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Abstract: Sound signals have been widely applied in various fields. One of the popular applications
is sound localization, where the location and direction of a sound source are determined by analyzing
the sound signal. In this study, two microphone linear arrays were used to locate the sound source
in an indoor environment. The TDOA is also designed to deal with the problem of delay in the
reception of sound signals from two microphone arrays by using the generalized cross-correlation
algorithm to calculate the TDOA. The proposed microphone array system with the algorithm can
successfully estimate the sound source’s location. The test was performed in a standardized chamber.
This experiment used two microphone arrays, each with two microphones. The experimental results
prove that the proposed method can detect the sound source and obtain good performance with a
position error of about 2.0~2.3 cm and angle error of about 0.74 degrees. Therefore, the experimental
results demonstrate the feasibility of the system.

Keywords: indoor localization; sound localization; microphone array; generalized cross-correlation
algorithm; time difference of arrival

1. Introduction

Today, localization technologies have been widely used in applications such as intel-
ligent warehousing and logistics [1,2], service robots [3–5], shopping mall navigation [6],
disaster prevention and relief [7,8], and home care [9,10]. The most used outdoor position-
ing system is the Global Positioning System (GPS) [11,12]. GPS can block signal propagation
in an indoor environment because of obstacles, degrading its accuracy. Therefore, many
approaches have been proposed for solving the indoor positioning problem, such as Blue-
tooth, infrared (IR), and Wi-Fi. IR demonstrates the advantage of high positioning accuracy,
but the signal is easily blocked by obstacles, which affects the positioning effect. Bluetooth
and Wi-Fi are less affected by obstacles due to their high penetration ability. However,
Bluetooth has the disadvantage of short propagation distance, and Wi-Fi costs more due
to hardware installation and maintenance. Moreover, these wireless devices rely on a per-
son to carry a corresponding transmitting signal device for positioning. However, sound
location only requires a person to make a sound, and when the microphone receives the
sound signal, it can perform an estimate of the position. In recent years, many studies
have proposed using acoustics to achieve the effect of localization, namely acoustic source
localization [13–19]. The advantages of acoustic localization are penetrating power, simple
structure, and low cost.

The most original idea of sound localization is based on the behavior of animals using
sounds in their environment to identify the direction and distance of the acoustic source.
For example, bats use sound waves to detect the location of obstacles or prey. With the
advancement of sensing technology, acoustic signals have been developed in various fields
and are widely used in civil [20–23] and military [24–26] applications to detect and locate
objects.
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Most of the current hardware implementations of acoustic source localization methods
are performed with microphone arrays. The microphone array is used as the receiving end
to locate the direction of the acoustic source. The structure of microphone arrays [27–32]
can be classified into linear arrays and planar arrays. In this study, the planar array was
used. A microphone uniform linear array (ULA) is characterized by having least two
or more microphones and the use of these microphones for audio detection. The sound
signals received by each microphone are processed by a Digital Signal Processor (DSP) and
background noise is removed by the DSP.

Two of the methods that will be mentioned in this study of sound localization include
time difference of arrival (TDOA) [33] and angle of arrival [34,35]. TDOA is the time
difference of the sound’s arrival; then, the angle measurement is incorporated into the
localization algorithm. TDOA and angle measurements are nonlinear estimates. Both are
generated by calculating the accurate signal correlation, which is then computed by the
generalized correlation (GCC) [28,36] algorithm. The generalized cross-correlation (GCC)
algorithm has been widely used among many time delay estimation algorithms because of
its low computational complexity and easy implementation. The accuracy of localization
depends on the number of microphones [35], but that will render costs higher. Another
method to improve accuracy is to use more complicated algorithms [37], but that will
increase the CPU’s load.

Furthermore, the GCC time delay estimation algorithm uses different weighting
functions to suppress noise interference for different noise situations, and it is more flexible
for applications to different studies. With the rapid development of intelligent home [38]
and voice assistant [39] technologies, indoor home voice devices are becoming more
sophisticated. In this study, we tried to use the minimum number of microphones for
detection and explored methods of enhancing the accuracy of audio source localization.
Cameras are commonly used to detect indoor objects. Most of the cameras had a high
resolution [40] but required a large memory capacity to record for longer periods of time.

This study proposed a simple framework and used existing equipment in the room.
When the microphone and the sound source were fixed, the sound source’s position was
estimated for different operating frequencies. The generalized correlation coefficient (GCC)
and the direction of acoustic signal reception were also calculated. This method provides
less computational complexities, higher real-time capabilities, and lower hardware costs.
However, it needs a high sample frequency to realize higher accuracy. Next, the location of
the source was moved within the room to verify that the same accuracy could be maintained
at different locations. Most of the current acoustic positioning methods are assumed to be
performed under steady state, which means that if the external interference is too high, it
may put positioning out of focus.

In Section 2, the hardware architecture and the sound processing block diagram are
explained in detail, and the algorithms used are described. Section 3 explains how archi-
tecture and calibration were performed in a standard ETSI environment and documented
experiments. Finally, Section 4 provides the conclusion of the article.

2. Materials and Methods
2.1. Acoustic Signal Model

In the architecture, we configured two microphone arrays as the receiver terminals for
the left and right channels, as demonstrated in Figure 1. There were two microphones in
each microphone array. The architecture consisted of audio amplifier, voice detection [41],
TDOA, and a digital signal converted by the an A/D converter after the microphone
amplifier received the sound signal. TDOA was activated when voice detection detected
the sound signal and converted the left and right channels into angles. Then, the XY
coordinates were calculated by the algorithm.
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processor. This chip is highly integrated with an audio DSP processor for sound pro-
cessing. A built-in audio amplifier and an external audio amplifier are also available. Cur-
rently, it can support up to 40 W for mono and up to 8 DMICs; therefore, it is a high 
performance, low power-consumption processor. In our experiments, we only used the 
built-in speaker amplifier and the microphone interface provided by the chip itself. 
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Table 1. Audio feature for the ARM A53 processor. 

Item 
Loca6 I2S interface; 1 × 8-bit and 5 × 4-bit 
8 × DMIC 
Soundwire for speaker amp 
Slimbus for optional codec 
Slimbus for BT audio interface 
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Figure 1. Sound source estimation system blocks.

The processor part is equipped with Qualcomm’s chip, which has an ARM dual-core
system, as demonstrated in Figure 2. Table 1 shows the audio features of the ARM A53
processor. This chip is highly integrated with an audio DSP processor for sound processing.
A built-in audio amplifier and an external audio amplifier are also available. Currently, it
can support up to 40 W for mono and up to 8 DMICs; therefore, it is a high performance,
low power-consumption processor. In our experiments, we only used the built-in speaker
amplifier and the microphone interface provided by the chip itself.
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Table 1. Audio feature for the ARM A53 processor.

Item

Loca6 I2S interface; 1 × 8-bit and 5 × 4-bit
8 × DMIC
Soundwire for speaker amp
Slimbus for optional codec
Slimbus for BT audio interface

2.2. Signal Processing Method

Many algorithms have been proposed for acoustic localization for applications, includ-
ing received signal strength indication (RSSI), time of arrival, time difference of arrival, and
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direction/angle of arrival [42–44]. For accuracy, some papers propose a mixture of two or
three of the above positioning techniques, such as TOA-TDOA, TOA-AOA, TDOA-AOA,
etc., whereas others detect and extract the relevant positioning parameters; then, they
combine them with different algorithms to optimize final positioning performance.

2.2.1. Time Difference of Arrival

Time difference of arrival is a popular technology used for distance measurement.
This approach does not take the time to send the signal to the target but only the time to
receive the signal and the signal propagation speed. The difference in arrival time can be
used to measure the variation in distance from the target to the two reference points once
the signal source is received at both reference points. Figure 3 illustrates a localization
system implemented in TDOA using an acoustic source and two MIC Arrays.
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Assume that there are multiple sound arrays in the detection area, defined as
Sm = {s1 . . . , sM}, m ∈ {1, 2, . . . , M}. Each sm can be specified as sm = (xm, ym).

Assume that the single target position state is pi = (pxi, pyi). Two acoustic sensors
are used for each sensor group.

The time difference τ can be expressed as Equation (1):

τ =

∣∣∣∣‖pi − s1‖ − ‖pi − s2‖
v

∣∣∣∣ (1)

where pi and sm are Cartesian coordinates. v is the sound velocity. ‖·‖ is the Euclidean
norm. For Sensor 1, the angle can be expressed as Equation (2).

θ1 = tan−1
(

pxi − x1

pyi − y1

)
(2)

For Sensor 2, the angle can be expressed as Equation (3).

θ2 = tan−1
(

pxi − x2

pyi − y2

)
(3)

2.2.2. Generalized Cross Correlation

GCC is based on finding the phase through the time difference, obtaining the correla-
tion function with a steep peak value, finding the point when the correlation is maximum,
and combining it with the sampling frequency to obtain direction information.

The left and right channels received by the microphone can be mathematically de-
scribed as follows.

Z1(t) = α1s(t) + n1(t) (4)
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Z2(t) = α2s(t− τd) + n2(t) (5)

As illustrated in Figure 4, Z1(t) and Z2(t) represent the signals received from the
left and right channels, respectively, s(t) denotes the signal to be accepted for analysis,
n1(t) and n2(t) represent the noise signals received in the air, respectively, τd is the time
difference among the two sensors that detect the signal, and α1 and α2 are the magnitudes
of the signal. The time difference can be obtained by the generalized correlation (GCC)
method [45–47] for calculation.
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Z12(ω) is defined as the cross-power spectrum of signals Z1(t) and Z2(t) received by
the two sensors.

Z12(ω) = Z1(ω)Z∗2 (ω) (6)

The cross-power spectral-density function is defined by the well-known Fourier trans-
form relationship.

RZ1Z2(τ) =
∫ ∞

−∞
Z12(ω)e−jωτdω (7)

The GCC is denoted by RZ1Z2(τ), the Fourier transform of z1(t) is denoted as Z1(ω),
and the Fourier transform of Z∗2 (ω) is a conjugate of z2(t). τ̂ is defined as the arguments of
the maxima RZ1Z2(τ). ψ1,2(ω) is defined as phase transform (PHAT), which was chosen
as our weighting function to reduce ambient noise and reverberation interference. The
equation is defined as ψ1,2(ω) = 1

|GZ1Z2 (ω)| .
GCC-PHAT can be estimated by the generalized cross-correlation (GCC) method

and given.

RZ1Z2(τ) =
∫ ∞

−∞
ψ12(ω)Z12(ω)e−jωτdω (8)

τ̂ = arg maxRZ1Z2(τ) (9)

ψ1,2(ω) =
1∣∣GZ1Z2(ω)

∣∣ = 1
|Z12(ω)| (10)

2.2.3. Sound Source Localization

This study of sound source localization is based on the use of generalized cross
correlations and trigonometric functions to measure the location of a sound source. Instead
of phase information, the arrival time difference of the signal between the elements is used.
A generalized cross-correlation algorithm with a phase transformation is used to calculate
arrival time difference. That is, the angle is calculated from the difference in arrival time.

The triangulation algorithm is based on the simple triangular function formula. As
demonstrated in Figure 3, the MIC Array is assumed to be d apart, and the angle from the
sound source to the two MIC arrays is θ1 and θ2. Equation (11) can be obtained.

d = y tan θ1 + y tan θ2 (11)

Finally, we obtain the x and y of the sound source.

y = d/(tan θ1 + tan θ2) (12)
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x = y tan θ1 (13)

3. Results
3.1. Testing Environment

In this study, the reverberation room with ETSI/T60 ≈ 0.3 S had a room size of
4.7 × 3.8 × 2.7 m3. The acoustic parameters of the listening room were measured by PAL
Acoustics Technology Ltd. (Taipei, Taiwan) in May 2021. The laboratory has passed all
European Telecommunications Standards Institute (ETSI) acoustic standard regulations.
The test environment met the request of ISO7779-2018-11: Acoustics-Measurement of
airborne noise emitted by information technology and telecommunications equipment. The
environmental parameters of the laboratory were measured by the instruments of Brüel
& Kjær. Brüel & Kjær is a professional equipment manufacturer for sound and vibration
measurements. The laboratory will be calibrated once per year. Acoustic parameters are
measured according to the following criteria:

1. ISO 1996-1: Acoustics—Description, measurement and assessment of environmental
noise-Part 1: Basic quantities and assessment procedures, 2003;

2. ASTM Designation: E336-97 Standard Test Method for Measurement of Airborne
Sound Insulation in Buildings;

3. ASTM Designation: E413-16 Classification for Rating Sound Insulation.
4. ISO 3382-2: 2008(E) Acoustics-Measurement of room acoustic parameters-Part 2:

Reverberation time in ordinary rooms.

One microphone was placed on the left and right ends of the room in a straight line,
and the sound source was placed in the middle of MIC1 and MIC2. The microphone was
positioned at a vertical angle to the source, and the distance between the two microphones
was 1.6 m. The distance between the source and the vertical angle of the microphone was
2 m. The top view of the ETSI room is illustrated by Figures 5 and 6.
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We will introduce the system model and analyze the key factors affecting positioning
accuracy. To implement simple equipment, we considered a system with only one pair of
microphones and one source.

With respect to objects with a single loudspeaker: The loudspeaker can be connected
to the target object and play an acoustic signal. For the accuracy of the experiment, we
added a decibel meter at the receiving end to make sure that the volume received by each
test environment was consistent, as demonstrated in Figure 7. According to the specific
application scenario, two microphones were used to receive the signal. To ensure the consis-
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tency of the received signal, the selected microphones must have the same characteristics;
therefore, we selected the same brand of microphones to receive the audio source.
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3.2. Experimental Methodology and Analysis of Results
3.2.1. Experiment 1: Measurement of Different Frequencies

As demonstrated in Figure 8, the signal to noise ratio (SNR) was fixed at 35. The
speed of the sound wave propagation in air, measured by PAL Acoustic Technology Ltd.
(Taipei, Taiwan) was 344 m/s. Angular accuracy was studied by analyzing the angular and
(X, Y) errors presented by different frequencies from low to high in-context; the selected
frequencies were 1 K, 5 K, 10 K, 12 K, and 15 K. The position coordinates of the measurement



Electronics 2022, 11, 890 8 of 12

target were (1.4, 2.0). We predicted that the errors would increase as frequency increased.
The distance between the X-axis and the Y-axis was significantly different from the actual
distance at lower frequencies. The angular error was also larger at lower frequencies. The
estimation error at the same speed decreased as frequency increased. From the analysis
results, we can observe that the error value became more stable at about 10 K.
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Tables 2 and 3 analyze the error limits of the angle and X and Y coordinates. The
higher the frequency, the more stable the angle and (X, Y), and the higher the accuracy, as
demonstrated in Table 3. Considering the characteristics of most microphones and speakers
on the market, we chose 10 K as our reference frequency.

3.2.2. Experiment 2: Sound Source Estimation Position Accuracy Test

To verify the frequencies proposed in Experiment 1, four different locations were used,
namely Location A (1.0, 2.0), Location B (0.9, 1.2), Location C (1.6, 1.6), and Location D
(0.5, 0.6), as illustrated in Figure 9. To consider sound propagation in the air at 344 m/s for
whether the microphone is far away or close to the different angles and whether there is a
difference due to the different locations, the results of the experiment demonstrate that the
measured original location and the three newly created different locations’ accuracies are
similar, as portrayed in Table 4.
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Table 2. Frequency and angular error table.

Frequency/Hz
Angular Error

θ1 θ2 Average

1 k 10.641 7.861 9.25
2 k 2.0878 9.777 5.93
3 k 0.3012 3.3485 1.82
4 k 3.1258 3.0462 3.09
5 k 2.5395 1.1583 1.85
6 k 0.2682 2.0954 1.18
7 k 1.1033 0.2188 0.66
8 k 1.3596 0.3753 0.87
9 k 1.153 0.5023 0.83

10 k 0.988 0.4831 0.74
11 k 0.7901 0.8688 0.83
12 k 0.2022 1.2288 0.72
13 k 1.1424 0.0251 0.58
14 k 0.5973 0.0048 0.30
15 k 0.009 1.1542 0.58

Table 3. Comparison of frequency and distance offsets.

Frequency/Hz
Distance Offset(cm)

X Y Max

1 k −41.01 −2.43 41.01
2 k 28.55 −16.26 28.55
3 k −8.10 15.36 15.36
4 k −5.65 −37.81 37.81
5 k 1.63 16.22 16.22
6 k 1.00 2.1449 2.14
7 k 1.00 1.9464 1.95
8 k 1.45 3.42 3.42
9 k −2.26 −5.11 5.11

10 k 0.99 1.9098 1.91
11 k 0.93 −1.94 1.94
12 k −3.09 1.72 3.09
13 k 0.98 2.0033 2.00
14 k 1.01 1.9815 1.98
15 k −0.48 −7.44 7.44

3.3. Discussion

The compressive theory [38] of the microphone array sound source localization method
has better noise immunity compared to the traditional localization method. Most methods
of sound source localization are implemented in two steps with compressive technology.
First, the direction of arrival (DOA) or TDOA from the different microphones of the re-
ceived signals is estimated; then, the source location is estimated. Compressive technology
collects audio data at a rate much lower than the Nyquist rate. This improves localization
accuracy and enables direct source localization, which does not require DOA or TDOA
estimations. However, for accuracy, ref. [38] proposed a microphone array source localiza-
tion method based on CS theory. The space is divided into a grid structure, but it can be
observed from the results that a higher number of microphones result in a smaller error
value. As the amount of microphones increases, localization capabilities become better, but
this constitutes an increase in cost. In [39], the IMGD calculation method is proposed to
investigate how the architecture in MGD can be used with other algorithms to increase
accuracy. The MUSIC group delay (MGD) method is applicable to near-range signals.
However, it is computationally costly and requires large arrays. To solve these limitations,
ref. [39] proposed an improved MGD (IMGD) method. Although the authors improved
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efficiency, MGD requires additional complex algorithms to perform more complicated cal-
culations. Moreover, it increases system usage when performing this operation. Therefore,
the use of compressive microphones or other algorithms increases the complexity or cost of
the system. In this study, we used known operating frequencies with simple GCC without
additional algorithms. The best operating frequency was located according to the frequency
point regarding angle and distance error, respectively. From 1 K to 15 K, the best operating
frequency was explored at each frequency point. The results are displayed in Table 2 for the
angular error and Table 3 for the distance error. Accuracy can be achieved at the frequency
point of 10 K, as demonstrated in Table 5.
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Table 4. Accuracy in different positions.

Target (X, Y) (m) Measure (X, Y) (m) Accuracy (X, Y) (cm)

Location A (1.0, 2.0) (0.98, 2.02) (2.32, 2.02)
Location B (0.9, 1.2) (0.91, 1.22) (1.30, 1.55)
Location C (1.6, 1.6) (1.59, 1.58) (−0.40, −1.9)
Location D (0.5, 0.6) (0.49, 0.58) (−0.41, −1.55)

Table 5. Accuracy compared to the literature.

Method
Accuracy

Number of Microphones
Position(cm) Angle

[38] 19.75 - 12
[39] - 2◦ 8

Proposed 2.02~2.3 0.74◦ 4

4. Conclusions

Sound source localization has been used in many applications, and previous experi-
ments have included many techniques, such as TDOA, AOA, and DOA [28]. This study
used TDOA in combination with the GCC algorithm to improve TDOA calculation results
by working with real acoustic signals at optimal frequencies. The GCC technique attempts
to find the most stable operating frequency between different frequencies and achieve a
certain accuracy level with a minimum number of microphones. We conducted experiments
and proved that this method is effective in practice. This is a stable and straightforward
method for locating sound sources. In this study, we only focused on the localization of
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a single sound source. In future research work, we can focus on how to localize moving
sound sources under this framework, i.e., how to localize them accurately considering the
Doppler effect.
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