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*is paper gives a theoretical analysis to obtain and reduce the acoustic pressure generated from plates with geometric non-
linearities subjected to subsonic airflow and external excitation. von-Kármán assumptions are applied considering the nonlinear
terms in strain-displacement relations. Airflow passing through the plate is considered as an incompressible, irrotational, and
inviscid flow. Galerkin’s method is employed to acquire the governing equations of time-dependent coefficients. Multiple Time
Scale Method (MTSM) is then used to obtain the response of the plate. Suppressing undesirable vibration is carried out using an
optimal tuned mass damper (TMD) system and an analytical solution is proposed based on Laplace transform and Adomian
Decomposition Method (ADM).*e acoustic pressure received from the plate is calculated by solving the Rayleigh integral using
Boundary Element Method (BEM). A parametric study is carried out, and the effects of the flow speed, the aspect ratio, the
thickness of the plate, the material of the plate, the forcing frequency, and the effectiveness of the designed TMD system on the
sound pressure are examined. According to the results, using the TMD system reduces the amplitudes of the plate vibrations and,
consequently, reduces the acoustic pressure around the vibrating plate. In this study, the passive control strategy leads to a
significant decrease in the sound pressure level (about 35%) in some airflow speeds. Results show good efficiency in the control
strategy. It is also found that the acoustic pressure generated from steel plates is significantly larger than that generated from
aluminum plates. Moreover, increasing the aspect ratio and the plate thickness reduces the acoustic pressure. On the other hand,
the external excitations with lower frequencies and the airflows with higher densities can generate lower sound pressures around
the plate.

1. Introduction

Plates are widely used in engineering applications, especially
in automobile structures and high-speed trains (HST) [1].
Such plates are commonly considered elastic or viscoelastic.
It can be noted that the viscoelasticity effects may be ex-
amined in other mechanical structures such as disks, beams,
or gyroscopes [2]. Anyway, the plates used in high-speed
trains are typically subjected to a subsonic airflow. Reducing
the noise generation is unavoidable for passenger comfort in
the HST. So, analyzing the sound radiation from the plates in
airflows and reducing the levels of this noise seem to be

necessary. Moreover, there is a paucity of research on the
analytical noise control of these plates. In the last decades,
many types of researches have been established about vi-
brations and sound radiation from the linear and nonlinear
plates. For example, Sorokin [3] examined the vibrations of
and sound radiation from sandwich plates in heavy fluid
loading conditions using a semianalytical approach. Chong
et al. [4] performed a theoretical analysis of the vibration and
the sound radiation generated by plates excited by piezo-
electric actuators. Forced vibration of rectangular ortho-
tropic plates under moving loads was studied using Rayleigh
integral technique by Au and Wang [5]. Akamatsu et al. [6]
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analyzed sound radiation from baffled finite elastic plates
that are subjected to impulses occurring at random points on
the surface of the plate. Denli and Sun [7] presented an
optimization study of sandwich structures with cellular cores
for minimum noise radiation in a wide frequency band,
subject to the constraints on the fundamental frequency and
weight. Jeyaraj et al. [8] numerically studied the vibration
and acoustic response characteristics of an isotropic rect-
angular plate in a thermal environment. *ey found that the
overall sound radiation of the plate increases with an in-
crease in temperature for all boundary conditions. An an-
alytical model framework able to accurately predict the flow-
induced noise in the interior of a transport vehicle cabin was
presented by Rocha et al. [9]. An analytical approach was
formulated by Xin and Lu [10] to account for the effects of
mean flow on sound transmission across a simply supported
rectangular aeroelastic panel. Smith and Iglesias [11] ex-
amined vibration and noise radiation from a panel excited by
a turbulent flow. Rocha [12] investigated the vibration and
sound radiation by panels exited by turbulent flow and by
random noise. Sucheendran et al. [13] proposed an analytical
solution for the fully coupled structural-acoustic response of
a thin elastic plate mounted in a rectangular duct. Akgöz and
Civalek [14] developed a new nonclassical sinusoidal plate
model based on modified strain gradient theory. Yang et al.
[15] presented an analytical study for sound radiation of
functionally graded materials (FGM) plate based on the
three-dimensional theory of elasticity. Shakeri and You-
nesian [16] studied the acoustic radiation in the transient
and steady-state modes for a clamped-free annular plate
with a tuned mass damper (TMD) device. Daneshjou et al.
[17] proposed an exact solution of three-dimensional elas-
ticity for sound transmission loss through an FG cylinder in
presence of subsonic external flow. *e vibroacoustic
modeling and analysis of the sandwich plates with metal-
ceramic functionally graded (FG) core are presented by
Chandra et al. [18]. Song et al. [19] proposed a method of
panel flutter suppression and elimination for aeroelastic
structures in supersonic airflow. Minimization of sound
radiation in fully coupled structural-acoustic systems was
performed by Zhao et al. [20] using FEM-BEM based to-
pology optimization. Chauvin et al. [21] examined a clamped

thin membrane made in Latex in order to develop a non-
linear vibroacoustic absorber in the acoustic domain. *e
vibration and sound radiation of porous functionally graded
material (FGM) plates with a temperature gradient along the
thickness were studied by Zhou et al. [22]. Jalaei and Civalek
[23] examined the dynamic instability of viscoelastic porous
functionally graded (FG) nanobeam embedded on visco-
Pasternak medium subjected to an axially oscillating loading
as well as a magnetic field. Qin et al. [24] studied sound
radiation from plates with elastic boundary conditions
embedded in an infinite perforated rigid baffle. Additionally,
Huo et al. [25] proposed the optimized dynamic vibration
absorbers for suppressing sound radiation of plate struc-
tures. Recently, the authors of [26] obtained transient and
steady-state acoustic pressure of viscoelastic resonant plates
using Adomian Decomposition Method (ADM) and Dur-
bin’s numerical Laplace transform inversion technique.

A survey of the literature reveals that not many studies
have been performed in the area of vibration and acoustic
responses of plate structures subjected to a fluid field. Ad-
ditionally, there is a lack of analytical modeling in three
dimensions for the vibrating plates and the fluid flow
pressure in order to calculate and reduce the sound levels
generated by the plates. In the present study, this gap in the
literature has been covered and a new solution based on
Laplace transform and Adomian Decomposition Method
has been proposed to represent the response of the plate-
absorber system analytically.

2. Mathematical Modeling

2.1. Governing Equations and General Solution. Schematic
representation of a simply supported plate subjected to a
subsonic airflow has been illustrated in Figure 1. An external
excitation of the form f̃(x, y, t) � f̃0 sin(πx/
a)sin(πx/a)cos ψt is simultaneously acting on the surface of
the plate. *e dimensions of the plate have been demon-
strated in Figure 1. Moreover, the mass density and the speed
of the airflow are ρ∞ and U∞, respectively.

Neglecting the viscoelasticity effect, the governing
equation of motion of the plate can be expressed as [1, 26]

D∇4w + ch _w + ρh €w − f̃ − Pa −
Eh

2a 1 − ]
2( ) ∫

a

0

zw

zx
( )2

+ ]

zw

zy
( )2 dx  z
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zx2
( )

+ Eh

2b 1 − ]
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2w

zx zy
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(1)

where a, b, w, D, E, ρ, and v are length, width, deflection,
rigidity, modulus of elasticity, mass density, and Poisson’s
ratio of the plate, respectively, and one can define

D � (Eh3/(12(1 − ]
2))) and∇4 � ((z2/zx2) + (z2/zy2))2. Pa

is also the pressure of the airflow on the surface of the plate.
*e authors of [1] reported that the response of equation (1)
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could be represented by the main mode consideration; that
is, w(x, y, t) � sin(πx/a)sin(πy/b)q(t). Moreover, one can

ignore the compressibility effect of the flow and clarify Pa as
[26]

Pa(x, y, t) �
ρ∞U

2
∞

a

�������������
(π/a)2 +(π/b)2

√ sin
πy

b

a

U2
∞

€q − π2

a
q( )sin πx

a
+ 2

π

U∞
_q cos

πx

a
[ ]. (2)

Substituting equation (2) into (1) and multiplying both
sides of it by sin(πx/a)sin(πy/b) and then performing in-
tegral from 0 to a for x and from 0 to b for y leads to
obtaining governing equation of q (t) as

M€q + C̃ _q +Kq + Ñq3 � F̃(t), (3)

where

M � ρh − ρ∞
ω
,

C̃ � ch,

K � Dω4 + ρ∞π2U2
∞

a2ω
,

Ñ � Eh

16 1 − ]
2( ) 3

π

a
( )4 + 3

π

b
( )4 +(1 + ]) π

a
( )2 π

b
( )2( ),

F̃(t) � f̃0 cos ψt,

(4)

and ω �
�������������
(π/a)2 + (π/b)2

√
. Assuming C̃, Ñ, and F̃(t) from

small orders (say ε), one can rewrite equation (3) in the new
form as

M€q + εC _q +Kq + εNq3 � εF(t). (5)

Perturbation methods give us a solution for equation (5) in
the form [27]

q T0, T1; ε( ) � q0 T0, T1( ) + εq1 T0, T1( ) + O ε2( ). (6)

For using the Multiple Time Scale Method, one should
introduce T0 � t, T1 � εt, D0 � (z/zT0) and D1 � (z/zT1).
A new definition of time derivatives is introduced by de-
scribing the above parameters. So, one can write [27]

z
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zT0

zt
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(7)
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Figure 1: Schematic representation of a simply supported plate subjected to a subsonic airflow and external load.
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Substituting the new time derivatives obtained in
equation (7) and the solution defined in equation (6) into (5)
and separating powers of εi lead to [27]

ε0: MD2
0q0 + Kq0 � 0⇒q0 T0, T1( ) � A T1( )ei ���K/M

√
T0 + c.c,

ε1: MD2
0q1 + Kq1 � − 2MD0D1q0 − CD0q0 − Nq

3
0 + f0 cos ψt
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(8)

Eliminating the secular terms gives

2i

��
K

M

√
D1A + iCA

��
K

M

√
+N 3A2A( ) � 0. (9)

Parameter A is a complex number of the form

A � 1

2
αeiβ, (10)

where α and β are real numbers. Substituting equation (10)
into (9) and separating real and imaginary parts construct a
system of differential equations of α(T1) and β(T1) as
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8
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��
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��
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(11)

*e solution of equation (11) will be in the form

α(t) � α0e
(− εCt/2),

β(t) � − 3Nα2
0

8C

K

M
( )− (1/2)e− εCt + β0,

(12)

where α0 and β0 are real constants. Obtaining α(t) and β(t)
leads to finding the solution of equation (8) as

q(t) � α(t)cos
��
K

M

√
t + β(t)( ) + εN(α(t))3

32K
cos 3

��
K

M
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and the above equation represents an analytical solution for
the dynamic response of the plate.

2.2. Vibration Suppression. A suppressed plate with a tuned
mass damper (TMD) system has schematically been shown

in Figure 2. *e mass, the stiffness, and the damping co-
efficient of TMD arema, ka, and ca, respectively, and TMD is
located at the midpoint of the plate.

*e governing coupled differential equations describing
the new system are

D∇4w + ch _w + ρh €w − f̃ − Pa − N0x +
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where za, _za, and €za are the displacement, the velocity, and
the acceleration of the TMD, respectively. Moreover,
w((a/2), (b/2), t) and _w((a/2), (b/2), t) are the deflection
time history and the velocity time history of the midpoint of
the plate, respectively. δ(·) is also a representation of the
Dirac delta function. Considering w of the form w(x, y, t) �

sin(πx/a)sin(πy/b)q(t) and multiplying both sides of
equation (14) by sin(πx/a)sin(πy/b) and then performing
integral from 0 to a for x and from 0 to b for y lead to a set of
coupled nonlinear differential equations for q(t) and za(t)
in the form

M€q + C _q + Kq +Nq3 � f(t) + 4

ab
ka za − q( ) + 4

ab
ca _za − _q( ), ma€za + ka za − q( ) + ca _za − _q( ) � 0.{ (15)

All the parameters used in equation (15) are previously
introduced.*e Laplace transform technique in conjunction
with Adomian Decomposition Method (ADM) can be

utilized to obtain the solution of equation (15). By taking
Laplace transform from both sides of equation (15), one has

Ms2Q(s) + CsQ(S) + KQ(s) +Nℓ q3{ } � F(s) + 4

ab
ka Za(s) − Q(S)( ) + 4

ab
ca sZa(s) − sQ(S)( ),

mas
2Z(S) + ka Za(s) − Q(S)( ) + ca sZa(s) − sQ(S)( ) � 0,

 (16)

where Q(S) � ℓ q(t){ } � ∫+∞
0

q(t)e− stdt and
Za(s) � ℓ za(t){ } � ∫+∞

0
za(t)e− stdt. One can now employ

Adomian Decomposition Method to write the solution of
equation (15) as [27]

q(t) � ∑∞
k�0
qk(t),

za(t) � ∑∞
k�0
zk(t).


(17)

Moreover, according to Adomian Decomposition
Method, one can propose the nonlinear term of q3 as follows
[27]:

n
⌢
q � q

3 � ∑∞
k�1
ak, (18)

where ak are Adomian polynomials. By substituting equa-
tions (17) and (18) into (16), one has
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Figure 2: Schematic representation of a suppressed plate.
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Ms2 ∑∞
k�0
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(19)

Solving linear algebraic equation of (19), one can obtain
Q(s) as

Q(s) � ∑∞
k�0
Qk(s) �

mas
2 + cas + ka( )(F(s) − N ∑∞k�1 ak( )

m
⌢
s2 + c⌢s + k

⌢( ) mas
2 + cas + ka( ) − (4/ab) ka + cas( )2, (20)

and also one can obtain Z(s) as

Za(s) � ∑∞
k�0
Zk(s) �

ka + cas( )(F(s) − N ∑∞k�1 ak( )
m
⌢
s2 + c⌢s + k

⌢( ) mas
2 + cas + ka( ) − (4/ab) ka + cas( )2, (21)

where m
⌢ �M, c⌢ � c + (4/ab)ca, and k

⌢
� k + (4/ab)ka.

Now, one can generate the recursive relation of ak � q3k− 1
(k� 1, 2, 3, . . .) and obtain

Q0(s) �
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2 + cas + ka( )F(s)
m
⌢
s2 + c⌢s + k
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2 + cas + ka( ) − (4/ab) ka + cas( )2,
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− NQ3

0

m
⌢
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Q2(s) �
− NQ3

1

m
⌢
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⌢,

. . . ,



(22)

Z0(s) �
ka + cas( )F(s)

m
⌢
s2 + c⌢s + k

⌢( ) mas
2 + cas + ka( ) − (4/ab) ka + cas( )2,

Z1(s) �
− NZ3

0

m
⌢
s2 + c⌢s + k

⌢,

Z2(s) �
− NZ3

1

m
⌢
s2 + c⌢s + k

⌢,

. . . .



(23)
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Onemay use Routh’s stability criterion [28] to determine
the stability threshold of the solutions of equations (22) and
(23). Based on Routh’s stability criterion, the solutions of
equations (22) and (23) are stable if the following hold:

m
⌢
ka + k

⌢
ma + c

⌢
ca >

4

ab
c2a,

c
⌢

ca
+ k

⌢

ka
> 8

ab
,

k
⌢
> 4

ab
ka.

(24)

Numerical methods such as Durbin’s numerical Laplace
inversion scheme can be utilized to obtain q0, q1, q2, . . ., z0,
z1, z2, . . . in the following forms [16]:

qk(t) �
2eλt

τ
× 1

2
Re Qk(λ)( ) + ∑M

m�1
Re Qk λ + j 2mπ

τ
( )( )cos 2mπ

τ
t( ) − Im Qk λ + j 2mπ

τ
( )( )sin 2mπ

τ
t( ), k � 0, 1, 2, . . . ,


(25)

zk(t) �
2eλt

τ
× 1

2
Re Zk(λ)( ) + ∑M

m�1
Re Z λ + j 2mπ

τ
( )( )cos 2mπ

τ
t( ) − Im Z λ + j 2mπ

τ
( )( )sin 2mπ

τ
t( ), k � 0, 1, 2, . . . ,


(26)

where λ is an arbitrary real number greater than all the real
parts of the singularities of Qk(λ) and Zk(λ). Moreover,
Qk(λ) and Zk(λ) should be defined in the interval [0, 2τ].
For sufficient accuracy, the suggested value of “λt” is given
with the appropriate sign by [29]

λt � − 2 ln Nτ{ }, (27)

where Nτ is the number of points in the time signal.

2.3. Calculation of the Acoustic Pressure. *e vibrating plate
of Figure 1 in an infinite baffle together with the observation
point for calculating the acoustic pressure has been sche-
matically depicted in Figure 3.

*e acoustic pressure Pac(x0, y0, z0, t) at the observation
pointΠ (x0, y0, z0) at time t caused by vibration of the plate is
given by [5]

Pac x0, y0, z0, t( ) � ρs
2π

∫b
0
∫a
0
€w x, y, t − R

c0
( ) 1

R
dxdy,

(28)
where €w(x, y, t) is the acceleration time history of the plate
at (x, y), c0 is the wave velocity of the acoustic medium, ρam is
the mass density of the acoustic medium, and R is the
distance between the observation point Π and the infini-
tesimal element at (x, y) on the plate surface. By dividing the
sides a and b of the plate into Nx and Ny equal segments of
lengths Δx and Δy, respectively, and using the standard
trapezoidal rule [30], the acoustic pressure can be expressed
as

Pac x0, y0, z0, t( ) � ρamΔxΔy
8π

∑m− 1
k�0

∑n− 1
l�0

€w rΔx, sΔy, t − Rr,s/c0( )( )
Rr,s

+
€w (r + 1)Δx, sΔy, t − Rr+1,s/c0( )( )

Rr+1,s

+
€w rΔx, (s + 1)Δy, t − Rr,s+1/c0( )( )

Rr,s+1
+

€w (r + 1)Δx, (s + 1)Δy, t − Rr+1,s+1/c0( )( )
Rr+1,s+1

. (29)

Here, Rr,s is the distance between the observation pointΠ
and the element at (rΔx, sΔy) on the surface of the plate.
Furthermore, one can define

Rr,s �
�������������������������
x0 − rΔx( )2 + y0 − sΔy( )2 + z20√

, (30)

and €q(t) can be acquired from equation (25) and then
replaced in equation (29) in order to determine the acoustic
pressure as
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Pac x0, y0, z0, t( ) � ρamΔxΔy
8π

∑1
k�0
∑1
l�0
∑m− 1
r�0

∑n− 1
s�0

sin((π(r + k)Δx)/a)sin((π(s + l)Δy)/b)
Rr+k,s+l

(
× €αr+k,s+l cos φr+k,s+l − 2 _αr+k,s+l _φr+k,s+l sin φr+k,s+l − αr+k,s+l€φr+k,s+l sin φr+k,s+l − αr+k,s+l _φ

2
r+k,s+l cos φr+k,s+l{

+ 3εN

32K
2αr+k,s+l _α

2
r+k,s+l + α2

r+k,s+l€αr+k,s+l − α3
r+k,s+l _φ

2
r+k,s+l( )cos φr+k,s+l(

− 6α2
r+k,s+l _αr+k,s+l _φr+k,s+l + α3

r+k,s+l€φr+k,s+l( )sin φr+k,s+l)
− ε

Mf0

K − Mψ2ψ
2 cos Θr+k,s+l}),

(31)

where φ �
������
(K/M)

√
t + β(t) and Θ(t) � ψt. Moreover,

subscripts r + k and s + l describe the parameter evaluation at
time t − (Rr+k,s+l/c0).

3. Results and Discussion

In this section, a case study is organized, and the results are
reported. *e properties of the rectangular elastic plate
chosen for this study are the length of a� 2m, the width of
b� 1m, and the thickness of h� 1.5mm. Two types of
material are selected for the plate: the first type is aluminum
with Young’s modulus of E� 69GPa, mass density of
ρ� 2700 kg/m3, and Poisson’s ratio of υ � 0.32 and the
second type is steel with Young’s modulus of E� 207GPa,
mass density of ρ� 7800 kg/m3, and Poisson’s ratio of
υ � 0.3. *e viscous damping is also considered as
c� 0.01N s/m for two cases. *e time history response of the
midpoint of the plate is illustrated in Figure 4. *ese re-
sponses have been obtained using two methods of the
Multiple Time Scale and Runge–Kutta 4th-order numerical
integration method. *ere is an acceptable coincidence
between results acquired from two approaches and one can
obtain the response of the equation (15) using Runge–Kutta
method.

Figure 5 illustrates the acoustic pressure against the
airflow speed for two different materials. It can be found
that increasing the speed of the flow causes sound pressure
to be reduced. Moreover, the acoustic pressure is domi-
nantly increasing for the speeds in the vicinity of a critical
speed in which the resonance phenomenon occurs in the
plate (i.e.,

�����
K/M

√
≈ ψ). It is worth noting that, in the

practical range of HST speeds (U∞ > 250 km/h), the
acoustic pressure generated from the steel plate is sig-
nificantly larger than that generated from the aluminum
plate.

*e acoustic pressure versus the aspect ratio (i.e., a/b) of
the plate has been plotted in Figure 6. It is observed that the
sound pressure decreases as the aspect ratio increases. It is
also found that, in the large aspect ratios (say a/b> 4), the
acoustic pressure is independent of the plate material.

In Figure 7, the acoustic pressure has been plotted versus
the plate thickness. At first, it can be found from the figure
that the thick plates generate lower acoustic pressure than
that of the thin plates. *is phenomenon occurs because of
high rigidity in the thick plates. Plates with higher rigidities
have small deformations in the vertical directions. Ac-
cordingly, the acoustic pressure generated from these plates
has lower levels. Moreover, in the plates with the moderate
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Figure 3: Observation point in which the acoustic pressure is evaluated.
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thickness (say 5mm in our study), the sound pressure is
independent of the plate material. *is is from the amazing
outcomes of the present study.

Figure 8 represents the acoustic pressure generated from
the plate versus the frequency of the external force. *e
figure shows that the forces with higher frequencies can
cause larger acoustic pressures. Increasing the forcing fre-
quencies means approaching the natural frequencies of the
plates and occurrence of the resonance phenomenon. It is
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Figure 4: *e time response of the midpoint of the plate using
Multiple Time Scale Method and numerical solutions.
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Figure 5: *e acoustic pressure against the flow speed for different
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also known that the difference between the sound pressures
generated from the aluminum and the steel plates becomes
larger with increasing the frequency of the external force.
*is difference is because of the different natural frequencies
of aluminum and steel plates. It is found from this figure that
the selected frequencies are near to the natural frequency of
the studying steel plate.

*e influence of the airflow density on the acoustic
pressure has been shown in Figure 9. It is clear that when the
density of the airflow increases (i.e., when the temperature of
the airflow decreases), the acoustic pressure is reduced, but
the airflow density does not play an important role in the

sound pressure generation. For example, if the density of the
passing flow decreases about 20% (when the temperature
decreases from 35°C to − 25°C), the sound pressure received
from the plate decreases about 0.5% (i.e., Pmax is reduced to
0.995 Pmax). According to equations (3) and (4), the airflows
with higher mass densities passing through the vibrating
plate increase the stiffness of the plate and decrease the
vibrational amplitudes.*erefore, this can cause the acoustic
pressure to take lower levels. As the density of the airflow
cannot extremely change in the ambient temperature, the
sound pressure changes lightly versus the mass density of the
airflow in this condition. It is also discovered from Figure 9
that the steel plate is more sensitive to the airflow density
rather than the aluminum plate.

Figure 10 compares the sound pressure generated
against the mass ratio (i.e., (ma/mp)) for the aluminum and
the steel alloys. It is observed that there is an optimal choice
for the mass ratio in which the acoustic pressure takes its
minimum value. *is optimal ratio depends on the plate
material (∼0.005 for the aluminum and ∼0.003 for the steel
alloys). An important result can be obtained from a com-
parison of Figures 5 through 8 with Figure 10. It says that
using the TMD system causes the acoustic pressure received
from the aluminum plates to take larger values compared to
that of the steel plates, although this pattern is completely the
opposite without using the TMD system.

Figure 11 investigates the sound pressure against the
natural frequency of the TMD (i.e., ω2

a � (ka/ma)). It is seen
that, for an optimum value of (ka/ma), the TMD has a good
efficiency in the reduction of the sound propagation. *is
optimum value differs from the aluminum plate to the steel
plate. *e influence of the damping ratio (i.e., (ca/ccr)) on
the acoustic pressure has been demonstrated in Figure 12. In
this graph, the general behavior is the same as that shown in
Figure 9.

Using a TMD in the midpoint of the plate can noticeably
decrease the sound pressure radiated from the aluminum
plate. *is pattern is observed against the airflow speed in
Figure 13. It is clear from the figure that the efficiency of the
TMD can be reduced in high-speed regimes.
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Figure 10: *e acoustic pressure versus the mass ratio.
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Figure 11: *e acoustic pressure versus the natural frequency of
the TMD.
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*e noise contour maps around the vibrating plate are
shown in Figure 14. *e contours have been created at a
distance of 1 meter away from the surface of the aluminum
plate (i.e., R� 1m) before and after using the TMD system. It
is obvious from the contour maps that the maximum value
of the acoustic pressure is received along the midpoint of the
plate.

Figure 14 demonstrates that using the TMD system can
remarkably reduce the noise level (from ∼80 dB to ∼72 dB in
this study).

4. Conclusions

*e acoustic pressure generated from the plates with geo-
metric nonlinearity subjected to subsonic airflow and ex-
ternal excitation was studied in this paper. At first, the
vibrations of the plate were analyzed based on von-Kármán’s
assumptions. *e airflow was considered as the potential
flow and the pressure distribution was obtained. Adding a
tuned mass damper (TMD) system to the surface of the plate
led to absorption in the vibrations of the plate. *e solution
of the plate-absorber dynamical system was obtained ana-
lytically employing the Laplace transform technique and
Adomian Decomposition Method. Rayleigh integral tech-
nique and Boundary Element Method were used to deter-
mine the acoustic pressure distribution around the plate. In a
parametric study, the effects of the airflow speed, the aspect
ratio, and TMD properties on the sound pressure were
investigated. *e following are the main outcomes of this
study:

(i) Increasing the speed of the airflow passing through
the plate leads to decreasing the acoustic pressure
received from the plate.

(ii) *e aluminum plates have lower values of acoustic
pressure than the steel plates in the absence of TMD.
*is pattern is completely different in the presence
of TMDs.

(iii) Plates with higher values of aspect ratios generate
low values of acoustic pressure. Increasing the as-
pect ratio also makes the acoustic pressure inde-
pendent from the plate’s material.

(iv) *ick plates generate lower acoustic pressure
compared to thin plates. Additionally, in the thick

plates (when the plate thickness is more than 5mm
in our study), the acoustic pressure is independent
of the plate material.

(v) *ere are optimum values for the mass ratio and the
natural frequency of the TMD system in which the
acoustic pressure takes its minimum value.
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