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Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force
on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat,
circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either
Stenzel functions (1—(o/a)?)", with o the radial coordinate on the radiator, or linear combinations
of Zernike functions P,(2(o/a)?>~1), with P, the Legendre polynomial of degree n. Both sets of
functions give rise, via King’s integral for the pressure, to integrals for the quantities of interest
involving the product of two Bessel functions. These integrals have a power series expansion and
allow an expression in terms of Bessel functions of the first kind and Struve functions.
Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am. 65, 608—621 (1979)] are
generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation
between the radiated power in the near-field on one hand and in the far field on the other is

highlighted. © 2009 Acoustical Society of America. [DOL: 10.1121/1.3206580]

PACS number(s): 43.38.Ar, 43.20.Bi, 43.20.Px, 43.40.At [JGM]

I. INTRODUCTION

The analytical theory of sound radiation for the case of a
harmonically excited, circular piston in an infinite baffle is
firmly established in the literature. There are chapters in text
books,'” survey papers,ﬁ’7 and many research papers from
older®" and more recent'*?! years devoted to this subject.
A big effort has been made to find series or convenient inte-
gral expressions for the sound pressure at all field points on
or in front of the disk and the baffle. The single integral
approach, in which the pressure is expressed via Rayleigh’s
integral2 or by other means as a single integral with bounded
integration limits, occurs in Refs. 10, 11, 13, and 15 and is
reviewed, with emphasis on numerical work, in Ref. 16. The
spherical-wave-expansion approach uses Gegenbauer’s addi-
tion theorem?” to express the pressure as a series of integrals
involving spherical Bessel functions and Legendre polyno-
mials and can be found in Refs. 15, 18-20, and 23. Further-
more, King’s integral9 is used in Refs. 6, 12, 14, 17, and 19
and this yields expressions for the pressure in the form of an
infinite integral involving the product of two Bessel func-
tions and an exponential factor. In order that this integral can
be used conveniently for computations, it is often necessary
to employ somewhat more advanced complex function
theory. Finally, in Ref. 24 series expansions following from
Rayleigh’s integral2 are given for the on-disk pressure, and in
Ref. 19 King’s integral is used to develop a double-series
expansion for the on-disk pressure.

In the present paper, single-series expressions are devel-
oped for quantities associated with the pressure (rather than
for the pressure in the field itself) from King’s integral. The
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velocity profile on the radiator is allowed here to be non-
uniform. A set of results of this type, for the reaction force
and the total radiated power, was obtained by Greenspan.6
Greenspan considered, what are called in the present paper,
Stenzel functions’ s"(o)=(1-(c/a)®)", O=o=a (n
=0,1,2), and (infinitely supported) Gaussians and estab-
lished series expansions and closed-form expressions for the
quantities just mentioned. These results were derived from
King’s integral in an ad hoc manner with an impressive
amount of analytical skill.

Greenspan’s results will be generalized to velocity pro-
files of the Stenzel type of arbitrary order n and of the
Zernike”™ type, see below, and linear combinations of the
latter. The acoustical quantities considered here are edge
pressure, reaction force, total power, and directivity. Zernike
functions have the form Rgn(o/a)=Pn(2(0/a)2— 1), with P,
the Legendre polynomial of degree n. Linear combinations
of both Stenzel functions and Zernike functions can be used
to approximate any radially symmetric velocity profile. In
this respect, Zernike functions are much more effective, in
terms of the required number of coefficients and amplitudes
of these, than the Stenzel functions. Zernike functions have
been considered recently21 by the authors with respect to
their potential and efficacy for forward computation of the
on-axis and far-field pressure from a non-uniform velocity
profile on the piston in terms of its Zernike expansion coef-
ficients. Here it has been very helpful that Zernike functions
are orthogonal and that many velocity profiles have Zernike
coefficients that can be found in analytical form, see Ref. 21,
Appendix A. Moreover, the inverse problem of estimating a
velocity profile in terms of its expansion coefficients from
on-axis pressure data has been considered in Ref. 21. Results
for quantities related to the pressure that admit an analytical
treatment via King’s integral were, however, not presented in

© 2009 Acoustical Society of America

Author's complimentary copy



Ref. 21. This is done in the present paper: for the quantities
of interest it will be shown that King’s integral yields an
attractive power series expansion.

Stenzel functions, with half-integer rather than integer
order n, have been considered recently by Mellow' in the
context of King’s integral for the pressure. In Ref. 19, these
Stenzel type functions have been used to expand a non-
uniform velocity profile for the purpose of computing the
pressure everywhere on the radiator. This leads via King’s
integral to certain double series expansions for the pressure
on the radiator that are more complicated than what is ob-
tained here for the pressure at the edge of the radiator.

This paper is organized as follows. In Sec. II the basic
formulas and functions are presented, and the results of this
paper are discussed globally. In Secs. III-V the formulas for
the pressure at the edge, the reaction force, and the total
power and directivity are presented and discussed. These for-
mulas are given for the case that vis a general (integer-order)
Stenzel function or a linear combination of Zernike func-
tions. In Sec. VI, it is briefly indicated how the power can be
estimated from near-field on-axis pressure data via the in-
verse method developed in Ref. 21. In Sec. VII the conclu-
sions are presented. Finally, in Appendix A the required in-
tegrals are computed in the form of power series in ka, and
in Appendix B the convergence properties of these series are
discussed.

Il. BASIC FORMULAS AND OVERVIEW

The radiated pressure is given by Rayleigh’s integralz’26
as

: —ikr!
plra) = K i f o(r) s, (1)
2 s r'

where p, is the density of the medium, ¢ is the speed of
sound in the medium, k=w/c is the wave number, and w is
the radial frequency of the vibrating surface S for which a
disk of radius a in an infinite baffle is taken. Furthermore, r
is a field point, r, is a point on the disk S, r'=|r—r,| is the
distance between r and r,, and 1(r,) is the normal component
of a (not necessarily uniform) velocity profile; see Fig. 1 for
the geometry and notations. The time variable ¢ in p(r,r) and
the harmonic factor exp(iwt) in front of the integral in Eq.
(1) will be omitted in the sequel. The average velocity on S is
denoted by V; hence the volume velocity V is given by

V= f v(r,)dS = ma’V ()
N

[the definition of V is in agreement with Greenspan’s defini-
tion and notation,’ Eq. (2); in the present paper only V, will
be used].

In the main body of this paper, the velocity profile u(r,)
is assumed to be radially symmetric and is written as (o),
0=o0=a [with »(0)=0, o>a]. In the notations of Fig. 1,
King’s result’ reads
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FIG. 1. Set-up and notations. The piston is surrounded by an infinite rigid
baffle. ry=(x,,y,,0)=(0 cos ¢, 0 sin ¢,0), r=(x,y,z)=(rsin 6 cos i,
rsin @sin ¢, rcos ), w=rsin =(x>+y)"2,  z=rcos 6, r=|r|=(x*+y?
+72)2=(wr+2)V2, ' =|r—r|=(r*+ 2> =20w cos(y— @) 2.

ipock e’
p(r) = B fv(a) —dS
27 Jg r

o (2 212
ez(u k%)

=ipyck . m]o(wu) V(u)udu, (3)
where
2= k)2 = i\E’ O=u=<k, (4)
Vi k%, k<u<oo,
with |/ non-negative, and
V(u) = Jalo(ua)v(cr)odo, u=0, (5)
0

is the Hankel transform (of order 0) of v and J,(z) is the
Bessel function of order n, where n=0 in Egs. (3) and (5).

In this paper, two sets of functions for use in conjunction
with King’s result will be highlighted. The first set of func-
tions are Stenzel’s function s”)() given by

v(o)=s"(o)=(n+ DHV(1-(ala)?)", 0<o<a, (6)

with n=0,1,... . To the authors’ knowledge, Stenzel® was the
first author to write on these functions in relation to sound
radiation [the profiles in Eq. (6) were considered extensively
by Greenspan,6 but no reference to work of Stenzel can be
found in Ref. 6; also see Ref. 7, p. 14]. The Hankel transform
S™(u) of s™ is given by®

Jn+1 (au)

S™(u) = a*(n + 1)12"V, ™

(7)

A second set of functions considered in this paper is the set
of Zernike functions

Rgn(a'/a) =P,2(cla)*-1), 0<o=<a. (8)

Any radially symmetric velocity profile v(o), 0<o<a, al-
lows an (orthogonal) expansion as
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v(0) =V, u,R,(ala), (9)
n=0

where u,=1 [this follows from the definition in Eq. (2) and
the fact that [§ R (o/a)odo=3a>3,,]. The Hankel trans-
form V(u) of v(o) in Eq. (9) is given by*"*>?’

©

V() = VoS (= 1)y (ua). (10)

n=0 u

After inserting Eq. (7) or Eq. (10) into Eq. (3), integrals
of the form

o 22 2J (wu)J ,(au)
fo e~ =) —Lux(uz—kz)”zudu (11)

with v=0 appear. These integrals seem too complicated to
allow a completely analytic treatment. However, there are
cases with z=0 and w=a that allow such a treatment. These
cases occur as follows:

(a) for the pressure at the edge with r=(a cos i,a sin #,0),
and w=a, see Sec. III;

(b) in the computation of the reaction force F=[¢pdS on the
radiator, see Sec. IV;

(c) in the computation of the radiated power P=[gpv*dS,
see Sec. V.

The quantity in (a) was expressed in terms of Bessel and
Struve functions by Warren?® for the case n=0, and this re-
sult was proved and generalized (to the cases n=0,1) by
McLachlan.** The quantities mentioned in (b) and (c) were
expressed by Rayleigh®® [case (b), n=0] and Greenspan®
[cases (b) and (c), n=0,1,2] for the case of Stenzel radiators
s in terms of Bessel and Struve functions, and Greenspan
gave the first few power series coefficients of reaction force
and power as a function of ka. Moreover, Greenspan ob-
tained similar results for the (infinitely supported) Gaussian.
In the present paper the quantities in (a)—(c) will be com-
puted as power series for all Stenzel cases v=s") and for all
terms and cross terms pertaining to v(o) in Eq. (9). The
coefficients of these power series are organized in such a
way that the close connection between the integral expres-
sion on one hand and the Bessel functions of the first kind
and the Struve functions on the other hand is immediately
apparent. Finally, the series are cast into single-series format
which makes them convenient to use. Greenspan’s results
have been used as a check of correctness of the formulas
here. To facilitate this, the formulas have been brought into
the same form as Greenspan’s results. Also a number of
cross-checks have been carried out.

The main results of this paper follow from the power
series expansions in ka of the integrals that appear in Eq.
(11) with w=a and z=0. These power series are derived in
Appendix A. In Appendix B the convergence behavior of
these expansions are considered. It thus appears that all se-
ries provide 107® absolute accuracy when they are truncated
at a summation index =2eka+10 and when ka<12 (ma-
chine precision 1071).
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lll. PRESSURE AT THE EDGE

According to Eq. (3), the pressure pq,. at an edge point
(a cos ¢,a sin ,0) of the radiator is obtained by taking z
=0 and w=a. Thus

“ Jolau)V(u)
=ipock | S, 12
pedge IpoC 0 (uz _ k2)1/2 uau ( )

with V(u) the Hankel transform in Eq. (5) of v(o).

A. Stenzel functions

With v(0)=s")(0), see Eq. (6), for which the Hankel
(n)

transform S (u) is given by Eq. (7), the pressure Pedge 2t the
edge is given by

e ik + D127 [ Jo(au)],,,, (au)

pocVs B a™! u'(u? - k)12 du. (13)

The integral in Eq. (13) has been evaluated in Appendix A 1
and the result is

(n) n k
Pelse _ ( z) f Jo(au)J sy (au)
=(n+1)! ka ———du
pocVy ( ) a 0o ukK—u?
(7 Jolau)J,,.i (au)
+1 B ,/z—kz du
ko ou'™NuT—

C 1V 2j+1
%(M)!ka[E( 12 +2),(ka)”

P I(n+j+2)

2 (- 1Y2j + 1), (ka)¥
+lj=0 I(n+j+3/2)

1 o _(0),(= ika)’
=~ )Y 14)
2( )gl“z(n+§€+1) (
Here I' is the Gamma function and (x), is Pochhammers’s

symbol as defined in Eq. (A13).

The middle expression for pé"d)g . in Eq. (14) is convenient
for expressing Df{pi';)ge and ingzge in terms of Bessel functions
of the first kind and Struve functions, respectively, see Eqs.
(A4) and (A5). Thus for the case that n=0, it is seen that

[using (x)o=1]

(0)

1
Pl 11— 2k + i 2ka)) )
0t Vs

a result given by Warren®® (without proof) and proved and
discussed by McLachlan.** For the case that n=1, the coef-
ficients in the two series in the middle expression for pgi)g o in
Eq. (14) must be manipulated. Thus one has [using (x);=x]

o (- 1Qj+2)2* 1-4y22) _Ji(22)
E 20 - 3 -2 2
0 I“(G+3) z b4

(16)
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FIG. 2. (Color online) The pressure at the edge |p edge! pocV,| vs ka, for the
rigid piston (n=0) (solid curve), the simply supponed radiator (n=1) (dot-
ted curve), and the first two clamped radiators (n=2,3) (dash-dotted and
dashed curves, respectively).

P CUID 2y 00 22 )
,Z') I2(j+5/2) _Z3H°(2Z)_Z2 W—H1(2z),

(17)

where H,(z) is the Struve function of order n, and with z
=ka it follows that

Pline 2{ 1-Jy(29)  J,(22)

pocV 2 z

+i{l2Ho(22)—l(i‘Hl(zz)ﬂ}' (18)
z AT

This agrees with the result in Ref. 24, Eq. (34), except for the
overall factor 2 [due to the definition of v in Eq (6)] and
the signs in front of J,(2z)/z and H,(2z). Since ped .—0as
kHO the correct signs are as in Eq. (18). In Fig. 2
|p o/ PocVy| vs ka is plotted [using the last formula of Eq.
(14)g] for the rigid piston (n=0), the simply supported radia-
tor (n=1) and the first two clamped radiators (n= 2 ,3).

It is observed that the coefficient of (ka)2 in p ed . €quals
3 pocV (independent of n). Thus %[p ~ zpocV (ka) for
small ka.

edge

B. Zernike functions

With v(o) a linear combination of Zernike functions
Rgn(a/a) as in Eq. (9), for which the Hankel transform V(u)
is given by Eq. (10), the pressure pq, at the edge is given by

2.0
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2
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; ~ ka
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FIG. 3. (Color online) p: the pressure at the edge |pegee/ pocVy| Vs ka, (solid
curve) using Eq. (20). F: the reaction force |F/mpycVa®| vs ka (dotted
curve) using Egs. (30) and (31). P: the power |P/mpycV2a?| vs ka (dash-
dotted curve), using Egs. (39) and (40). All curves for a truncated Gaussian
velocity profile exp(-a(o/a)?), a=2, approximated using three Zernike co-
efficients uy=1.0000, u;=-0.9392, and u,=0.3044.
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FIG. 4. (Color online) The force on the radiator |F"/ mpycV,a?| vs ka, for
the rigid piston (n=0) (solid curve), the simply supported radiator (n=1)
(dotted curve), and the first two clamped radiators (n=2,3) (dash-dotted and
dashed curves, respectively).

Pedse. .7 Jolau) gy, (au)
Dot _itq %( 1 fo el (9)

The integrals in Eq. (19) have been evaluated in Appendix A
2, with the result that

iJm Jo(au)12n+|(au)
0

(2~ 1)1 u
_ fk ]o(aM)Jan(aM) du+ ifw Jo(au)]2n+1(6m) du
o VK -u? PN

_l < j & ? 2n+2j+
_22(_1)]<F(2n+j+2)) (ka3

1 (=j+172), \? .

_—(—1)” ( (-3¢+1),
- =1\

2
— ika)®.
2ka (n +30+ 1)) ) o

In Fig. 3 |peqge/ poc V| vs ka is plotted [solid curve, using
the last formula of Eq. (20)] for a Gaussian velocity profile
exp(-a(o/a)?), a=2 and truncated at o=a, approximated
using three Zernike coefficients uy=1.0000, u;=-0.9392,
1,=0.3044.

The case with uy=1, u;=u,=---=0in Egs. (19) and (20)
yields the same result as Eq. (14) with n=0, as it should.
Observe also that the real part in Eq. (20) has
O[ (ka)***']-behavior as ka — 0. As a consequence of this and
the fact that uy=1 by definition, the coefficient of (ka)? in
Pedge €quals %poch for any profile v(o).

The formulas on the last lines of Egs. (14) and (20) can
further be checked against one another, because

21+1 ()
(Hf,ﬂ)
see Ref. 21, Eq. (10). For instance, when n=1, one has
s(l)(cr)=VS(R (0/a)-R)(c/a)), and one has to check that
€1 1 (1)
r2(e+2) 2[12(3¢+1) 1(3€+2)
which indeed holds. Accordingly, Fig. 2 (and Figs. 4-6)

() = VE( 1)f (n+ RS, (ala), (21)

(22)
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FIG. 5. (Color online) The power of the radiator P/ mpycV?a® vs ka, for
the rigid piston (n=0) (solid curve), the simply supported radiator (n=1)
(dotted curve), and the first two clamped radiators (n=2,3) (dash-dotted and
dashed curves, respectively). (a) Real part and (b) imaginary part.

could have been produced equally well within the framework
of Zernike expansions.

IV. REACTION ON RADIATOR

According to Eq. (3), the total reaction force F on the
radiator is given by

a (2w
F= f pdS:f f p((o cos i, 0 sin ,0)) odad s
s 0Jo

4 “ 7 Vi
= 277] ipockf O(;-Lz(lb/tz)uduado'. (23)
0 o (U =k)

Because [{Jy(ou)odo=au'J,(au), there results

“ Ji(au) V()

o -1 u. (24)

F =2mipycka

DI

ka

2 4 6 8 10

FIG. 6. (Color online) The directivity index DI=101log;, D (dB) vs ka, for
the rigid piston (n=0) (solid curve), the simply supported radiator (n=1)
(dotted curve), and the first two clamped radiators (n=2,3) (dash-dotted and
dashed curves, respectively).
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A. Stenzel functions

With v(0)=s" (o) and its Hankel transform V)(u)
given by Egs. (6) and (7), the total reaction force F" on the
radiator is given by

F" 2\ (7 Jy(aw)),
—2=(n+1)!<—) ikaf Ilawlau)
mpocVa a o W -k)

(25)

The integral at the right-hand side of Eq. (25) has been
evaluated in Appendix A 1, and the result is that

(n) n+l k
F_2=(n+1)z<§) ka{f Jian) ]y (av)

mpocV,a o uWIE— i

N l.fm Jl(au)fn+1(au)du
P N

_ o (1) +3),(ka)¥*?
=(n+ 1)!!J§0 IF'n+j+2)I'(n+j+3)

(= 1)(2) +2),(ka)¥*!
+
ljzo IFn+j+3/2)I'(n+j+5/2)

——(n+1)'§ (€ +1),(= ika)*

OT(n+ie+1)I(n+30+2)
(26)

The middle expression for F in Eq. (26) can be used to

express RF™ and JF™ in terms of Bessel functions of the
first kind and Struve functions, respectively. This yields

F Ji(22)  Hy(22)
=1- +1i s

= 27
mpocV,a® Z z @7)
F _ o 80122) ~424y(22) - 2z
WpocVSaz_ z
47H,(2z) — 6H, (2
_ AeHy(2) ~6H,(20) o8)
J
F® L 4(5—Z2)J1(22)—%Z]0(2Z)—%
'n'pocVSaz_ z
5 - 2AH,(22) - 32H(22) - 322
4oy 0TI 2 3D 7522 ()

Z

in which z=ka. This is in complete agreement with Ref. 6,
Egs. (35), (40), and (41), where it is recalled that
Greenspan’s V is equal to 7a”V,. Equation (27) is discussed
in many texts; recently a simple and effective approximation
of H;(z) which is valid for all z is developed in Ref. 29.
The expression for F on the last line of Eq. (26) is in
the form of a power series in —ika. In Ref. 6, Egs. (35a),
(40b), and (41b), the first few terms of the power series of
F(”), n=0,1,2, have been displayed. It turns out that this is
in complete agreement with what Eq. (26) gives for these
cases. Furthermore, it can be checked directly from Eq. (26)
that the coefficient of (ka)? in F") equals %Wpocvsaz (inde-
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pendent of n and in agreement with Greenspan’s observation
for s, n=0,1,2). Thus R[F"] =~ JmpycV,a*(ka)?® for small
ka. In Fig. 4 the force on the radiator F"/ mpycV,a® vs ka is
plotted [using the last formula of Eq. (26)] for the rigid pis-
ton (n=0), the simply supported radiator (n=1), and the first
two clamped radiators (n=2,3).

B. Zernike functions

With v(o) a linear combination of Zernike functions
Rgn((r/ a) as in Eq. (9) with Hankel transform V(u) as given
in Eq. (10), the total reaction force F is given by

foc Jy (au)12n+1 (au)

oy e (0

—— =2ik2, (- 1)"

vt <R
The integrals at the right-hand side of Eq. (30) have been
evaluated in Appendix A 2, with the result that

hit f * J(au)d ., (au)
0 u(uz _ k2)]/2

k o
Jl(au)JZnH(au) f Jl(aM)J2n+1(au)
= 2kf —————du+2ik ————du
0 uNk? = u? k uNu® — k2
- (_ l)j(.] + 1)n(f + Z)n
=2

ka)2m i+
=0 F(j+2n+2)F(j+2n+3)( %)

e (=), (i),
+i(=1) ,% L(+n+3/2)L(G+n+5/2)

s (230,34 1),
=-CD z F(%€+n+l)r(%€+n+2)

(ka)2j+l

(—ika)t. (31)

In Fig. 3 |F/mpycV,a®| vs ka is plotted [dotted curve,
using the last formula of Eq. (31)] for the same Gaussian
velocity profile as was considered in Sec. III B.

The case with uyg=1, u;=u,=---=0, in Egs. (30) and
(31) yields the same as Eq. (26) with n=0. The middle ex-
pression for F in Eq. (31) can be used to express RF and JF
in terms of Bessel functions of the first kind and Struve
functions, respectively. As with the Stenzel functions in Egs.
(27)—(29), this soon gets cumbersome. Finally, the single-
series expressions on the last lines of Egs. (26) and (31) can
be checked against one another based on the Zernike repre-
sentation in Eq. (21) of s”)(o), just as this was done with the
two single-series expressions for pege in Sec. 1.

Equation (31) shows that the real part has a non-zero
coefficient for (ka)> only when n=0. Accordingly, the coef-
ficient of (ka)? in F of Eq. (30) is equal to %wpocvsaz (be-
cause uy=1 by definition), no matter what v(o) is. This is in
agreement with the observation of Greenspan,6 Sec. IV, Egs.
(35a), (40b), and (41b), that this holds for Stenzel functions
5™, n=0,1,2.

V. POWER OUTPUT AND DIRECTIVITY

The power is defined as the intensity pv* integrated over
the plane z=0. Thus, because v vanishes outside S,

J. Acoust. Soc. Am., Vol. 126, No. 4, October 2009

P= f p(o)v*(o)ds, (32)
s

where p(o)=p(o cos ¢, o sin i,0) is the pressure at an arbi-
trary point on S. According to Eq. (3) with z=0 and w=o,

. V()
plo) = lPOCkf m]o(cm)udu, 0<o0<o>,
0 _
(33)

assumes the form of a Hankel transform, viz., of the function
ipockV(u)(u?~k?)~"2, where V(u) is the Hankel transform of
v(0). By using Parseval’s theorem for Hankel transforms in
Eq. (32), it follows that

“ V() V*(u)

. —(u2 —)” udu. (34)

P =2mipyck

A. Stenzel functions

With v(0)=s"(0) and V(u)=S"(u) as given by Egs.
(6) and (7), the power P is given by

P ( (2)”)2 j‘” T (an)
——=2 + 1) - k —— " ———du.
Wpochaz (n+1) u o W12 u

(35)

The integral at the right-hand side of Eq. (35) has been
evaluated in Appendix A 1, and the result is that

P 2\"\? ko2, (au
—22=2<(n+ 1)!(‘) ) k f %du
mpoVia a o Uk —u

P (au
+if —"+1—( ) du]

/
& u2n+l \,MZ _ k2

_ ool G +372),(ka)
=((n+1)12") |:§) Fn+j+2)L'2n+j+3)

2 (= 1Y + 1), (ka)¥*!
TS T+ j+ 32T (2n+)+502)

5 A+ ), (- ika)
_ ny2 2 z
- ((”+1)!2);_lr(n+%€+l)l’(2n+%€+2)'

(36)

The middle expression for P* in Eq. (36) can be used to
express the real and imaginary parts of P™ in Bessel func-
tions of the first kind and Struve functions, respectively. The
case that n=0 in Eq. (36) yields the same integral as the one
that occurs in the expression of Eq. (25) for F with n=0,
and so Eq. (27) can be used yielding

P J1(22)  H(22)
> 5, =1- +1i .
mpocVia b4 z
For the cases n=1,2, Ref. 6, Egs. (45) and (47) express pm
in terms of Bessel and Struve functions; these results have

been checked against what Eq. (36) gives for n=1,2 and
complete agreement has been observed. [This check has been

(37)
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carried out since, due to the very complicated nature of the
resulting expressions, Greenspan had some doubts about cor-
rectness of his Eq. (47).]

The single-series expression on the last line of Eq. (36)
has also been checked against Ref. 6, Egs. (45b) and (47b),
where the first few terms are displayed: there is complete
agreement. A further observation is that the coefficient of
(ka)> in P" equals %wpochaz (independent of n). Thus
R[PW]=~ %WpQCVfa2(ka)2 for small ka. In Fig. 5 the real and
imaginary parts of the power of the radiator P/ 7'rp0cha2
vs ka is plotted [using the last formula of Eq. (36)] for the
rigid piston (n=0), the simply supported radiator (n=1), and
the first two clamped radiators (n=2,3). Note that the power
shown in Fig. 5 reaches a fixed value for large ka values.
With the general approach developed in Secs. VB and V D
[in particular, Egs. (39), (52), and (53)], it follows that these
fixed values are given as

P jl (n+1)?
lim ———==2 n+1)(1-p>)"Ppdp= .
ka— 71'p0cV§a2 0 L )1 =P Tpdp 2n+1
(38)

However, for real sources like loudspeakers, the power will
decay. This is because the velocity of the radiator will de-
crease for higher frequencies, in particular, for loudspeakers
above their resonance frequency.

B. Zernike functions

With v(o) a linear combination of Zernike functions
Rgn(o/a) as in Eq. (9) with Hankel transform V(«) as given
in Eq. (10), the power P is given by

oo
. *
BRI 2ik E (- 1)"1+"2unlun
7TpOC‘/sa ny,np=0 2

[ f To 1 (U@, 4 (1)

I PERE du |. (39)

The integrals at the right-hand side of Eq. (39) have been
evaluated in Appendix A 2, with the result that

. jw J2n1+1 (ua)J2nz+] (ua)
1 u

0 u(uz _ k2)1/2

fk J2n|+1 (”a)J2n2+1(ua)
u

0 uV,’kZ_ M2

* S 1 (Ua)Jy,, 1 (ua)
+ 2ik d

— u
k uNu? — k>

5 CVGH DG +2m+ Dy o)
_,Eo G+ 2m a2 san+3) k0

§ (= (= j = 12y (= j + 112)y
o TG +M+3/2)L(j+N+5/2)

+i(= 1Y (ka)¥*!
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=—(- 1)M§ (_ %e)M(_ %€ + 1)N(— ika)®

=1 F(%€+M+1)F(§€+N+ 2)’ 40)

where M=|n,—n,| and N=n,+n,.

The case with uy=1, u;=u,=---=0 in Egs. (39) and (40)
yields the same as Eq. (36) with n=0. The middle expression
for the integral in Eq. (40) can be used to express real and
imaginary parts in terms of Bessel functions of the first kind
and Struve functions, respectively, but this gets out of hand
quite soon. Finally, the single-series expressions in Egs. (36),
(39), and (40) can be checked against one another using the
Zernike expansion for s in Eq. (21); this has been observed
to give the same results for the case s'"). In Fig. 3 the nor-
malized power |P/mpycV?a?| (dash-dotted curve) is plotted
using Egs. (39) and (40) for a truncated Gaussian velocity
profile exp(—a(o/a)?), a=2, approximated using three
Zernike coefficients u,=1.0000, u;=-0.9392, and u,
=0.3044.

The series expansion in Eq. (40) shows that the coeffi-
cient of (ka)? is non-zero for N=n,+n,=0 only [this is so
since (0)y# 0 for N=0 only]. Since by definition uy=1, this
shows that the coefficient of (ka)? in P in Eq. (39) is equal to
IpocTV2a?, no matter what v(a) is.

C. Power evaluated from the far field

Usually one calculates the power of the radiator from p
and v values at the radiator itself, but due to the conservation
of energy the power can also be computed from sound field
values at any distance from the radiator. Below it is shown
that the power can be calculated in the far field with the
techniques described in the preceding sections. The power as
defined in Eq. (32) should be equal to the integral of pv*
over any surface X in z=0 containing the disk o=<a. Here v
and p are related to one another in z=0 according to

-1 dp
V= -
ikpoc on

n normal to . (41)

The imaginary part of P, the wattless component, manifests
itself only close to the radiator and has no physical signifi-
cance in the far field; it is thus customary to consider the real
part of P only, especially when the non-rigid part of 3 in z
>0 is in the far field. It is shown by Bouwkamp12 that

ER[J pv*d2:| =lf (pv* + p*v)d= =0. (42)
s 2)s

Thus, taking for 3 the surface Sy of the hemisphere x>+ y?
+72<R? z=0 with R=a, together with the disk x?+y?
<RZ, 7z=0, one finds that

{le] ]

R

pv*dSR]. (43)

The right-hand side of Eq. (43) will now be considered
when R— . According to Blackstock' it holds in the far
field that

p=0(1/r), v=(poc)'p(1+0(1/r)). (44)

Hence,

Aarts and Janssen: Sound quantities arising from resilient radiators

Author's complimentary copy



9%“ lp[dSg+ O(R™").  (45)
N Sk

From the Rayleigh representation of p in Eq. (1), it follows
with the usual approximation arguments that

PU*dSR] = (poe)™

R

—ikr
p(r) = ipyck "

f v(o)Jy(ko sin §)odo
0

—ikr
= ipoCk
r

V(k sin 6) (46)

with V the Hankel transform of v as before. Then taking
spherical coordinates in the integral at the right-hand side of
Eq. (45) and letting R— o, it follows that

al

R

/2
pv*dS] = 2mpyck? f |V(k sin 6)|? sin 6d6.
0

(47)

By changing integration variables in the integral at the right-
hand side of Eq. (47) according to u=k sin 0, 0<u<k, the
final result becomes

. C Vw)?
R pv*dS | =2mpyck ﬁudu (48)
Sk 0 Vk

Compare Eq. (34).

D. Directivity

From the far-field expression in Eq. (46) for p(r), r
=(r cos ¢sin 0, r sin ¢ sin 0, r cos 6), there results the direc-
tivity

47/ V(0)?

2@ (w2
f f |V(k sin )| sin 0dyd 6
o Jo

D=

2[V(0))?

(49)

= w2 ’
f |V(k sin 6)|? sin 6d6
0

see Ref. 2, Sec. 8.9. This gives rise to the same integral as in
Eq. (47). By Egs. (2) and (5) it holds that V(O)—-aZV and
by Eq. (34) it holds that

/2

1

f |V(k sin 6)|? sin 6d6= SR[P]. (50)
0 2apock

In Fig. 6 the directivity index (DI=10log;q D) vs ka is plot-
ted [using Eq. (36), last formula, and Egs. (49) and (50)] for
the rigid piston (n=0), the simply supported radiator (n=1),
and the first two clamped radiators (n=2,3).

Consider the case that ka—0. By the observation
at the end of Secs. VA and VB, it holds that SR[P]
~ %ﬂ'pochaz(ka)z. Therefore, as ka—0
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2 lazvs 2
D~— (12 ) =2, (51)
- V2 2 k 2
27Tp0Ck227Tpoc sa ( a)

or 3 dB, which is the same for a rigid piston2 or a hemi-
spherical source on an infinite baffle and this is supported by
Fig. 6.

Next consider the case that ka — %, in the general setting
of Sec. V B. Now, by Ref. 22, 11.4.6,

fk Jon11(Ua) Ty 41 (ua) f"“ Jon, 410241 (V)
du=a| —F———
0

[
uNk? = u?

U
o oV(ka)?-v?

J2n1+1(v)']2t12+1(v)

" ka v
1 5711}’12
=——. 52
k2(2n, + 1) (52)
Thus from Eq. (39)
R[P] = 27TPOCV a? Ew: o
= 202n+1)
1
=2mpyca’ f lv(ap)*pdp. (53)
0

where Parseval’s theorem for Zernike expansions v(o)
=V,=" ju,R) (0/a) has been used. It thus follows that, as

ka— o,

23y

————2mpyca f lv(ap)[*pdp

D=
2mpock?
%(ka)sz

= (54)
J lv(ap)*pdp
0

In case that v=s"), the last member of Eq. (54) is given by
(2n+1)(n+1)"Y(ka)?; in Ref. 2, end of Sec. 8.9, the result for
the case n=0 is given.

VI. ESTIMATING POWER FROM NEAR-FIELD ON-
AXIS MEASUREMENTS

In Ref. 21, a method has been introduced recently to
estimate a radially symmetric velocity profile v(o), 0<o
=<a, from on-axis sound pressure data, in terms of Zernike
expansion coefficients. The basis of this method is the ex-
plicit formula, see Ref. 21, Eq. (17),

p((0,0,7)) = 5 pocVy(ka)* 2 v, (k,)u,, (55)
n=0

for the on-axis pressure, where the v,(k,r) are explicitly
given in terms of spherical Bessel and Hankel functions. The
formulas in Sec. V B then show how these estimated coeffi-
cients give rise to a means to compute the power and direc-
tivity.
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VIl. CONCLUSIONS

Greenspan’s results® on acoustic quantities related to the
pressure due to a velocity profile on a piston radiator in an
infinite baffle are treated in a unified way. By expanding the
velocity profile in terms of Zernike functions, the pressure at
the edge of a radiator, the reaction force on the radiator, the
power output, and directivity of the radiator can be expressed
in an attractive way as power series in ka. Since many ve-
locity profiles have a representation in terms of Zernike func-
tions with explicitly computable coefficients, the results of
this paper constitute a considerable generalization of
Greenspan’s results.

APPENDIX A: EVALUATION OF BESSEL INTEGRALS

In this appendix, the integrals

|, @

o U (u”—k°)
are evaluated. These integrals occur in relation to the pres-
sure at the edge (m=-1), the reaction on the radiator (m
=0), and the power if the velocity profile v(o) is a Stenzel
function s (o) or a linear combination of Stenzel functions.
Furthermore, the integrals

‘ch Jm(au)‘]n+l(au)

’0 (- 1) du, (A2)

[ttt (A3
0

u(u2 _ k2)1/2

with integer n, m=0 such that n—m even and =0 are evalu-
ated. These integrals occur in connection with the pressure at
the edge [m=0 in Eq. (A2)], reaction on the radiator [m=0 in
Eq. (A3)], and the power [general m, n in Eq. (A3)] if the
velocity profile is a linear combination of Zernike functions.

The integrals are evaluated in the form $R+iJ, where R
and J arise from the integration ranges [0,k] and [k,o0),
respectively. These PR and iJ parts are given as power series
in ka in a form from which the close relationship with Bessel
functions of the first kind,

(1) (= L)
J”(x)‘<2x> gol“(j+1)l“(j+v+l)’ (a4)

and Struve functions,

RS G
H,,(x):(;c) Jgof(j+%)r(j+v+%)’ (A5)

is apparent. Furthermore, the two series for R and iJ are
reorganized and combined into a concise single power series
in —ika for the various integrals.

A formula in terms of hypergeometric functions ;F, of
the integrals
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k e}
(f + f )u“‘l (= kz)'B_IJM(au)J,,(au)du (A6)
0 k

can be found in Ref. 30, Sec. 2.12.32, items 3 and 8. These
formulas are quite complicated; there is no indication of
where a proof can be found, several degenerations and sim-
plifications occur due to special values of «, 8, u, v to which
Egs. (A1)—(A3) restrict, and no attention is paid to bringing
the results into an attractive form. The results obtained here
have been checked against the results in Ref. 31 for the spe-
cial values of «a, B, u,v that occur here. The method of the
proofs used is taken from Ref. 31, Sec. 13.6.

1. Evaluation of Equation (A1)

Let n, m=0,1,... . The case where m=—1 in Eq. (A1) is
dealt with at the end of this section. It holds that

.Jw Jn+1(a“)~]m+1(au) fk Jn+1(au)-]m+1(au)
l du =

”+m+1(u2 _ k2)1/2

——du
o U un+m+1 \;“’kz _ u2

.fw Jn+l(au)~]m+1(a’/‘)
+i| —————F—="du.
‘ un+m+l \“’uz _ k2
(A7)

There is the integral representation, see Ref. 31, Sec. 13.6,
Jlau)J (ua)
1 ([ T (u+v+2s+ l)(%au)’”wzs
T omi i Tpt+s+ DI(w+s+ DI+ v+s+1) 5
(A8)

where the integration contour has the poles of I'(-s) on its
right and those of I'(w+v+2s+1) on its left (thus —%(,u+v
+1)<R(s)<0).

For the first integral in Eq. (A7), second line, the result
of Eq. (A8) is used together with

e LGN Gars)
J, Fom Sy N>
(A9)

This yields

k Jn+l (au)JmH (au) d
un+m+1 sz _ L{2 u

1 (1)(1 >n+m+1 1
=-r(z)(za)] —
2 \2/\2 21ri

y Ff [(=5)T(n+m+2s +3)(3ka) !
wi Tn+s+2)I(m+s+2)L(n+m+s+3)

0

I'(s+1)

ot %)ds, (A10)

where the two occurring integrals have been interchanged.
The integration in Eq. (A10) is closed to the right, thereby
enclosing all poles of I'(=s) at s=j with residues (—=1)/*/;!,
and it follows from Cauchy’s theorem that
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fk Jpei(au)J,, . (au)
———————=4du
0

—
un+m+1 \’ykz _ M2

=lr(l><la>n+m+lw F(2]+n+m+3)
2 \2/\2 o LG +m+2)I'(j +3/2)
(_ 1)/(%ka)2]+l
TFGj+n+2)L(j+n+m+3)

(A11)

Now assume that n=m. Then it holds that

F(n+m+2j+3) 22””2/’"2(2 2i+3) ( 3)
= + + —m += >
Tom+j+2)TG+32) 1) 7m0 T o)
(A12)
where Pochhammer’s symbol (x), has been used,
I'x+4¢)
=, = 1’
()¢ I'(x) (x)o
(e=x(x+1)- - (x+€-1), €=12,.... (Al3)
Therefore,
Jk S (@), (au)
————F—————=du
0 un+m+] Vk2 _ u2
— 2m—n—1an+m+1§ (_ 1)1(27’)1 + 2] + 3)n—m(j + 3/2)m
o TG+n+2)T(G+n+m+3)
X (ka)¥*!. (A14)

Next, for the second integral on the second line of Eq.
(A7), the plan of the proof is the same, except that now

J” u L LO(-30)

1

2

a) ’
is used. This yields the same expression as in Eq. (A10),
except that the I'(s+1)/T"'(s+3/2) just in front of ds has to be
replaced by I'(—s—1/2)/T'(~s), thereby canceling the I'(-s)
just behind the integral sign. Now the poles of I'(—s—1/2) at

the points s=j—1/2 have to be taken into account, and this
yields [using Eq. (A12) with j—1/2 instead of j]

- Jn+l(m4)]m+l(a”)d
un+m+1 \’M2 _ k2 u

- R(a) <0 (Al5)

1
272

k
o (1Y@ +2m+2), i+ Dy
o LG +n+312)0(G+n+m+5/2)

(A16)

— pm—n= 1 q'vtmt 1

(ka)¥.

This yields a power series for the real part in Eq. (A7) per
Eq. (A14) and the imaginary part in Eq. (A7) per Eq. (A16)
that shows a close relationship with the Bessel and Struve
functions in Egs. (A4) and (A5), respectively. It is actually
possible to express the results of Egs. (A14) and (A16) sys-
tematically in terms of Bessel and Struve functions by ma-
nipulating the polynomial of degree n in j occurring in the
numerator of the coefficients in the series in Eqs. (A14) and
(A16).
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The case that m=—1 can be dealt with in a completely
similar fashion, except that in Eq. (A12) the definition
(x)_;=(x=1)"" of Pochhammer’s symbol with subscript €=
—1 should be used [this is consistent with the I'-function
based definition in Eq. (A13)]. With some further rewriting,
this then yields the identity of the quantities in the second
and third members between [ ] in Eq. (14) in the main text.

A single power series in —ika for Eq. (A7) follows on
combining Eqgs. (A14) and (A16). Doing the administration
with the (-=1)/=(-i)%, there results

.foo Jpei(au)J .1 (au)
i ———————d

o W - )12 u

1
_ _2m—n—lan+m

k

(C+2m+1),.,(3+1),
=1 I’(%€+n + I)F(%(f +n+m+ 2)

2. Evaluation of Equations (A2) and (A3)

Let n, m be integers =0 with n—m even and =0. The
proof for the integral in Eq. (A2) follows the same reasoning
as for the integral in Eq. (Al). Letting

n—m n+m

) (A18)

it is found without any particular problem that
fk Jn+1(au)-]m(au)

—
0 \"k2 _ u2

1 i (= 1Y+ 1), + m+ 1), (ka)?0+0*!
235 Fn+j+2)I'(+2g+2)

du

(A19)

For the integration range [k,) in the integral in Eq. (A2),
the method based on Egs. (A8) and (A15) yields an expres-
sion as in the second member of Eq. (A10), except that the
I'(s+1)/T'(s+3/2) appearing in front of ds should be re-
placed by I'(-s—g—1/2)/I'(-s+q), thereby canceling all
poles of the I'(—s) appearing just behind the integral sign in
Eq. (A10). It is then found upon some further administration
with I'-functions that

f " Jpailaw)dylan) |
= au
k Vu? — k2
e (G D=+ 12) (= +172)
25 T(j+p+32)T(j+q+3/2)

2 (ka)¥ . (A20)

From Egs. (A19) and (A20), a single-series expression
for Eq. (A2) can be derived. To this end, the summation
index j in Eq. (A19) is changed into j—g—1 with j=g+1,
q+2,.... Next, it is observed that n—g=p, m—g=-p, and
that
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(j_q)q:(_ 1)6](_‘]‘_'_1)‘]’ (j_p)pz(_ l)p(_j+l)p'
(A21)

As a consequence of (-j+1),=0 for j=1,...,q it follows
that the new summation index j can be taken to range from 1
to . This all yields the result

J n+l(au)-] ((JM) du
0 K* - u?

NK™— U

e (i D+ 1) (k)Y
" 2ka FEI IFG+p+DIG+g+1) (a22)

Then combining Egs. (A20) and (A22) while administrating
the (—=1)/=(—i)¥ yields the single-series expression

l. f " palaw),aw)
o (M2 _ k2)1/2
e (3 (=), - ik
2ka S T(3+p+1)T(30+g+1) '
(A23)

The treatment of the integral in Eq. (A3) is entirely simi-
lar. There results

iJm Jn+1(au)-]m+l(5m)
0 u(uz _ k2)1/2

¢ Jn+l(au)]m+l(au) . - ]n+l(au)]m+1 Clbt)
= ———du+i —du
0 k

uNk? = u?

du

uNu? = k2

( 1)(]+1)(]+m+1)p( Q)+ 14)
2k o LG+n+2)I'(j+2¢g+3)

1 (= 1D/(=j=1/2),(= j+1/2) 5
1a( I)PE o LG +p+3/2)F(/+q+5/2)q(k a)

e (50, (=50+1),
2k S T(3¢+p+1)I(3€+q+2)

(- ika)®.
(A24)

Here n and m are integers =0 with n—m even and =0, and
p and ¢ given by Eq. (A18).

The results for the integrals in Egs. (A2) and (A3) just
given have been checked by using” z7UJ,.;(z)=(2(m
+1)) 7' (J(2) +J12(2)) in Eq. (A3).

APPENDIX B: CONVERGENCE ANALYSIS OF THE
SERIES

The series in Egs. (14), (26), and (36) for the case of
Stenzel functions on one hand and those in Egs. (20), (31),
and (40) for the case of Zernike functions on the other are all
of a very similar nature with regard to convergence and ac-
curacy matters. It therefore suffices to consider only the se-
ries in Eq. (14) and the series in Eq. (20). Next, from a
simple comparison of the coefficients in the two series
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¢ * _1 2
(6):112 and E ( ( 2€+ 1)n ) Z€7 (Bl)
B )

oM (n+i0+1 T(n+i+1

it is seen that for either series n=0 is worst case. The series
to be considered becomes for either case

* ¢
Z
S(z=—ika)=2, =7
) Zj r’(e+1)
From Stirling’s formula I'(x+1) = e 22 it readily fol-
lows that the modulus of the terms ¢, in the series in Eq. (B2)
is accurately estimated by

1 2e|z|)‘
t =me=—{==] . B3
2o = my 77{5( ¢ (B3)

(B2)

Hence, m, is of order unity and less from €=2¢|z| onwards.
Next, setting €=2e|z|+b with 0<bh=<{, it follows that

1 b\ 1 1
—— 122 =—et=— 2e\z\—€' B4
e w€< €) ¢ Tt (B4)

Hence, for integer L= 2e¢|z| it holds that

©

Ze\z\—L

E 7TL(e -1 (B3)

When, for instance, L=2e|z|+ 10, the absolute accuracy by
including in the series in Eq. (B2) the terms with ¢
=1,...,L-1 is at least 107°. Note that the true value of
S(z=—ika) is of order unity, see Fig. 2. However, loss-of-
digits occurs in summing the series. The maximum value
over £=1,2,... of m; in Eq. (B3) is assumed near 2|z| and is
accurately given by ¢2[l/27z|. For instance, when |z|<12
(which is the case in all figures) this maximum is <3.5
X 10%. As a result, when machine precision is 10715, an ab-
solute accuracy of 107® is obtained in all cases when 0
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