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Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction
force on the radiator, and the total radiated power arising from a harmonically excited, resilient,
flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either
Stenzel functions (1− (σ/a)2)n with σ the radial coordinate on the radiator, or linear combinations
of Zernike functions Pn(2(σ/a)2 − 1) with Pn the Legendre polynomial of degree n. Both sets of
functions give rise, via King’s integral for the pressure, to integrals for the quantities of interest
involving the product of two Bessel functions. These integrals have a power series expansion and
allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently,
many of the results in [Piston radiator: Some extensions of the theory, J. Acoust. Soc. Am. 65(3),
1979] are generalized and treated in a unified manner. A foreseen application is for loudspeakers.
The relation between the radiated power in the near-field on one hand and in the far-field on the
other is highlighted.

PACS numbers: 43.38 Ar, 43.20 Bi, 43.20 Px, 43.40 At
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I. INTRODUCTION

The analytical theory of sound radiation for the case of
a harmonically excited, circular piston in an infinite baffle
is firmly established in the literature. There are chapters
in text books1–5, survey papers6,7 and many research pa-
pers from older8–13 and more recent14–21 years devoted
to this subject. A big effort has been made to find series
or convenient integral expressions for the sound pressure
at all field points on or in front of the disk and the baffle.
The single integral approach, in which the pressure is ex-
pressed via Rayleigh’s integral2 or by other means as a
single integral with bounded integration limits, occurs in
Refs.10, 11, 13, 15 and is reviewed, with emphasis on nu-
merical work, in Ref.16. The spherical-wave-expansion
approach uses Gegenbauer’s addition theorem22 to ex-
press the pressure as a series of integrals involving spher-
ical Bessel functions and Legendre polynomials and can
be found in Refs.15, 18–20, 23. Furthermore, King’s in-
tegral9 is used in Refs.6, 12, 14, 17, 19 and this yields
expressions for the pressure in the form of an infinite in-
tegral involving the product of two Bessel functions and
an exponential factor. In order that this integral can
be used conveniently for computations, it is often neces-
sary to employ somewhat more advanced complex func-
tion theory. Finally, in Ref.24 series expansions following
from Rayleigh’s integral2 are given for the on-disk pres-
sure, and in Ref.19 King’s integral is used to develop a
double-series expansion for the on-disk pressure.

In the present paper, single-series expressions are
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developed for quantities associated with the pressure
(rather than for the pressure in the field itself) from
King’s integral. The velocity profile on the radiator is
allowed here to be non-uniform. A set of results of
this type, for the reaction force and the total radiated
power, was obtained by Greenspan6. Greenspan consid-
ers, what are called in the present paper, Stenzel func-
tions8 s(n)(σ) = (1 − (σ/a)2)n, 0 ≤ σ ≤ a (n = 0, 1, 2),
and (infinitely supported) Gaussians and establishes se-
ries expansions and closed-form expressions for the quan-
tities just mentioned. These results were derived from
King’s integral in an ad hoc manner with an impressive
amount of analytical skill.

Greenspan’s results will be generalized to velocity pro-
files of the Stenzel type of arbitrary order n and of the
Zernike25 type, see below, and linear combinations of
the latter. The acoustical quantities considered here
are edge pressure, reaction force, total power and di-
rectivity. Zernike functions have the form R0

2n(σ/a) =
Pn(2(σ/a)2 − 1), with Pn the Legendre polynomial of
degree n. Linear combinations of both Stenzel functions
and Zernike functions can be used to approximate any ra-
dially symmetric velocity profile. In this respect Zernike
functions are much more effective, in terms of the re-
quired number of coefficients and amplitudes of these,
than the Stenzel functions. Zernike functions have been
considered recently21 by the authors with respect to their
potential and efficacy for forward computation of the on-
axis and far-field pressure from a non-uniform velocity
profile on the piston in terms of its Zernike expansion
coefficients. Here it has been very helpful that Zernike
functions are orthogonal and that many velocity profiles
have Zernike coefficients that can be found in analyti-
cal form, see Ref.21, Appendix A. Moreover, the inverse
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problem of estimating a velocity profile in terms of its ex-
pansion coefficients from on-axis pressure data has been
considered in Ref.21. Results for quantities related to the
pressure that admit an analytical treatment via King’s
integral were, however, not presented in Ref.21. This is
done in the present paper: for the quantities of interest
it will be shown that King’s integral yields an attractive
power series expansion.

Stenzel functions, with half-integer rather than integer
order n, have been considered recently by Mellow19 in
the context of King’s integral for the pressure. In Ref.19
these Stenzel type functions have been used to expand a
non-uniform velocity profile for the purpose of computing
the pressure everywhere on the radiator. This leads via
King’s integral to certain double series expansions for the
pressure on the radiator that are more complicated than
what is obtained here for the pressure at the edge of the
radiator.

The paper is organized as follows. In Sec. II the basic
formulas and functions are presented, and the results of
the paper are discussed globally. In Secs. III, IV, and V
the formulas for the pressure at the edge, the reaction
force, and the total power and directivity are presented
and discussed. These formulas are given for the case
that v is a general (integer-order) Stenzel function or a
linear combination of Zernike functions. In Sec. VI it is
briefly indicated how the power can be estimated from
near-field on-axis pressure data via the inverse method
developed in Ref.21. In Sec. VII the conclusions are
presented. Finally, in Appendix A the required integrals
are computed in the form of power series in ka, and in
Appendix B the convergence properties of these series are
discussed.

II. BASIC FORMULAS AND OVERVIEW

The radiated pressure is given by Rayleigh’s inte-
gral2,26 as

p(r, t) =
iρ0ck

2π
eiωt

∫
S

v(rs)
e−ikr

′

r′
dS , (1)

where ρ0 is the density of the medium, c is the speed
of sound in the medium, k = ω/c is the wave number
and ω is the radial frequency of the vibrating surface S
for which a disk of radius a in an infinite baffle is taken.
Furthermore, r is a field point, rs is a point on the disk S,
r′ = |r − rs| is the distance between r and rs, and v(rs)
is the normal component of a (not necessarily uniform)
velocity profile; see Fig. 1 for the geometry and notations.
The time variable t in p(r, t) and the harmonic factor
exp(iωt) in front of the integral in Eq. (1) will be omitted
in the sequel. The average velocity on S is denoted by
Vs, hence the volume velocity V is given by

V =
∫
S

v(rs) dS = πa2Vs (2)

(the definition of V is in agreement with Greenspan’s
definition and notation6, Eq. (2); in the present paper
only Vs will be used).
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FIG. 1. Set-up and notations. The piston is surrounded by
an infinite rigid baffle.

rs = (xs, ys, 0) = (σ cosϕ, σ sinϕ, 0)
r = (x, y, z) = (r sin θ cosψ, r sin θ sinψ, r cos θ)

w = r sin θ = (x2 + y2)1/2, z = r cos θ

r = |r| = (x2 + y2 + z2)1/2 = (w2 + z2)1/2

r′ = |r − rs| = (r2 + σ2 − 2σw cos(ψ − ϕ))1/2.

In the main body of this paper the velocity profile v(rs)
is assumed to be radially symmetric and is written as
v(σ), 0 ≤ σ ≤ a (with v(σ) = 0, σ > a). In the notations
of Fig. 1, King’s result9 reads

p(r) =
iρ0ck

2π

∫
S

v(σ)
e−ikr

′

r′
dS

= iρ0ck

∫ ∞
0

e−z(u
2−k2)1/2

(u2 − k2)1/2
J0(wu)V (u)u du , (3)

where

(u2 − k2)1/2 =

{
i
√
k2 − u2 , 0 ≤ u ≤ k ,

√
u2 − k2 , k ≤ u <∞ ,

(4)

with √ non-negative, and

V (u) =
∫ a

0

J0(uσ) v(σ)σ dσ , u ≥ 0 , (5)

is the Hankel transform (of order 0) of v and Jn(z) is
the Bessel function of order n, where n = 0 in Eqs. (3)
and (5).

In this paper two sets of functions for use in conjunc-
tion with King’s result will be highlighted. The first set
of functions are Stenzel’s function s(n)(σ) given by

v(σ) = s(n)(σ) = (n+ 1)Vs(1− (σ/a)2)n , 0 ≤ σ ≤ a,
(6)

with n = 0, 1, · · · . To the authors’ knowledge, Stenzel8
was the first author to write on these functions in relation

Sound quantities arising from resilient radiators 2



to sound radiation (the profiles in Eq. (6) were considered
extensively by Greenspan6, but no reference to work of
Stenzel can be found in Ref.6; also see Ref.7 (p.14)). The
Hankel transform S(n)(u) of s(n) is given by8

S(n)(u) = a2(n+ 1)! 2nVs
Jn+1(au)
(au)n+1

. (7)

A second set of functions considered in this paper are the
Zernike functions

R0
2n(σ/a) = Pn(2(σ/a)2 − 1) , 0 ≤ σ ≤ a . (8)

Any radially symmetric velocity profile v(σ), 0 ≤ σ ≤ a,
allows an (orthogonal) expansion as

v(σ) = Vs

∞∑
n=0

unR
0
2n(σ/a) , (9)

where u0 = 1 (this follows from the definition in Eq. (2)
and the fact that

∫ a
0
R0

2n(σ/a)σdσ = 1
2a

2δn0). The Han-
kel transform V (u) of v(σ) in Eq. (9) is given by21,25,27

V (u) = Vs

∞∑
n=0

un(−1)n
a

u
J2n+1(ua). (10)

After inserting Eq. (7) or Eq. (10) into Eq. (3), inte-
grals of the form∫ ∞

0

e−z(u
2−k2)1/2 Jν(wu)Jµ(au)

uλ(u2 − k2)1/2
udu (11)

with ν = 0 appear. These integrals seem too complicated
to allow a completely analytic treatment. However, there
are cases with z = 0 and w = a that allow such a treat-
ment. These cases occur

a) for the pressure at the edge with r =
(a cosψ, a sinψ, 0), and w = a, see Sec. III,

b) in the computation of the reaction force F =
∫
S
pdS

on the radiator, see Sec. IV,
c) in the computation of the radiated power P =∫
S
pv∗dS, see Sec. V.
The quantity in a) was expressed in terms of Bessel

and Struve functions by Warren28 for the case n = 0,
and this result was proved and generalized (to the cases
n = 0, 1) by McLachlan24. The quantities mentioned in
b) and c) were expressed by Rayleigh26 (case b), n = 0)
and Greenspan6 (cases b) and c), n = 0, 1, 2) for the case
of Stenzel radiators s(n) in terms of Bessel and Struve
functions, and Greenspan gives the first few power series
coefficients of reaction force and power as a function of
ka. Moreover, Greenspan obtains similar results for the
(infinitely supported) Gaussian. In the present paper
the quantities in a), b) and c) will be computed as power
series for all Stenzel cases v = s(n) and for all terms and
cross terms pertaining to v(σ) in Eq. (9). The coefficients
of these power series are organized in such a way that
the close connection between the integral expression on
one hand and the Bessel functions of the first kind and
the Struve functions on the other hand is immediately
apparent. Finally, the series are cast into single-series

format which makes them convenient to use. Greenspan’s
results have been used as a check of correctness of the
formulas here. To facilitate this, the formulas have been
brought into the same form as Greenspan’s results. Also
a number of cross-checks have been carried out.

The main results of this paper follow from the power
series expansions in ka of the integrals that appear in
Eq. (11) with w = a and z = 0. These power series are
derived in Appendix A. In Appendix B the convergence
behavior of these expansions are considered. It thus ap-
pears that all series provide 10−6 absolute accuracy when
they are truncated at a summation index ≥ 2eka+10 and
when ka ≤ 12 (machine precision 10−15).

III. PRESSURE AT THE EDGE

According to Eq. (3), the pressure pedge at an edge
point (a cosψ, a sinψ, 0) of the radiator is obtained by
taking z = 0 and w = a. Thus

pedge = iρ0ck

∫ ∞
0

J0(au)V (u)
(u2 − k2)1/2

udu (12)

with V (u) the Hankel transform in Eq. (5) of v(σ).

A. Stenzel functions

With v(σ) = s(n)(σ), see Eq. (6), for which the Hankel
transform S(n)(u) is given by Eq. (7), the pressure p(n)

edge
at the edge is given by

p
(n)

edge

ρ0cVs
=
ik(n+ 1)!2n

an−1

∫ ∞
0

J0(au)Jn+1(au)
un(u2 − k2)1/2

du . (13)

The integral in Eq. (13) has been evaluated in Ap-
pendix A.1 and the result is

p
(n)

edge

ρ0cVs
= (n+ 1)!

(2
a

)n
ka
[∫ k

0

J0(au)Jn+1(au)
un
√
k2 − u2

du

+ i

∫ ∞
k

J0(au)Jn+1(au)
un
√
u2 − k2

du
]

=
1
2

(n+ 1)!ka
[ ∞∑
j=0

(−1)j(2j + 2)n(ka)2j+1

Γ2(n+ j + 2)

+ i

∞∑
j=0

(−1)j(2j + 1)n(ka)2j

Γ2(n+ j + 3/2)

]
= −1

2
(n+ 1)!

∞∑
`=1

(`)n(−ika)`

Γ2(n+ 1
2`+ 1)

.

(14)

Here Γ is the Gamma function and (x)n is Pochham-
mers’s symbol as defined in Eq. (A13).

The middle expression for p(n)

edge in Eq. (14) is conve-

nient for expressing <p(n)

edge and =p(n)

edge in terms of Bessel
functions of the first kind and Struve functions, respec-
tively, see Eqs. (A4) and (A5). Thus for the case that
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n = 0, it is seen that (using (x)0 = 1)

p
(0)

edge

ρ0cVs
=

1
2

[
1− J0(2ka) + iH0(2ka)

]
, (15)

a result given by Warren28 (without proof) and proved
and discussed by McLachlan24. For the case that n = 1,
the coefficients in the two series in the middle expression
for p(1)

edge in Eq. (14) must be manipulated. Thus one has
(using (x)1 = x)

∞∑
j=0

(−1)j(2j + 2)z2j+1

Γ2(j + 3)
= 2

1− J0(2z)
z3

− 2
J1(2z)
z2

, (16)

∞∑
j=0

(−1)j(2j + 1)z2j

Γ2(j + 5/2)
=

2
z3

H0(2z)− 2
z2

(
4
π
−H1(2z)),

(17)
where Hn(z) is the Struve function of order n, and with
z = ka it follows that

p
(1)

edge

ρ0cVs
= 2
{1− J0(2z)

z2
− J1(2z)

z
+

i
[ 1
z2

H0(2z)− 1
z

(
4
π
−H1(2z))

]}
.

(18)

This agrees with the result in Ref.24, Eq. (34), except
for the overall factor 2 (due to the definition of v(n) in
Eq. (6)) and the signs in front of J1(2z)/z and H1(2z).
Since p

(1)

edge → 0 as k → 0, the correct signs are as in

Eq. (18). In Fig. 2 |p(n)

edge/ρ0cVs| vs. ka is plotted (using
the last formula of Eq. (14)) for the rigid piston (n = 0),
the simply supported radiator (n = 1) and the first two
clamped radiators (n = 2, 3).

It is observed that the coefficient of (ka)2 in p
(n)

edge

equals 1
2ρ0cVs (independent of n). Thus <[p(n)

edge] ≈
1
2ρ0cVs(ka)2 for small ka.

B. Zernike functions

With v(σ) a linear combination of Zernike functions
R0

2n(σ/a) as in Eq. (9), for which the Hankel transform
V (u) is given by Eq. (10), the pressure pedge at the edge
is given by

pedge

ρ0cVs
= ika

∞∑
n=0

(−1)nun
∫ ∞

0

J0(au)J2n+1(au)
(u2 − k2)1/2

du .

(19)
The integrals in Eq. (19) have been evaluated in Ap-
pendix A.2, with the result that

i

∫ ∞
0

J0(au)J2n+1(au)
(u2 − k2)1/2

du =
∫ k

0

J0(au)J2n+1(au)√
k2 − u2

du

+ i

∫ ∞
k

J0(au)J2n+1(au)√
u2 − k2

du =

2 4 6 8 10
ka

0.2

0.4

0.6

0.8

p

FIG. 2. (Color online) The pressure at the edge |p(n)

edge/ρ0cVs|
vs. ka, for the rigid piston (n = 0) (solid curve), the simply
supported radiator (n = 1) (dotted curve) and the first two
clamped radiators (n = 2, 3) (dash-dotted and dashed curves,
respectively).

1
2

∞∑
j=0

(−1)j
( (j + 1)n

Γ(2n+ j + 2)

)2

(ka)2n+2j+1+

1
2
i(−1)n

∞∑
j=0

(−1)j
( (−j + 1/2)n

Γ(j + n+ 3/2)

)2

(ka)2j

=
−(−1)n

2ka

∞∑
`=1

( (− 1
2`+ 1)n

Γ(n+ 1
2`+ 1)

)2

(−ika)` . (20)

In Fig. 3 |pedge/ρ0cVs| vs. ka is plotted (solid curve,
using the last formula of Eq. (20)) for a Gaussian velocity
profile exp(−α(σ/a)2), α = 2 and truncated at σ = a, ap-
proximated using three Zernike coefficients u0 = 1.0000,
u1 = -0.9392, u2 = 0.3044.

The case with u0 = 1, u1 = u2 = · · · = 0 in Eqs. (19–
20) yields the same result as Eq. (14) with n = 0, as it
should. Observe also that the real part in Eq. (20) has
O[(ka)2n+1]-behavior as ka → 0. As a consequence of
this and the fact that u0 = 1 by definition, the coefficient
of (ka)2 in pedge equals 1

2ρ0cVs for any profile v(σ).
The formulas on the last lines of Eqs. (14) and (20)

can further be checked against one another, because

s(n)(σ) = Vs

n∑
j=0

(−1)j
2j + 1
j + 1

(
n
j

)(
n+j+1
n

) (n+ 1)R0
2n(σ/a) ,

(21)
see Ref.21, Eq. (10). For instance, when n = 1, one has
s(1)(σ) = Vs(R0

0(σ/a) − R0
2(σ/a)), and one has to check

that

`

Γ2( 1
2`+ 2)

=
1
2
[ 1
Γ2( 1

2`+ 1)
−

(− 1
2`+ 1)2

Γ2( 1
2`+ 2)

]
, (22)

which indeed holds. Accordingly, Fig. 2 (and Figs. 4–6)
could have been produced equally well within the frame-
work of Zernike expansions.
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FIG. 3. (Color online) p: The pressure at the edge
|pedge/ρ0cVs| vs. ka, (solid curve) using Eq. (20). F : the

reaction force | F
πρ0cVsa2

| vs. ka (dotted curve) using Eqs. (30)

and (31). P : the power | P
πρ0cV 2

s a
2 | vs. ka (dash-dotted curve),

using Eqs. (39) and (40). All curves for a truncated Gaussian
velocity profile exp(−α(σ/a)2), α = 2, approximated using
three Zernike coefficients u0 = 1.0000, u1 = -0.9392, u2 =
0.3044.

IV. REACTION ON RADIATOR

According to Eq. (3), the total reaction force F on the
radiator is given by

F =
∫
S

pdS =
∫ a

0

∫ 2π

0

p((σ cosψ, σ sinψ, 0))σdσdψ

= 2π
∫ a

0

iρ0ck

∫ ∞
0

J0(σu)V (u)
(u2 − k2)1/2

uduσdσ . (23)

Because
∫ a

0
J0(σu)σdσ = au−1J1(au), there results

F = 2πiρ0cka

∫ ∞
0

J1(au)V (u)
(u2 − k2)1/2

du . (24)

A. Stenzel functions

With v(σ) = s(n)(σ) and its Hankel transform V (n)(u)
given by Eqs. (6)–(7), the total reaction force F (n) on the
radiator is given by

F (n)

πρ0cVsa2
= (n+1)!

(2
a

)n+1
ika

∫ ∞
0

J1(au)Jn+1(au)
un+1(u2 − k2)1/2

du .

(25)

The integral at the right-hand side of Eq. (25) has been
evaluated in Appendix A.1, and the result is that

F (n)

πρ0cVsa2
= (n+ 1)!

(2
a

)n+1
ka
[∫ k

0

J1(au)Jn+1(au)
un+1

√
k2 − u2

du

+ i

∫ ∞
k

J1(au)Jn+1(au)
un+1

√
u2 − k2

du
]

= (n+ 1)!
[ ∞∑
j=0

(−1)j(2j + 3)n(ka)2j+2

Γ(n+ j + 2)Γ(n+ j + 3)

+ i

∞∑
j=0

(−1)j(2j + 2)n(ka)2j+1

Γ(n+ j + 3/2)Γ(n+ j + 5/2)

]
= −(n+ 1)!

∞∑
`=1

(`+ 1)n(−ika)`

Γ(n+ 1
2`+ 1)Γ(n+ 1

2`+ 2)
.

(26)

The middle expression for F (n) in Eq. (26) can be used
to express <F (n) and =F (n) in terms of Bessel functions
of the first kind and Struve functions, respectively. This
yields

F (0)

πρ0cVsa2
= 1− J1(2z)

z
+ i

H1(2z)
z

, (27)

F (1)

πρ0cVsa2
= 1− 6J1(2z)− 4zJ0(2z)− 2z

z3

− i4zH0(2z)− 6H1(2z)
z3

, (28)

F (2)

πρ0cVsa2
= 1− 24

(5− z2)J1(2z)− 7
2zJ0(2z)− 3

2z

z5

+ 24i
(5− z2)H1(2z)− 7

2zH0(2z)− 2
3π z

z5
,

(29)

in which z = ka. This is in complete agreement with
Ref.6, Eqs. (35), (40), (41), where it is recalled that
Greenspan’s V is equal to πa2Vs. Equation (27) is dis-
cussed in many texts, recently a simple and effective ap-
proximation of H1(z) which is valid for all z is developed
in Ref.29.

The expression for F (n) on the last line of Eq. (26) is
in the form of a power series in −ika. In Ref.6, Eqs.
(35a), (40b), (41b) the first few terms of the power series
of F (n), n = 0, 1, 2, have been displayed. It turns out
that this is in complete agreement with what Eq. (26)
gives for these cases. Furthermore, it can be checked
directly from Eq. (26) that the coefficient of (ka)2 in F (n)

equals 1
2πρ0cVsa

2 (independently of n and in agreement
with Greenspan’s observation for s(n), n = 0, 1, 2). Thus
<[F (n)] ≈ 1

2πρ0cVsa
2(ka)2 for small ka. In Fig. 4 the

force on the radiator F (n)

πρ0cVsa2 vs. ka is plotted (using
the last formula of Eq. (26)) for the rigid piston (n = 0),
the simply supported radiator (n = 1) and the first two
clamped radiators (n = 2, 3).
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FIG. 4. (Color online) The force on the radiator | F (n)

πρ0cVsa2
|

vs. ka, for the rigid piston (n = 0) (solid curve), the simply
supported radiator (n = 1) (dotted curve) and the first two
clamped radiators (n = 2, 3) (dash-dotted and dashed curves,
respectively).

B. Zernike functions

With v(σ) a linear combination of Zernike functions
R0

2n(σ/a) as in Eq. (9) with Hankel transform V (u) as
given in Eq. (10), the total reaction force F is given by

F

πρ0cVsa2
= 2ik

∞∑
n=0

(−1)nun
∫ ∞

0

J1(au)J2n+1(au)
u(u2 − k2)1/2

du .

(30)
The integrals at the right-hand side of Eq. (30) have been
evaluated in Appendix A.2, with the result that

2ik
∫ ∞

0

J1(au)J2n+1(au)
u(u2 − k2)1/2

du =

2k
∫ k

0

J1(au)J2n+1(au)
u
√
k2 − u2

du

+2ik
∫ ∞
k

J1(au)J2n+1(au)

u
√
u2 − k2

2 du

=
∞∑
j=0

(−1)j(j + 1)n(j + 2)n
Γ(j + 2n+ 2)Γ(j + 2n+ 3)

(ka)2(n+j+1)+

+i(−1)n
∞∑
j=0

(−1)j(−j − 1
2 )n(−j + 1

2 )n
Γ(j + n+ 3/2)Γ(j + n+ 5/2)

(ka)2j+1

= −(−1)n
∞∑
`=1

(− 1
2`)n(− 1

2`+ 1)n
Γ( 1

2`+ n+ 1)Γ( 1
2`+ n+ 2)

(−ika)` .

(31)
In Fig. 3 | F

πρ0cVsa2 | vs. ka is plotted (dotted curve,
using the last formula of Eq. (31)) for the same Gaussian
velocity profile as was considered in Subsec. III.B.

The case with u0 = 1, u1 = u2 = · · · = 0, in Eq. (30)–
(31) yields the same as Eq. (26) with n = 0. The middle
expression for F in Eq. (31) can be used to express <F
and =F in terms of Bessel functions of the first kind
and Struve functions, respectively. As with the Stenzel
functions in Eqs. (27)–(29), this soon gets cumbersome.
Finally, the single-series expressions on the last lines of
Eqs. (26) and (31) can be checked against one another on
basis of the Zernike representation in Eq. (21) of s(n)(σ),
just as this was done with the two single-series expres-
sions for pedge in Sec. III.

Equation (31) shows that the real part has a non-zero
coefficient for (ka)2 only when n = 0. Accordingly, the
coefficient of (ka)2 in F of Eq. (30) is equal to 1

2πρ0cVsa
2

(because u0 = 1 by definition), no matter what v(σ) is.
This is in agreement with the observation of Greenspan6,
Sec. IV, Eqs. (35a), (40b), (41b), that this holds for Sten-
zel functions s(n), n = 0, 1, 2.

V. POWER OUTPUT AND DIRECTIVITY

The power is defined as the intensity pv∗ integrated
over the plane z = 0. Thus, because v vanishes outside
S,

P =
∫
S

p(σ)v∗(σ)dS , (32)

where p(σ) = p(σ cosψ, σ sinψ, 0) is the pressure at an
arbitrary point on S. According to Eq. (3) with z = 0
and w = σ,

p(σ) = iρ0ck

∫ ∞
0

V (u)
(u2 − k2)1/2

J0(σu)udu , 0 ≤ σ <∞ ,

(33)
assumes the form of a Hankel transform, viz. of the func-
tion iρ0ckV (u)(u2 − k2)−1/2, where V (u) is the Hankel
transform of v(σ). By using Parseval’s theorem for Han-
kel transforms in Eq. (32), it follows that

P = 2πiρ0ck

∫ ∞
0

V (u)V ∗(u)
(u2 − k2)1/2

udu . (34)

A. Stenzel functions

With v(σ) = s(n)(σ) and V (u) = S(n)(u) as given by
Eqs. (6)–(7), the power P (n) is given by

P (n)

πρ0cV 2
s a

2
= 2
(

(n+ 1)!(
2
a

)n
)2

k

∫ ∞
0

J2
n+1(au)

u2n+1(u2 − k2)1/2
du .

(35)
The integral at the right-hand side of Eq. (35) has been
evaluated in Appendix A.1, and the result is that

P (n)

πρ0cV 2
s a

2
= 2
(

(n+ 1)!(
2
a

)n
)2

k
[∫ k

0

J2
n+1(au)

u2n+1
√
k2 − u2

du

+ i

∫ ∞
k

J2
n+1(au)

u2n+1
√
u2 − k2

du
]

Sound quantities arising from resilient radiators 6



=
(

(n+ 1)!2n
)2[ ∞∑

j=0

(−1)j(j + 3/2)n(ka)2j+2

Γ(n+ j + 2)Γ(2n+ j + 3)

+i
∞∑
j=0

(−1)j(j + 1)n(ka)2j+1

Γ(n+ j + 3/2)Γ(2n+ j + 5/2)

]

= −((n+ 1)!2n)2
∞∑
`=1

( 1
2 (`+ 1))n(−ika)`

Γ(n+ 1
2`+ 1)Γ(2n+ 1

2`+ 2)
.

(36)
The middle expression for P (n) in Eq. (36) can be used

to express the real and imaginary part of P (n) in Bessel
functions of the first kind and Struve functions, respec-
tively. The case that n = 0 in Eq. (36) yields the same in-
tegral as the one that occurs in the expression of Eq. (25)
for F (n) with n = 0, and so Eq. (27) can be used yielding

P (0)

πρ0cV 2
s a

2
= 1− J1(2z)

z
+ i

H1(2z)
z

. (37)

For the cases n = 1, 2, Ref.6, Eqs. (45) and (47) express
P (n) in terms of Bessel and Struve functions; these results
have been checked against what Eq. (36) gives for n = 1, 2
and complete agreement has been observed. (This check
has been carried out since, due to the very complicated
nature of the resulting expressions, Greenspan had some
doubts about correctness of his Eq. (47).)

The single-series expression on the last line of Eq. (36)
has also been checked against Ref.6, Eqs. (45b) and
(47b), where the first few terms are displayed: there is
complete agreement. A further observation is that the
coefficient of (ka)2 in P (n) equals 1

2πρ0cV
2
s a

2 (indepen-
dent of n). Thus <[P (n)] ≈ 1

2πρ0cV
2
s a

2(ka)2 for small
ka. In Fig. 5 the real and imaginary parts of the power
of the radiator P (n)

πρ0cV 2
s a

2 vs. ka is plotted (using the last
formula of Eq. (36)) for the rigid piston (n = 0), the sim-
ply supported radiator (n = 1) and the first two clamped
radiators (n = 2, 3). Note that the power shown in Fig. 5
reaches a fixed value for large ka values. With the general
approach developed in Subsec. V.B and D (in particular,
Eqs. (39), (52) and (53)), it follows that these fixed values
are given as

lim
ka→∞

P (n)

πρ0cV 2
s a

2
= 2

∫ 1

0

[(n+1)(1−ρ2)n]2ρdρ =
(n+ 1)2

2n+ 1
.

(38)
However, for real sources like loudspeakers, the power
will decay. This is because the velocity of the radia-
tor will decrease for higher frequencies, in particular for
loudspeakers above their resonance frequency.

B. Zernike functions

With v(σ) a linear combination of Zernike functions
R0

2n(σ/a) as in Eq. (9) with Hankel transform V (u) as

2 4 6 8 10
ka

0.5

1

1.5

2

2.5

3

3.5
P

(a)

2 4 6 8 10
ka

0.25

0.5

0.75

1

1.25

1.5

1.75

2
P

(b)

FIG. 5. (Color online) The power of the radiator P (n)

πρ0cV 2
s a

2

vs. ka, for the rigid piston (n = 0) (solid curve), the simply
supported radiator (n = 1) (dotted curve) and the first two
clamped radiators (n = 2, 3) (dash-dotted and dashed curves,
respectively). (a) Real part, (b) Imaginary part.

given in Eq. (10), the power P is given by

P

πρ0cV 2
s a

2
=2ik

∞∑
n1,n2=0

(−1)n1+n2un1u
∗
n2
·

[∫ ∞
0

J2n1+1(ua)J2n2+1(ua)
u(u2 − k2)1/2

du
]
.

(39)

The integrals at the right hand side of Eq. (39) have been
evaluated in Appendix A.2, with the result that

2ik
∫ ∞

0

J2n1+1(ua)J2n2+1(ua)
u(u2 − k2)1/2

du =

2k
∫ k

0

J2n1+1(ua)J2n2+1(ua)
u
√
k2 − u2

du+

2ik
∫ ∞
k

J2n1+1(ua)J2n2+1(ua)
u
√
u2 − k2

du =

∞∑
j=0

(−1)j(j + 1)N (j + 2n2 + 2)M
Γ(j + 2n1 + 2)Γ(j + 2N + 3)

(ka)2(N+j+1)+

Sound quantities arising from resilient radiators 7



i(−1)M
∞∑
j=0

(−1)j(−j − 1/2)M (−j + 1/2)N
Γ(j +M + 3/2)Γ(j +N + 5/2)

(ka)2j+1 =

−(−1)M
∞∑
`=1

(− 1
2`)M (− 1

2`+ 1)N (−ika)`

Γ( 1
2`+M + 1)Γ( 1

2`+N + 2)
, (40)

where M = |n1 − n2| and N = n1 + n2.
The case with u0 = 1, u1 = u2 = · · · = 0 in Eqs. (39)

and (40) yields the same as Eq. (36) with n = 0. The
middle expression for the integral in Eq. (40) can be used
to express real and imaginary parts in terms of Bessel
functions of the first kind and Struve functions, respec-
tively, but this gets out of hand quite soon. Finally, the
single-series expressions in Eqs. (36) and (39)–(40) can
be checked against one another using the Zernike expan-
sion for s(n) in Eq. (21); this has been observed to give
the same results for the case s(1). In Fig. 3 the normal-
ized power | P

πρ0cV 2
s a

2 | (dash-dotted curve) is plotted us-
ing Eqs. (39) and (40) for a truncated Gaussian velocity
profile exp(−α(σ/a)2), α = 2, approximated using three
Zernike coefficients u0 =1.0000, u1 =-0.9392, u2=0.3044.

The series expansion in Eq. (40) shows that the coeffi-
cient of (ka)2 is non-zero for N = n1 + n2 = 0 only (this
is so since (0)N 6= 0 for N = 0 only). Since by definition
u0 = 1, this shows that the coefficient of (ka)2 in P in
Eq. (39) is equal to 1

2ρ0cπV
2
s a

2, no matter what v(σ) is.

C. Power evaluated from the far field

Usually one calculates the power of the radiator from
p and v values at the radiator itself, but due to the con-
servation of energy the power can also be computed from
sound field values at any distance from the radiator. Be-
low it is shown that the power can be calculated in the
far field with the techniques described in the preceding
sections. The power as defined in Eq. (32) should be
equal to the integral of pv∗ over any surface

∑
in z ≥ 0

containing the disk σ ≤ a. Here v and p are related to
one another in z ≥ 0 according to

v =
−1
ikρ0c

∂p

∂n
, n normal to Σ . (41)

The imaginary part of P , the wattless component, man-
ifests itself only close to the radiator and has no physical
significance in the far field; it is thus customary to con-
sider the real part of P only, especially when the non-
rigid part of Σ in z > 0 is in the far field. It is shown by
Bouwkamp12 that

<[
∫

Σ

pv∗dΣ] =
1
2

∫
Σ

(pv∗ + p∗v)dΣ = 0 . (42)

Thus, taking for Σ the surface SR of the hemisphere x2 +
y2 + z2 ≤ R2, z ≥ 0 with R ≥ a, together with the disk
x2 + y2 ≤ R2, z = 0, one finds that

<[
∫
S

pv∗dS] = <[
∫
SR

pv∗dSR] . (43)

The right-hand side of Eq. (43) will now be considered
when R → ∞. According to Blackstock1 it holds in the
far field that

p = O(1/r), v = (ρ0c)−1p(1 +O(1/r)) . (44)

Hence,

<[
∫
SR

pv∗dSR] = (ρ0c)−1

∫
SR

|p|2dSR +O(R−1) . (45)

From the Rayleigh representation of p in Eq. (1), it fol-
lows with the usual approximation arguments that

p(r) ≈ iρ0ck
e−ikr

r

∫ a

0

v(σ)J0(kσ sin θ)σdσ

= iρ0ck
e−ikr

r
V (k sin θ)

(46)

with V the Hankel transform of v as before. Then taking
spherical coordinates in the integral at the right-hand
side of Eq. (45) and letting R→∞, it follows that

<[
∫
SR

pv∗dS] = 2πρ0ck
2

∫ π/2

0

|V (k sin θ)|2 sin θdθ .

(47)
By changing integration variables in the integral at the
right-hand side of Eq. (47) according to u = k sin θ, 0 ≤
u ≤ k, the final result becomes

<[
∫
SR

pv∗dS] = 2πρ0ck

∫ k

0

|V (u)|2√
k2 − u2

udu . (48)

Compare Eq. (34).

D. Directivity

From the far-field expression in Eq. (46) for p(r),
r = (r cosψ sin θ, r sinψ sin θ, r cos θ), there results the
directivity

D =
4π|V (0)|2∫ 2π

0

∫ π/2
0
|V (k sin θ)|2 sin θdψdθ

=
2|V (0)|2∫ π/2

0
|V (k sin θ)|2 sin θdθ

,

(49)

see Kinsler et al.2, Sec.8.9. This gives rise to the same
integral as in Eq. (47). By Eqs. (2) and (5) it holds that
V (0) = 1

2a
2Vs, and by Eq. (34) it holds that∫ π/2

0

|V (k sin θ)|2 sin θdθ =
1

2πρ0ck2
<[P ] . (50)

In Fig. 6 the directivity index (DI = 10 log10D) vs. ka is
plotted (using the last formula of Eq. (36) and Eqs. (49)
and (50)) for the rigid piston (n = 0), the simply sup-
ported radiator (n = 1) and the first two clamped radia-
tors (n = 2, 3).

Sound quantities arising from resilient radiators 8
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FIG. 6. (Color online) The directivity index DI = 10 log10D
[dB] vs. ka, for the rigid piston (n = 0) (solid curve), the
simply supported radiator (n = 1) (dotted curve) and the first
two clamped radiators (n = 2, 3) (dash-dotted and dashed
curves, respectively).

Consider the case that ka → 0. By the observation
at the end of Subsecs. V.A and B, it holds that <[P ] ≈
1
2πρ0cV

2
s a

2(ka)2. Therefore, as ka→ 0

D ≈
2( 1

2a
2Vs)2

1
2πρ0ck2

1
2πρ0cV 2

s a
2(ka)2

= 2 , (51)

or 3 dB, which is the same for a rigid piston2 or a hemi-
spherical source on an infinite baffle and is supported by
Fig. 6.

Next consider the case that ka → ∞, in the general
setting of Subsec. V.B. Now, by Ref.22, 11.4.6,∫ k

0

J2n1+1(ua)J2n2+1(ua)
u
√
k2 − u2

du =

a

∫ ka

0

J2n1+1(v)J2n2+1(v)
v
√

(ka)2 − v2
dv ≈

a

ka

∫ ∞
0

J2n1+1(v)J2n2+1(v)
v

dv =
1
k

δn1n2

2(2n1 + 1)
.

(52)

Thus from Eq. (39)

<[P ] ≈ 2πρ0cV
2
s a

2
∞∑
n=0

|un|2

2(2n+ 1)

= 2πρ0ca
2

∫ 1

0

|v(aρ)|2ρdρ ,

(53)

where Parseval’s theorem for Zernike expansions v(σ) =
Vs
∑∞
n=0 unR

0
2n(σ/a) has been used. It thus follows that,

as ka→∞,

D ≈
2( 1

2a
2Vs)2

1
2πρ0ck2 2πρ0ca2

∫ 1

0
|v(aρ)|2ρdρ

=
1
2 (ka)2V 2

s∫ 1

0
|v(aρ)|2ρdρ

.

(54)

In case that v = s(n), the last member of Eq. (54) is
given by (2n + 1)(n + 1)−1(ka)2; in Kinsler et al.2, end
of Subsec. 8.9. this result for the case n = 0 is given.

VI. ESTIMATING POWER FROM NEAR-FIELD ON-AXIS
MEASUREMENTS

In Aarts and Janssen21 a method has been introduced
recently to estimate a radially symmetric velocity profile
v(σ), 0 ≤ σ ≤ a, from on-axis sound pressure data, in
terms of Zernike expansion coefficients. The basis of this
method is the explicit formula , see Ref.21, Eq. (17),

p((0, 0, r)) =
1
2
ρ0cVs(ka)2

∞∑
n=0

γn(k, r)un (55)

for the on-axis pressure, where the γn(k, r) are explicitly
given in terms of spherical Bessel and Hankel functions.
The formulas in Subsec. V.B then show how these esti-
mated coefficients give rise to a means to compute the
power and directivity.

VII. CONCLUSIONS

Greenspan’s results6 on acoustic quantities related to
the pressure due to a velocity profile on a piston radia-
tor in an infinite baffle are treated in a unified way. By
expanding the velocity profile in terms of Zernike func-
tions, the pressure at the edge of a radiator, the reaction
force on the radiator, the power output and directivity
of the radiator can be expressed in an attractive way
as power series in ka. Since many velocity profiles have
a representation in terms of Zernike functions with ex-
plicitly computable coefficients, the results of this paper
constitute a considerable generalization of Greenspan’s
results.

APPENDIX A: EVALUATION OF BESSEL INTEGRALS

In this appendix the integrals

i

∫ ∞
0

Jm+1(au)Jn+1(au)
un+m+1(u2 − k2)1/2

du (A1)

are evaluated. These integrals occur in relation to the
pressure at the edge (m = −1), the reaction on the radi-
ator (m = 0), and the power if the velocity profile v(σ)
is a Stenzel function s(n)(σ) or a linear combination of
Stenzel functions. Furthermore, the integrals

i

∫ ∞
0

Jm(au)Jn+1(au)
(u2 − k2)1/2

du , (A2)

i

∫ ∞
0

Jm+1(au)Jn+1(au)
u(u2 − k2)1/2

du , (A3)

with integer n,m ≥ 0 such that n − m even and ≥ 0
are evaluated. These integrals occur in connection with
the pressure at the edge (m = 0 in Eq. (A2)), reaction
on the radiator (m = 0 in Eq. (A3)), and the power
(general m,n in Eq. (A3)) if the velocity profile is a linear
combination of Zernike functions.

Sound quantities arising from resilient radiators 9



The integrals are evaluated in the form <+i=, where <
and = arises from the integration ranges [0, k] and [k,∞),
respectively. These < and i= parts are given as power
series in ka in a form from which the close relationship
with Bessel functions of the first kind,

Jν(x) = (
1
2
x)ν

∞∑
j=0

(− 1
4x

2)j

Γ(j + 1)Γ(j + ν + 1)
, (A4)

and Struve functions

Hν(x) = (
1
2
x)ν+1

∞∑
j=0

(− 1
4x

2)j

Γ(j + 3
2 )Γ(j + ν + 3

2 )
, (A5)

is apparent. Furthermore, the two series for < and i=
are reorganized and combined into a concise single power
series in −ika for the various integrals.

A formula, in terms of hypergeometric functions 3F4

of the integrals

(∫ k

0

+
∫ ∞
k

)
uα−1(u2 − k2)β−1Jµ(au)Jν(au)du (A6)

can be found in Prudnikov et al.30, § 2.12.32, items 3
and 8. These formulas are quite complicated, there is
no indication of where a proof can be found, several de-
generations and simplifications occur due to special val-
ues of α, β, µ, ν to which Eqs. (A1)–(A3) restrict, and no
attention is paid to bringing the results into an attrac-
tive form. The results obtained here have been checked
against the results in Prudnikov et al. for the special
values of α, β, µ, ν that occur here. The method of the
proofs used is taken from Watson31, Sec. 13.6.

1. Evaluation of Eq. (A1)

Let n,m = 0, 1, · · · . The case where m = −1 in
Eq. (A1) is dealt with at the end of this section. It holds
that

i

∫ ∞
0

Jn+1(au)Jm+1(au)
un+m+1(u2 − k2)1/2

du

=
∫ k

0

Jn+1(au)Jm+1(au)
un+m+1

√
k2 − u2

du +

i

∫ ∞
k

Jn+1(au)Jm+1(au)
un+m+1

√
u2 − k2

du . (A7)

There is the integral representation, see Watson31, Sec.
13.6,

Jµ(au)Jν(au) =

1
2πi

∫ ∞i
−∞i

Γ(−s)Γ(µ+ ν + 2s+ 1)( 1
2au)µ+ν+2s

Γ(µ+ s+ 1)Γ(ν + s+ 1)Γ(µ+ ν + s+ 1)
ds ,

(A8)

where the integration contour has the poles of Γ(−s) on
its right and those of Γ(µ + ν + 2s + 1) on its left (thus
− 1

2 (µ+ ν + 1) < <(s) < 0).
For the first integral in Eq. (A7), second line, the result

of Eq. (A8) is used together with∫ k

0

uα√
k2 − u2

du =
1
2
kα

Γ( 1
2 )Γ( 1

2α+ 1
2 )

Γ( 1
2α+ 1)

, <(α) > −1 .

(A9)
This yields∫ k

0

Jn+1(au)Jm+1(au)
un+m+1

√
k2 − u2

du =
1
2

Γ(
1
2

)(
1
2
a)n+m+1 1

2πi
·∫ ∞i

−∞i

Γ(−s)Γ(n+m+ 2s+ 3)( 1
2ka)2s+1

Γ(n+ s+ 2)Γ(m+ s+ 2)Γ(n+m+ s+ 3)
·

Γ(s+ 1)
Γ(s+ 3

2 )
ds ,

(A10)

where the two occurring integrals have been inter-
changed. The integration in Eq. (A10) is closed to the
right, thereby enclosing all poles of Γ(−s) at s = j with
residues (−1)j+1/j!, and it follows from Cauchy’s theo-
rem that∫ k

0

Jn+1(au)Jm+1(au)
un+m+1

√
k2 − u2

du =
1
2

Γ(
1
2

)(
1
2
a)n+m+1·

∞∑
j=0

Γ(2j + n+m+ 3)
Γ(j +m+ 2)Γ(j + 3/2)

·

(−1)j( 1
2ka)2j+1

Γ(j + n+ 2)Γ(j + n+m+ 3)
.

(A11)

Now assume that n ≥ m. Then it holds that

Γ(n+m+ 2j + 3)
Γ(m+ j + 2)Γ(j + 3/2)

=

22m+2j+2

Γ( 1
2 )

(2m+ 2j + 3)n−m(j +
3
2

)m ,

(A12)

where Pochhammer’s symbol (x)` has been used,

(x)` =
Γ(x+ `)

Γ(x)
; (x)0 = 1 ,

(x)` = x(x+ 1) · . . . · (x+ `− 1), ` = 1, 2, · · · .
(A13)

Therefore,∫ k

0

Jn+1(au)Jm+1(au)
un+m+1

√
k2 − u2

du = 2m−n−1an+m+1 ·

∞∑
j=0

(−1)j(2m+ 2j + 3)n−m(j + 3/2)m
Γ(j + n+ 2)Γ(j + n+m+ 3)

(ka)2j+1 .

(A14)

Next, for the second integral on the second line of
Eq. (A7), the plan of the proof is the same, except that
now∫ ∞

k

uα√
u2 − k2

du =
1
2
kα

Γ( 1
2 )Γ(− 1

2α)
Γ( 1

2 −
1
2α)

, <(α) < 0 ,

(A15)
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is used. This yields the same expression as in Eq. (A10),
except that the Γ(s+1)/Γ(s+3/2) just in front of ds has
to be replaced by Γ(−s− 1/2)/Γ(−s), thereby canceling
the Γ(−s) just behind the integral sign. Now the poles
of Γ(−s − 1/2) at the points s = j − 1/2 have to be
taken into account, and this yields (using Eq. (A12) with
j − 1/2 instead of j)∫ ∞

k

Jn+1(au)Jm+1(au)
un+m+1

√
u2 − k2

du = 2m−n−1an+m+1 ·

∞∑
j=0

(−1)j(2j + 2m+ 2)n−m(j + 1)m
Γ(j + n+ 3/2)Γ(j + n+m+ 5/2)

(ka)2j .
(A16)

This yields a power series for the real part in Eq. (A7)
per Eq. (A14) and the imaginary part in Eq. (A7) per
Eq. (A16) that shows a close relationship with the Bessel
and Struve functions in Eq. (A4) and (A5), respectively.
It is actually possible to express the results of Eqs. (A14)
and (A16) systematically in terms of Bessel and Struve
functions by manipulating the polynomial of degree n in
j occurring in the numerator of the coefficients in the
series in Eqs. (A14) and (A16).

The case that m = −1 can be dealt with in a com-
pletely similar fashion, except that in Eq. (A12) the def-
inition (x)−1 = (x− 1)−1 of Pochhammer’s symbol with
subscript ` = −1 should be used (this is consistent with
the Γ-function based definition in Eq. (A13)). With some
further rewriting this then yields the identity of the quan-
tities in the second and third member between [ ] in
Eq. (14) in the main text.

A single power series in −ika for Eq. (A7) follows on
combining Eqs. (A14) and (A16). Doing the administra-
tion with the (−1)j = (−i)2j , there results

i

∫ ∞
0

Jn+1(au)Jm+1(au)
un+m+1(u2 − k2)1/2

du = −1
k

2m−n−1an+m ·

∞∑
`=1

(`+ 2m+ 1)n−m( 1
2 (`+ 1))m

Γ( 1
2`+ n+ 1)Γ( 1

2`+ n+m+ 2)
(−ika)` .

(A17)

2. Evaluation of Eqs. (A2) and (A3)

Let n,m be integers ≥ 0 with n − m even and ≥ 0.
The proof for the integral in Eq. (A2) follows the same
reasoning as for the integral in Eq. (A1). Letting

p =
n−m

2
, q =

n+m

2
, (A18)

it is found without any particular problem that∫ k

0

Jn+1(au)Jm(au)√
k2 − u2

du =

1
2

∞∑
j=0

(−1)j(j + 1)q (j +m+ 1)p(ka)2(j+q)+1

Γ(n+ j + 2)Γ(j + 2q + 2)
.

(A19)

For the integration range [k,∞) in the integral in
Eq. (A2), the method based on Eqs. (A8) and (A15)

yields an expression as in the second member of
Eq. (A10), except that the Γ(s + 1)/Γ(s + 3/2) appear-
ing in front of ds should be replaced by Γ(−s − q −
1/2)/Γ(−s+ q), thereby canceling all poles of the Γ(−s)
appearing just behind the integral sign in Eq. (A10). It
is then found upon some further administration with Γ-
functions that∫ ∞

k

Jn+1(au)Jm(au)√
u2 − k2

du =

1
2

∞∑
k=0

(−1)j+p(−j + 1/2)q (−j + 1/2)p
Γ(j + p+ 3/2)Γ(j + q + 3/2)

(ka)2j .

(A20)

From Eqs. (A19) and (A20) a single series expression
for Eq. (A2) can be derived. To this end, the summation
index j in Eq. (A19) is changed into j − q − 1 with j =
q + 1, q + 2, · · · . Next, it is observed that n − q = p,
m− q = −p, and that

(j − q)q = (−1)q(−j + 1)q , (j − p)p = (−1)p(−j + 1)p .
(A21)

As a consequence of (−j + 1)q = 0 for j = 1, · · · , q it
follows that the new summation index j can be taken to
range from 1 to ∞. This all yields the result∫ k

0

Jn+1(au)Jm(au)√
k2 − u2

du =

− (−1)p

2ka

∞∑
j=1

(−1)j(−j + 1)p (−j + 1)q(ka)2j

Γ(j + p+ 1)Γ(j + q + 1)
.

(A22)

Then combining Eq. (A20) and Eq. (A22) while admin-
istrating the (−1)j = (−i)2j , yields the single-series ex-
pression

i

∫ ∞
0

Jn+1(au)Jm(au)
(u2 − k2)1/2

du =

− (−1)p

2ka

∞∑
`=1

(− 1
2`+ 1)p (− 1

2`+ 1)q
Γ( 1

2`+ p+ 1)Γ( 1
2`+ q + 1)

(−ika)` .

(A23)

The treatment of the integral in Eq. (A3) is entirely
similar. There results

i

∫ ∞
0

Jn+1(au)Jm+1(au)
u(u2 − k2)1/2

du =
∫ k

0

Jn+1(au)Jm+1(au)
u
√
k2 − u2

du

+ i

∫ ∞
k

Jn+1(au)Jm+1(au)
u
√
u2 − k2

du =

1
2k

∞∑
j=0

(−1)j(j + 1)q (j +m+ 1)p
Γ(j + n+ 2)Γ(j + 2q + 3)

(ka)2(q+1+j)+

1
2
ia(−1)p

∞∑
j=0

(−1)j(−j − 1/2)p (−j + 1/2)q
Γ(j + p+ 3/2)Γ(j + q + 5/2)

(ka)2j =

− (−1)p

2k

∞∑
`=1

(− 1
2`)p(−

1
2`+ 1)q

Γ( 1
2`+ p+ 1)Γ( 1

2`+ q + 2)
(−ika)` .

(A24)
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Here n and m are integers ≥ 0 with n−m even and ≥ 0,
and p and q given by Eq. (A18).

The results for the integrals in Eqs. (A2) and (A3)
just given, have been checked by using22 z−1Jm+1(z) =
(2(m+ 1))−1(Jm(z) + Jm+2(z)) in Eq. (A3).

APPENDIX B: CONVERGENCE ANALYSIS OF THE
SERIES

The series in Eqs. (14), (26), (36) for the case of Stenzel
functions on one hand and those in Eqs. (20), (31), (40)
for the case of Zernike functions on the other, are all
of a very similar nature with regard to convergence and
accuracy matters. It therefore suffices to consider only
the series in Eq. (14) and the series in Eq. (20). Next,
from a simple comparison of the coefficients in the two
series

∞∑
`=1

(`)n z`

Γ2(n+ 1
2`+ 1)

and
∞∑
`=1

( (− 1
2`+ 1)n

Γ(n+ 1
2`+ 1)

)2

z` ,

(B1)
it is seen that for either series n = 0 is worst case. The
series to be considered becomes for either case

S(z = −ika) =
∞∑
`=1

z`

Γ2( 1
2`+ 1)

. (B2)

From Stirling’s formula Γ(x+1) ≈ e−xxx+1/2
√

2π it read-
ily follows that the modulus of the terms t` in the series
in Eq. (B2) is accurately estimated by

|t`| ≈ m` =
1
π`

(2e|z|
`

)`
. (B3)

Hence, m` is of order unity and less from ` = 2e|z| on-
wards. Next, setting ` = 2e|z| + b with 0 ≤ b ≤ `, it
follows that

m` =
1
π`

(1− b

`
)` ≤ 1

π`
e−b =

1
π`

e2e|z|−` . (B4)

Hence, for integer L ≥ 2e|z| it holds that

∞∑
`=L

m` ≤
e2e|z|−L

πL(e− 1)
. (B5)

When, for instance, L ≥ 2e|z| + 10, the absolute accu-
racy by including in the series in Eq. (B2) the terms with
` = 1, · · · , L−1 is at least 10−6. Note that the true value
of S(z = −ika) is of order unity, see Fig. 2. However,
loss-of-digits occurs in summing the series. The maxi-
mum value over ` = 1, 2, · · · of m` in Eq. (B3) is assumed
near 2|z| and is accurately given by e2|z|/2π|z|. For in-
stance, when |z| ≤ 12 (which is the case in all figures)
this maximum is ≤ 3.5 108. As a result, when machine
precision is 10−15, an absolute accuracy of 10−6 is ob-
tained in all cases when 0 ≤ ka ≤ 12 assuming that the
series is truncated at an integer L ≥ 2eka+ 10.
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lished in German as Über die akustische Strahlung von
Membranen). Ann. Physik, 7:947–982, 1930.

9 L.V. King. On the acoustic radiation field of the piezo-
electric oscillator and the effect of viscosity on transmis-
sion. Can. J. Res., 11:135–155, 1934.

10 A. Schoch. Contemplations on the sound field of piston
membranes (published in German as Betrachtungen über
das Schallfeld einer Kolbenmembran). Akust. Z. 6, 318-326
(1941).

11 J. A. Archer-Hall, A. I. Bashter, and A. J. Hazelwood.
A means for computing the Kirchhoff surface integral for
a disk radiator as a single integral with fixed limits. J.
Acoust. Soc. Am., 65(6):1568-1570, 1979.

12 C.J. Bouwkamp. A contribution to the theory of acous-
tic radiation. Philips Research Reports, Eindhoven, The
Netherlands, 1:251–277, 1946.

13 F. Oberhettinger. On transient solutions of the “baf-
fled piston” problem. J. of Research of the Nat. Bureau
of Standards-B, Mathematics and Mathematical Physics,
65B(1):1–6, Jan.–March 1961.

14 T. Hansen. Probe-corrected near-field measurements on
a truncated cylinder. J. Acoust. Soc. Am., 119:792–807,
2006.

15 D.A. Hutchins, H.D. Mair, P.A. Puhach, and A.J. Osei.
Continuous-wave pressure fields of ultrasonic transducers.
J. Acoust. Soc. Am., 80(1):1–12, July 1986.

16 R.J. McGough, T.V. Samulski, and J.F. Kelly. An efficient
grid sectoring method for calculations of the near field pres-
sure generated by a circular piston. J. Acoust. Soc. Am.,
115:1942–1954, 2004.

17 J.F. Kelly and R.J. McGough. An annular superposition
integral for axisymmetric radiators. J. Acoust. Soc. Am.,
121(2):759–765, February 2007.

18 T.D. Mast and F. Yu. Simplified expansions for radia-
tion from a baffled circular piston. J. Acoust. Soc. Am.,
118(6):3457–3464, December 2005.

19 T. Mellow. On the sound field of a resilient disk in an
infinite baffle. J. Acoust. Soc. Am., 120(1):90–101, July
2006.

20 R. C. Wittmann and A. D. Yaghjian. Spherical-wave ex-
pansions of piston-radiator fields. J. Acoust. Soc. Am.,
90(3):1647–1655, September 1991.

21 R.M. Aarts and A.J.E.M. Janssen. On-axis and far-field
sound radiation from resilient flat and dome-shaped radia-
tors. J. Acoust. Soc. Am., 125(3):1444-1455, March 2009.

22 M. Abramowitz and I.A. Stegun. Handbook of Mathemat-
ical Functions. Dover, New York, 1972.

23 T. Hasegawa, N. Inoue, and K. Matsuzawa. A new rigorous
expansion for the velocity potential of a circular piston

Sound quantities arising from resilient radiators 12



source. J. Acoust. Soc. Am., 74(3):1044–1047, September
1983.

24 N.W. McLachlan. The acoustic and inertia pressure at any
point on a vibrating circular disk. Philosophical Magazine
and Journal of Science, 14 (7th series):1012–1025, 1932.

25 F. Zernike. Diffraction theory of the knife-edge test and its
improved version, the phase-contrast method (published
in German as Beugungstheorie des Schneidenverfahrens
und seiner verbesserten Form, der Phasenkontrastmeth-
ode). Physica 1:689-704, 1934.

26 J.W.S. Rayleigh. The Theory of Sound, Vol. 2. Dover,
New York, (reprinted 1945), 1896.

27 B.R.A. Nijboer. The Diffraction Theory of Aberrations.
Ph.D. dissertation, University of Groningen, The Nether-

lands, 1942.
28 A.G. Warren. A note on the acoustic pressure and velocity

relations on a circular disc and in a circular orifice. Proc.
Phys. Soc. (London), 40:296–299, June 1928.

29 R.M. Aarts and A.J.E.M. Janssen. Approximation of the
Struve function H1(z) occurring in impedance calcula-
tions. J. Acoust. Soc. Am., 113(5):2635-2637, May 2003.

30 A.P. Prudnikov, Yu.A. Brychkov, and O.I. Marichev, In-
tegrals and Series, Volume 2: Special Functions (Gordon
and Breach Science, New York, 1986).

31 G.N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1944).

Sound quantities arising from resilient radiators 13


