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Sound  Field  Calculation  for  Rectangular  Sources 
KENNETH B. OCHELTREE, MEMBER, IEEE,  A N D  LEON A. FRIZZELL SENIOR MEMBER.  IEEE 

Abstruct-A  method is presented  for  calculation  of  the  sound field 
from  a  rectangular  continuous  wave  source  surrounded by a  plane  rigid 
baffle.  The  approach is illustrated for square  sources o f  0.5, 1, 2, 5, 
10, 20, and 100 X on a  side.  These  results  are  compared  to the sound 
fields produced by similarly  sized  circular  sources.  The beam widths 
and  locations  of  on-axis  minima  are  similar  between  the  two  sources, 
hut the  transverse  pressure  distribution  is  more  uniform in the  near- 
field of the square  source.  The  effects  of  attenuation on the  sound field 
of a  square  source  are  examined. 

I .  INTRODUCTION 

T HE  SOUND  FIELD  produced by a  circular piston  vi- 
brating in an  infinite,  plane, rigid baffle has  been  the 

subject  of many papers  and  has  been  well  characterized 
for both  continuous  wave  (CW)  [l]-[4] and  transient  ex- 
citation [ 5 ] ,  [6]. Since  a  circular  piston  has  only  one  de- 
scriptive  dimension.  namely  the  radius in wavelengths, 
and axial  symmetry  is  present,  the field for  a  range  of 
sizes of circular  sources  can  be  presented in a  series  of 
field cross  sections.  Thus,  examples of these  theoretically 
calculated fields are readily available in the  literature  and 
a  circular  source  can  often  be  adequately  characterized by 
examining  published  results. 

The fields due  to  rectangular  pistons  cannot  be  charac- 
terized  as  easily  since  rectangular  sources  have  two  de- 
scriptive  dimensions  and  their  fields  lack  the  axial  sym- 
metry  associated with circular  sources [2], [ 3 ] ,  [5],  [7]. 
Thus,  the field from  the  rectangular  source is dependent 
on  the ratio  of  the  two  sides  of  the source in addition  to 
their  size relative  to  a wavelength.  For  any  single set  of 
these  parameters  the  lack  of  axial  symmetry  means  that 
several  cross  sections or longitudinal  sections  are  required 
to  illustrate  the  field. As a  result of these  additional  com- 
plexities, field patterns  from  rectangular  sources  have not 
been  examined  as  extensively  as  those  from  circular 
sources. 

An efficient field calculation  method  has  been  devel- 
oped  which is well  suited  to  the  determination of the field 
from CW rectangular  sources.  The fields for  several 
square  sources  are  illustrated  and  compared  with  those 
published for  circular  sources. In addition,  the effects of 
attenuation in the  propagating  medium  are  examined. 
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11. METHODS 
The initial  part of this  study  involved  the  comparison 

of  several  different field calculation  methods.  These 
methods  included  a  Fourier  transform  approach,  similar 
to  that  developed by Lockwood  and  Willette [2], and sev- 
eral  other  methods  that  divided  the  radiating  surface  into 
incretnental  areas.  The  geometry  of  the  incremental  areas 
included  points as  used by Zemanek [ l ] ,  circular  arcs  as 
suggested by Stepanishen  [S],  and  rectangles [9]. The  ac- 
curacy  of  each  method  was  verified  through  comparison 
with the  point  source  method.  A  comparison of calcula- 
tion times  showed  that  the  method  employing  rectangular 
areas,  the  rectangular  radiator  method, required  the  least 
time  for  a  given  accuracy.  Thus,  this  method  was  em- 
ployed for all field calculations  reported  here  and is dis- 
cussed in detail  below. 

The method  developed  as  a  part of this  study  provides 
the field for  an  acoustic  source.  which  can  be  divided  into 
rectangular  elements,  surrounded by a  plane  rigid  baWe. 
In the presence  of  a  baffle,  the  sound  pressure  amplitude, 
p o ,  at  a  point is given by 

where  the  integration  is  over  the  complete  radiating  sur- 
face S ,  p is the  density of the  medium, c is the  phase 
velocity of the  sound  waves, U is the velocity  amplitude 
of  the  piston, X is the  wavelength, k is the  wave  number, 
Q is  the  attenuation  coefficient,  and r is the  distance  be- 
tween  the field point  and  an  elemental  area of the  piston. 
This  integral  has  been  evaluated by using  Huygen's  prin- 
ciple and summing the contribution  from  incremental 
areas  representing  the  radiating  surface [l],  [S], [9]. In 
this  study  the source  was  divided into  a  number  of  rect- 
angular  elements  that  are too large  to  be  represented  as 
point  sources  but  small  enough  that  simplifying  assump- 
tions  apply as  delineated  below. 

The total  pressure p. at  a  point  in  the field is then  the 
sum of the  pressure  contributed  from  each  element 

where N is  the  number of elements  of  size A A  = A hA M' 
and U,, is  the  complex  surface  velocity  for  element n .  The 
complex  surface velocity u , ~  is the  same  for all elements 
when  a  uniformly  excited  rectangular  source is consid- 
ered.  For  nonuniform  excitation, e.g. ,  a  phased  array 
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source, U,, is used to  represent  the  local  phase  and  mag- 
nitude  of  the  velocity. 

The  center of element n (subelement n in the  case  of  a 
multielement  transducer) is denoted by (x,,, y,,) to  sim- 
plify the  analysis  that  follows.  Additionally,  a  second  co- 
ordinate  system is defined in xo, yo with  its  origin centered 
on  the  element  as  shown in Fig. 1. Using  these  relations 
in ( 2 )  yields 

Po = - c 4 ,  h 0  &o ( 3 )  X n = 1  

where 

r = Jz’ + (x  - x, - xo> + ( y  - y n  - y o )  . (4) 
To find an  expression  for  the  pressure  that is easily  eval- 
uated numerically,  suitable  approximations  and  their re- 
gions  of  applicability  are  defined. 

By choosing A  h and A W to  be  small,  the  distance  to 
the field point  is  much  greater  than  the  dimensions  of  the 
source  and  the  Fraunhofer  approximation  can  be  applied. 
To simplify  application  of  the  Fraunhofer  approximation, 
we  define  the  intermediate  variables x; = x - x, and 
Y,‘~ = y - yn. The  Fraunhofer  approximation  requires  that 
the  distance  from  the  origin  of  the  element  to  the  point of 
interest in the field 

2 2 

R = 47.’ + (x - x,)’ + ( y  - y n T  

- - Jz’ + x;* + y ~ ’  ( 5 )  

to  be  large  compared  to x. and y o ,  i .e.,  R >> x. and 
R >> yo.  Thus,  the  exponential  term  from (3) can  be  ex- 
pressed  as  follows 

e - ( a  + j k ) r  = exp [ - ( a  + j k )  

* Jz’ + (x; - xo)? + ( y:, - yo)’] 

= exp [ - ( a  + j k )  

. JR? - - 2y,f,y, + xi + y i ]  (6) 

Using  the first two  terms of a  binomial  expansion  of  the 
radical on  the  right  side  of (6) yields 

e - ( a  + J k ) r  - - exp [ - ( a  + j k )  

For k x i / 2 R  + ky,?j/2R small  compared  to P and a << k ,  
omission  of  these  terms  produces  a  negligible  phase  error 
and  gives  the  expression 

e - ( a  - j k ) r  

Fig. 1.  Coordinate  system  and  geometry  used for rectangular  radiator 
method. 

Using  this  equation,  assuming 1 / r  = 1 / R ,  and  substi- 
tuting  into (3) give 

N 
P o = -  j p c  c l! U e - ( ~ + ~ k ) R  

X n = l  R 
An/’ 

exp [ ( a  + j k )  &!G dw, 
-An./’ R 1 

j A h ”  exp [(a + j k )  
-Ah /2  R 

The  assumption  that e o l r h J R  = 1 for A w / 2  > x” > 
-Aw1/2 and  the  equivalent  condition  for yo  are used to 
reduce  the  two  integrals in (9) to  Fourier  transform 
expressions which  upon evaluation  yield 

The relation in (10) is a  straightforward  summation of 
complex  terms,  representing  the  pressure  due  to  a  rect- 
angular  source,  but  is  only  useful if the  approximations 
used  are  applicable.  The  three  assumptions used  to derive 
(10) are  that k x i / 2 R  + k y i / 2 R  is  small  compared  to P, 
1 / r  = 1 / R ,  and e.x‘n.ro/R = 1. Since  the  maximum  ab- 
solute  values of .xo and yo  are A w / 2  and A h / 2 ,  respec- 
tively,  these  conditions  can  be  expressed  as 

1) cos ( k A w 2 / 8 R  + k A h ’ / 8 R )  = l 

2 )   r / R  2: 1 

and 

R ( 8 )  and A h  that  can  be  used  for  computation. The first con- 
These  conditions  provide  limitations  on  the  sizes  of A w  
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dition  provides  the  limitation  on A w  that K >> 
kA w2/8R. This  condition  can be rewritten  as R >> 
Aw2/4h,  which is equivalent  to  the  provision  that  the 
field point  be in the farfield  for  a  source of size A W. Since 
z is less  than R ,  an  equivalent  condition is z >> A w’/4h. 
A  constant F can  be  defined  such  that  the first condition 
is given by the  relation 

The  constant F represents  the  distance  from  the  source  to 
the field point  relative  to  the  distance  to  the  nearfield-far- 
field transition  for  a  source  of  size A W ( F  = 10 for  all 
field calculations  reported  here).  The  inequality  sign in 
( l  l )  must  be  retained so that  the  width  of  the  source  can 
be  made  an  integer  multiple  of Aw.  A  similar  relation 
applies  to  the  selection  of A h .  

The use of (1 1 )  for  determining A W and A h ensures  that 
conditions 2) and 3) are  satisfied.  Also,  significant  can- 
cellation  of  errors  occurs  from  the  contribution  to  the field 
from  one  edge of an  element  to  the  other, so that  actual 
errors  are  less  than  would  be  predicted by a first order 
approximation.  Thus,  a  second-order  analysis  would  be 
required  to  establish  an  upper  bound  on  the  error. 

The  expression in (10) was  implemented  on  a VAX I l /  
730 computer  using (1  1) to  specify  the  values  of A W and 
A h .  The  relationship  between  the  size  of  the  element  and 
z ,  given by (1 l), was  used  to minimize  computation  time 
by reducing  the  number  of  elements, N ,  as  the  distance 
from  the  array  increased,  while  preserving  the  same  de- 
gree of accuracy. 

111. RESULTS AND DISCUSSION 

The  rectangular  radiator  method  was used to  calculate 
the  acoustic field in a  lossless  medium  for  square  sources 
ranging in size  from 0.5 to 100 X on  a  side.  The  pressure 
fields were  calculated  for  longitudinal  sections in the y = 
0 plane with  the field normalized  at  each  axial  distance 
(see  Fig. 1 for  geometry).  The  results  are  shown in Figs. 
2-8 using  contour  plots of the -3- and  -6-dB  levels. 
Since  the field is normalized  at  each  axial  distance,  these 
plots  show  the -3- and  -6-dB  beam  width  versus  dis- 
tance  from  the  source  and  illustrate  the  multiple  maxima 
that  occur  close  to  the  source.  Included with these  results 
are  plots  of  the  normalized  axial  intensity.  Axial  distances 
are  relative to the  nearfield-farfield  transition  distance 
( s2/4X, where S is the length  of  a  side  of  the  source) to 
remove  frequency  dependence  and  to  aid in comparison 
with  the  results for  a  circular  source  as  computed by Ze- 
manek [ l ] .  

The  normalized field approaches  a  limiting  pattern  as 
the  source  size  becomes  much  larger  than  a  wavelength, 
as  observed  for  a  circular  source [ l ] .  As a  single  cross 

- E 0 i4 0 2 3 

A X I A L  D I S T A N C E  Z = L  
5 2 / 4 1  

(b) 
Fig. 2 .  Square  source with sides  equal t o  0.5 X. (a)  Sound  pressure  contour 

normalized at each  axial  distance. (b)  Normalized  magnitude o f  on-axis 
pressure. 

W 1  

A X I A L  DISTANCE Z =  
5 2 / 4 1  

(b) 
Fig. 3 .  Square  source with sides  equal  to 1 X. (a) Sound  pressure  contour 

normalized  at  each axial distance. (b) Normalized  magnitude of on-axis 
pressure. 

section is not  completely sufficient to  characterize  the field 
for  a  square  source,  a  diagonal  section (x  = y )  through 
the field produced  by  a  two-wavelength  square  source is 
shown in Fig. 9. The field for  this  diagonal  section is pro- 
portionally  broader  but  otherwise  does  not  vary  signifi- 
cantly  from  the y = 0 section  shown in Fig. 4 .  

Sound  pressure  contours  for  a  circular  source,  as  pro- 
duced  by  Zemanek [ l ] ,  are  shown in Fig. 10. The differ- 
ences  between  the  fields  for  a  circular  source  and  a  square 
source  are  evident.  The field of  a  square  source  lacks  the 
on-axis  nulls  and  lateral  variations  that  occur in the field 
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A X I A L   D I S T A N C E  Z =  
S' /4X  

(b) 
Fig. 4. Square  source  with  sides  equal to 2 X. (a) Sound  pressure  contour 

normalized at each axial distance. (b) Normalized  magnitudc of  on-axis 
pressure. 

! 

- 
O I , , , , , , , , , , , , , , , , , , , ,  

0 I 2 3 4 

A X I A L   D I S T A N C E  Z = k  

(b) 
Fig. 6. Square  source with sides  equal to I O  X. (a)  Sound  pressure  contour 

normalized at each  axial  distance. (h) Normalized  magnitude of on-axis 
pressure 

- o l , , , l , , , , , , , , , , , , , , , ,  
0 l 2 3 4 

A X I A L   D I S T A N C E  Z =  
s v 4 x  

(h? 
Fig. 5 .  Square  source with sides  equal  to 5 h. (a)  Sound  pressure  contour 

normalized  at  each  axial  distance. (b) Normalized  magnitude of on-axis 
pressure. 

of a  circular  source  as noted by Lockwood  and  Willette 
[2]. Whereas  Lockwood  and  Willette (21 showed  the  the 
field for  only  one  rectangular  source,  comparisons  are 
made  here for a  range of sizes of circular  and  square 
sources.  These results  show  that  similarities  exist in  the 
beam  widths  and  locations of on-axis  minima  for  similarly 
sized circular  and  square  sources.  Also,  as the  size of the 
source  becomes  large  compared  to  a  wavelength,  the  nor- 

t 

0 1 , , , , , , , , , , , , , , , , , , , ,  
0 I 2 3 4 

A X I A L   D I S T A N C E  Z =  
5214 x 

(h? 
Fig. 7. Square  source  with  sides  equal lo 20 X. (a) Sound  pressure  contour 

normalized  at  each  axial  distance. (h) Normalized  magnitude of on-axis 
pressure. 

malized field no longer  changes  except very  near the 
source  (see for example  Figs. 7 and 8). 

The field for  a  rectangular  source of dimensions  suit- 
able for a  linear  phased array element, with  sides 0.05 X 
( S , )  by 10 X ( s2) ,  is  shown  for  two  perpendicular  sections 
in Figs. 11 and 12. Note  that  the  two  plots  use  their re- 
spective  values of s for axial  distance  normalization,  i.e., 
S, and s2 for Figs. 11 and 12, respectively.  Thus,  the axial 
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0 I 2 3 4 

A X I A L  DISTANCE Z=& 

(b) 
Fig. 8.  Square  source  with  sides  equal  to 100 h. (a) Sound  pressure  con- 

tour  normalized at each  axial  distance. (b) Normalized  magnitude of on- 
axis  pressure. 

i 
I N 

Fig 3 .  Square  source with sides  equal to 2 h. Sound  pressure  contour  nor- 
malized at each  axial  distance  for  section  with x = ? (see  Fig. I ) .  

fields shown in Figs. 1 I(b) and  12(b)  are  actually  the 
same:  the  axial  distances in each  figure  are  relative  to  dif- 
ferent  nearfield-farfield  transition  distances. In fact,  Mar- 
ini and  Rivenez [3] have  divided  axial field plots  for rect- 
angular  sources  into  three  zones:  the  very  near field (near 
field for  both  dimensions),  the  near field (near field for 
the  longer  dimension)  and  the  far field (far field for  both 
dimensions).  The  similarities  of  the field sections  for  this 
rectangular  source  with  those  for  equivalently  sized  square 
sources,  Figs.  2  and 6 ,  respectively,  demonstrate  the  near 
independence of  the  longitudinal field patterns  parallel  to 
each  side  of  a  rectangular  source.  Accordingly,  the  length 
of  a  rectangular  source in one  direction, e .g . ,  x, has  little 
effect on  the  beam  width  produced in the  other  direction, 
y ,  of the  source. 

The  effects  of  attenuation  were  examined by calculating 
the field for  a  square  source, with sides of 10 wave- 
lengths,  radiating  into  media  with  attenuation  coefficients 

AXIAL OIITANCI I * h 
( C )  

Fig. 10. Sound  pressure  contours  normalized at each  axial  distance  and 
normalized  magnitudes of on-axis  pressure for circular  sources o f  di- 
ameters [ I ,  Figs. 7-91, (a) 2.0  h. (b) 5.0 h.  (c)  10.0 x. 

of 0.04, 0.08 and 0.12 cm-' at  1  MHz  (see  Fig.  13). To 
eliminate  frequency  dependence,  the  attenuation  was in- 
corporated as  a  constant  value of attenuation  per  wave- 
length, aX. The  values of aX corresponding  to  the  atten- 
uation  coefficients  given  above  are  computed  to  be 0.006, 
0.012  and 0.018, respectively,  using  a  value  of 1 .5  x los 
cm/s  for  the  speed  of  sound.  Fig.  13(a)  shows  the  con- 
tour  plot,  normalized  at  each  axial  distance,  for  the  high- 
est attenuation, CYX = 0.018. The normalized  contour plot 
of  the field varied  little  with  attenuation  as  can  be  readily 
seen by comparing  Fig.  13(a) with Fig. 6(a), which  shows 
the field for  the  same  source  radiating  into  a  lossless  me- 
dium.  This result is interesting  because it demonstrates 
that  the  attenuation  has  little  effect  on  the  normalized field 
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- a 
o , , , , , , , , , , , , , , , , , , , ,  I 

0 l 2 3 4 

A X I A L   D I S T A N C E  Z = L  
s 2 / 4 X  

(b) 
Fig. 1 I .  Rectangular  source  with  sides  equal t o  0.5 X and 10.0 X. Field 

shown is in plane  of  the 0.5-X length  with L distances  relative  to  near- 
field-fartield distance  for  square  source  wlth  sides o f  length 0.5 h .  (a) 
Sound  pressure  contour  normalized  at  each  axial  distance (b) Normalized 
magnitude  of  on-axis  pressure. 

A X I A L   D I S T A N C E  Z =  
s 2 / 4 X  

(b) 
Fig. 12. Rectangular  source with sides  equal  to 0.5 X and 10.0 h. Field 

shown i ?  in plane  of 10.0-h length  with : distances  relative  to  nearfield- 
farfield distance  for  square  source  with  sides  of  length l 0  X. (a)  Sound 
pressure  contour  normalized at each  axial  distance.  (b)  Normalized  mag- 
nitude of on-axis  pressure. 

transverse to the  direction of propagation. On the  other 
hand,  Fig. 13(b) shows  the  substantial effect of attenua- 
tion on the  axial  pressure  field,  as  expected. I n  addition 
to  the  decreased  amplitude  with  distance  from  the  source, 

A X I A L   D I S T A N C E  Z=& 

(h) 
Fig. 13. Square  source with sides  equal  to 10  X. (a)  Sound  pressure  con- 

tour  normalized at each  axial  distance in a  medium,  with a X = 0.018. 
(b )  Magnitude of on-axls pressure  for a h = 0.  0.006.  0.012. and 0.018 
normalized to losslesa  cahe. a X = 0. 

the last  axial  maximum is shifted  significantly closer to 
the source with  increasing  attenuation. 

IV. CONCLUSION 
An accurate  and  efficient  method  was  developed  for  de- 

termining  the field of  a  plane  source,  which  can  be  di- 
vided  into  rectangular elements,  surrounded by a rigid  baf- 
fle. The  method  sums  the  contribution  to  the  pressure  at 
a point from  rectangular  elements  chosen  to  be  small 
enough  that  the  far field approximation  is  appropriate  at 
the field point. 

Though  limited  comparisons  have  been  made in the past 
[ 2 ] ,  [3], [ 5 ] ,  this  study  compared  the  fields  from square 
sources and those  from  circular  sources  for  a  range of 
sizes. In general,  the fields are  similar,  but  the field from 
a  square  source  exhibited  a  more  uniform pattern in the 
near field and  has no  nulls  on  axis.  Further,  for  a  rectan- 
gular  source,  the  longitudinal  section field profiles in the 
two  planes  parallel  to  the  sides  are  largely  independent. 
Radiation  into an attenuating  medium had little effect on 
the  normalized  transverse  fields,  but  modified  substan- 
tially  the  axial  field. 
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