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Sound propagation is considered in the rest atmosphere where the sound velocity varies

linearly with height. With the results of the ray theory of refraction being introduced to

the asymptotic solution of spherical wave propagating over a locally reacting ground

surface, the approximated solution of the sound field is obtained. The results of calcula-

tion by this theory explains the measurements satisfactorily, as a result quantitative

prediction of excess attenuation is available.

PACS number: 43. 28. Fp

1.　 INTRODUCTION

Sound propagation in outdoor is strongly influ-

enced by meteorological conditions and by the pres-
ence of the ground surface. 1-5 However, it is not

easy to analyze the sound field by means of the wave
theory6) with the meteorological and the boundary

conditions being simultaneously taken into account,
and for many cases it is difficult to observe their rela-

tive contributions to propagating sound. Thus it

seems to be effective to use the ray theory7-10) in
some way, when one treats of the sound field.

In this paper spherical wave propagating in the

rest atmosphere, in which sound velocity varies with
height, over a locally reacting11-18) ground surface

is considered. This situation is the case when the
wind velocity is small enough to be neglected and

sound velocity is mainly determined by thermal or
humidity profile of the atmosphere. First one

derives path length and time in propagation of
refracted wave by the ray theory when sound ve-

locity varies linearly with height. Secondly they are
substituted to the asymptotic solution13) of the

spherical wave field above a locally reacting surface
formally, and the approximated representation of the

total sound field is obtained. Furthermore the effect
of the sound velocity profile is investigated numeri-

cally under the actual meteorological conditions.

2.•@ ANALYSIS

2.1•@ Ray Theory

Consider a point sound source S located at a

height zs above the ground at z=0as shown in Fig.

1. The ground is assumed to be a locally reacting

surface with a specific acoustic impedance ratio ƒÄ=

1/ƒÀ, where ƒÀ is the specific admittance ratio. Since

the problem is two dimensional, r axis is defined in

horizontal direction in the vertical plane which con-

tains S and receiver P, and horizontal distance be-

tween S and P is denoted by R.

The sound velocity c in the open air is given by

(1)

where T, e, p are the fair temperature (K), the

partial pressure of water vapor and the atmospheric
pressure, respectively. 8) In the surface boundary
layer, the gradients of these variables are smooth
and small, so the sound velocity in the atmosphere
can be approximated by the linear equation

(2)

where co is the value of c at z=0and c (z) is inde-

pendent of r. Then a is called the normalized sound
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Fig.1•@ Geometry of source and receiver.

Fig.2•@ Element of the sound ray.

velocity gradient and assuming the atmosphere to

be rest, one can write the refractive index n(z) as

(3)

By the way each variable in Eq.(1) fluctuates general-
ly, the mean value of it is considered in this paper.

If above assumptions are  introduced, the circular

path for the ray is obt-ained. 3) The fundamental rela-
tions, which are useful in later analysis, are derived
on the basis of the ray theory in the following.

Now the ray element in Fig.2 is given by

(4)

and using the angle of inclination of the ray, ƒµ, one

can write the path length of the ray for propagating

from z=0to z as

(5)

Here taking Snell's law into account

(6)

and Eq.(2), one gets the next equation after integra-
tion

(7)

where ƒµ0 is the angle at z=0.

Next, introducing the time necessary for travers-

ing the element of length of the ray ds as

(8)

one obtains the time required in propagating from
z=0to z from Eqs.(4) and (8),

(9)

where

(10)

Moreover defining the horizontal length r (z) as the

projection of s (z) on r axis, one can write

(11)

After elementary transformation, one gets

(12)

It is seen that the ray is the arc of a circle with center

at the point r=tan ƒµ0/a, z=-1/a and radius of1/

|α| cos ψ0.

When sound propagates over the ground, there

are direct and reflected wave. Each ray draws circu-

lar path whose position and curvature correspond to

the value of the sound velocity gradient, then one

can determine the path of the ray from the geo-

metrical condition of source, receiver and ground as

following. Now since the atmosphere assumed to

be rest, the analysis is limited to the case when zs•…

zp. One can exchange zs and zp, if zs>zp.

2.1.1•@ Direct wave (a>0)

If the sound velocity gradient a is positive, it can

be seen that the ray bends downward from Eq.(12)

and the next equation holds with respect to the

horizontal distance R (Fig.3).

(13)

Fig.3•@ Bended ray for positive sound velocity

gradient.
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where Ro is a distance between two points of inter-

section of the ray with the ground:

(14)

Here the symbol Cuu means that the source and
receiver are both located on the ascending branch of

the ray. The symbol Cud means that the source is

located on the ascending and the receiver on the

descending branches. Similarly Cdd and Cdu are

defined. 14)
Now denoting Rd as the path length of direct wave,

one obtains

(15)

Here zn, is the maximum height of the ray from the

ground and by setting r=R0/2in Eq.(12) one gets

(16)

Therefore one has

(17)

(18)

From Eqs.(13) and (14) one obtains

(19)

and one can determine Rd by substituting ƒÕ0into

Eq.(15).

It is obvious that the two conditions, Cuu, and

Cud, is distinguished by the sign of the equation

(20)

hence Cuu holds for gd<0 and Cud holds for gd•†0.

Similar to Eq.(15), the time in propagation of the

direct wave denoted by Td is given by the equation

(21)

and is calculated by using ƒÕ0of Eq.(19). Especially

if zs=zp, one obtains

Fig.4•@ Bended ray and coordinates for nega-

tive sound velocity gradient.

(22)

and

(23)

2.1.2•@ Direct wave (a<0)

The ray bends upward in this case, then new

coordinate system,(r', z'), is introduced as shown in

Fig.4, where r' axis is defined so as to pass the

receiver P and z'axis is taken in opposite direction

of z axis.

Hence the following equation for the horizontal

distance holds:

(24)

where r'(z') is given by Eq.(11) and one writes „q=

|zs-zp| and a'=-a. Since R0is expressed by Eq.

(14), ƒÕ0which is the parameter for calculating the

path length Rd and time in propagation Td is given

by

(25)

Therefore one gets Rd and Td by Eq.(25) as

(26)

(27)

where z'm is the maximum value of the ray in z' direc-

tion.

It can be seen easily that, if g'd is denoted by

(28)

the condition Cui, holds for g'd<0and Cdu holds for
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By the way if z' na>zp, namely

(29)

holds under the condition Cdii, the direct wave does

not reach to the receiver. Furthermore reflected ray

does not reach to the receiver, because the angles of

incidence and reflection at the ground surface are

equal. Then the receiver is in the shadow zone, but

there exists a little sound energy in it. R. W. Morse15)

showed that the assumption that the sound velocity

gradient approaches zero in the vicinity of the ground

surface yields no shadow zone, even if the ray theory

is employed. On the other hand, the existence of

the sound energy in it is considered by the scatter-

ing from inhomogeneities outside this zone in the

wave theory. 4)

2.1.3•@ Reflected wave (a>0)

The propagating path of the wave reflected at the

ground is analyzed by similar way to direct wave.

First the equation for the horizontal distance R is

written as

(30)

where N is a natural number that means the number
of reflections at the ground and Ro is given by Eq.

(14). Substituting Eq.(11) to Eq.(30) and setting
χ=tan ψ0, one gets quartic equation ofχ. In other

words the waves with successive reflections more
than two times generate under certain condition.
This is a characteristic phenomenon derived by the
ray theory.

But considering that the sound velocity gradient
takes small value in the actual atmosphere and the
asymptotic solution for zero gradient is applied in
later, one limits the case of N=1in this paper.

Setting N=1in Eq.(30), one gets the cubic equa-
tion

(31)

(32)

The roots of this equation are calculated by
Cardano's formula16) and only positive roots which
satisfy Eq.(30) correspond to the reflected wave. So

the characteristics of the roots are mentioned as
follows.

It can be seen that Eq.(31) always has one posi-
tive root because the constant term in Eq. (31) is
negative and the another two roots are real or com-

plex according to the sign of the discriminant of the
cubic equation. Hence the former root corresponds
to the path Cud or Cdu, and there is always reflected
wave of either path. By use of the sign of the equa-
tion

(33)

one can decide the path of the ray so that Cud is

selected for gd>0and Cdu for gd<0.

The latter roots judged by the discriminant cor-

respond to the pathes, Cuu and Cdd. When the

geometry of the source and receiver is fixed, they

become real roots for large value of a. This can be

seen that the bending of the ray will be remarkable

as a becomes larger. In addition to this property,

the condition zm>zp must hold in this case. In this

paper, one denotes the root that satisfies the condi-

tion Cud or Cdu by ƒÕ0g, and roots that satisfy Cuu and

Cdd by/ƒÕ0u and ƒÕ0d respectively.

The path length and time in propagation of re-

flected waves are obtained by the equation of similar

form to Eq. (30), where ƒÕ0g is substituted to ƒÕ0 for

the condition Cud or Cdu, ƒÕ0u for Cuu and ƒÕ0d for

Cdd. Then the path lengths which correspond to

ψ0g

,ψ0u and ψ0d are denoted by Rg, Rgu and Rgd,

respectively, and the times in propagation, Tg, Tgu
and Tgd, are defined similarly.

Now if zs=zp holds, Eq.(31) can be factorized
and always three positive roots are given:

(34)

(35)

The reflected waves with the parameter of ƒÕ0u or
ψ0d can

 be in existence only for the case where the

content of the square in Eq.(11) is not negative.

Consider the case of a•¨0in Eq.(34), then

(36)

is derived and the ray becomes straight line. It can

be shown that the reflected wave of ƒÕ0g coincides

with that term of the asymptotic solution derived in

the case of a=0. So the reflected waves of ƒÕ0u and
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Fig.5•@ An example of ray paths when the

second reflected wave generated, where

zs=zp.

ψ0d are the peculiar ones generated in the case of a>

Obecause  of the use of the ray theory. Especially

one denotes the reflected waves of ƒÕ0g, ƒÕ0u and ƒÕ0d

by „Ug, „Ugu and „Ugd, respectively, and „Ugu and „Ugd are

called the second reflected wave here after. Figure

5shows an example of ray paths when the second

reflected waves are generated.

2.1.4•@ Reflected wave (a<0)

By defining the coordinate system (r', z') similar

to section2.1.2, one gets the equation

(37)

with respect to horizontal distance. Setting ƒÔ=

tan ƒÕ0in Eq. (37), one obtains the cubic equation

of ƒÔ,

(38)

(39)

and only one positive root denoted by ƒÕ0g is given.

Since the path length Rg and time in propagation

Tg is written by

(40)

(41)

which are calculated by ƒÕ0g being substituted. Here

the condition that the receiver is not in shadow zone

is given by z'm>zp.

It should be mentioned that if zs=zp holds, from

Eq. (37), ƒÕ0g becomes

(42)

and one obtains

(43)

(44)

2.2•@ Total Field

If the sound velocity is constant (a=0), the total

sound field due to a point source at S above a ground

(see Fig.2) is expressed by

(45)

where time factor exp(-kit) is suppressed and the

first and the second term represent direct and re-

flected wave respectively. The complex reflection

coefficient Q which includes a contribution of a sur-

face wave is a function of R2, ƒÆ0, k and ƒÄ and the

expression of Q given by the Eq. (27) in Ref. 17) is

used for calculation in this paper (see Appendix I).

It can be assumed that if the path lengths and times

in propagation of direct and reflected waves, derived

in the previous chapter, are substituted to the above

equation, the total sound field, being taken the

refraction into account, is obtained approximately.

Then the reflection angle at the ground, ƒÆ0, is given

by the equation

(46)

where Snell's law is used for the case of a<0.

So denoting the reflection coefficient corresponding

φg,φgu andφgd by Q, Qu and Qd, respectively, one

can write the total field for a>0by

(47)

hence „Ud is the direct wave and Qu=Qd=0if the

second reflected waves, „Ugu and ,„Ugd, do not exist.

Similarly for a<0one has

(48)

3.•@ NUMERICAL RESULTS

In this chapter the sound field in the atmosphere

where the sound velocity is expressed by Eqs.(1) and

(2) is considered numerically. Although the sound
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Table1•@ Three years average of diurnal variation of sound velocity gradient, a (m-1)•~105, after Geiger.

velocity is given by temperature T and the relative

pressure of water vapor to the atmospheric pressure
e/p exactly, it can be seen from Eq. (1) that the sound
velocity depends mainly on the temperature.

Consider the temperature profile in the surface
boundary layer written by

(49)

where y is often referred to as the adiabatic lapse

rate and takes value about-0.01•Ž/m for the rest

atmosphere under adiabatic conditions. However

its value changes with season, hour, weather and the

state of the ground surface.

By use of Eqs. (1) and (2), the sound velocity is

(50)

and the normalized sound velocity gradient is given

by

(51)

Table1shows the diurnal variation of sound ve-

locity gradient converted by Eq. (51) after Geiger's

measurements for three years, 18) and an example of

the actual temperature profile 19) is shown in Fig.6.

It can be seen that the sound velocity gradient in

the lower layer below several tens of meters is larger

than that in the higher layer, the sound velocity

profile in the actual atmosphere can be approximated

by the linear equation of Eq.(50) if the sound velocity

gradient is effectively determined according to the

heights of the source and receiver.

The path lengths and times in propagation of each

ray are shown in Table2, when zs=zp=1.2m and

R=100m or400m. The maximum heights of the

rays, zm, and the reflection angle,ƒÆ0, are shown

simultaneously, then the former represents the maxi-

mum value in z' direction in Fig.4if a<0.

It is seen that the path lengths, Rd and Rg, increase

Fig.6•@ Diurnal variation of temperature

profile in the lowest100m of the atmo-

sphere on clear summer day after A. C.

Best et al.

with the increasing absolute value of a and the path

length corresponding to+a is equal to that to-a.

This is due to the fact that c(zp)•¬co holds when a•s

1. Now, though the times in propagation, Td and

Tg, decrease with the increasing sound velocity, their

difference is proportional to a. From the approxima-

tion of the sound field in the previous section, it can

be said that, for a<0, the source and receiver would

be nearer to the ground than the case for a=0due

to increasing ƒÆ0with decreasing a. For a>0, one

can suppose the contrary result.

By the way the second reflected waves are gener-

ated as a and R increase. Because zs=zr, is assumed

in Table2, the second reflected waves,„Ugu and „Ugd,

are symmetrical each other with respect to r=R/2

(see Fig.5). It is clear that they are generated when

zni exceeds zp. In order to express these phenomena,

Fig.7shows an example of the region where the

second reflected waves and the shadow zone are
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Table2•@ Calculated values of geometrical parameters, where zs=zp=1.2m.

(a)•@ R=100m

(b)•@ R=400m

Fig.7•@ Structure of the sound field for the

case of zs=zp=1.2m, then (i) „Ud and „Ug

exist in I, (ii) „Ud, „Ug, „Ugu and „Ugd exist in

II, (iii) shadow zone generated in III.

Fig.8•@ Solid line represents the boundary of

shadow zone for the value of the sound ve-

locity gradient, a, where zs=1.2m.

generated, and Fig.8shows the boundary of the
shadow zone according to Eq.(28).

In order to consider the influence of the sound
velocity gradient on the total sound field, an excess
attenuation Att is defined as

(52)

Hence Att is an excess attenuation without the at-

tenuation caused by geometrical divergence and the

absorption by the air, and coincides with that by the

ground reflection if a=0.

Figure9shows calculated values of Att above a

grass and an asphalt surface for the change of the

sound velocity gradient, where the ground impedance

is calculated by Delany and Bazley's empirical

formula21) and flow resistivity „q is based on Ref.
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(a)

(b)

Fig.9•@ Effect of the change in sound velocity gradient for seven values of a;-2.10-4,

-10-4
,-5・10-5,0,5・10-5,10-4,2・10-4,when zp=zp=1.2m. (a) grass(σ=300 cgs

unit), (b) asphalt („q=20000 cgs unit)

20). It can be seen that if a>0, Att diminishes and

the position of the dip of Att moves to lower fre-

quency range in comparison with the condition a=

0irrespective of the ground impedance, and, if a<

0, Att rises and that of the dip moves to heigher

range. Furthermore if a becomes smaller, then the

shadow zone is generated.

The tendency mentioned above agrees well with

the experimental results as before. 22,23) So the ap-

proximated representation of the sound field of Eqs.

(47) and (48) seems to be reasonable and now the

influences of the meteorological condition on sound

propagation can be predicted by this theory if the

atmosphere is rest.

4.•@ CONCLUSION

The sound field in the rest atmosphere where the

sound velocity varied linearly with hight above a

ground with a finite impedance was analyzed ap-
proximately by means of the ray theory introduced
to the asymptotic solution. As a result, quantitative
prediction of sound propagation based on wave
theory became possible, while only qualitative predic-
tion had been available on the effect of meteorologi-
cal conditions.

It should be noted that the sound velocity profile
is not generally linear, one can pursue each ray
numerically in the atmosphere with any profile by
means of approximation by polygonal lines.
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APPENDIX I

If the ground is locally reacting, by use of the ac-
curate asymptotic solution13) of the total field, the
complex reflection coefficient Q can be rewritten as
follows (see Fig.1).

(A.1)

(A.2)

where
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