the observed, vyk,O, and missing keypoints, vyk,M , and α2 = 0.5 is
a threshold that defines the minimum cluster score value required for the cluster to be
considered matched in the spectrogram.

Decision

If the hypothesis score exceeds a threshold:

score(hy) > Ω, (5.26)

then the hypothesis is accepted. This threshold can be varied to control the tradeoff
between false rejection and acceptance of hypotheses. In the following experiments,
Ω = 0.5 is used, such that at least half of the clusters must be matched for the
hypothesis to be accepted. This was found to provide a good trade-off in preliminary
experiments.

If the hypothesis is accepted, the given sound class Xy is considered to have been
detected at the onset time, tON,y. The keypoints that contributed to the hypothesis
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are then removed from further matches, and the next best hypothesis is evaluated until
all valid hypotheses in the clip have been tested.

5.3 Experiments
In this section, experiments are conducted to evaluate the performance of the LSF
system on a database of overlapping sound events in mismatched conditions. Several
baseline methods are also implemented and evaluated to provide a comparison for
the experimental results. The database is generated using a random overlap between
different classes of sound events, and both the noise and volume of the sound events
are adjusted to simulate real-world experimental conditions.

5.3.1 Experimental Setup

Database

As there is no standardised database of overlapping sound events, it was necessary to
simulate the experimental database using sound samples from the same RWCP Sound
Scene Database used in the previous chapters [159]. The following five classes are
selected: horn, bells5, bottle1, phone4 and whistle1. The isolated sound event samples
have a high signal-to-noise ratio (SNR), and are balanced to give some silence either
side of the sound. The selected categories are chosen to provide a significant amount
of overlap during testing. For example, the harmonics of the bell and whistle sounds
occur at the same frequency, the impulsive onset of the bell and bottle sounds are
similar, while both the horn and phone sounds span a wide time-frequency region of
the spectrogram. Amongst the sounds, the bottle1 class contains the most variation,
with five different bottles being struck by two different objects, although there is some
variation across all classes.

For each event, 20 files are randomly selected for training and another 50 for testing.
Given the 5 +

(

5
2

)

= 15 overlapping combinations for testing containing either one or
two sound events, this gives a total of 100 and 750 samples for training and testing
respectively, with each experiment repeated in 5 runs. For overlapping samples, the
onset times of the two sound events are randomly chosen for each clip to ensure that
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the temporal overlap is between 50 − 100% and that the order of the sound events is
randomised amongst the testing set.

Evaluation Conditions

For each experiment, training is carried out only in clean conditions using the 20
isolated samples from the database. The performance of each method is then eval-
uated under the following conditions, which are chosen to better simulate real-world
experimental conditions:

1. Clean: this is evaluated separately for both the isolated and overlapping sound
event samples.

2. Mismatched noise: “Factory Floor 1” [160] noise is added to the testing sam-
ples at 20, 10 and 0 dB SNR. This noise is chosen for its challenging, non-
stationary nature.

3. Change of Volume: the waveform of both sound events is pre-multiplied by one
of the factors {0.5, 0.75, 1, 1.5, 2} prior to combining them to form an overlapping
sound event signal. This simulates a channel transfer function that is closer to
the conditions observed in real-life applications.

As evaluation measure, the recognition accuracy (TP) and false alarm (FA) are cal-
culated over each of the sound classes, over 5 runs of the experiment. TP is calculated
as the ratio of correct detections to the number of clips containing occurrences of that
class. Analogously, FA is the ratio of incorrect detections to the number of clips not
containing that class.

Baseline Methods

For comparison with the proposed LSF approach, two state-of-the-art frame-based
baseline classification approaches are implemented. The first method is called MixMax-
GMM [265], which requires only isolated samples for training. The second is based on
the approach of [38], and is referred to here as Overlap-SVM. This method requires
both isolated and overlapping samples for training, hence provides an interesting com-
parison between the above methods. It is also notable that the LSF system performs
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recognition as opposed to the simpler task of classification. However, the baseline
classification methods are chosen to provide a well-performing benchmark and their
results should represent an upper-bound of their equivalent recognition systems.

The MixMax-GMM is based on a mathematical combination of two GMM models,
taking into account the MixMax approximation of two overlapping sound events [98].
The approach can be seen as a simplification of the full Factorial HMM approach using
a single HMM state [265]. Therefore, for overlapped class Z = X + Y , where X and
Y are two clean classes, the PDF, pZ , of the overlapped class can be decomposed as
follows [257]:

pZ(α) = pX(α)cY (α) + pY (α)cX(α) (5.27)

where cX is the cumulative density function (CDF) of class X and α represents the
36 dimension log-power Mel-frequency spectral coefficient (MFSC) features. Here,
the PDF is modelled using a 6-component GMM, and the maximum log-likelihood,
summed across all frames in the clip, is taken as the classification result.

The second baseline is referred to as Overlap-SVM, and is based on the approach
proposed by [38]. The same frame-based features are used as in [38], consisting of a
16 dimension MFSC, plus deltas and accelerations, the zero-crossing rate, short time
energy, spectral centroid, spectral bandwidth and 4 sub-band energies and spectral
flux. The mean and variance of the 60-dimension frame-based features is taken over
the clip, giving a final feature with 120 dimensions. This gives a total of 60 features for
each frame, and the final feature is the mean and variance of these features across all
frames in the clip, giving 120 feature dimensions in total. The method requires samples
for each of the 10 overlapping combinations for training, which are generated from the
isolated samples selected in the same way as described previously. The evaluation is
then carried out using a two-stage SVM. The first stage classifies the clip into either
the 5 isolated classes or an amalgamated “overlapping” class, containing all of the
remaining 10 overlapping combinations. If the output of the first stage classifies the clip
as overlapping, a second stage then determines the specific overlapping combination.
Here, a conventional one-against-one SVM classification is used for the second stage as
opposed to the tree-SVM structure used in the original method. This was done as it was
found that there was insufficient training data to benefit from the full tree-structure.
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Experiment Setup Proposed LSF Overlap-SVM MixMax-GMM
TP FA TP FA TP FA

Isolated Clean 99.3± 2.7 0.4± 2.4 100± 0.0 1.5± 3.4 99.6± 1.4 1.3± 5.8

Overlap 98.0± 3.4 0.8± 3.6 96.5± 7.3 1.3± 2.8 84.0± 29.3 5.2± 17.0

Overlap:
+ Noise

20dB 97.2± 5.0 0.7± 3.2 76.9± 39.0 18.6± 35.1 52.8± 44.9 27.8± 42.6

10dB 95.5± 9.1 0.9± 3.5 74.7± 40.9 20.9± 36.8 37.8± 42.9 25.1± 41.2

0dB 90.2± 17.6 2.5± 8.2 65.7± 41.9 25.8± 36.1 22.9± 38.8 20.9± 35.7

Overlap:
+ Vol.
Change

×0.5 98.1± 3.0 0.7± 3.3 84.0± 24.8 1.5± 5.0 56.0± 43.4 12.4± 27.8

×0.75 98.4± 2.9 0.5± 1.8 92.8± 13.1 1.1± 2.9 80.6± 30.0 4.4± 13.7

×1.5 98.4± 2.7 0.6± 2.1 95.9± 9.9 4.0± 11.4 82.0± 29.8 8.3± 21.6

×2 98.0± 3.3 0.7± 2.0 94.1± 14.7 7.0± 18.3 68.7± 40.7 23.7± 39.3

Average 97.0% 0.9% 86.7% 9.1% 64.9% 14.3%

Table 5.1: Experimental results across the various testing conditions. The values for
TP/FA (%) are averaged over 5 runs of the experiments, with the standard deviation
also reported (±). For the isolated experiment, the results are averaged over the 5
sound classes, while for the overlapping experiments, the results are averaged over the
15 overlap combinations. The entries in bold indicate the best result amongst the
three methods in each row of the table.

5.3.2 Results and Discussion

The results from the experiments on the LSF recognition system are now presented
and compared against those achieved by the baseline methods. First, the performance
of the methods in clean conditions is analysed, with both isolated and overlapping
results reported separately for comparison. Then, the performance is analysed in both
mismatched noise and volume change. The results demonstrate the superiority of the
LSF system across a range of experimental conditions, as described below.

Clean Conditions

The performance for each of the three methods in clean conditions is reported in the
first section of Table 5.1. For isolated sounds, it can be seen that the proposed LSF
approach performs well, achieving a TP of 99.3% for an FA of only 0.4%. Although
the TP is marginally lower than the two baselines, it is still within 0.7% of the best
Overlap-SVM baseline, which is a good result. In addition, the average FA for the
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Figure 5.10: ROC curve showing the TP/FA experimental results in 10dB noise when
varying the detection threshold Ω from (5.26).

LSF approach is an improvement of around 1% over the baselines, which indicates the
other methods are less good at rejecting false matches.

For overlapping sounds, the LSF approach outperforms the two baseline methods,
achieving a TP of 98.0% and an FA of only 0.8%. This is an improvement of 1.5%
over the Overlap-SVM baseline, and significantly better than the MixMax-GMM ap-
proach, which achieves a TP of just 84.0% with an FA of 5.2%. The performance of
the LSF system is also significant, considering that the Overlap-SVM baseline requires
overlapping sounds samples for training. Therefore, while Overlap-SVM is performing
classification in matched training and testing conditions, the LSF approach is perform-
ing recognition of the sound events and only requires isolated samples for training.

Mismatched Noise

The performance in mismatched conditions can be found in the second section of Table
5.1. The results show that the performance of both baseline methods declines rapidly
with increasing noise. In particular, the MixMax-GMM method approaches a TP of
20% at 0dB, which is close to a random guess. However, the proposed LSF approach
performs consistently well across all four conditions, and can still achieve a TP of
90.2% in 0dB conditions, for an FA of just 2.5%. This is an absolute improvement in
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Sound
Event Horn

Horn
Bells

Bells
Bottle

Bottle
Phone

Phone
Whistle

Bells Bottle Phone Whistle Bottle Phone Whistle Phone Whistle Whistle

Horn 100 100 100 95.6 99.6 0 0 10.8 0 0 8.4 0 10.8 6.8 0
Bells 0 97.2 0 0 0.4 100 100 63.2 80.8 0 0 3.2 0 0 0

Bottle 0 0 98.4 1.2 0 0 96.0 0.8 0 100 82.2 96.8 1.2 0.8 0
Phone 0 0 0 100 0 0 0 100 0 0 100 0 100 100 0

Whistle 0 0 0 0 95.6 0 0 0.4 94.4 0 0 95.6 0 93.6 96.8

Table 5.2: Detailed experimental results for the LSF method in 10dB Factory Floor
noise, showing the results for each of the 15 overlapping combinations. The values (%)
represent the percentage of clips with the detected sound event. Correct TP detections
are highlighted in bold.

both TP and FA of over 20% compared to the best performing baseline method, where
the Overlap-SVM method achieved a TP of 65.7%. Significantly, the Overlap-SVM
also has an FA rate of 25.8% in the 0dB conditions, which is much higher than the
proposed method, and would be intolerable in any practical system.

One reason for the poor baseline performance is that their frame-based features
cannot separate the overlapping signals and noise that occur at the same time in-
stance. To improve the results, it may be possible to use multi-conditional training
with similar noise conditions, but given the wide variety of overlapping combinations
this may not work in practise. Another way may be to use frame-based missing feature
masks, however reliable estimation of the mask is challenging, as discussed previously
in Section 5.1.2. The LSF system overcomes these problems by using features that are
local across frequency, and by utilising a local missing feature mask, hence recognition
can still be performed in the presence of competing signals.

Further analysis of the results for the LSF system is shown in the ROC curve in
Fig. 5.10, which shows the performance of the system in 10dB noise when varying the
threshold parameter Ω from (5.26). It can be seen that the system is able to achieve a
high accuracy for a low false alarm, although some sounds are difficult to detect even
with a low threshold value, as seen by the flattening off at the top of the ROC curve.
This may be caused by the physical overlap between certain sounds that are difficult
to separate and hence do not trigger a detection in the LSF system. This effect can be
seen more clearly in Table 5.2, which shows the average performance for each of the

163



Chapter 5. Simultaneous Recognition of Overlapping Sounds

overlapping combinations at the default threshold of Ω = 0.5. It can be seen that the
LSF approach has the most difficulty identifying other sounds in mixtures containing
the phone sound. In particular, the bell and bottle sound events are identified correctly
63.2% and 82.2% respectively when the phone sound was present. This result is because
the spectral information in the phone sound is spread over time and frequency, as can
be seen in the previous example in Fig. 5.8. This means that fewer keypoints for the
overlapped class will be detected and assigned to the correct clusters, hence recognition
is more difficult. In addition, the phone sound consistently caused false alarms for the
horn sound in around 10% of the clips, as there was a sufficient number of keypoints
incorrectly matched to produce the horn hypothesis. In future, this could be improved
by enhancing the scoring criteria to reject detections that completely overlap other
detections when there is insufficient evidence present.

Volume Change

The final experiment examined the performance under changing volume, and the re-
sults can be found in the last section of Table 5.1. The results show that the LSF system
performs consistently well, maintaining a TP above 98% for an FA below 0.7%. This
compares well to the baseline methods, where the TP drops and the FA increases as
the difference between the training and testing volumes increases.

Comparing the baselines, Overlap-SVM again performs significantly better, achiev-
ing a TP of 84% at 0.5× volume change compared to just 56% for MixMax-GMM. This
may be due to the fact that the feature set for the Overlap-SVM includes perceptual
features, such as zero-crossing rate and spectral centroid, which are less affected by the
simple change in volume. However, both method perform significantly worse than the
LSF method, which is able to estimate the unknown transfer function using the GHT
voting mechanism detailed in Section 5.2.5. In addition, the LSF transfer function is
able to vary across frequency, meaning it should be able to adapt to a wider range of
real-world conditions.

Sound Event Reconstruction

It should be noted that the LSF approach can reconstruct the observed sound event
based on the keypoints and clusters that contributed to the hypothesis score. This
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(c) Bell Ringing.

Figure 5.11: Example LSF reconstructions of the three overlapping sounds from Fig.
5.1, using the assigned codebook clusters to reconstruct the spectrograms of the sound
events. This also demonstrates that the LSF approach is not limited to a just two
sounds, since all three overlapping sounds can be recognised without modification to
the algorithm.

is possible because each of the detected keypoints is matched against the codebook,
and the codebook centre can be used to reconstruct the local spectral information. An
example of this was shown previously in Fig. 5.9c for a bell and horn overlapping,
and another example is shown below in Fig. 5.11 for each of the three overlapping
sounds from Fig. 5.1. These figures demonstrate that the observed regions of the
sound events can be well reconstructed, such that the output represents the spectral
information from the sound event in clean conditions. Additionally, it may be possible
to utilise information regarding the missing keypoints to reconstruct the entire over-
lapped sound, however the focus in this chapter is on recognition, hence reconstruction
is left for a future work.

Three Overlapping Sounds

A final example is to demonstrate the ability of the proposed LSF system to perform
recognition of more than two overlapping sounds, without any modifications to the
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algorithm. This is possible because no assumptions are required about the number of
sound events that may occur simultaneously, since the GHT generates a set of detection
hypotheses based on the observed evidence from the extracted keypoints and LSFs.

An example is shown in Fig. 5.11, where the bell, horn and whistle are recognised
and reconstructed from the noisy spectrogram example shown previously in Fig. 5.1.
Here it can be seen that even though the harmonic of the bell is similar in spectral
shape to the whistle, the segmentation is largely correct since the temporal distribution
of the whistle sound is different from the bell.

For the baseline methods, classification of this sample would not be possible, as
the Overlap-SVM requires training on all expected combinations in advance, and the
MixMax-GMM is currently only derived for two overlapping combinations. While it
may be possible to modify these methods to allow for the additional overlaps, this
involves increased training for Overlap-SVM, and increased computational effort for
MixMax-GMM. In addition, the additional overlapped classes would inevitably reduce
the performance of both methods compared to the results presented in this section.
However, without modification the LSF system can still recognise each of the three
sounds, with very few LSFs incorrectly attributed to the wrong sound. This highlights
a significantly benefit of the LSF approach over many of the state-of-the-art baseline
methods.

5.4 Summary
This chapter addressed the challenging task of simultaneous recognition of sound events
in overlapping and noisy conditions. This is motivated by both the challenging na-
ture of the problem, and the limitations of the state-of-the-art, which typically use
conventional frame-based systems or rely on the automatic decomposition of the spec-
trogram. However, the problem of recognising overlapping sound events in noise has
many parallels with object detection in image processing, where overlapping objects
may obscure each other and be set against an unknown background. Combined with
inspiration from human perception of sound, based on partial recognition of spectral
information across frequency, this provides the basis for the LSF approach introduced
in this chapter. The idea is to detect keypoints in the spectrogram, and then char-
acterise the sound jointly through both the LSF and the geometrical distribution of

166



Chapter 5. Simultaneous Recognition of Overlapping Sounds

the matching codebook cluster in the spectrogram. For recognition, this distribution
model can be used as a GHT voting function, where the independent information, ac-
cumulated across the set of keypoints in the spectrogram, provides evidence for sound
events in a space that is sparse and separable in challenging overlapping conditions.
Experiments were carried out on a simulated database of overlapping sounds, with
two baseline frame-based techniques implemented for comparison. The results demon-
strated that the LSF system performed significantly better than the baseline methods
in overlapping and mismatched conditions. In addition, the approach is able to de-
tect an arbitrary combination of overlapping sounds, including two or more different
sounds or the same sound overlapping itself, which is an important improvement over
the baseline techniques.
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Conclusions and Future Work

This thesis has focussed on the topic of sound event recognition (SER), where the
aim is to detect and classify the rich array of acoustic information that is present in
many environments. This is a challenging task in unstructured environments where
there are many unknowns, e.g. the number and location of the sources, and any noise
or channel effects that may be present. However, many state-of-the-art SER systems
perform poorly in such situations, particularly those that rely on frame-based features,
where each feature can contain a mixture of multiple sources or noise. This thesis has
developed novel approaches to address some of the challenges faced, in particular by
using inspiration from image processing as a foundation. The motivation stems from
the fact that spectrograms form recognisable images, with a characteristic spectral
geometry, which can be identified by a human reader. Hence, the idea is to base the
approaches on spectrogram image processing, with the time-frequency spectrogram of
the sound interpreted as a special case of a conventional image. To conclude the work,
Section 6.1 first summarises the contributions proposed in this thesis. Finally, Section
6.2 discusses some of the future directions that can be explored, and the challenges
that are still to be faced.

6.1 Contributions
The approach taken in this thesis has been to interpret the sound event spectrogram as
an image, where each pixel in the image represents the spectral power at a particular
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time and frequency. By taking this two-dimensional approach, the extracted features
naturally capture both spectral and temporal information together. This is different
from conventional frame-based audio features, which typically extract a feature that
represents only the spectral information contained within each short-time frame. By
combining image processing-inspired feature extraction from the spectrogram, with
techniques for noise robust recognition, the resulting methods can significantly im-
prove upon the state-of-the-art methods across a range of challenging experimental
conditions. This idea of using spectrogram image processing has formed the basis for
the contributions presented in this thesis, which are summarised below.

6.1.1 Spectrogram Image Feature

The idea of the SIF is to extract a visual signature from the sound’s time-frequency
spectrogram for classification, with the work published in IEEE Signal Processing Let-
ters [5]. The method first maps the grey-scale spectral values into a higher dimensional
space, by quantising the dynamic range into separate regions in a process analogous to
pseudo-colourmapping in image processing. This is inspired by the visual perception
of the spectrogram, where pseudo-colourmapping enhances the discrimination between
the high-power spectral peaks and the low-power stochastic noise in the background.
An image feature is then extracted from the quantised spectrogram that characterises
the local pixel distribution in the image, based on the colour layout feature from image
processing. This naturally captures the joint spectro-temporal information contained
in the sound event signal, hence can improve upon the frame-based spectral features
found in conventional state-of-the-art audio processing systems.

An evaluation was carried out using 50 sound event classes from the RWCP sound
scene database, with the SIF compared to the best-performing baseline methods drawn
from a wide range of different techniques. The results showed that the SIF achieved
an average classification accuracy of 88.5% across the four noise conditions, which
is an average improvement of 14.6% over the comparable ETSI-AFE baseline. The
ETSI method uses the same clean samples for training, and relies on noise reduction in
mismatched conditions to enhance the features prior to classification. Another baseline
method, based on MFCC-HMM with the multi-conditional training approach, achieved
a comparable performance to the SIF with an average accuracy of 88%. However, while
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multi-conditional training is a popular approach for mismatched conditions, it requires
a large amount of data for training, and may only achieve a good performance under
certain noise conditions.

Detailed experiments were also carried out to compare the different aspects that
contributed to the success of the SIF. These included varying the type of spectrogram
image used, and performing classification with and without the proposed dynamic
range quantisation. The results demonstrated that the quantisation step was key to
achieving a good result, with image feature extraction performed directly on the grey-
scale spectral values achieving an average classification accuracy of only 66.0%. Addi-
tionally, it was found that using the linear power spectrogram image was significantly
better than both the log power or cepstral representations. This is due to the sparsity
of the linear power representation, where the only the most reliable and characteristic
elements fall into the highest dynamic range quantisation, therefore producing a more
robust feature for classification.

6.1.2 Subband Power Distribution Image

Extending the previous work on the SIF, a novel sound event image representation
called the SPD was proposed, with the work published in the IEEE Transactions
on Audio, Speech and Language Processing journal [6], and in the Interspeech 2011
conference [7]. The SPD is a two-dimensional representation of the distribution of
normalised spectral power over time against frequency, which gives the SPD a fixed
dimension that is independent of the length of the clip. The temporal information
is captured implicitly through the distribution information, such that a characteristic
pattern will be visible in the spectrogram for different sound events. The advantage
of the SPD over the spectrogram is that the sparse, high-power elements of the sound
event are transformed to a localised region of the SPD, unlike in the spectrogram
where they may be scattered over time and frequency. This enables a missing feature
mask to be easily applied to the SPD, and the missing elements of the extracted image
feature can simply be marginalised in a missing feature classification system. Here, it
was proposed to generate the mask directly from the SPD representation, and then
to use the kNN method for classification, utilising the Hellinger distance measure to
naturally compare the distribution distance between image features.
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Experimental validation was carried out to analyse the performance of the proposed
SPD approach against both the SIF and the best performing baseline techniques, using
the same experimental database for comparison. The results showed that the SPD-IF,
requiring only clean samples for training, was both highly discriminative in clean con-
ditions and robust to noise in mismatched conditions. This was demonstrated through
an average classification accuracy of almost 96% over the four noise conditions, and
achieving over 90% in the challenging 0dB noise condition. This is a significant average
improvement of 7.4% over even the best-performing multi-conditional MFCC-HMM
benchmark, with the improvement increasing to over 23% in the 0dB noise condition.
The result reinforces the idea of using two-dimensional feature extraction techniques
for sound event recognition, since the performance exceeds even the state-of-the-art
multi-conditional training method in both clean and challenging mismatched noise
conditions.

6.1.3 Local Spectrogram Features

The final work on the LSF focussed on the challenging task of simultaneous recognition
of overlapping sounds, with the work published in Pattern Recognition Letters [8], and
in the Interspeech 2012 and ICASSP 2013 conferences [9, 10]. In the unstructured
environments that are commonly found in SER applications, it is much more likely
for multiple signals to be received simultaneously at a distant microphone, unlike with
the close-talking microphones commonly used for ASR. For a human listener, the task
of separating and recognising these overlapping sounds is intuitive and simple, and
is commonly referred to as the “cocktail party effect” for speech mixed with other
competing speech and sounds. However, conventional frame-based methods aren’t
well suited to the problem, since each time frame contains a mixture of information
from multiple sources. The difficulty faced by these methods is that the training
only captures information about the sound in isolation, hence when two sound events
overlap, the spectral mixture in each frame will produce low scores against both of the
trained models.

Looking at the image processing domain, the problem of object detection in clut-
tered environments can be seen to have many similarities with detecting overlapping
sounds embedded in background noise. This is because overlapping objects in an image
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may obscure one other, and be set against an unknown background. This is comparable
to a spectrogram containing overlapping sounds, which will mask each other through
the MixMax criteria, with unknown stochastic noise in the background. Therefore,
the LSF approach is developed, which is based on a distribution model of the local
spectro-temporal information extracted from the spectrogram, with detection based on
the generalised Hough transform (GHT). This uses the distribution model as a voting
function, which sums together the information over a set of independent keypoints to
produce sparse and separable onset hypotheses. The result is that the approach can
detect any arbitrary combination of sound events in the spectrogram, including two or
more different sounds or the same sound overlapping itself. This is an important im-
provement over the baseline techniques, which typically make assumptions about the
number of sounds present or the amount of overlap. The final step of the algorithm is
to score the detection hypotheses against the trained model, which includes the ability
to estimate the relative transfer function between training and testing, such that the
method can take account of unknown channel distortion.

Experiments were carried out on a simulated database of overlapping sounds, with
two different baseline techniques implemented for comparison. The results showed
that the LSF system could achieve state-of-the-art results across a range of challenging
conditions. In clean conditions, the method achieved an average accuracy of 99.3% and
98.0% in isolated and overlapping conditions respectively. This compared well with the
best-performing Overlap-SVM baseline, which achieved 100% and 96.5% respectively
in the matched conditions. However, the most significant result was demonstrated in
mismatched conditions, where the LSF system achieved an accuracy of 90.2%, for a
false alarm of only 2.5%, in the overlapping experiment with 0dB noise. This is an
improvement in accuracy of almost 25% compared to the best baseline method, and
also a reduction in false alarm of over 20%. Finally, a simple experiment was carried
out to simulate a varying channel distortion by changing the volume of the received
sound signal. Again, the LSF system demonstrated the best performance, with almost
no change in accuracy observed for the simultaneous recognition across the different
volume conditions. This is compared to the Overlap-SVM baseline, where the accuracy
under 0.5× volume was over 10% less than the results achieved in matched conditions.

172



Chapter 6. Conclusions and Future Work

6.2 Future Directions
The goal of this thesis has been to develop novel algorithms for sound event recogni-
tion across a range of challenging experimental conditions. This has resulted in the
development of several techniques that address aspects of this problem, such as noise
robustness and simultaneous recognition of overlapping sounds. Particularly, the per-
formance of the SPD-IF method is shown to significantly exceed the state-of-the-art
for classification, hence lends itself to real-time implementation for practical applica-
tion. This itself introduces challenges, such as detection of sound events and rejection
of false alarms, and in addition there are possible improvements in the modelling of
the subband distribution and in estimating the noise mask in the SPD. However, the
progression in this thesis has been to shift from extracting global features from the
spectrogram, such as the SIF and SPD-IF, to extracting local features that can be
combined to perform recognition. Therefore, the following areas for future work fo-
cus on areas of enhancement for the LSF approach, which will enable this promising
method to applied in applications with a larger range of sound classes and real-world
conditions. These are now discussed below.

6.2.1 Modelling

The distribution of the LSF codebook clusters is modelled over time, frequency and
spectral power to characterise the sound event spectrogram. In essence, this forms a
template for recognition of the cluster information during testing. However, certain
sounds have more variation in spectral content, or consist of several spectral patterns
separated by a short silence. An example of this would be a stapler, where sound is
generated by both pressing and releasing the mechanism. The problem is that this
leads to a less sharp sound event model, as different timings causing a blurring of the
geometrical information. To overcome this, a method could be found for grouping
regions of similar or repeating spectral content. Each region can then be modelled
separately and linked together to create a sharper overall sound event model. This
requires an initial grouping mechanism that could be developed based on similar ideas
from CASA.

Another factor that could improve the modelling is to relax the assumption that the
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sound event has a fixed frequency content. Currently, the sound event model is only
allowed to shift along the time and spectral power axes during recognition. However,
sounds from the same class may have a similar spectral content, but can be shifted or
scaled in frequency. An example of this would be a bell sound, where a similar bell
should have a similar geometry, but with the harmonic at a different frequency. This
would not be recognised under the current scheme, unless an example of the sound
event had been present in training. To improve the generalisation, clusters from the
geometrical model could therefore be also allowed to shift along the frequency axis.
Constraints would have to be set to prevent clusters of the same sound event from
overlapping each other, and to penalise too greater shift away from the trained model.
However, improving the generalisation ability of the sound event model should give an
overall benefit to the approach.

6.2.2 Scoring

At present, the scoring mechanism for the LSF system treats each hypothesis in the
spectrogram separately. Starting from the strongest hypothesis, it scores each in turn
against the trained model until all hypotheses have been tested. When the score
exceeds a threshold, the hypothesis is accepted and the keypoints that contributed to
the recognised sound event are removed from the remaining hypotheses. The advantage
of this is that the trade-off between false acceptance and rejection is controlled with a
simple threshold, with the stronger hypotheses more likely to exceed this threshold.

An alternative approach is to consider the interaction between all of the hypotheses
simultaneously. In this way, the cost of assigning a region of the spectrogram to one
sound event or another can be better controlled. This may reduce the recognition errors
observed when two sound event hypotheses, of which only one is correct, completely
overlap each other. This is because assigning the same region to two different sound
events can be penalised in the revised scoring mechanism. An approach for this has
been previously developed for object detection, where the hypotheses are evaluated
against a minimum description length (MDL) criteria in the spectrogram [206]. To
bring this idea to sound event recognition, the method will need to be adapted to
allow for regions of overlap that are caused by masking. However, the advantage is
that it should lead to fewer false alarms, which is an important factor for real-life
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implementation of the recognition system.

6.2.3 Segmentation and Reconstruction

It was discussed in Section 5.3.2 that the LSF approach may allow for the possibility of
reconstructing spectral information from the recognised sound event. This is enabled
through the matching of the extracted LSFs with the codebook clusters, allowing each
LSF to be replaced by the corresponding cluster centre. This represents information
learned during training on the clean sound event samples. Therefore, it should be
possible to reconstruct a clean sample of a sound event, even if it is recognised in
noisy conditions. However, further work is required to study the best method for re-
constructing the spectral information from the LSFs, which may overlap each another
in the spectrogram. In addition, since the reliable regions of the sound event should
remain intact, a method needs to be found to ensure that the observed and recon-
structed sound events are similar. One possible advantage of the LSF approach is that
the model contains information about missing regions that may have been masked by
other sounds. In this way, reconstruction of missing areas of the spectrogram is made
possible by finding the most likely cluster that could have occurred in a particular
region.

The problem of reconstructing is closely linked to the issue of segmentation of the
recognised sound event from the spectrogram. Using the LSF approach, a local missing
feature mask is extracted for each local region. This can be combined with the distance
between the observed LSF and the cluster centre, to generate a segmentation based
on the model of the sound event in clean conditions. The output would be similar to
the process of mask estimation for missing feature recognition. However, in this case
the segmentation is being extracted in a top-down manner, since the sound event is
first recognised using the LSF system, before the segmentation is determined. This is
opposed to the bottom-up mask estimation that is conventionally used, which typically
uses low-level information extracted from the spectrogram.

6.2.4 Other tasks

In this thesis, the focus has been on the task of robust recognition of sound events
in noisy and overlapping conditions. The LSF approach additionally takes account of
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channel distortion for cases where the response time of the channel is short. However,
this may not be suitable for distortion caused by reverberation due to a room impulse
response, where the response time may be significantly longer than the analysis win-
dow length. In such cases, the effect on the spectrogram operates across both time
and frequency, typically causing a blurring of the temporal information. It may be
possible to reduce this problem by utilising techniques from image processing such as
compensation for motion blur effects. An alternative is possibly to use a reverberation
mask to enable matching between LSFs in clean and mismatched conditions.

Another future topic of study will also be the application of the approaches pre-
sented in this thesis to speech recognition. While they may not be initially suited to
recognising connected speech, it may be possible to apply them for phoneme detection.
Provided that phonemes can be detected with sufficient accuracy, the output can be
fused with the output of a conventional ASR system. An alternative application could
be in speaker verification, where a text dependent template of the given speaker could
be modelled as a spectrogram image for classification.
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