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Describing the scattering of sound by elongated objects with high aspect ratios (ratio of length 
to diameter) usually involves great numerical difficulties. The recently developed deformed 
cylinder solution was shown to be increasingly accurate in the limit of very high aspect ratios 
( •> 5:1 ) while requiring relatively low computation times and was applied to objects of 
constant composition [T. K. Stanton, "Sound scattering by cylinders of finite length. III. 
Deformed cylinders," J. Acoust. Soc. Am. 86, 691-705 (1989) ]. In this article, the 

approximate formulation is used to describe scattering by prolate spheroids, straight finite 
cylinders, and uniformly bent cylinders where the objects are composed of an elastic shell 

surrounded by fluid and filled with either a fluid or gas. The calculations are compared with 
those involving spherical shells based on the formulation derived in Goodman and Stem [$. 
Aeoust. Soc. Am. 34, 338-344 (1962) ]. The calculations are made over a wide range of 

frequencies and shell thicknesses (ranging from solid elastic objects to thin-shelled objects). 
Since the deformed cylinder formulation is most accurate for angles of incidence normal or 

near normal to the lengthwise axis, the calculations are limited to broadside incidence. The 
simulations show significant variations in the modal interference structure as the shell 

thickness and shape are varied. Comparisons are also made between predictions and laboratory 
data involving straight and bent finite-length cylindrical shells (stainless steel) with 3:1 aspect 
ratios and 52% shell thicknesses. The study not only shows reasonable agreement between the 
predictions and data, but also illustrates the dramatic change in scattering cross section due to 
the bend of the object ( 12 dB in this case). 

PACS numbers: 43.20.Fn, 43.30.Gv 

INTRODUCTION 

The scattering of sound by elastic shelled bodies has 
been studied by many investigators over the past several dec- 

ades. The vast majority of the work has involved spherical 

shells ]• and infinitely long cylindrical shells, 6-•7 while there 
are very few publications describing finite length shelled ob- 

jects ]7-eø (the reason being the lack of an exact theory and 
the computational difficulties involved in the numerical ap- 

proaches for finite objects). One numerical approach, the T- 
matrix method, has been used to describe the scattering by 

finite elongated objects iT-eø and Hackman and Todoroff 
have recently reduced its convergence problems involving 

high aspect objects by use of a spheroidal-based coordinate 
system. zø Hackman is currently applying their formulation 
to the scattering by high-aspect prolate spheroid shells? 

In a recent series of articles, we developed an approxi- 

mate analytical solution that can be used to describe the scat- 

tering of sound by elongated objects of high aspect.2e-e4 The 
generalized approach described in the third article of the 
series, the "deformed cylinder" formulation, allows one to 
calculate the scattered field of elongated objects whose prop- 

erties such as the cross-sectional radius and material compo- 

sition may vary with respect to the lengthwise axis. In addi- 
tion, the axis of the cylinder may be deformed. The 

approximation lies in the assumption that the boundary con- 

ditions at each position along the axis are the same as those of 

the infinitely long cylinder; i.e., each infinitesimal section of 
the cylinder behaves as if the neighboring sections are identi- 
cal where, in fact, their properties are slowly varying. As a 

result, the formulation is only valid for angles of incidence 
and reception normal or nearly normal to all tangents of the 

axis and becomes increasingly accurate for objects in the 

limit of high aspect ratios ( •> 5:1 ). In that article, there was 

excellent agreement between the deformed cylinder calcula- 

tions and the exact spheroidal wave function solution when 
the scattering by prolate spheroids (aspect ratio of5:l } was 
calculated. 

While the deformed cylinder formulation is approxi- 

mate and has certain limitations, it has distinct advantages 
over other approaches. While the numerical approaches 
tend to have convergence difficulties as the aspect ratio of the 
objects is increased, the deformed cylinder formulation be- 

comes increasingly accurate as the ratio is increased. Fur- 

thermore, since its boundary conditions are simple, involv- 
ing those of the infinitely long cylinder, the computation 

time is relatively small. For example, in the previously men- 
tioned example involving prolate spheroids, the deformed 

cylindercalculations were 100 times faster than the calcula- 

tions using the exact spheroidal wave function solution. 

Thus when computation time using other techniques be- 

comes prohibitively long for high aspect objects, it is advan- 
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tageous to consider the deformed cylinder formulation. 
In our recent studies, we have sought solutions to de- 

scribe the scattering by marine organisms? '24'2s The de- 
formed cylinder solution was developed to account for the 
body shape and variable material properties of the organ- 
isms. The uniformly bent finite cylinder appeared to be a 

reasonable "first-order" approximation for the description 

of euphausiids (a shrimplike marine organism). However, 
the material of the organisms was assumed to be 100% fluid. 

Since many organisms including euphausiids are covered 
with an elastic shell, the fluid body assumption may not be 

valid. The scattering data from the organisms that we ana- 

lyzed were not of the quality required to differentiate be- 
tween an elastic shelled body and a fluid-only body. Thus it is 

quite possible that the "effective" fluid material properties of 
the organisms discussed in those articles actually had an ap- 
preciable elastic shell component to them. For these reasons 
and the fact that there is a general need for such computa- 
tions, we now study the scattering by elongated shelled ob- 

jects. 

In this article, we use the recently developed deformed 
cylinder solution to describe sound scattering by high aspect 

ratio ( •> 5:1 ) shelled bodies: prolate spheroid, straight finite 

cylinder, and uniformly bent finite cylinder. The calcula- 

tions are compared with results involving scattering by 
spherical shells as derived in a manner similar to that de- 
scribed by Goodman and Stern. • In each case, the object is 
composed of an elastic shell (stainless steel) filled with ei- 

ther a fluid or gas (air) and is surrounded by a fluid (water). 
The calculations are made over a wide range of frequencies 
and shell thicknesses (ranging from solid elastic objects to 

thin-shelled objects). Since the deformed cylinder formula- 

tion is most accurate for angles of incidence normal or near 
normal to the lengthwise axis, the calculations were restrict- 

ed to only normal incidence. Comparisons are also made 

between predictions and laboratory data involving straight 

and bent finite-length cylindrical shells with 3:1 aspect ratios 
and 52% shell thicknesses. 

I. THEORY 

In this section, we summarize the general solutions that 
we will use to calculate the scattering by spheres, straight 

finite cylinders, prolate spheroids, and uniformly bent cylin- 
ders. The derivations for the solutions appear in other arti- 

cles (all objects but the sphere involve use of the deformed 
cylinder solution). Since the modal series coefficients for the 

shelled body case for the sphere (spherical boundary condi- 
tions) and all (high-aspect ratio) elongated objects (cylin- 
drical boundary condition approximation) already exist in 
the literature, those coefficients will simply be referenced to, 
rather than rederived. 

The scattered pressure field can be expressed in terms of 

the scattering amplitudef as 

Pscat = Po( eikr/r)f( ll ), ( 1 ) 

where Po is the amplitude of the incident plane wave 

i = x/-- 1, k is the acoustic wave number of the surround- 
ing fluid ( = 2•r/A), and r is the range to the object from the 

field point (receiver). The differential scattering cross sec- 
tion is then 

a(11) = br(11)]: (2) 

and the (differential) backscattering cross section (monos- 

tatic) as defined by Clay and Medwin 26 is 

ab• = [f(llbs) 12. (3) 

The target strength is defined in Urick as 27 

TS=-- l0 10g(R 2Io•/I o) = 10 10g[f(11o• )12 = l0 log aos, 
(4) 

where I o is the intensity of the incident plane wave and Ib• is 
the intensity of the backscattered field measured at a refer- 
ence distance R. 

A. Spherical shell-exact solution 

The general solution to the scattering by a spherical ob- 
ject is given as 28 

Pscat =Po • i'"(2m + 1)b,,P,,(cosO)h •)(kr) 
rn=O 

eikrl' i)m•= -• eo-•-- • - • (2m + 1)bmP• (cos O),kr• 1, o 

(5) 

where m is the modal number, b,,is the modal series coeffi- 

cient, P,, (cos 0) is the Legendre polynomial, 0 is the 

(spherical) polar angle, and h (m • • (kr) is the spherical Bessel 
function of the third kind (Hankel function of the first kind) 

of order m. The far-field limit (kr•, 1 ) was given using the 
limiting form of the Hankel function 

h •)(kr) -• ( 1/kr)e i{•'- (• + •,•/21 (Ref. 29). 
From the above equation, the scattering amplitude is 

f(•)- k (2m + 1 )b,,Pm (cos 0). (6) 

For the backscattering case, 0= rr, cos 0= - 1, 

Pm( -- 1 ) = ( -- 1 ) •" and the backscattering cross section is 

a• =-•- (2m + 1)b,•( -- 1) (7) 

In order to evaluate the above equations, b,,must be 
determined by solving the boundary conditions. For the case 

of the spherical shell, Goodman and Stern originally pub- 
lished the coefficients, but limited the case to the inner and 

outer fluids being identical. The solution, involving solving 

six independent equations with six unknowns, is in the form 

of a ratio of two 6 X 6 determinants using Cramer's rule. It 
has been shown that their solution can be generalized to the 

case of the inner and outer fluids being different by a simple 
modification of the two nonzero terms in the sixth column of 

each determinant (replacey with Ym in both a46 and a56 and 
replace p• with Pm in a46). 4's The calculations in the nu- 
merical section of this article will involve use of the general- 
ized determinants and the above equation for backscattering 
cross section. 
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B. Elongated objects--approximate solution 

While the solution in the previous section to the scatter- 
ing by spherical objects was exact, the following deformed 
cylinder solution we use for the elongated objects is approxi- 
mate. It will be applied to calculations of the scattering by 
prelate spheroids, straight finite cylinders, and uniformly 
bent finite cylinders. As discussed in the Introduction, we 

use the deformed cylinder solution because of its computa- 
tional speed and accuracy at very high aspect ratios. In addi- 
tion, it can be used to produce useful analytical solutions 

under limiting conditions. 

The following assumptions are made in the general solu- 
tion. ( 1 ) There is no dispersion or nonlinearities in the cylin- 

der or surrounding medium. (2) End effects of the scattering 
by a finit e cylinder are not important. This assumption re- 
stricts the solution to geometries where the directions of inci- 

dence and scattering are normal or near normal to the tan- 

gent of the axis of the cylinder. (3) Deformations of the 
cylinder axis, cross-sectional radius, and composition profile 
vary slowly with respect to position along the lengthwise axis 
of the cylinder. This comes from the part of the derivation 
that assumes the motio n of neighboring cross sections of the 
elongated object to be similar allowing one to use the modal 

series coefficients that are derived from the infinitely long 
cylinder. It is this assumption that makes the calculations 
most accurate at high aspect ratios. 

The general deformed Cylinder solution, as derived in 
Ref. 24, is 

Pscat • Po bm cos mqb e Idrpo• l, (8) 
• •s m = 0 •s 

where b m is the modal series coefficient, m is the modal num- 

ber, • is the azimuthal angle, r• is the position vector of the 
axis of the defomed cylinder• r• is the distance from the axis 
at point rm• to the receiver, e, is the incremental or deere- 
mental distance between the point 0n the axis and the plane 
that both contains the origin and is pe•endieular to the di- 

rection of the incident plane wave, and I dr• • is the differen- 
tial of arc length. The details and geometry involving these 
terns are given in Reft 24. 

While this equation covers a broad range of geometfi• 
(i.e., both close and far from the object), it is desirable to 
examine it under the conditions where it will be used the 

most: at distances far from the object. Specifically, the re- 

ceiver is far from the object so that r•D• and D, •2•, 
where D• is the distance between the two ends of the object 

and 2• is the diameter of the first Fresnel zone of the 
plane-wave source/•int-re•iver combination. This simpli- 

fi• the fomula so it reduces to a convenient fore r•ulting 

in the following scattering amplitude: 

f( l• ) -- i bm COS mq)e ikr•(?'- L)'•r• - = larpos I, 
71' •, 0 

(9) 

where ?; and ?r are the unit vectors in the direction of the 

incident plane-wave and scattered fields, respectively. 

In the backscatter direction, & = rr and the backscatter- 
ing cross section is 

O'bs = 7 brn ( -- 1)metkrpøs(ri- r')'?•ldrpøs I 
(•0) 

In order to solve the above equations, the geometry of the 
deformed cylinder and boundary conditions must be known. 

In each of the following three examples (prolate spheroid, 
straight finite cylinder, and uniformly bent finite cylinder), 
we show how the shape of the object is taken into account. 

For more details regarding the geometry, see the original 
derivations in Ref. 24. In all three cases, the boundary condi- 
tions from the infinitely long cylinder (assumption 3) are 
used. For the case of elastic shelled objects, which is the 
focus of this article, we use the coefficients initially published 
by Doolittle and Oberall 7 and later in normalized form by 
Ugin•ius and Qberall • for our elongated objects. 

I. Straight finite cylinder 

For a straight cylinder of length L, the modal series in 

the above equations comes out of the integral, and the scat- 
tering amplitude was shown in Refs. 22 and 24 to be 

f(11)= -iLsinA • b,,cosm•, (11) 
/rA m = o 

where A = •kL (• -- • ). ?,a,,?t•,is the unit vector in the di- 
rection of the tangent of the cylinder axis, and all wave 

numbers in b,,are multiplied by Isin • I where • equals the 
angle between the direction of the incident wave and the axis 

of the cylinder. 

In the case of backscatter, & = rr and the backscattering 
cross section is 

L: sin:A oo 1) '• 2 c% -- 7r:- A 2 •--o b• ( -- , (12) 
where now A = kL cos 0. 

•. Pro/ate spheroid 

When using the deformed cylinder formulation to de- 
scribe the scattering by a prolate spheroid, we must express 

the cylindrical radius in terms of the position along the axis. 

For simplicity, we place the center of the spheroid at the 
origin which gives the equation for the radius: 

a(z) = aox/1 -- [z/(L/2)] 2, (13) 

where z is the distance along the major axis, the total length 

of the spheroid is L, and the length of its semiminor axis is a o. 

Making the substitution of • =z/(L/2) and 
dlt = dz/(L/2) and taking advantage of the fact that the 
integral is of an even function over a symmetrical interval 

about the origin, the backscattering cross section at broad- 
side incidence is 2n 

iL2;, • 2 = bm( - 1)'• d/• ø'b• 4'n a - • m = o 

1 2 • ),• =•L b,, - 1 dtt , (14) m=0 

where now a (/t) = aox/T• z and & was set equal to rr. Be- 
cause we have broadside incidence, the exponent in the inte- 
grand in the general deformed cylinder solution is zero and 

the wave numbers in b,• remain unmodified. 
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3. Uniformly bent finite cylinder 

The bend of the uniformly bent cylinder is taken into 

account both in the exponent in the integrand in the de- 
formed cylinder solution and in the wave numbersY 

c•, = b,• ( - 1 ) rne2ikpdl 
Yma• rfi = 0 

-- bm( (15) 
•P o 

wherepc is the radius of curvature of the axis of the cylinder, 
the angle 2yma• subtends the entire arc, the total are length 
L = 2pcyma x, and • = • for all •. All wave numbers in b• 
are multiplied by [cos y•. 

The geometry of this case is shown simplistically in the 
figures in the next section and in detail in Ref. 24. The cylin- 
der is bent symmetrically away from the sonar. 

II. NUMERICAL CALCULATIONS 

In this section', we present numerical calculations illus- 
trating the backscattering characteristics of the following 
shelled objects: sphere, prolate spheroid, straight finite cyl- 

inder, and uniformly bent finite cylinder with the latter three 

(elongated) objects having high aspect ratios ( • 5). As dis- 
cussed in Sec. I, the calculations are exact for the spheres and 

approximate for the elongated objects. The calculations 
were carried out for broadside incidence for each of the elon- 

gated objects as that is the geometry where the deformed 

cylinder solution is the most accurate (the scattering geome- 

try is illustrated for each figure). The shell of each object is 

composed of stainless steel and the surrounding fluid is wa- 

ter (the material properties were taken from Neubauer3ø). 
The scattering predictions were performed for a wide range 
of ka and shell thicknesses for several interiors: (1) water 

with identical properties as surrounding water, (2) air, and 
(3) fluid with similar but not identical properties as sur- 
rounding water. The last interior material was chosen as the 
acoustic properties of some marine organisms such as 
shrimp and euphausiids are close to that of water. 31 Note 
that the set of plots that would correspond to Fig. 1 for the 
dissimilar fluid inte•or [interior (3) ] is not shown because 

the results were so close to those of Fig. 1. The differences in 

the calculations show up in Figs. 2 and 3, where the shell is 

very thin. 

The computer algorithms were based on the equations 
summarized in Sec. I of this article. There were three classes 

of modal series coe•cients used. ( 1 ) Fluid-solid for the top 
row of Figs. 1 and 4 and all of Fig. 6. All ofthese calculations 

used the coe•cients derived by Faran? Faran's sphere co- 
efficients were used for the solid sphere and his cylinder coef- 

ficients for the solid prolate spheroid, straight finite cylinder, 
and uniformly bent cylinder. (2) Fluid-solid-fluid for the 

calculations involving the shell. As described in Sec. I, the 

coe•cients for the sphere were originally derived by Good- 

man and Stern • and later generalized by Poggio? The cylin- 
der coe•cients that were used for all elongated objects were 
originally derived in Doolittle and Oberall • and published in 
no•alized fo• by Ugin•ius and Oberall. a (3) Fluid-fluid 
for the bottom row of Figs. 3 and 5. The coe•cients for the 

fluid sphere were originally derived in Anderson, 33 while the 
coefficients for the fluid cylinder that were used for all elon- 

gated objects were taken from Stanton? 
Figures 1-5 summarize our calculations. The "re- 

duced" or normalized target strength is plotted as a function 

of ka for each object. The direction of the incident wave is 

indicated by the arrow over each object. The terms reduced 

and "a" have the same meaning as in Ref. 24: The target 
strength is reduced by 101og•ra 2 for the spheres and 
10 log L: for each elongated object where a is the radius of 
the spheres and L is th e length of the prolate spheroid and 
straight cylinders and the arc length of the bent cylinders. 

The reduction is made so that the argument of the logarithm 
for the vertical axis may be dimensionless. The a in the hori- 

zontal axis term ka is the (spherical) radius of the spheres, 
(cylindrical) radius of the straight and uniformly bent cylin- 
ders, and length of the semiminor axis of the prolate spher- 
oids. The shell cross section is shown on the left-hand side of 

each row of the plots. The term "ft" indicates the fractional 

thickness of each shell and in all cases but the prolate spher- 
oid is equal to the ratio of the shell thickness to the outer 

radius a. In those cases, the fractional shell thickness can be 

expressed in terms of a and the inner radius b as 

ft = I - b/a. In the case of the prolate spheroid, the radial 

component of the thickness of the shell is held constant along 
the length of the object and ft is equal to the ratio of the shell 
thickness at the origin to the length of the Outer semiminor 

axis. The inner walls of the prolate spheroid eventually meet 
near the ends (the point at which they meet depends, of 
course, on the shell thickness) and the computer program 
took this into account by calculating the scattering due to a 
shell with a negligibly small interior beyond this point (i.e., 
the ends were effectively solid). Since the calculations in- 

volve high aspect objects, the portion of the spheroid near 
the ends that deviates significantly from being of uniform 
thickness is small; hence the spheroid can be considered, to a 
reasonable approximation, of uniform thickness. (In Order 
to illustrate detail of the resonance structure in the above- 

mentioned plots, some of the curves in Figs. I and 4 are 
replotted on linear scales in Figs. 6-8. ) 

All plots are characterized by a Rayleigh scattering re- 
gion in the ka • 1 region where the backscattering cross sec- 
tion varies at (ka) 4. In the ka > 1 region, all plots approach 
the geometric scattering limit. The slope of the limit varies 
from object to object and is discussed in detail in Ref. 24. In 

general, the slope is zero for the sphere, prolate spheroid, 
and bent cylinder and nonzero (positive) for the straight 
cylinder. These differences in slopes are due to Fresnel zone 
effects that depend on the fact that the sphere, spheroid, and 
bent cylinder are curved in two dimensions, while the 

straight cylinder is curved only in one dimension. The plots 
show that for shell fractional thicknesses greater than about 
0.5, the cross sections are relatively independent of the inner 
material. This is because the density and speed of sound of 
stainless steel are greater than those corresponding proper- 
ties of the surrounding water and hence the shell is relatively 
impenetrable for those thicknesses. 

As the shell becomes thinner, the effect of the interior 

becomes apparent. In the ka > 1 region, the modal interfer- 
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FIG. 1. Reduced (normalized) target strength versus ka for the sphere, prolate spheroid, straight finitc-lcnsth cylinder, and uniformly bent finite cylinder for 

various shell thicknesses. The plots show the trend and resonance structure of the backscattering cross section to depend strongly on body shape and shell 
thickness in the ka > 1 (geometric) region. All plots are characterized by a smooth monotonically increasing curve in the ka<g 1 (Rayleigh) region. The 
elastic shell of each object is constructed of stainless steel while the inner and outer fluids are both water. The reduced target strength for the corresponding 
solid elastic objects (no inner fluid) is given on the top row for comparison. Direction of incident plane wave is given by arrow. All calculations involving the 
sphere are exact as they involve direct use of the Faran 3: (solid) or Goodman and Stern • (shell) sphere formulations. The calculations involving all elongated 
objects are approximate as they involve use of the Faran 3: (solid) and Ugin•.ius and 0befall s (shell) cylinder coefficients in the deformed cylinder formula- 
tion described in this article. Because of the use of the cylinder coefficients that were derived for infinitely long and straight cylinders, the predictions are 
accurate only for high aspect ratios (ratio of length to diameter greater than about 5). :4 The following material properties were used: water, c,• = 1496.59 

m/s (tap water at 25 øC); stainless steel, specific density g = 7.90, c c = 5594 m/s, and c, = 3106 m/s, where c: and c s are the compressional and shear 

speeds of sound, respectively? ø The resultant ratios Of speeds of sound used in the programs were then h c --= cc/cw = 3.74 and h., •-c.,/cw = 2.08. For the 
calculations involving the bent cylinder, the ratios pc/L = 0.5 and L/a = 10.5 were used (these were values consistent with the shape of certain marine 

organisms).:4 All modal series in the solutions are converged using the first 20 modes (0gin< 19). 
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FIG. 2. Continuation of Fig. 1 for very small shell thicknesses. This set Of plots is on a different vertical scale than in Fig. 1 to illustrate the great reduction in 
overall levels as the thickness of the shell is reduced. 

ence structure changes dramatically. This is due to both var- 
iations in the internal reflections within the interior and shell 

as well as changes in the surface elastic waves (such as the 
introduction of Lamb waves). 34 For fluid interiors (water 

and "fluid"), the backscattering cross section decreases with 

decreasing shell thickness in the/ca • 1 region. This is due to 
the fact that k• g 1 also in this region, where • is the thick- 
ness of the shell, thus the thickness of the shell is also in the 

Rayleigh scattering region. For thin spherical shells where 
the inner fluid is identical to the outer fluid, the cross section 

can be shown to vary as •rbs _•2 (this is true for any ka 
provided k•,• 1 ).• The plots from all shapes where the inner 
fluid is identical to the outer fluid show this behavior for 

sufficiently thin shells. At ka = 0.1, the relation •rbs -t52 was 
correct to within 0.1 dB below values of ft of about 10-4 for 

the elongated objects and 10- • for the sphere (these results 
not shown). At higher ka values, the curves also appear to 
have similar behavior although there are variations due to 

modal interferences at the highest ka values. When the inner 
fluid is different than the surrounding water (Fig. 3) the 

plots decrease until the point at which they converge to the 
no-shell or fluid-only solution (no-shell calculations using 

fluid-fluid boundary conditions). 

The shape of the plots for the air-filled shells changes 
quite dramatically as the thickness of the shell is decreased. 

As the effect of the shell decreases, a resonance in the ka,• 1 

region appears and shifts toward lower ka values. Figure 5 
shows the solution to approach the no-shell or gas object 
solution (no-shell calculations using fluid-fluid condi- 
tions). In contrast to the cases when the shells had denser 

interiors (water and "fluid") the level and trend of the 

curves in the geometric scattering regions in the thin gas- 
filled case are similar to those in the solid case. This is be- 

cause once the effects of the shell are negligible, the nearly 

impenetrable air will give a similar return as the nearly im- 
penetrable solid stainless steel. 

III. EXPERIMENT 

Because of the limited amount of data available in the 

literature involving scattering of sound by elastic shelled ob- 
jects (especially finite sized ones), we have begun a series of 
measurements to further investigate the scattering proper- 
ties of such objects. The author is not aware of any data 
involving scattering by uniformly bent finite cylindrical 
shelled objects and, since that particular shape has shown to 
be important in describing the scattering by marine organ: 
isms, 24 our first measurements have involved that object as 
well as a straight finite cylindrical shell for comparison. The 
measurements involved normal incidence backscatter, pings 
sufficiently long so that individual scattering highlights co- 
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SPHEROI 0 0 CYLINOER • 

WCll ef 
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FIG. 3. Backscattering predictions with an interior fluid slightly different than the exterior fluid. The interior fluid is chosen to have properties similar to 
thoseofmarineorganisms:specificdensityg = 1.043andspecificspe•dofsoundh(•hc) = 1.052.24 The figure shows the predicted values to converge to the 
no-shell calculations given on the bottom row. Note that, although the shell thicknesses are the same as in Fig. 2, these plots are on the same scale as in Fig. I. 
The stainless steel parameters and shape parameters are given in the caption to Fig. 1. 

incided (the long ping mode is convenient for modal series 
analysis), and at frequencies and sizes such that 3 < ka < 9. 

A. Experimental setup 

Our measurements were conducted in a 4-foot diameter 

by 3-foot high circular tank at the Woods Hole Oceanogra- 
phic Institution. Because of the small size of the tank, our 
measurements were limited to small objects (approximately 
0.5 cm in length) and ultrasonic frequencies ( 1-2.5 MHz). 
In order to examine the structure of the backscattering cross 

section curve versus ka, we used broadband transducers sim- 
ilar to those used in medical applications to provide nearly 

continuous coverage (closely spaced discrete frequencies) 
over the entire frequency range. Two closely spaced trans- 
ducers were used, one for transmission and one for reception 
to obtain the backscatter data. This approach was used in- 

stead of a single transducer in order to increase signal to 
noise ratio and to make calibration more accurate. Calcula- 

tions show that there is a negligible difference between a true 

monostatic (single transducer) experiment and a bistatic ex- 

periment (two transducers) where the transducer pair sub- 
tends a 2-deg angle such as ours. 

Commercially available pulse-echo equipment was used 
for the measurements. A gated sine wave was applied to the 
transmission transducer by use era Hewlett-Packard 8011A 

pulse generator (gate), Hewlett-Packard 8116A pulse/ 
function generator (sine wave modulated by the gate), and 
ENI 9100L power amplifier. There was no need for an im- 
pedance matching circuit between the power amplifier and 
the transmission transducer as the input impedance of the 
transducer was close to the 50-ohm impedance of the ampli- 
fier. The two identical transducers were (custom) con- 
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FIG. 4. Backscattering predictions for air-filled objects. Since air is considered a fluid in these calculations (no shear waves), the same programs used to 
calculate the plots in Fig. I were used here. All parameters were the same with the exception of the interior parameters: specific density g = 0.0012 and 
specific speed of sound/: = 0.22 ( l-atm air). 
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FIG. 5. Continuation of Fig. 4 for very small shell thicknesses. This set of plots is on a different scale to illustrate the evolution of the resonance due to the 
interior. The curves are shown to approach the no-shell calculations given on the bottom row. 

structed by Krautkramer Branson. Each transducer con- 

tained a 1-in.-diam ceramic with a center frequency of 2.25 

MHz. The ceramic and backing materials were chosen so 
that the ceramic would be heavily damped and broadband 

excitation would be possible ("Alpha Series, Broadband IS 
Style"). For our purposes, the transducers had a usable fre- 
quency range of approximately 1-2.5 MHz. The cable was 

potted so that the entire unit could be immersed in water. 
Because of the high frequencies and short wavelengths in- 
volved, use of a flat ceramic would have produced unaccep- 

tably narrow beamwidths as it would have been difficult to 

position the objects in the center of the beam. We therefore 
used ceramics in the shape of spherical caps to provide 20- 

deg beamwidths. 
The echoes detected by the receiving transducer were 

amplified, filtered, and finally displayed on an oscilloscope. 
The battery powered amplifier (preamp) was a modified 

version of model 5662 made by Panametrics. The modifica- 

tions (done by Panametrics) extended the upper limit of the 
frequency range to 5 MHz so that the entire range is now 10 
kHz-5 MHz. The filter, model AP220-5-R from AP Circuit, 

was used as a high-pass filter with the cutoff below our fre- 
quency range. It could not be used in the bandpass mode in 
our frequency range without reducing the level of the upper 
frequencies. The Tektronix oscilloscope, model 2445B, both 
displayed the echoes and was used in determining the ampli- 
tudes of the echoes. A manually adjustable line cursor on the 

scope was adjusted until its level coincided with the peak of 

the echo. A digital display of the level was then manually 
recorded. 

The shelled objects were constructed of stainless steel 

tubes purchased from Alltech Associates, Inc. The tubes, 
catalog No.. 97095, were designed for gas chromatographie 

applications and were originally 5 cm long by 1/16-in. out- 
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side diameter with a 0.03-in. inside diameter. The ratio of the 

shell wall thickness to the outer radius of each tube (distance 

between center and outer boundary) is 0.52. This corre- 
sponds to a ratio of b/a ---- 0.48, where b is the inner radius. 

Construction of the straight tube involved carefully cutting 
the tube so as not to deform it. This required use of a tube 

cutter made specifically for these 1/16-in.-diam tubes (cata- 

log No. 3165, also made by Alltech). We attempted to cut a 
5-mm section of straight tube and photocopy blowups of the 
tube show the actual length to be 4.8 ram. Construction of 
the bent tube was more complicated as we needed to first 

bend the long section, then cut it. It was difficult to obtain a 
uniformly bent tube for small radii of curvature. After con- 

structing several bent tubes, we ended up with one that was 
satisfactory with an arclength L of 4.8 mm and radius of 
curvaturep• of 6.0 mm giving a ratiop½/L = 1.25. The ratio 
L/a for the bent tube was equal to 6.05 giving an aspect ratio 
L/2a = 3.02. 

The tubes were placed at distances of at least 75 cm from 

the transducers. At the highest frequency, 2.5 MHz, and at a 

75-cm range, the diameter of the first Fresnel zone (x/2r•) 
of the point-source/point-receiver combination is equal to 
3.0 cm. At greater ranges and/or lower frequencies, the 
Fresnel zone is larger than 3.0 cm. With shell lengths of 
approximately 0.5 cm, the shells are well within the first 

Fresnel zone and hence they are considered "finite" in size 
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with respect to this measurement. The finite deformed cylin- 
derequations described in Sec. I of this article then are appli- 
cable to this measurement. 

The major challenge in this experiment was the align- 

ment of the objects and transducers. The transducers 
(mounted on test tube holders) were first aligned according 

to mechanical measurements so that they would share the 

same volume ofinsonification at a range of approximately 75 

era. They were then individually operated in the monostatic 

mode while the fields at 75-cm range were mapped with a 

suspended sphere (ball bearing). The study showed the 
transducers to be initially slightly misaligned and the orien- 
tations were then altered accordingly. 

The tubes were suspended by long strands of snugly 

strung human hair. The hair turned out to be an excellent 
mounting material as it is acoustically transparent at these 
frequencies. By appropriate use of the hair and support rods 
well away from the acoustic beams, the echo from the 75-cm 
range was solely from the tubes and not from any surround- 
ing mount. One strand of hair, suspended between two verti- 
cal rods, was threaded through the tubes to allow control of 
the orientation of the tubes. An additional strand, used in the 

bent tube measurements, was strung from the top of the up- 

per transducer, wrapped around the midsection of the tube, 
and then back to the bottom of the lower transducer. It was 

used to pull the midsection of the tube toward the trans- 
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FIG. 8. Expanded plots from bottom row of Fig. 4 on linear scales. 

ducers so that the tube was bent symmetrically away from 
the transducers. 

Final alignment of the objects was done acoustically so 
that normal incidence backscatter measurements could be 

performed. The alignment procedure has to be done in an 

iterative manner because, if one naively aligns the objects so 
that the echo is at a maximum at one frequency, the object is 
not necessarily normal to the direction of the incident beam. 

This is due to the irregular shape of the backscattering cross 
section versus ka curve in the ka > 1 region (see figures in 
Sec. II). If one coincidentally is at a frequency such that the 
normal incidence cross section is at a local maximum, then a 

maximum echo will correspond to normal incidence align- 
ment. However, if one is away from a local maximum and in 

fact in or near a sharp null, deviations in alignment away 
from normal incidence will modify the wave number accord- 
ing to the equation K = k sin 0 so that the backscattering 
cross section can actually increase away from normal inci- 

dence and produce a false indication of apparent normal in- 
cidence. Thus we first performed the backscatter measure- 

ments over the entire range of frequencies with the object 
"aligned" at an arbitrary frequency to determine the ap- 
proximate location of the maxima of the curve and then re- 

peated the measurements by aligning at a frequency that 
corresponded to a local maximum. 

Because we used two transducers in the backscatter 

measurement, absolute calibration of the system was 
straightforward. After the backscatter measurements were 
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performed, the transducers were separated by approximate- 
ly 75 cm and aligned so that they would be aimed at each 

other. Because of the high gain of the power amplifier and 
preamplifier, the signal level was reduced by reducing the 
output of the signal generator (Hewlett-Packard 8116A) to 

prevent saturation of the received signal in the preamp. In 
this bistatic configuration, the system is linear below the sat- 
uration level so the reduction in signal level can be conve- 

niently compensated for in the calibration equation. Using 
Eqs. (3) and (4), the equation used in the calibration is 

O'bs = ( Vsca,/•Vca I )2(/'s4cat//•cal ), (16) 

where V, ca, is the voltage amplitude of the backscattered 

signal, Vca • is the voltage amplitude of the calibration signal, 
G is the factor to compensate for the reduction in signal level 
for the calibration (for example, if the signal level was re- 
duced by a factor of 10 during calibration, then G = 10), 

r•a , is the distance between the transducer pair and tube 
during the backscatter measurements, and r•a • is the distance 
between the two transducers during the calibration. The 
calibration was performed at each frequency that the scatter 
measurements were performed (1-2.5 MHz in 10-kHz 

steps). The measured cross sections were finally normalized 

by the square of the length (or arc length) of the tubes for 
plotting. 

n. Data 

Figure 9 compares the backscatter data collected from 

the straight and uniformly bent stainless steel tubes and pre- 
dicted levels based on the corresponding equations in Sec. I 
and material properties published by Neubauer. 3ø The data 

were calibrated using Eq. (16). Plotted is the backscattering 
cross section normalized by the square of the length (or arc 
length) of the tubes versus ka. The straight cylinder data 
were from the entire 1- to 2.5-MHz frequency range. How- 
ever, because the backscatter levels from the bent cylinder 

are inherently lower, the echoes in much of the frequency 
range were below the noise level of the system (the system 
was more sensitive at the upper end of the frequency range 
where the resonance of the transducers occurs). As a result, 

only echoes from the upper portion of the frequency range 
were observable for the bent cylinder. There are certainly 
methods to enhance the signal-to-noise ratio of the lower 

frequency data, such as use of a digital oscilloscope for signal 
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x exper i ment 

FIG. 9. Comparison between deformed cylinder backscattering predictions and laboratory data involving stainless steel tubes immersed in tap water. The 
dramatic changes in structure and overall levels ( • 12 dB) due to the bending of the tube are illustrated. Both tubes were 4.8 mm long by 1/16-in. outside 
diameter (with an 0.03-in. inside diameter the fractional thickness of each tube was 0.52). The ratio of length to outside diameter of each tube was 3.02 while 
the ratio of radius of curvature to arc length of the bent tube was 1.25. 
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averaging or Ose of a computer-based data acquisition sys- 

tem and signal filtering and averaging in the software, but 

that was beyond the scope of these early measurements. 
There is reasonable correlation between the structure of 

the predicted and measured cross sections. The position of 

most of the observed major peaks and nulls are predicted by 
the theory with the exception of the data occurring at the low 

end of each respective frequency range. As discussed above, 
the sensitivity of the system increased with increasing ka up 
to the resonance frequency of the transducers and hence the 

data quality is relatively poor at the lowest frequencies. 
There is very good correlation between the observed and 

predicted position of the nulls at ka • 5 and 8 for the straight 
cylinder. The lowest data point on the ka • 5 null corre- 

sponds to the noise level at that frequency; hence, the actual 

point is lower. The observed "shoulder" at values of ka just 
above the ka • 5 null is much lower than the predicted level. 
A replicate of this measurement, not given, also indicates the 

presence of these lower levels, thus there is a clear discrepan- 
cy between predictions and observed values at ka • 6. 

There are many possibilities for error both in the mea- 
surements and in the predictions. Predictions: (a) lack of 

knowledge of exact material properties. The predictions rely 

intimately on knowledge of the material properties such as 

density and compressional and shear speeds of sound. Be- 
cause of the small size of the objects, it was impossible to 
even attempt measurement of the properties and hence, it 

was necessary to take values published in the literature. 
There were differences of the order 6% between the values of 

speed of sound given by Kaye and Laby 35 and Neubauer. 3ø 
This may be due to differences in annealing processes. In 
attempting to use the Kaye and Laby parameters, there were 

dramatic differences between those curves and the ones giv- 
en in this article-•especially with respect to the positions of 
the peaks and nulls. Thus this author believes one major 
source of error in this comparison is the potential use of 

incorrect material properties. (b) The model ignores end 
effects. Since these objects are of moderate aspect (ratio of 
length to diameter is approximately 3). There should not be 

substantial errors introduced by the approximation at nor- 
mal incidence. A recent study shows errors in the deformed 

cylinder approach to be 0.9 and 0.3 dB for aspect ratios of 2 
and 5, respectively, when compared with the exact solution 
to the rigid and fixed prolate spheroid? Thus it is possible 
that the approximation could cause minor deviations, both 

in the overall levels and possibly in the finer highlights of the 
structure of the plot. Measurements: (a) as in any experi- 
ment, there is a degree of error associated with the measure- 
ments, ranging from finite signal-to-noise ratio of the electri- 
cal signals to errors in measuring the length of each tube. We 
had special difficulty in constructing a tube that was bent 

uniformly and furthermore it was difficult in measuring its 
radius of curvature. (b) As mentioned above, we had diffi- 

culty in aligning the objects in the acoustic beam, especially 
the straight tubes (since the scattering by bent objects is 
dominated by the first Fresnel zone of the bent objects, TM 
alignment of the bent tube was not a major problem). It is 
quite possible that the alignment was done slightly off a ma- 
jor maximum in the backscatter curve (see above discus- 

sion) and the measurements were performed slightly Off 90 
deg. Such an error would cause a shifting in the data toward 

higher ka values. 

In conclusion, the degree of agreement between the pre- 
dictions and data suggests the validity of the models, at least 

within the range of conditions of the experiment. Also the 
data, as do the predictions, demonstrate the dramatic differ- 

ences (• 12 dB in this case) between the scattering by 
straight and curved objects. 

IV. CONCLUSIONS 

With the newly developed deformed cylinder solution, 
we were able to estimate the scattered fields due to elastic 

shelled bodies with the shapes of the prolate spheroid, 
straight finite cylinder, and uniformly bent finite cylinder. 
The elongated objects all had high aspect ratios. The scat- 
tered fields due to the elongated objects were compared with 
the exact solution to the spherical shell in a number of nu- 
merical simulations involving fluid-filled and gas-filled elas- 
tic shelled bodies with a wide range of shell thicknesses (all 

surrounded by fluid). The simulations illustrate the strong 
dependence of the scattering structure (overall level, trends, 

and positions of nulls and peaks) upon body size, shape, 
composition, and shell thickness. Comparisons were also 
made between straight and bent cylinder calculations and 

laboratory data (3:1 aspect ratios and 52% shell thick- 
nesses). There was reasonable agreement between the pre- 
dictions and data although the comparison was limited by 
lack of knowledge of the exact material properties for use in 
the predictions. In addition, the data illustrated the dramatic 

change in backscattering cross section when the cylinder was 
bent ( • 12 dB). 

The comparisons between the deformed cylinder theory 
and data show promise in use of the approximate theory 
under certain conditions such as with high aspect objects at 
or near broadside incidence. Because of its increase in accu- 

racy as the aspect ratio increases and relatively low compu- 
tational times, the theory is an attractive complement to oth- 
er methods that are practical only for lower aspect ratios. 

The purpose of this research was to produce a theoreti- 
cal and numerical foundation for the description of the scat- 
tering of sound by elongated marine organisms that have 
shells. Much work remains to be done in that area such as 

measuring the material properties of the shell of the organ- 
isms and inner body. Furthermore, the organisms are not 
perfectly described by simple shapes such as uniformly bent 
cylinders or prolate spheroids. However, now there is a foun- 

dation for proceeding to the next step of describing the scat- 
tering by more complex shapes. 
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