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Abstract

To create systems that understand the sounds that humans are expised to
everyday life, we need to represent sounds with features that camndisate
among many different sound classes. Here, we use a sound-ran&ingwork
to quantitatively evaluate such representations in a large scale task. \We hav
adapted a machine-vision method, the “passive-aggressive model foe iraag
trieval” (PAMIR), which efficiently learns a linear mapping from a very krg
sparse feature space to a large query-term space. Using this dppreaom-
pare different auditory front ends and different ways of extractiparse features
from high-dimensional auditory images. We tested auditory models that uge ada
tive pole—zero filter cascade (PZFC) auditory filterbank and spade-feature
extraction from stabilized auditory images via multiple vector quantizers. In ad-
dition to auditory image models, we also compare a family of more conventional
Mel-Frequency Cepstral Coefficient (MFCC) front ends. The grpental re-
sults show a significant advantage for the auditory models over vectmtigad
MFCCs. Ranking thousands of sound files with a query vocabulary ostruls
of words, the best precision at top-1 was 73% and the average preaiaio35%,
reflecting a 18% improvement over the best competing MFCC frontend.

1 Introduction

Machine Hearingis a field aiming to develop systems that can process, igeatitl
classify the full set of sounds that people are exposed te inachine vision, machine



hearing involves multiple problems: from auditory scenalgsis, through “auditory

object” recognition to speech processing and recognitidthile considerable effort

has been devoted to speech and music related research,deange of sounds that
people —and machines — may encounter in their everydaydseeen far less studied.
Such sounds cover a wide variety of objects, actions, evantscommunications: from
natural ambient sounds, through animal and human vocalimgtto artificial sounds

that are abundant in today’s environment.

Building an artificial system that processes and classifiesyntygpes of sounds
poses two major challenges. First, we need to develop effiakyorithms that can
learn to classify or rank a large set of different sound caieg. Recent developments
in machine learning, and particularly progress in largdesozethods (Bottou et al.,
2007), provide several efficient algorithms for this taskc@d, and sometimes more
challenging, we need to develop a representation of solnad€aptures the full range
of auditory features that humans use to discriminate anctifgedifferent sounds, so
that machines have a chance to do so as well. Unfortunatalygwrent understanding
of how the plethora of naturally encountered sounds shoellepresented is still very
limited.

To evaluate and compare auditory representations, we es¢-@orld task of content-
based ranking sound documents given text queries. In tiplcagion, a user enters a
textual search query, and in response is presented withdameaf list of sound docu-
ments, ranked by relevance to the query. For instance, aysag “dog” will receive
an ordered set of files, where the top ones should contairdsafrbarking dogs. Im-
portantly, ordering the sound documents is based solelyconstic content: no text
annotations or other metadata are used at retrieval timéeRait training time, a set of
annotated sound documents (sound files with textual tagsed, allowing the system
to learn to match the acoustic features of a dog bark to theagxdog”, and similarly
for a large set of potential sound-related text queries hisway, a small labeled set
can be used to enable content-based retrieval from a mugdr)amlabeled set.

Several previous studies have addressed the problem oértdvdised sound re-
trieval, focusing mostly on the machine-learning and infation-retrieval aspects of
that task, using standard acoustic representations (Whi&nRifkin, 2002; Slaney,
2002; Barrington et al., 2007; Turnbull et al., 2008; Chechilkale 2008). Here we
focus on the complementary problem, of finding a good repitasen of sounds using
a given learning algorithm.

The current paper proposes a representation of soundsstbased on models of



the mammalian auditory system. Unlike many commonly uspdesentations, it em-

phasizes fine timing relations rather than spectral aralysfe test this representation
in a quantitative task: ranking sounds in response to tegtigs. This is achieved us-
ing a scalable online machine learning approach to rankig find that the auditory

representation outperforms standard MFCC features, neggnécision above 73% for
the top-ranked sound, compared to about 60% for standard MIFA®7% for the best

MFCC variant we found. The following section describes thditauy representation

that we use, Section 3 describes the learning approach anidi$é our experimental

results. Our findings are discussed in Section 5.

2 Modeling sounds

In this paper we focus on a class of representations thatrimihabased on models
of the auditory system, and compare these representabastaridard mel-frequency
cepstral coefficients (MFCCs). The motivation for using aagitmodels follows from
the observation that the auditory system is very effectivelentifying many sounds,
and this may be patrtially attributed to the acoustic feattinat are extracted at the early
stages of auditory processing.

We extract features with a four-step process, illustrateHig. 1. (1) A nonlinear
filterbank with half-wave rectified output. (2) Strobed tesrgd integration, that yields
a stabilized auditory imagéSAl). (3) Sparse coding using vector quantization. (4)
Aggregate all frames features to represent the full audeuohent.

The first two steps, filterbank and strobed temporal integnaare firmly rooted in
auditory physiology and psychoacoustics (Lyon, 1990; RRogpFay, 1992; Patterson,
2000). The third processing step, sparse coding, is in daoce with some properties
of neural coding (Olshausen & Field, 2004), and has sigmficamputational benefits
that allow us to train large scale models. The fourth stepdak “bag of features”
approach which is common in machine vision and informateineaval. The remainder
of this section describes these three steps in detail.

2.1 Cochlear model filterbank

The first processing step is a cascade filterbank inspirestiylear dynamics, known
as the pole—zero filter cascade (PZFC) (Lyon, 1998). It preslacbank of bandpass-
filtered, half-wave rectified output signals that simuldie butput of the inner hair
cells along the length of the cochlea. The PZFC can be viewatpproximating the
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Figure 1: The systems for generating sparse codes from audio usigd#ory frontend. It
consists of four steps: (1) Cochlea simulation, (2) Stabilized Auditory imeeggion (3) Sparse
coding (4) Aggregate into a document representation.

auditory nerve’s instantaneous firing rate as a functioroohear place, modeling both
the frequency filtering and the compressiveaatomatic gain controtharacteristics of
the human cochlea (Lyon, 1990).

More specifically, small segments of the cochlea act as filtais on waves prop-
agating down its length. This local behavior is modeled gisimascade of simple filter
stages, each stage defined by just a complex pole pair (aaes®nand a complex zero
pair (an anti-resonance). The sound signal is fed into tgkdst-frequency stage; the
output of this stage is passed as the input to the next stagdescaon down the cascade
(see Fig. 2). The poles and zeros of each stage are arrangedhsu the peak gains
of the stages go from high frequency to low frequency. Thdinear mapping of fre-
quency to place is chosen such that a constant incremenacoé gone filter channel)
corresponds to a frequency difference proportional to theclpophysicakquivalent
rectangular bandwidt{ERB) (Glasberg & Moore, 1990). Such nonlinear mappings,
including the mel and bark scales, are common in auditoryaiogl The pole and zero
positioning for the PZFC stages is similar to the “two-pes-zero, sharper” arrange-
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Figure 2: Schematic of the PZFC design. The cascaded filter stage®)advovide a variable
gain, which is controlled by the automatic gain control (AGC) smoothing net{iaglow).

ment described in (Lyon, 1998), resulting in a peak gain tsgesof only about +5 dB,
followed by a valley of about -10 dB. The cascade of many sumipest results in a large
gain peak followed by a steep cutoff at each tap of the filtekld@eyond the first few.

The PZFC also models the adaptive and frequency dependerthgais observed
in the human cochlea, thereby makingautomatic gain contro(AGC) system. De-
tails on this system, including specific parameters of oud@ware discussed in Ap-
pendix A.

2.2 Strobe finding and image stabilization

The second processing stegirobed temporal integratiofSTI), is based on human
perception of sounds, rather than purely on the physiolddlyeoauditory system (Pat-
terson & Holdsworth, 1996). In this step, PZFC output is pdsthrough a strobe-
finding process, which determines the position of “impadrtqeaks in the output in
each channel. These strobe points are used to initiate t@miptegration processes
in each channel, adding another dimension to representdéatag from the strobe, or
trigger, points. Intuitively, this step “stabilizes” thgeal, in the same way that the trig-
ger mechanism in an oscilloscope makes a stable picturedroomgoing time-domain
waveform.

The end result of this processing is a series of two-dimewsgiérames of real-



valued data (a “movie”), known as a “stabilized auditory gea(SAl). Each frame
in this “movie” is indexed by cochlear channel number on teeival axis and lags
relative to identified strobe times on the horizontal axizaf&ples of such frames are
illustrated in Fig. 3 and Fig. 4.
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Figure 3: Example of one SAI frame (from an SAI “movie”) in response tean vowel.
The moving image will look steady (hence “stabilized”) when the audio sostedsly, as is the
case with the steady vowel sound.
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Figure 4. Example of an SAI frame from the sound of a telephone ringihg. picture shows
that the sound is less periodic than the voice sound, but has some restatatgre.

The STI process can be viewed as a modified form of autoctioelaln autocor-
relation, a signal is cross-correlated with itself at vasialelay “lags”. The zero-lag is
at the center of the output, and the autocorrelation fundbeing symmetrical about
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the center. In STI, the signal is instead cross-correlatiéial avsparse function that is
zero everywhere except at certain times called strobe golitte height of the signal at
these strobe points determines the “weight” with which timag interval is represented
in the output. STI is more efficient computationally thancaatrelation, since one of
the signals is “sparse”. The resulting output is no longenmsxetrical about the zero-
lag point (Patterson & Irino, 1997). The details of our s&abtegration are given in
Appendix B.

The filterbank and SAI stages described above represenuownt best attempt to
combine the good properties of the Slaney/Lyon “correlogréSlaney & Lyon, 1993)
and the Patterson/Irino “stabilized auditory image.” {®&on & Irino, 1997). The
PZFC filterbank can be seen as intermediate between thevpdssg-wave” cascade-
parallel model and the “active short-wave” all-pole filterscade of (Slaney & Lyon,
1993), while the stabilization mechanism is closer to Psbi@s triggered temporal
integration, which maintains time-domain asymmetry inrggulting SAI (Patterson &
Irino, 1997; Patterson, 2000), as opposed to the Slaneg/aytocorrelogram approach
that forces all sounds to produce symmetric images.

2.3 Sparse coding of an SAI

The third processing step transforms the content of SAl &ainto a sparse code that
captures repeating local patterns in each SA image. Spadss have become preva-
lent in the characterization of neural sensory systemsh@isen & Field, 2004; OlI-
shausen et al., 1996). A sparse code is a high-dimensiootirvec R that contains
mostly zeros, and only a few non-zero entrijesly = & < d. As such it provides
a powerful representation that can capture complex strestin data, while providing
computational efficiency. Specifically, sparse codes cande on typical patterns that
frequently occur in the data, and use their presence tosepté¢he data efficiently.

In a previous work (Chechik et al., 2008) we compared sounkimgrsystems that
use dense and sparse features. The main conclusion fromamparison was that
sparse representations obtain a comparable level ofvatqeecision, but achieve it
with only the fraction of the time needed for training. Faostignce, training on a dataset
of 3431 files took only 3 hours instead of 960 hours (40 daysjréoning a Gaussian
Mixture model. The reason for the improved computationfitiehcy is (as we show
below) that the learning approach we have chosen (PAMIR, eetesection) has com-
putational complexity that depends on the number of non-zaluesk, rather than the
full dimensionalityd. Building on these results, this paper focuses on sparse codie
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A second important aspect of sparse codes, is that theyda@aviayer of nonlin-
earity that maps the raw input into a representation thatcag typical patterns in the
data.

Our sparse code is based on identifying the typical pattertise set of SAls, and
representing each given SAI frame, or sequence of framasy ashistogram of the
patterns that appear in it. This histogram is usually spaisee each sound typically
only contains a relatively small number of patterns. Tag-of-patternsepresentation
is similar to the common use bhg-of-wordgepresentation of text documents bag-
of-visual-termssometimes used in machine vision. However, unlike machiserv
problems in which images are somewhat translation invgrieamely, similar patterns
could be found at different parts of an image, the SAl is irmdEy frequency and delay
lag. As a result, different positions in the SAI correspoadatiditory objects that are
perceptually different. To handle this, instead of lookingglobal patterns across the
whole SA image, we search for more local patterns at diftgparts of the SAI. More
specifically, the sparse coding step has two sub-stepg; &@fne a set of overlapping
rectangular patches that cover each SAIl frame. Second eamielocal region using its
own sparse-encoder.

For selecting the rectangular local patches, we systeatigticded several approaches
and tested the precision obtained with each approach inrds@unking task, as de-
scribed below. We also tested a few approaches for repiegeht content of each
rectangle, in a compact way. The details are given in Appe@di

In the second sub-step, we represent all the vectors thedseqt the rectangular
areas in an SAIl using sparse codes. We tested two sparsegaujinoachesvector
quantization(VQ) (Gersho & Gray, 1992) anchatching pursuitMP) (Bergeaud &
Mallat, 1995; Mallat & Zhang, 1993). In VQ, a dense featuretoeis approximated
by the closest vector from a codebook (in Euclidean sensee@he best match has
been chosen, the representation can be encoded as a spsector, with a length
equal to the size of the codebook, that consists of all zesaept for a single "one” at
the index position of the chosen code word.

In MP, each vector (representing a rectangle) is projeatéalthe codebook vectors,
the largest projection is selected, the signed scalar \@ltigat projection is added to
the sparse vector representation (in the appropriate ipdsition), and the vector val-
ued projection is subtracted from the original vector, pi@dg a residual vector. The
process is then repeated until the magnitude of the largegqiion becomes smaller
than a given threshold. For both matching pursuit and vespiantization we learn in-



dividual codebooks tailored to represent the rectanglese specific position in the
SAl. The codebook was learned from the full set of rectanglése data using a stan-
dard k-means algorithm, which yields a codebook that istted to vector quantization.
The problem of finding a codebook that is specifically optediZor MP is very hard,
and we chose to use the same codebook for both VQ and MP. Teello® size of the
codebook (number of k-means clusters), we tested sevduas/af this parameter. The
complete set of codebook sizes tested is described in AppBnd

Once each rectangle has been converted into a sparse caug\estor quantiza-
tion or matching pursuit) these codes are concatenate@nawery-high-dimensional
sparse-code vector, representing the entire SAI frameh WWé default parameter set,
using vector quantization, a codebook size of 256 was useshfth of the 49 rectangles,
leading to a feature vector of length x 256 = 12544, with 49 nonzero entries.

At each frame time, this feature vector of mostly zeros, witles (in the VQ case)
or amplitude coefficients (in the matching pursuit case) aparse set of locations,
can be thought of as a histogram of feature occurrences ifidhee. To represent an
entire sound file, we combine the sparse vectors repregemsitograms of individual
frames into a unified histogram—equivalent to simply addipgall the frame feature
vectors. In the interpretation as a histogram, it shows haguently each abstract
feature occurs in the sound file. The resulting histograntoveas still largely sparse
and is used to represent the sound file to the learning systsarided in the following
section.

The process described in this section involves multipl@ipeters. In our exper-
iments, we varied these parameters and tested how they #feeprecision of sound
ranking. More details are given in Sec. 5 and Sec. D.

3 Ranking sounds given text queries

We now address the problem of ranking sound documents biyrilevance to a text
query. Practical uses of such a system include searchingoland files or specific
moments in the sound track of a movie. For instance, a useraayterested to find
vocalizations of monkeys to be included in a presentatiayutithe rain-forest, or to
locate the specific scene in a video where a breaking glasbedieard. A similar
task is “musical query-by-description”, in which a relatis learned between audio
documents and words (Whitman & Rifkin, 2002).

We solve the ranking task in two steps. In the first step, salgodiments are rep-



resented as sparse vectors, following the procedure descabove. In the second
step, we train a machine learning system to rank the documesihng the extracted
features. In a previous study (Chechik et al., 2008), we evatudifferent machine
learning methods for the second step, while the first step achgeved using stan-
dard MFCC features. The methods that we evaluated were Gaussxture models
(GMM), support vector machines (SVM), and the passive-eggive model for image
retrieval (PAMIR). While all three models achieved similaegision at the ranking
task, PAMIR was significantly faster, and the only one thalest to large data sets. It
is therefore suitable for handling large collections ofrsa) such as indexing a large
fraction of the sound documents on the world wide web. Far ithason, in this study
we use the PAMIR method as a learning algorithm. The remainti¢his section
describes the PAMIR learning algorithm (Grangier & Bengif0&), recast from the
image application to the audio application.

3.1 PAMIR for audio documents

Consider a text query represented by a sparse veetdR? whered, is the number of
possible words that can be used in queries (the query dastypnAlso consider a set

of audio documentst c R4, where each audio document is represented as a feature
vector,a € R%, andd, is the dimensionality of the audio feature vector. B&t) C A

be the set of audio documents.inthat are relevant to the quegy A ranking system
provides a scoring functiofi(q, a) that allows ranking of all documenise A for any
given queryg. An ideal scoring function would rank all the documeats A that are
relevant forg ahead of the irrelevant ones:

S(g,a*) > S(q,a”) Va*eR(q),a"€R(q) . (1)

whereR(q) is the set of sounds that is not relevanytarhe simplest score of PAMIR
uses a bilinear parametric score:

Swi(g,a) = ¢"Wa (2)

whereW ¢ Ré%>da, The matrixW can be viewed as a linear mapping from audio
features to query words. Namely, the prod¥¢t: is viewed as a “bag of words” de-
scription of the audio document, and the dot product of thgg &f words with the query
wordsgq gives the score.

Wheng anda are sparse, the scofgy can be computed very efficiently even when
the dimensionsi, andd, are large. This is because the matrix multiplication only

10



requiresO(|¢||a|) operations wherg;| and|a| are the number of non-zero valuesgin
anda respectively.

To learn the scoring functiofiw we use an algorithm based on the passive—aggressive
(PA) family of learning algorithms introduced by (Crammeragt 2006). Here we
consider a variant that uses tripléts, a;", a; ), consisting of a text query and two au-
dio documents: one that is relevant to the quety, € R(g;), and one that is not,

a; € R(q).

The learning goal is to tune the paramet@/sof the scoring function such that the
relevant document achieves a score that is larger thanreédeviant one, with a safety
margin:

S (q“ z)>SW(QU z)+1 v(q“a17 z) : (3)

To achieve this goal we define the hinge loss function forrglets:

Z lW QZyaz ) z (4)

(Qza ;A )
Iw(g,af a;) = maX(O 1 — Sw(q,al) + Sw(q, Z))

The sum inLvy is typically over a set that is too large to be evaluated, ®itan use an

online algorithm that nevertheless converges to its mimimWe first initializeW, to

0. Then, the algorithm follows a set of optimization iteoas. At each training iteration
i, we randomly select a triplét;, o, a; ), and solve the following convex optimization
problem with soft margin:

W —al‘gnln _HW Wz 1HF7=0+CZW(QH a; , z) (5)

where||-|| 7, IS the Frobenius norm. At each iterationoptimizing W, achieves a
trade-off between remaining close to the previous paramd¥ _; and minimizing
the loss on the current triplé§y (¢;, )", a; ). Theaggressivenegsarameter” controls
this trade-off. The problem in Eq. (5) can be solved anadiycand yields a very
efficient parameter update rule, described in Fig. 5. Theval®wn of this analytical
solution follows closely the derivation of the original pag—aggressive algorithm (so
named because the update rule is passive when the hingelosstalready zero, and
aggressively tries to make it zero when it is not).

In practice, the hyper parametércan be set using cross validation. For a stopping
criterion, it is a common practice to continuously trace pleeformance of the trained
model on a held out set, and stop training when this perfoca@o longer improves.
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PAMIR to Rank Audio Documents from Text Queries
Initialization:
Initialize Wy =0
Iterations
repeat
Sample a query;, and audio documents” anda;
such thati™ € R(q;) > a~ € R(q).
UpdateW, = W,_; + 7;V;

. lw, i TF’ ;
wherer; = min {C, fwy (g0 0,) )}

Vil

andVi = ql(cﬁ a;)T

i J—

until (stopping criterion)

Figure 5: Pseudo-code of the PAMIR algorithm. The subsdriptthe iteration index. The

matrix V; is the outer produdt; = ([¢}(a; —a7), ..., ¢ (aj —a;)]”, where the superscripts

7 K3

on g; indicate selected components of the query vector.

Sampling a triplet can be done efficiently: We keep a list afiawlocuments that are
relevant for each text query. Given a text query, this allowgo sample uniformly
among all the relevant documents. To sample an irrelevatibaocument;—, we re-
peatedly sample an audio document from the set of all audiardents until we find
one that is not relevant to the given query. Since our datssigasgficantly more irrel-
evant documents than relevant document for any query, elevant audio document
can be found with high probability within a few iterationgically one).

4 Experiments

We evaluate the auditory representation in a quantitatin&ing task using a large set
of audio recordings that cover a wide variety of sounds. Wepare sound retrieval
based on the SAl with standard MFCC features. In what followslescribe the dataset
and the experimental setup.

4.1 The dataset

We collected a data set that consists of 8638 sound effeats multiple sources.
Close to half of the sounds (3855) were collected from comiakyavailable sound
effect collections. Of those, 1455 are from the BBC sound &ffébrary. The re-
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maining 4783 sounds are taken from a variety of web site@ay.findsounds.comart-
ners in rhymeacoustica.conilovewavs.copsimplythebest.ngtvav-sounds.comvav-
source.comandwavlist.com Most of the sounds contain only a single “auditory ob-
ject”, and contain the “prototypical” sample of an auditegtegory. Most sounds are a
few seconds long but there are a few that extend to severaitesn

We manually labeled all of the sound effects by listeninghent and typing in a
handful of tags for each sound. This was used for adding @agsisting tags (from
www.findsounds.conand to tag the non-labeled files from other sources. Wher-labe
ing, the original file name was displayed, so the labelingsi@c was influenced by
the description given by the original author of the sounédff We restricted our tags
to a somewhat limited set of terms. We also added high legs ta each file. For
instance, files with tags such as ‘rain’, ‘thunder’ and ‘wimgere also given the tags
‘ambient’ and ‘nature’. Files tagged ‘cat’, ‘dog’, and ‘mkey’ were augmented with
tags of ‘mammal’ and ‘animal’. These higher level terms stasiretrieval by inducing
structure over the label space. All terms are stemmed, tisenBorter stemmer for En-
glish. After stemming, we are left with 3268 unique tags. band documents have
an average of 3.2 tags each.

4.2 The Experimental Setup

We used standard cross validation to estimate performdnioe earned ranker. Specif-
ically, we split the set of audio documents in three equatsparsing two thirds for
training and the remaining third for testing. Training aedting was repeated for all
three splits of the data, such that we obtained an estimategferformance on all the
documents. We removed from the training and the test setegpuitrat had fewer than
k = 5 documents in either the training set or the test set, andvedithe corresponding
documents if these contained no other tag.

We used a second level of cross validation to determine theesaof the hyper
parameters: the aggressiveness paraniet@and the number of training iterations. In
general performance was good as longCasvas not too high, and lowet’ values
required longer training. We selected a valu€’of 0.1, which was also found to work
well in other applications (Grangier & Bengio, 2008), and 1@&ftations. From our
experience the system is not very sensitive to the valuessitiparameters.

To evaluate the quality of the ranking obtained by the ledinmedel we used the
precision (fraction of positives) within the tdpaudio documents from the test set as
ranked for each query.
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4.3 SAl and sparse coding parameters

The process of transformation of SAI frames into sparse £bds several parameters
which can be varied. We defined a default parameter set andpirdormed experi-
ments in which one or a few parameters were varied from thHeutteset.

The default parameters cut the SAI into rectangles staxtiitig the smallest size
of 16 lags by 32 channels, leading to a total of 49 rectangMisthe rectangles were
reduced to 48 marginal values each, and for each box a coklebsze 256, for a total
of 49 x 256 = 12544 feature dimensions, as described in Sec. 2.3.

Using this default experiment as a baseline for compariseesmade systematic
variations to several parameters and studied their effeth@retrieval precision. First,
we modified two parameters that determine the shape of th€RiiEr: Pdampand
Zdamp Then, we modified the smallest rectangle size used forsgagmentation and
by limiting the maximum number of rectangles used for thespaegmentation (with
variations favoring smaller rectangles and larger redes)gFurther variants used sys-
tematic variation of the codebook sizes used in sparse gqdsing both standard vec-
tor quantization and matching pursuit). The values of aléRperimental parameters
used are tabulated in Appendix D.

4.4 Comparisons with MFCC

We used standard Mel frequency cepstral coefficients (MFC@aighwwe turned into
a sparse code in the same way as for the SAls. MFCCs were comymitefda Ham-
ming window. We added the first and second derivatives agiaddi features of each
frame (“delta” and “delta-delta”). We set the MFCC parametmsed on a configura-
tion that was optimized for speech, and further systemltivaried three parameters
of the MFCCs: the number of cepstral coefficients (traditiynaB for speech), the
length of each frame (traditionally 25ms) and the numbeiodiebooks used to sparsify
the MFCC of each frame. Optimal performance was obtained aviingle codebook
of size 5000, 40ms frames and 40 cepstral coefficients (see5pe Using a single
codebook was different from the multi-codebook approaelhwe took with the SAls.
The optimal configuration corresponds to much higher fraqueesolution than the
standard MFCC features used for speech.
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Figure 6:(A) Precision at top 1 as a function of tRelampparameter(B) Precision at top 1
as a function of th&dampparameter.

5 Results

We first performed a series of experiments to identify thesparameters that achieve
the most accurate sound retrieval. We started by testingffieet of several PZFC
parameters on test-set retrieval precision. Specificaleylooked at te effect of two
parameters that determine the shape of the PZFC #ltampandZdamp whose effect
is discussed in details in section A. Figure 6(A) plots sieri at top-1 retrieved result,
averaged over all queries, as a function ofRldampparameter, witZdampfixed at the
baseline value of 0.2 (see Fig. 11 to understand how theaengaers affect the shape of
the filter). Precision is quite insensitive to the value @& garameter, with an optimum
obtained near 0.12, our baseline value. This parametettseigole damping in the
small-signal limit (that is, for very quiet sound input) cathe AGC largely takes out the
effect of this parameter, so the relative insensitivity @ surprising, and corresponds
roughly to a relative insensitivity to input sound level @i

We also tested the effect of t@&lampparameter, the zero damping, which remains
fixed, independent of the AGC action. Precision is best foalaernear 0.06, which is
less than the baseline value of 0.2 used in other tests, buditierence is not highly
significant. The loweZdampcorresponds to a steeper high-side cutoff of the filter
shapes. Figure 6(B) plots precision as a function ofatiempparameter.

We further tested the effect of various parameters of thef&&ture extraction pro-
cedure on the test-set precision. Fig. 7 plots the precisidhe top ranked sound file
against the length of the sparse feature vector, for all gpeements. Each set of ex-
periments has their own marker. For instance, the serigaisf show precision for a set
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Figure 7: Ranking precision at the tdpsound plotted against feature count, for all experiments
run. Selected experiment names are plotted on the figure near each pamiff€éhent experi-
ment sets are denoted by different markers. The convex hull joiningesteperforming points

is plotted as a solid linemeansstands for the size of the dictionary (humber of centroids used
in the k-means algorithmMP stands for Matching Pursuit.

of experiments where the number of means (size of the codi¢l®oaried. The rest
of the parameters do not change from one star to the othenvaralset at the default
parameters defined in Sec. 2.3.

top-k | SAl | MFCC | percent error reduction

1 27 |33 18%
2 39 |44 12%
5 60 | 62 4%

10 72 |74 3%
20 81 |84 4%

Table 1. Comparison of error at tdpfor best SAl and MFCC configurations (error defined as
one minus precision).

Interestingly, performance saturates with a very large memof features~ 107,
resulting from using 4000 code words per codebook, and adab#® codebooks. This
parameter configuration achieved 73% at the top ranked siendhich was signifi-
cantly better than the best MFCC result which achieved 67%@won test for equal
mediansp-value =0.0078). This reflects about 18% smaller error (from 33% to 27%
error). SAI features also achieve better precision-atit@pnsistently for all values of
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k, although with lower relative precision improvement (Tap. It should be stressed
however that the parameters that we found (and the auditodeharchitecture in gen-
eral) are not guaranteed to be “optimal”, and it is possitée turther refinement could
further improve the retrieval precision. Also, the relgtipoor performance of MP
could be due to the fact that the dictiontionary we used maypeamptimal for MP.

Importantly, although the best sparse codes use very higbhriiional vectors, the
actual data lives in a much lower dimensional subspacesifady, eventhough each
SAl is represented by a vector of length x 4000, only 49 values in this represen-
tation are non-zero. Since subsequent frames have sirhidaacteristics, the overall
representation of a sound file typically has only a few hudslief non zero values.

Table 2 shows three sample queries together with the toptSdesd documents
returned by the best SAl-based and MFCC-based trained sydimuements that were
labeled as relevant are marked with [R]. The three queriessia@re selected such that
both systems performed significantly differently on them shown in Fig. 8. While
being a very small sample of the data, it shows that both systeehave reasonably
well, most often returning good documents, or at least denisthat appear not-too-
far from the expected answer. For instance, the SAl-bass@msyreturns document
“water-dripping” for the query “gulp”, which, while being nong, is admittedly not
far from the mark. Similarly, the document “45-Crowd-Appsal is returned by the
MFCC-based system for query “applaus-audienc”, despitegingbabeled as relevant
for that query.

The performance that we calculated was based on textuaWtagsh are often noisy
and incomplete. In particular, people may use differemh#eto describe very similar
concepts. Also, the same sound may be described acrosedifeespects. For instance
a music piece may be described by the playing instrumenaifg) or the mood it
conveys (“soothing”) or the name of the piece. This mulbidbproblem is common in
content based retrieval, being shared by image searchesdaor example.

Table 3 shows queries that consistently “confused” ouresysind caused retrieval
of sounds with a different label. For each pair of quetieandg, we measure confu-
sion, by counting the number of sound files that were rankekiinvthe top# files for
queryq;, but not forg, even thoughy, was identical to their labels. For example, there
were 7 sound files that were labeledil laughbut were not ranked within the tap
documents for the quemvil laugh and at the same time ranked highly faugh

As can be seen from the table, the repeated “mistakes” ai@atiypdue to labeling
imprecision: when a sound labelidighis retrieved for a quergvil laugh the system
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Query

SAl file (labels)

MFCC file (labels)

tarzan

Tarzan-2 (tarzan, yell) [R]
tarzan2 (tarzan, yell) [R]
203 (tarzan) [R]

wolf (mammal, wolves, wolf, ...)

morse (mors, code)

TARZAN (tarzan, yell) [R]

175o0rgs (steam, whistl)

mosquito-2 (mosquito)
evil-witch-laugh (witch, laugh, evil)
Man-Screams (horror, scream, man

applaus
audienc

27-Applause-from-audience [R]
30-Applause-from-audience [R]

golf50 (golf)
firecracker

53-ApplauselLargeAudienceSFX [H

26-Applause-from-audience [R]
phaserl (trek, phaser, star)
fanfare2 (fanfar, trumpet)
45-Crowd-Applause (crowd, applau
Rlgolf50

2

gulp

tite-flamn (hit, drum, roll)
water-dripping (water, drip)
Monster-growling

(horror, monster, growl)
Pouring (pour, soda)

GULPS (gulp, drink) [R]
drink (gulp, drink) [R]
california-myotis-search (blip)

jaguar-1 (bigcat, jaguar, mammal,..|

Table 2: Top documents obtained for queries that performed very efifflgrbetween the SAl

and MFCC feature based systems.

counts it as a mistake, even though this is likely to be a aglematch. In general we

find that confused queries are often semantically similah#éosound label, hence the

errors made by the ranking systems actually reflect the Fattthe sound files have
partial or inconsistent labeling. This demonstrates angtte of content-based sound
ranking: it can identify relevant sounds even if their tetabels are incomplete, wrong

or maybe even maliciously spammed.

query, label total number of errors (SAl + MFCQC)

clock-tick  cuckoo
door knock door
evil laugh  laugh
laugh witch laugh
bell-bicycl  bell

N N NN oo

bee-insect insect

Table 3: Error analysis. Queries that were repeatedly confusedh&dher query. All pairs of

true-label and confused labels with total count above seven are listed.
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Fig. 8 summarizes the performance of the SAl and MFCC systeithsr@spect to
their average precision on the set of all test queries. Taplgshows queries either by
their label or a “plus” sign (showing all queries would haesulted in a very difficult
figure to read), positioned according to the performancecheystem with respect to
that query, over the test set. As can be seen, there are menesjabove the separating
line than below, which means that overall the SAl-basedesystielded a better average
precision than the MFCC-based system.

Comparing Average Precisions Between SAI and MFCC Feature-Based Systems
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Figure 8: Comparison of average precisions between SAl and MFCé&ll®stems. Each
‘plus’ sign or label corresponds to a single query, which coordinategges the test average
precisions for both systems. Queries are stemmed and spaces havejlaead by under-
scores. More queries appear aboveghe x line, showing that the SAI based system obtained
a high mean average precision.

6 Conclusion

We described a content-based sound ranking system thabuegically inspired au-
ditory features and successfully learns a matching betweenstics and known text
labels.
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We have previously shown that the PAMIR learning algoritbpplied over a sparse
representation of sounds (Chechik et al., 2008) is an eftiti@mework for large-scale
retrieval and ranking of media documents from text queriésre we used PAMIR to
study systematically many alternative sparse-featunesgmtations (“front ends”).

Our findings support the hypothesis a front end that mimigsrsé aspects of the
human auditory system provides an effective representédianachine hearing. These
aspects include a realistic nonlinear adaptive filterbamkastage that exploits tempo-
ral fine structure at the filterbank output (modeling the ¢eahnerve) via the concept
of the stabilized auditory image. Importantly however, #usglitory model described
in this paper may not be always optimal, and future work orrattarizing the opti-
mal parameters and architecture of auditory models is éggdedo further improve the
precision, depending on the task at hand.

One approach to feature construction would have been to aligraonstruct fea-
tures that are expected to discriminate well between speddisses of sounds. For
instance, periodicity could be a good discriminator betwesnd in the trees and a
howling wolf. However, as number of classes grows, suchfebdesign of discrimina-
tive features may become infeasible. Here we take an ogpaggiroach, assuming that
perceptual differences rely on lower level cochlear feaxtraction, we use models
inspired by cochlear processing to obtain a very high dinogras representation, and
let the learning algorithm identify the features that areshaiscriminative.

The auditory model representation we use do not take intowsxtdong-term tem-
poral relationships, by analogy with the “bag of words” aggarth common in text doc-
ument retrieval. The SAl features capture a short windovineé t up to about 50 msec
for the biggest box features, which is comparable to but Eeb# than that captured by
MFCC with double deltas. Longer correlations are likely toab& useful for sound
retrieval and it remains an interesting research dirediostudy how they should be
estimated and used.

The auditory models that we used to represent sounds involigple nonlinear
complex components. This could be one reason why the featigeerated using this
system are more discriminative than standard MFCC featunesa test database of
sounds. However, it is hard to assess what aspects of owsaests are better repre-
sented by the features from the auditory model.

One difference between SAlI and MFCC representations is tigti®tain fine tim-
ing information, while MFCC preserves fine spectral strugtat least when the number
of coefficients is large. However, the two representatioffisrdy numerous other prop-
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erties, including the cepstral transform, and the AGC. Faurrgtudy will be needed to
gain more specific insights into exactly what propertiedhefdifferent auditory models
and sparse feature extraction schemes are the key to goodpance.

Since our system currently uses only features from shortovirs, we envision
future work to incorporate more dynamics of the sound ovegés times, either as a
bag-of-patternsising patterns that represent more temporal context, oudjtr other
methods. We also envision future work to test our hypothsis in our retrieval task,
the system using local SAI patterns will be more robust terfiering sounds than a
system using more traditional spectral features such as MFCC.
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A Automatic gain control in PZFC

The damping of the pole pair in each stage is varied to mot#éypeak gain (and to a
lesser extent the bandwidth) of that stage, down to aboutB:IT'tdis system of gain
and bandwidth modification by manipulation of pole dampif@sQ values) is a re-
finement of that described in (Lyon & Mead, 1988; Slaney & Ly»893), which used
an all-pole filter cascade, and in (Lyon, 1998), which introed the two-pole—two-zero
stage, which we now call the PZFC. The poles are modified dyceliniby feedback
from a spatial/temporal loop filter, or smoothing netwoHereby making aautomatic
gain control(AGC) system. The smoothing network takes the half-wavefredtout-
put of all channels, applies smoothing both in the time ardhlear place dimensions,
and uses both global and local averages of the filterbanknsgao proportionately in-
crease the pole damping of each stage. This coupled AGC bingatetwork descends
from one first described in (Lyon, 1982) (in that work, thepdtter directly controlled
a post-filterbank gain rather than a pole damping as in theeptevork). The PZFC
filterbank architecture can be seen as intermediate bettireeall-pole filter cascade
(Slaney & Lyon, 1993) on one hand and cascade-parallel rmamtelthe other hand.
The compression exhibited by the PZFC includes both a &@8teaAGC part, similar
to that of the “dynamic compressive gammachirp” (Irino &teegon, 2006) and an in-
stantaneous part, from an odd-order nonlinearity simddhat in the “dual-resonance,
nonlinear” (DRNL) model (Lopez-Poveda & Meddis, 2001).

The complex transfer function of one stage of the filter cdsds a rational function
of the Laplace transform variabieof second order in both numerator and denominator,
corresponding to a pair of zeros (roots of the numerator)aapdir of poles (roots of
the denominator):

S wi420s/w. + 1

HG) = s 1 (6)

wherew, andw, are the natural frequencies, agand(, are the damping ratios, of
the poles and zeros, respectively. The natural frequera®sonstants, decreasing
from each stage to the next, along a cochlear frequencye-pteap, or ERB-rate scale
(Glasberg & Moore, 1990); for the present experiments, ahetagev. is fixed at
1.4w,, and thew, decreases by one-third of the ERB at each stage. The filters are
implemented as discrete-time approximations at 22050 Hpkarate (,) by mapping

the poles and zeros to theplane using: = e*/ as is conventional in the simple
“pole—zero mapping” or “pole—zero matching” method of thgfilter design.
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Two parameters of the PZF@dampandZdamp are of special interest since they
determine the shape of the filter’s transfer function byisgthe damping ratios, and
(.. TheZdampparameter directly sets the zero damping

Cz = Zdamp (7)
while the pole damping varies dynamically as
G = (1+ AGC)Pdamp (8)

where AGC' is an automatic-gain-control feedback term proportionahte smoothed
half-wave rectified filterbank output. In other versions lo¢ tmodel (not tried in the
present work), may also vary with the AGC feedback.

Fig. 11(A) shows the effect of the varyingGC' term on the filter gain magnitude
of a single filter stage, in the baseline casé’dfimp = 0.12 andZdamp = 0.2.

In the complexs plane of Fig. 11(B), the damping rat{ois defined as the distance
of the poles or zeros from the imaginasyaxis, relative to their distance from the
origin. The(,, and therefore thedampparameter, affects mainly the width and peak
gain of the filter, with lower damping values giving narrovaerd higher-gain filters.
The Zdampparameter sets the damping of the zeros and affects the dyynafi¢he
filter, with lower values giving steeper high-side cutoff.

Fig. 11(C) shows the effect of these two parameters on theestigihe filter cas-
cade’s gain magnitude. The apparent large variation in geakis partially compen-
sated by the AGC action that adjusts pole damping and cosgsdabe output level
variation.

G """’W'/,l i
A
i

|

i
/// é i

j

Gain (dB)
N
S

107

107
Frequency (Arbitrary units)

Figure 9: Adaptation of the overall filterbank response at each outpuiTtae plot on the left
shows the initial response of the filterbank before adaptation. The pltteoright shows the
response after adaptation to a human /a/ vowel of 0.6 sec duration. Tiseshlow that the
adaptation affects the peak gains (the upper envelope of the filter ghoes), while the tails,
behaving linearly, remain fixed.

Fig. 9 show the transfer function gain of the all the outpdtthe filter cascade, in
the case of silence and as adapted to a vowel sound at motbelte
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Figure 10: Impulse response of the smoothing network used as the AG@lteopf the PZFC.

An impulse in one channel spreads out into adjacent channels and digger time. There
are four such filters in parallel in the AGC, each with a different decaystzmt; the slower
ones have more spatial spread before the signal decays. The filpeatiola, controlled by pole
damping, in a channel of the PZFC is based on a weighted sum of the acfratiesach of the
four smoothing filters at that channel.

Fig. 10 shows the impulse response in time and space of thetemg filter in the
automatic-gain-control loop that averages the half-waaified outputs of the filter-
bank to produce thelGC' signal that controls the pole damping in each channel. The
multiple channels of these feedback filters are coupledutittahe space dimension
(cochlear place axis), such that each channel’s dampin{fasted by the output of
other nearby channels.

All the filterbank parameters were chosen to obtain a filtekblaehavior that is
roughly similar to that of the human cochlea, but parameten® not directly learned
from data. The filter bandwidths and shapes are close to tifdee asymmetric “gam-
machirp” filters that have been fitted to human data on detecif tones in notched-
noise maskers (Unoki et al., 2006). The detailed values| glambmeters are provided
with the accompanying code that we make available onlih&pt//www.acousticscale.org/link/AIM-
PZFC.

B Strobed temporal Integration

To choose strobe points, the signal in each channel is rettipoint-wise by a win-
dowing function, a parabola of 40ms width. The maximum pamnthe windowed
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Figure 11:(A) Frequency response of a single PZFC stage as the pole damping anpestlige
gain change in response to sound level via the AGC feedback changimplén damping; the
peak gain changes by only a few dB) The pole and zero positioning for a single stage of the
PZFC, in the complex plane; crosses show starting positions of the poles at low signal levels;
circles show the fixed positions of the zeros. The poles move dynamicallg &endotted
paths (on circles of constant natural frequency) as tQeir damping parameters are changed,
thereby varying the filter peak gain. The low-frequency tail gain remaxesl fipassing lower
frequencies transparently to later stages. The pole and zero positimne sy heavy black
symbols represent a default model that we study in the experiments bedotaseline model”.
The lighter color circles represent alternatives to that default, obtaipesnying thePdamp
andZdampparameters. The ratio between the natural frequency (distance froomigfiv®) of

the zeros and that of the poles is fixed at 1.4, putting the dip in the respoosgtaahalf octave
above the peak frequenc{C) The magnitude transfer function, in the small-signal limit, of
one channel (the output after a cascade of 60 stages in this example BZBC cochlear
filterbank, with center frequency near 1 kHz, for several valudzdaimpandZdamp The solid
red—orange curves show variationRdampthrough values 0.06 (highest curve), 0.12, and 0.24.
The dashed blue—green curves show variatioddamp for values 0.01 (lowest dashed curve),
0.1, 0.2 and 0.3. The dashed and solid curves coincide for the baselameaiars.

signal is the strobe point. The window is then shifted by 4md #e process is re-
peated. Thus, there is guaranteed to be an average of obe gt every 4ms, or
five per 20ms frame; it is possible for multiple strobes touscat one point in the
signal, since the windows overlap. Each SAI channel is tledoutated as the cross-
correlation between the original signal and a signal corapas delta-functions at the
identified strobe points. This cross-correlation is acdishpd efficiently by simply
sliding a piece of the waveform for each channel to move tlabstpoint to the center,
and adding up the five copies for the five strobe points in thmé&. The SAI has its
zero-lag line at the center of the time-interval axis andus¢ated at plus and minus
+26.6ms. A value in this region is a common choice for the maxmof the SAIl lag
axis, as it corresponds approximately to the lower frequdingit (maximum period)
of human pitch perception.

The processes of STI and autocorrelation both produce ageriat is strongly
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influenced by the pitch of the sound. The percept of pitch terdeined by the repeti-
tion rate of a sound waveform, (the pulse rate in a pulsen@ste sound) with faster
repetition rates corresponding to higher pitches. STIgaatrong peak in the output
function at a lag corresponding to the repetition interfahe waveform (since the sig-
nal is well-correlated with itself at this point). The SAlagpected to be stable when a
sound is perceived as stable by a human listener. Soundsi\ngibetition rate of above
about 60Hz are perceived as stable tones, with pitch carnelipg to the repetition rate.
As this rate is reduced, the pitch percept gradually disargend the individual cycles
of the input signal begin to separate out. The lower limit ib¢hp perception is around
30Hz (Krumbholz et al., 2000). With a lag dimension extegdm26.6ms, sounds with
a repetition rate of above about 38Hz will lead to a stabléicadrridge in the image,
thus providing an a good approximation to the limits of hurparception.

C Details of rectangle selection

To represent each SAI using a sparse code, we first definedod Iseil rectangular
patches, that covered the SAI. These Rectangles are useentifycpatterns that are
local to some part of the SAI, and they have different sizewder to capture informa-
tion at multiple scales. This approach is modeled on metkiwatshave been used for
image retrieval, involving various kinds of multi-scale#d patterns as image feature
vectors.

We have experimented with several schemes for selectirad tectangles, and the
specific method that we used is based on defining a seriestahgdes whose sizes are
repeatedly doubled. For instance, we defined baselinengdeof sizel6 x 32, then
multiplied each dimension by powers of two, up to the largst that fits in an SAl
frame.

In one group of experiments we varied the details of the hdkrgy step. In our
baseline we use rectangles of sizex 32 and larger, each dimension being multiplied
by powers of two, up to the largest size that fits in an SAI fraM& varied the base
size of the rectangle, starting from the siZes 16 and32 x 64. We also restricted the
number of sizes, by limiting the doublings of each dimensidhis restriction serves
to exclude the global features that are taken across a langepthe auditory image
frame. In a separate series of experiments we instead cstinai a rectangle size
equal to the dimensions of the SAI frame, working downwargisdpeatedly cutting
the horizontal and vertical dimensions in half. This setlgtes features that are very
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Figure 12: Defining a set of local rectangle regions. Rectangles aseoho have different
sizes, to capture multi-scale patterns. See appendix A. In the defaultpebmeters we used,
the smallest rectangle is 16 samples in the lag dimension and 32 channels Higfme sargest

is 1024 samples by 64 channels.

local in the auditory image. While the codebook sizes renthfixed at 256, the total
number of feature dimensions varied, proportional to thenloer of boxes used, and
performance within each series was found to be monotonic thi# total number of
feature dimensions. The complete set of experimental peteasare shown in Table 4.

Given the set of rectangles, we create dense features framreatangle. The
image inside the rectangle is down sampled to the size ofrttadlest box (16x 32
with the default parameters). The effect of this rescalmghat large rectangles are
viewed at a coarser resolution. To further reduce the dimnaalty of the data we
compute the horizontal and vertical marginals (the avevafiees for each column and
row in the rectangle), and concatenate the two vectors isioge real-valued vector
per rectangle. In the default case, this approach leauésta32 = 48 element dense
feature vector for each rectangle.
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This multi-scale feature-extraction approach is a way thuce the very high di-
mensional SAI space to set of lower-dimensionality localtdees at different scales,
as a step toward making sparse features. Different box aizéshapes capture both
the large-scale image structure, corresponding to pitchtamporal coherence, and
the microstructure corresponding to the resonances follpwach pulse. Wide boxes
capture long-term temporal patterns; a smaller height esdtlrestricts the temporal
pattern features to a localized frequency region and captiocal spectral shape. Tall
boxes capture overall spectral shape; smaller widths aetimelude different scales of
temporal pattern with the spectral pattern. Intermediaessand shapes capture a vari-
ety of localized features, such that even when multiple dewame present, some of the
features corresponding to regions of the SAI dominated lgysmund or the other will
often still show a recognizable pattern. The use of the mafgiof each box reduces the
dimensionality into the following sparse-code extractsdep, while preserving much
of the important information about spectral and temponaicstire; even with this re-
duction, the dimensionality into the sparse code extraasohnigh, for example 48 with
the default parameters.

D Summary of Experiments

Table 4: Parameters used for the SAI experiments

Parameter Smallest| Total Means VQ | Box
Set Box Boxes Per Box MP | Cutting
Default “baseline”| 32x16 | 49 256 VQ | Up
Codebook Sizes | 32x16 | 49 4, 16, 64, 256, VQ | Up

512, 1024, 2048,
3000, 4000 6000 8000

Matching Pursuit | 32x16 | 49 4, 16, 64, 256, MP | Up
1024, 2048, 3000
Box Sizes (Down)| 16x8 1, 8, 33, 44, 66 256 VQ | Down

32x16 | 8,12, 20, 24
64x32 |1,2,3,4,5,6

Box Sizes (Up) | 16x8 | 32, 54, 72, 90, 108 256 VQ | Up
32x16 | 5,14, 28, 35, 42
64x32 | 2,4,6,10,12
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