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ABSTRACT 

The problem is addressed of reproducing a desired sound field in the interior of a bounded region of space, using an 

array of loudspeakers that exhibit a first order acoustic radiation pattern. Previous work has shown that the computa-

tion of the required loudspeaker signals, in the case of omnidirectional transducers, can be determined by solving an 

equivalent scattering problem. This approach is extended here to the case of directional loudspeakers. It is shown that 

the loudspeaker complex coefficients can be computed by solving an equivalent scattering problem. These coeffi-

cients are given by the normal derivative of the total pressure field (incident field plus scattered field) arising from the 

scattering of the target field by an object with the shape of the reproduction region (the region bounded by the loud-

speaker array) and with impedance boundary conditions. The expression for this impedance, or Robin, boundary con-

dition is calculated from the radiation pattern of the loudspeakers, assuming that the latter can be expressed by a lin-

ear combination of a free field Green function and its gradient. The solution of the problem can be obtained in closed 

form for simple geometries of the loudspeaker array, such as a sphere, a circle or a plane, thus providing a meaningful 

improvement to sound field reproduction techniques such as Wave Field Synthesis or High Order Ambisonics. The 

method proposed is also valid for more general geometries, for which the computation of the solution should be per-

formed by applying the Kirchhoff approximation or by means of numerical methods. 

INTRODUCTION 

The problem of reproducing a desired sound field with a two 

dimensional or three dimensional array of loudspeakers has 

recently obtained much interest from the scientific commu-

nity. This problem involves the determination of the loud-

speaker signals required for the reproduction of a given field, 

for a given arrangement of the loudspeakers. A variety of 

sound field reproduction methods have been proposed such 

as Ambisonics [1],[2], Wave Field Synthesis [3],[4], methods 

based on the solution of an inverse problem [5],[6] and other 

techniques presented in references [7]-[12], among others. 

Several of the techniques above include the modelling of the 

loudspeaker array as a continuous distribution of secondary 

sources. The solution is given as a continuous source strength 

function, which is then discretized in order to obtain the driv-

ing function of the loudspeakers. In this paper, the same ap-

proach is adopted. Clearly, the use of a finite number of 

transducers rather than a continuous distribution of secondary 

sources generates errors in the reproduced field (spatial alias-

ing), but this problem will not be addresses in this paper. It is 

sufficient to mention that spatial aliasing artefacts are negli-

gible when the spacing between loudspeakers is much 

smaller than the wavelength of the sound to be reproduced.   

Most of the approaches mentioned above make the assump-

tion that the loudspeakers radiate sound as omnidirectional 

ideal point sources (acoustic monopoles). This is a good ap-

proximation to a real transducer when the dimension of the 

latter is small in comparison to the operating wavelength of 

the sound to be reproduced. It is known however that this the 

loudspeaker radiation pattern becomes directional at higher 

frequencies. In this paper we will assume that the loudspeak-

ers of the array exhibit a first order radiation pattern and that 

the sound field generated by a single loudspeaker can be 

described by the linear superposition of a monopole field and 

a dipole field.  

In reference [13] it is shown that the sound field reproduction 

problem with a continuous layer of omnidirectional point 

sources is equivalent to an acoustical scattering problem. 

More specifically, it is shown that the source strength func-

tion required for the reproduction of a given sound field is 

equal to the normal derivative of the total field that is gener-

ated if the desired sound field is scattered by a sound soft 

object (pressure release boundary) with the shape of the con-

tinuous distribution of secondary sources. This concept is 

extended in this paper to the case of secondary sources with 

first order directivity. It is shown that, also in this case, the 

sound field reproduction problem is analogous to a scattering 

problem, with the difference that the boundary object will 

have an impedance condition, which is related to the directiv-

ity of the secondary sources adopted.  
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DEFINITION OF THE PROBLEM 

A loudspeaker array is given, including an ideally continuous 

distribution of secondary sources arranged on the boundary 

Λ∂  of a bounded set Λ  (subset of either 
2
R or 

3
R ). As 

mentioned above, the assumption of a continuous distribution 

is a reasonably accurate model for a discrete distribution of 

secondary sources, provided that the distance between 

neighbouring sources is smaller than half of the wave length 

of the sound to be reproduced (in order to avoid spatial alias-

ing).    

It is assumed that the sound field generated by each loud-

speaker arranged at the location Λ∂∈�y can be expressed by 
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with 10 ≤≤ α . ),(
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yxG  is the free field Green function of 

the Helmholtz equation, given by 
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 whilst ),(
�

yxGn∇  is its normal gradient with respect to the 

unitary vector n̂ , normal to Λ∂  at 
�

y  and directed towards 

its exterior, as shown in Figure 1. This is given by  
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where θ  is the angle between the two vectors n̂  and 

)(
�

yx − . 

Formula (1) is a mathematical model of the acoustic radiation 

of secondary sources with first order directivity. The first 

term in (1) represent the field generated by a monopole, 

while the second term represents a dipole field.  

Since a continuous distribution of secondary sources has been 

assumed, the sound field generated by the array is given by 

an integral of the form 
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where the function )(yw represents the strength of the sec-

ondary sources. In the mathematical literature (see for exam-

ple [14]), the integral above is referred to as the combined 

layer potential, since it is the combination of a single layer 

potential (only monopole-like secondary sources) and a dou-

ble layer potential (only dipole-like secondary sources)   

The aim is to reproduce in Λ a given target sound field 

)(xp  with the loudspeaker array above. The target field is 

assumed to satisfy the homogeneous wave equation in Λ , 

that is  
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The solution of this problem corresponds to the determination 

of the required source strength function )(yw  required for 

the reproduction of the desired field )(xp .  

This problem involves the solution of an integral equation of 

the form 
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(note that that the left hand side of this integral is the target 

sound field). We will not be concerned here with the exis-

tence and uniqueness of the solution. The interested reader 

can refer to [14] for an in depth discussion of this subject. 

 

 
Figure 1: diagram of the distribution of secondary sources 

 

EQUIVALENT SCATTERING PROBLEM 

In order to analyse the equivalent scattering problem we cre-

ate the fictitious scenario, in which the incident sound field 

)(xp  (the target sound field) is scattered by an impenetrable 

object with the shape of Λ  and impedance (Robin) boundary 

conditions of the form 
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The total field )(xTp is given by the sum of the incident 

field )(xp  and the scattered field )(xsp . The case of 1=α  

corresponds to a sound soft object (pressure release bounda-

ries) whilst the limiting case of 0=α  determines a sound 

hard object (rigid boundaries). Note that this boundary condi-

tion has been chosen in view of the directivity pattern of the 

secondary sources, represented by equation (1).   

The incident field can be expressed in the interior of Λ  by 

the Kirchhoff Helmholtz integral [15], yielding 
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while the scattered field )(xsp  is given, in the exterior of 

Λ , by    
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Subtracting equation (9) from (8) and recalling the definition 

of the total field )(xTp  yields 

 

[ ]








Λ∉−

Λ∂∈−

Λ∈

=

∇−∇∫ Λ∂

xx

xxx

xx

yyyxyyx

)(

2/)()(

)(

)()(),()(),(

s

s

TnTn

p

pp

p

dSpGpG

 (10) 

Substituting the Robin boundary condition (7) in the equation 

above and after algebraic manipulation, we have that 
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Form a simple comparison of this result with equation (4), it 

can be observed that  
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namely the secondary source strength function )(yw  corre-

sponds to the normal derivative of the total field, divided by 

α .  

The equation above not only provides an expression for 

)(yw  that allows for an exact reproduction of the target field 

in Λ , but it also indicates that the reproduced sound field in 

the exterior of Λ is the scattered field )(xsp  arising from 

the equivalent scattering problem. 

It should be noted that a result analogous to equation (12) can 

be obtained by expressing )(yTn p∇  as a function of 

)(yTp , namely 
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This can expression can be used, for example, in the case of 

0=α  (dipole secondary sources).  

Closed form expression for )(yw  can be derived for geome-

tries such as spheres and circles or even lines or planes (as an 

extension of the method to unbounded regions), while ap-

proximate solutions can be obtained still in closed form by 

application of the physical optics approximation for direct 

scattering problems (Kirchhoff approximation). This assumes 

that the total field is zero in the region of the boundary that is 

not acoustically illuminated by the incident field and equals 

twice the incident field in the illuminated region (see [14] for 

a more detailed discussion). 

 

EXAMPLE WITH SPHERICAL GEOMETRY 

The example is provided of the case when the loudspeakers 

are arranged on a spherical surface. It is therefore assumed 

that the boundary Λ∂  is a sphere of radius R .  

The incident field can be expressed by [15] 
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where )(kxjn  are spherical Bessel functions, )ˆ(x
m

nY are 

spherical harmonics, || x=x , x/ˆ xx = and the coefficients 

mnA depend on the given field. The scattered field can be 

expressed similarly by [15]   
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where )(kxhn is a spherical Hankel function of the first kind. 

The total field on the boundary Λ∂  is given by the sum of 

the two equations above, with Rx = . 

The normal derivative )(xTn p∇ of the field on Λ∂  is ob-

tained by taking the normal derivative of the Bessel and 

Hankel functions with respect to x , namely 
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Applying the Robin boundary condition (7) yields 
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where the orthogonality relation of the spherical harmonics 

on the unit sphere has been used [14],[15]. The explicit ex-

pression for the source strength )(yw  can be calculated from 

equations (12), (16) and (17) and in view of the Wronskian 

relation 
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After some algebraic manipulation we obtain 
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An similar result is derived also in [16]. The case of 1=α , 

reported in the literature [10],[12],[17],[18], corresponds to a 

sound soft sphere and to the case of omnidirectional secon-

dary sources. 0=α  corresponds to a sound hard sphere and 

to secondary sources with dipole radiation pattern. 
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CONCLUSIONS 

It has been shown that the problem of reproducing a target 

sound field with an array of loudspeakers with first order 

directivity is equivalent to an acoustical scattering problem. 

The source strength functions required for the reproduction of 

a given target sound field corresponds to the normal deriva-

tive of the total acoustic field generated when the target field 

is scattered by an object with the same shape of the loud-

speaker array (the latter is assumed to be a continuous distri-

bution of directional secondary sources). The scattering ob-

ject has impedance boundaries, which are determined from 

the expression of the radiation pattern of the secondary 

sources. The case of spherical geometry has been presented 

as an example.  

The results presented in this paper may help improve the 

design of signal processing strategies for sound field repro-

duction systems. Nevertheless, solution in closed form can be 

determined only for simple shapes of the loudspeaker array, 

or by using the physical optics approximation. Further work 

might be undertaken in order to derive the source strength 

functions for more complex geometries, either by explicit 

calculation or with numerical methods used also for the solu-

tion of scattering problems. It would be interesting to find out 

if this approach can be extended to secondary sources with 

higher order directivity. 
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