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ABSTRACT Although sound source localization is a desirable technique in many communication systems

and intelligence applications, the distortion caused by diffuse noise or reverberation makes the time delay

estimation (TDE) between signals acquired by a pair of microphones a complicated and challenging problem.

In this paper, we describe a method that can efficiently achieve sound source localization in noisy and

reverberant environments. This method is based on the generalized cross-correlation (GCC) function with

phase transform (PHAT) weights (GCC-PHAT) to achieve robustness against reverberation. In addition,

to estimate the time delay robust to diffuse components and to further improve the robustness of the

GCC-PHAT against reverberation, time-frequency(t-f) components of observations directly emitted by

a point source are chosen by ‘‘inversed’’ diffuseness. The diffuseness that can be estimated from the

coherent-to-diffuse power ratio (CDR) based on spatial coherence between two microphones represents the

contribution of diffuse components on a scale of zero to one with direct sounds from a source modeled to be

fully coherent. In particular, the ‘‘inversed’’ diffuseness is binarized with a very rigorous threshold to select

highly reliable components for accurate TDE even in noisy and reverberant environments. Experimental

results for both simulated and real-recorded data consistently demonstrated the robustness of the presented

method against diffuse noise and reverberation.

INDEX TERMS Diffuseness mask, GCC-PHAT, reverberation, sound source localization.

I. INTRODUCTION

Sound source localization is a desirable technique in var-

ious communication systems and intelligence applications,

including speech enhancement in noisy and reverberant envi-

ronments by forming a beam toward the target source [1], [2].

Typically, it can be achieved by exploiting the difference

among the signals obtained by spatially separated micro-

phones. If many microphones are available, the direction

of arrival (DOA) of a sound source can be accurately esti-

mated by numerous approaches combining various informa-

tion based on the microphone signals (e.g., [3]–[6]), and

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

learning-based approaches such as [7] may provide even bet-

ter localization performance. They may result in successful

localization of multiple sound sources in various real-world

situations (e.g., [8]–[10]).

Given a pair of microphones possibly due to a limited

resource or a compact size, the DOA of a source is related

to the difference between the times taken by the sound from

a source to reach the microphones. A lot of methods rang-

ing from exploitation of interaural cues inspired by binaural

processing to introduction of various techniques for math-

ematical analysis, even with learning from data, have been

proposed (e.g., [11]–[18]). Among those methods, a class

of cross-correlation-based methods is the most intuitive

and popular approach, where the frame-wise relative time
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delay can be estimated by determining the maximum of the

cross-correlation function of signals acquired by the pair

of microphones [18]. The localization would be easy if the

two signals were merely delayed and scaled versions of

each other. In real-world situations, however, the acquired

signals are frequently prone to contamination by ambient

noise. Furthermore, the signals may contain multiple atten-

uated and delayed replicas of the source signal caused by

reverberation. The distortion caused by noise or reverberation

makes the time delay estimation (TDE) a complicated and

challenging problem [13], [19]. Over the past few decades,

researchers have tackled this problem by exploiting different

aspects of the observed signals and developed numerous

algorithms [2].

Typically, the cross-correlation function is more affected

by low-frequency components where most of the natural

sound (including speech) energy is concentrated. Therefore,

the cross-correlation function may frequently have a flatter

peak that can disturb accurate TDE. To overcome this vul-

nerability, Knapp and Carter [18] introduced the generalized

cross-correlation (GCC) function, which results in a cross-

correlation function with a frequency weighting, and several

weightings have been presented for accurate TDE in consid-

ered situations [1]. One of the most commonly used weight-

ings is phase transform (PHAT) weighting, which makes

the TDE robust against reverberation. Since the steered-

response power (SRP) objective function can be expressed

as a sum of the GCCs for different microphone pairs with

many microphones available, the GCC function with PHAT

weights (GCC-PHAT) is essentially the same as the SRP

function with PHAT weights (SRP-PHAT) given a pair of

microphones [20], [21]. However, this weighting is known

to be sensitive to additive noise, and the sensitiveness can

be overcome by the maximum-likelihood (ML) weighting.

In order to combine the advantages of both the weightings,

Wang and Chu proposed the MLR weighting that is robust to

both noise and reverberation [1], [22].

In order to achieve further robustness, masks have

been applied to remove time-frequency(t-f) components of

observed signals that were harmful for source localization

by containing noise or reverberation significantly (e.g., [14],

[23]–[27]). Using the non-stationarity of speech, the tran-

sition noise masks were estimated [28], or masks were

obtained by signal-to-noise ratios (SNRs) computed with

stationary noise estimates [29]. Wilson and Darrell exploited

cues corresponding to sudden increases in audio energy by

finding a mapping from reverberated signal spectrograms

to localization precision as a soft mask, which exhibited

behavior consistent with the precedence effect [30], [31]

from psychoacoustic studies [32]. Since deep-learning-based

t-f masking has dramatically improved the performance of

monaural speech separation and enhancement, deep neural

networks (DNNs) estimated masks to identify t-f components

harmful for accurate TDE (e.g., [33]–[36]). Whereas masks

estimated by [28] and [29] assumed stationary noise,

learning-based methods such as [32]–[36] might not obtain

successful masks with insufficient learning data or for an

environment unmatched with training data.

A typical acoustic impulse response characterizing the

propagation of sound from a source to a microphone con-

sists of the direct impulse and the early and late reflections.

Considering that an observed signal can be modelled by

the corresponding source signal convolved with an acoustic

impulse response, signal components through direct paths

provide the DOAs corresponding to sound locations, contrary

to the reflected sound. Since a direct path is the shortest path

from a source to a microphone, a sound arrives earlier at a

microphone through the direct path than others. Therefore,

the auditory onset, that is, the start of a discrete event in

an acoustic signal, is robust against reverberation because a

microphone mainly obtains sound through a direct path from

a source during the onset [14], [37], [38]. If two microphone

signals contain only direct sounds emitted from a source,

they are delayed and scaled versions of each other, and

fully coherent, whereas other components caused by diffuse

noise or reverberationmay be assumed to be diffuse. Since the

spatial coherence between two microphones, as an efficient

measure to distinguish coherent components from diffuse

components, was used for signal enhancement [39], heuristic

methods for noise reduction and dereverberation have been

proposed [40], [41]. Especially, the spatial coherence (as

known as interaural coherence from binaural auditory stud-

ies) was used for source localization [42], [43].

In this paper, we describe a method that can efficiently

achieve sound source localization in noisy and reverberant

environments. This method is based on the GCC-PHAT to

achieve robustness against reverberation. In addition, for

the TDE robust to diffuse noise or reverberation, t-f com-

ponents of observed signals directly emitted by a point

source are selected by ‘‘inversed’’ diffuseness [44]. Instead of

using the spatial coherence estimates directly, a diffuseness

estimator that represents the contribution of diffuse com-

ponents on a scale of zero to one is computed from the

coherent-to-diffuse power ratio (CDR) based on the spatial

coherence estimates, formerly used for dereverberation [45].

Especially, the ‘‘inversed’’ diffuseness is binarized with a

very rigorous threshold, prior to masking the t-f components

of observed signals, in order to use highly reliable compo-

nents for accurate TDE even in noisy and reverberant envi-

ronments. Experimental results confirmed the robustness of

the proposed method with signals affected by diffuse noise or

reverberation.

II. REVIEW OF A DIFFUSENESS ESTIMATOR BASED

ON A DOA-INDEPENDENT CDR

In performing the localization of sound sources, direct sound

from a source is helpful, but diffuse components interfere

with the localization. In the short-time Fourier transform

(STFT) domain, let us consider the i-th microphone signal

Xi(m, k) composed of a direct signal component Si(m, k) and

an interfering component Ni(m, k) as

Xi(m, k) = Si(m, k) + Ni(m, k), (1)
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where m and k index time frame and frequency bin, respec-

tively. The short-time complex spatial coherence function of

signals acquired by a pair of omnidirectional microphones is

estimated by

Ŵ̂X (m, k) =
8̂X1X2 (m, k)

√

8̂X1X1 (m, k)8̂X2X2 (m, k)

, (2)

where 8̂XiXj (m, k) denotes a short-time auto- or cross-power

spectral density estimate between Xi(m, k) and Xj(m, k) typi-

cally obtained by recursive averaging: [45]

8̂XiXj (m, k) = λ8̂XiXj (m− 1, k) + (1 − λ)Xi(m, k)X∗
j (m, k),

(3)

where λ is a constant between 0 and 1, and (·)∗ denotes the

complex conjugate.

If two microphone signals contain only direct sounds emit-

ted from a source, they are delayed and scaled versions of

each other, and fully coherent, as mentioned in Section I.

An estimate of the ratio between the coherent and diffuse

components, termed as the CDR [45] can be derived from

the spatial coherence functions by [45]

ĈDR(m, k) =
Ŵ̂N (m, k) − Ŵ̂X (m, k)

Ŵ̂X (m, k) − Ŵ̂S (m, k)
, (4)

where Ŵ̂S (m, k) and Ŵ̂N (m, k) are estimates of the short-time

complex spatial coherence functions of direct signal compo-

nents Si(m, k) and interfering components Ni(m, k),1 respec-

tively. Assuming a diffuse or spherically isotropic sound field

for Ni(m, k), an ideal coherence function of Ni(m, k) is real-

valued time-invariant and given by [46]

Ŵ̃N (k) =
sin(2π fkd/c)

2π fkd/c
, (5)

where fk is the analog frequency at the k-th frequency bin. d

and c denote the distance between the two microphones and

the speed of sound, respectively.

Without the need for explicit DOA estimation to obtain

Ŵ̂S (m, k), the knowledge that the direct sound from a source is

fully coherent derives the DOA-independent CDR estimator

given by [45], [47]

C̃DR(m, k) =
Ŵ̃N (k)ℜ{Ŵ̂X (m, k)} − |Ŵ̂X (m, k)|2 − Ŵ̄(m, k)

|Ŵ̂X (m, k)|2 − 1
,

(6)

where

Ŵ̄(m, k)

=

√

Ŵ̃2
Nℜ{Ŵ̂X }2 − Ŵ̃2

N |Ŵ̂X |2 + Ŵ̃2
N − 2Ŵ̃Nℜ{Ŵ̂X } + |Ŵ̂X |2.

(7)

1In the context of the CDR, the direct signal and interfering components
usually mean coherent and diffuse components, respectively. Background
noise including late reverberation belongs to the diffuse components.

FIGURE 1. DOA estimation of a sound source using TDE for a pair of
microphones.

The frame and frequency bin arguments are omitted for

brevity. ℜ and | · | denote the real part and absolute values

of a complex number, respectively.

Then, the contribution of diffuse components in the micro-

phone signals on a scale of zero to one can be obtained by the

diffuseness estimator defined as [45]

D̃(m, k) =
1

C̃DR(m, k) + 1
. (8)

III. PROPOSED SOUND SOURCE LOCALIZATION METHOD

In Fig. 1, the DOAof a sound source for a pair ofmicrophones

spaced by d , assuming that the distance from the source to the

center of microphones is much larger than d , can be given

by [1]

θ ≈ arcsin
(τTDE · c

d

)

, (9)

where τTDE denotes the difference between the times taken

by the sound from the source to reach the two microphones.

Therefore, the source direction can be determined by TDE

between signals acquired by the two microphones. The most

intuitive and popular approach to obtain τTDE is to find the

time lag corresponding to the maximum of the GCC function

of the two microphone signals: [1], [16], [18]

τTDE =
1

fs
· argmax

t
R12(t), (10)

where fs and t are the sampling frequency and time sample

index, respectively. The GCC function R12(t) of the two

signals can be efficiently computed by the inverse DFT of

the cross-power spectral density function:

R12(t) = F
−1{9 ⊙ X1 ⊙ X

∗
2}, (11)

where the vector 9 represents the frequency weighting, and

Xi denotes a vector whose k-th element is Xi(m, k) with the

omitted frame index.⊙ and ∗ represent the Hadamard product

and the element-wise complex conjugate operation on the

vector, respectively.

Among several weightings, the PHAT weight at frame m

and frequency bin k is given by

9(m, k) =
1

|X1(m, k)X∗
2 (m, k)|

. (12)
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The weighting normalizes the magnitudes to provide equal

weights for all frequency bins to form sharp peaks. There-

fore, the GCC-PHAT may provide the TDE robust against

reverberation, but it is known to be sensitive to ambient noise

as the normalization emphasizes frequency components with

small powers.

As mentioned above, direct sound from a source is helpful

for sound source localization, but components caused by

diffuse noise or reverberation interferes with the localization.

The direct sound and other components caused by diffuse

noise or reverberation may be assumed to be fully coherent

and diffuse, respectively. Because the diffuseness D̃(m, k)

represents the contribution of diffuse components in micro-

phone signals on the scale of zero to one, it can be used to

select t-f components of the observed signals directly emitted

by the source that are useful to achieve a TDE robust to

diffuse components and to further improve the robustness of

the GCC-PHAT against reverberation. Especially, in order to

choose highly reliable components containing direct sound

dominantly for accurate TDE in noisy and reverberant envi-

ronments, the mask is binarized with a very rigorous thresh-

old as

M (m, k) =

{

0 if D̃(m, k) > δD̃,

1 otherwise,
(13)

where δD̃ denotes the threshold.2 The GCC-PHAT on the

masked observations estimates the DOA θ by (9) after the

mask is applied in the STFT domain by replacing (11) with

R12(t) = F
−1{9 ⊙ M ⊙ X1 ⊙ X

∗
2}, (14)

whereM denotes a vector whose k-th element isM (m, k) with

the omitted frame index.

Furthermore, the time resolution of cross-correlation-

based methods including the GCC-PHAT is limited by the

sampling interval. To obtain an accurate DOA estimation

at a low sampling frequency for two microphones in close

proximity, the time resolution at a subsampling level should

be investigated. It can be performed by interpolating the GCC

function and determining its maximum. The interpolation of

the GCC function can be efficiently accomplished by padding

zeros to the weighted cross-power spectral density function

in (11).

In summary, the overall procedure of the proposed sound

source localization method is as follows:

• Begin

Step 1 Make a new frame of input data;

Step 2 Transform the frame into the frequency

domain;

Step 3 Compute the DOA-independent CDR estimate

by using (6) with (2), (5), and (7);

Step 4 Compute the diffuseness estimate by using (8);

Step 5 Compute the GCC function by using (14)

with (12) and (13);

2The threshold is optimized empirically in pilot experiments.

FIGURE 2. Source and microphone positions for experiments on
simulated data.

Step 6 Estimate a localization angle by using (9) with

(10);

Step 7 Go to Step 1.

• End

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed sound

source localization method in noisy and reverberant envi-

ronments, we simulated signals observed at two 12-cm-apart

microphones3 from a source in a 5 m × 4 m × 3 m rectan-

gular room. An observed signal was obtained by convolving

the source signal with an impulse response that simulates

the acoustics from the source to a microphone [48] and

by adding diffuse noise. Fig. 2 describes configurations to

generate observations. A sound source was placed in one of

five different angles at a distance of 1 m from the center

of the two microphones. The common height of the source

and microphones was 1 m. The reflection coefficients were

chosen to provide the reverberation times RT60s of every 0.2 s

from 0.2 s to 0.6 s. The source signal was composed of

concatenated sentences uttered by a speaker from the TIMIT

database [49]. The diffuse noise was simulated by summing

up signals convolved with the generated impulse responses

from virtual speakers playing randomly selected sections

of babble noise from NOISEX-92 [50] that were placed

at 1-m-spaced locations along walls with random heights.

In the convolving process, the source signal was upsampled

to 1024 kHz, convolved with acoustic filters generated at a

sampling rate of 1024 kHz, and downsampled back to 16 kHz

because the original sampling of 16 kHz was too low to

simulate signal delay at the twomicrophones standing nearby.

The length of the signals was fixed as 15 s. Noise components

for both the microphones were scaled by the same factor to

give a designated SNR at ‘‘mic. 1’’. As the distance between

the two microphones was 12 cm, the maximum time delay

between the microphones was 5.565 samples at the sampling

3For a 16-kHz sampling rate, an alias-free microphone spacing is
about 2.1 cm that is too close to acquire sufficiently different signals from
each other. In a practical situation, acquired signals usually contain noise.
If the microphone spacing is too close, the noise can be an important factor
in preventing accurate source localization.
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FIGURE 3. Spectrograms of (a) an input signal with an SNR of 20 dB and
an RT60 of 0.4 s, (b) its binary diffuseness mask estimated when λ = 0.8
and δ

D̃
= 0.2, (c) its transition noise mask by [28], (d) its DNN-based

masks by [36], and (e) its coherence mask by [42].

rate of 16 kHz. In order to obtain a sufficient time resolution,

we padded 32,256 zeros to 512 STFT coefficients such that

the maximum andminimum angle resolutions were 0.16◦ and

4.3◦,4 respectively.

Fig. 3 displays the spectrograms of an input signal with an

SNR of 20 dB and an RT60 of 0.4 s and its binary diffuseness

mask estimated when λ = 0.8 and δD̃ = 0.2. To compare

the diffuseness mask of the proposed method with t-f masks

with a range of values between 0 and 1 estimated by other

methods, Fig. 3 also shows a transition noise mask by [28],

a DNN-based mask by [36], and a coherence mask by [42].

The parameters for source localization in [36] were opti-

mized or trained by 600 utterances uttered by five male and

five female speakers (disjoint from speakers for evaluation)

at five different angles same as in Fig. 2 for four input

SNRs and three RT60s. Although the masks were similar

to the mask estimated by the proposed method in that they

distinguished t-f components dominated by a target speech

signal, it is noteworthy that themask obtained by the proposed

4Without the zero-padding, the maximum and minimum angle resolutions
were about 10◦ and 35◦ for each sample delay, respectively.

method successfully and rigorously selected t-f components

corresponding to auditory onsets that were helpful for robust

source localization.

The median value of localization angle estimates obtained

for all frames in an utterance was used as the estimated

angle for the utterance. Instead of the mean value, the median

value was used to remove outliers of the angle estimates at

frames where the target utterance was not dominant. Then,

the localization performance was evaluated in terms of the

mean absolute error (MAE) of estimated angles defined as

Eθ =

∑Nu
u=1 |θestu − θ trueu |

Nu
, (15)

where θestu and θ trueu denote the estimated and true localization

angles for the u-th utterance. Nu is the number of utterances,

and we used 30 concatenated sentences uttered by three male

and three female speakers at five different angles in this

experiment. In addition, we also considered the MAE of

estimated time delays to determine source directions because

the conversion by (9) is not linear. The MAE of estimated

time delays is defined as

EτTDE =

∑Nu
u=1 |τTDE

est
u − τTDE

true
u |

Nu
, (16)

where τTDE
est
u and τTDE

true
u denote the median value of time

delay estimates (with the zero-padding) obtained at all frames

and the true time delay for the u-th utterance, respectively.

The MAEs of the proposed localization method are dis-

played in Fig. 4 for four different input SNRs and three

different RT60s. For comparison, we showed the results of the

localization methods based on the conventional GCC func-

tion with uniform (CC), ML (GCC-ML), MLR (GCC-MLR),

and PHAT (GCC-PHAT) weights. We further presented the

results of the proposedmethod using a continuous diffuseness

mask without binarization (Prop. w/o bin.). Regardless of

the used methods, the MAEs increased in general as RT60

increased or the input SNR decreased. This is because an

increase in RT60 or a decrease in the input SNR increased

noisy or reverberant components interfering with the local-

ization. Under all the tested cases, the proposed method

considerably reduced the MAEs and consistently showed

comparable or lower MAEs than the others. In particular,

the proposed method provided comparable or better perfor-

mance than the method using a diffuseness mask without

binarization by choosing only t-f components highly reli-

able for accurate DOA estimation. In order to compare the

proposed method with other methods based on t-f mask

estimation, Fig. 5 displays the MAEs of the GCC-PHAT

method with no applied masks (No masks), the transition

noise masks by [28] (Masks by [28]), localization precision

masks by [32] (Masks by [32]), DNN-based masks by [36]

(Masks by [36]), coherence masks by [42] (Masks by [42])

and masks by the proposed method. The parameters for

source localization in [32] were also optimized or trained

by the same data as in [36] as mentioned above. Simi-

lar to Fig. 4, an increase in RT60 or a decrease in the

input SNR generally increased the MAEs. The proposed

VOLUME 8, 2020 7377
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FIGURE 4. MAEs of estimated angles (in the upper row) and time delays (in the lower row) for the localization methods based on the
conventional GCC function on 30 signals uttered by three male and three female speakers at five different azimuthal angles with RT60s
of 0.2 s (in the left column), 0.4 s (in the center column), and 0.6 s (in the right column). The infinite SNR means that no noise was added.
MAEs of estimated angles on data at RT60s of (a) 0.2 s, (b) 0.4 s, and (c) 0.6 s, and MAEs of estimated time delays on data at RT60s of
(d) 0.2 s, (e) 0.4 s, and (f) 0.6 s.

FIGURE 5. MAEs of estimated angles (in the upper row) and time delays (in the lower row) for the GCC-PHAT method with no masks, masks
by [28], [32], [36], [42], and the proposed method on 30 signals uttered by three male and three female speakers at five different azimuthal
angles with RT60s of 0.2 s (in the left column), 0.4 s (in the center column), and 0.6 s (in the right column). The infinite SNR means that no
noise was added. MAEs of estimated angles on data at RT60s of (a) 0.2 s, (b) 0.4 s, and (c) 0.6 s, and MAEs of estimated time delays on data
at RT60s of (d) 0.2 s, (e) 0.4 s, and (f) 0.6 s.

method provided comparable or better performance than

the others including the learning-based methods of [32]

and [36]. Although the learning-basedmethodsmight achieve

better performance with more various training data, it is

worth noting that the proposed method does not require a

learning process with training data in advance. Moreover,

the results demonstrated that the proposed method success-

fully selected t-f components that were helpful for sound

source localization and the localization using the selected

t-f components achieved robustness against noise and

reverberation.

To evaluate the probability of successful localization esti-

mates, Figs. 6 and 7 show the rates of localizations aver-

aged over the same 30 concatenated sentences as above.

The localization rate is defined as the ratio of the number

of frames providing time delay estimates corresponding to

successful localization, to the number of all frames, where

errors of the time delay estimates (with the zero-padding)

were less than or equal to three samples. Regardless of the

used methods, the rates of localizations decreased as RT60

increased or the input SNR decreased because localization

was disturbed by increased noisy or reverberant components.

7378 VOLUME 8, 2020
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FIGURE 6. Rates of localizations for the localization methods based on the conventional GCC function averaged over 30 signals uttered by
three male and three female speakers at five different azimuthal angles with RT60s of (a) 0.2 s, (b) 0.4 s, and (c) 0.6 s. The infinite SNR
means that no noise was added.

FIGURE 7. Rates of localizations for the GCC-PHAT method with no masks, masks by [28], [32], [36], [42], and the proposed method
averaged over 30 signals uttered by three male and three female speakers at five different azimuthal angles with RT60s of (a) 0.2 s, (b) 0.4 s,
and (c) 0.6 s. The infinite SNR means that no noise was added.

FIGURE 8. Source and microphone positions for experiments on
real-recorded data.

In particular, the proposedmethod showed comparable or bet-

ter performance than the others, which demonstrated that the

proposed method provided frame-wise localization estimates

with a higher probability.

To conduct experiments for real-recorded data, we used

four utterances uttered by two male and two female speakers

from the TIMIT database [49]. As shown in Fig. 8, 2-s-long

data (in the beginning part of each utterance) captured with

two microphones at a sampling frequency of 16 kHz in a

hall were considered for performing localization. A sound

source placed at a distance of 1 m or 3 m from the cen-

ter of the two microphones at an angle among azimuthal

angles of every 10◦ from −30◦ and 30◦. The heights of the

source and microphones were 1.4 m and 1.55 m, respectively.

Figs. 9 and 10 show the MAEs on 28 signals uttered by two

male and two female speakers at seven different angles for the

proposed and other localization methods. In this experiment,

FIGURE 9. MAEs of estimated angles (in the upper row) and time delays
(in the lower row) for the localization methods based on the conventional
GCC function on 28 real-recorded signals uttered by two male and two
female speakers at distances of 1 m (in the left column) and 3 m (in the
right column) from the center of the two microphones at seven different
azimuthal angles in a hall. MAEs of estimated angles on data at distances
of (a) 1 m and (b) 3 m, and MAEs of estimated time delays on data at
distances of (c) 1 m and (d) 3 m.

the parameters for [32] were optimized by 84 signals uttered

by three male and three female speakers (disjoint from speak-

ers for evaluation) at seven angles same as in Fig. 8 for two

distances, and the parameters used in the previous experiment

for [36] were finely tuned by the same data. Regardless of the

used methods, the MAEs increased as the distance between

the source and microphones increased because direct sound

from the source that was helpful for localization became

relatively diminished. Similar to the experiments on simu-
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FIGURE 10. MAEs of estimated angles (in the upper row) and time delays
(in the lower row) for the GCC-PHAT method with no masks, masks
by [28], [32], [36], [42], and the proposed method on 28 real-recorded
signals uttered by two male and two female speakers at distances of 1 m
(in the left column) and 3 m (in the right column) from the center of the
two microphones at seven different azimuthal angles in a hall. MAEs of
estimated angles on data at distances of (a) 1 m and (b) 3 m, and MAEs of
estimated time delays on data at distances of (c) 1 m and (d) 3 m.

FIGURE 11. Rates of localizations for the localization methods based on
the conventional GCC function averaged over 28 real-recorded signals
uttered by two male and two female speakers at distances of (a) 1 m and
(b) 3 m from the center of the two microphones at seven different
azimuthal angles in a hall.

FIGURE 12. Rates of localizations for the GCC-PHAT method with no
masks, masks by [28], [32], [36], [42], and the proposed method averaged
over 28 real-recorded signals uttered by two male and two female
speakers at distances of (a) 1 m and (b) 3 m from the center of the two
microphones at seven different azimuthal angles in a hall.

lated data, Figs. 11 and 12 show averaged rates of localiza-

tions. Although the rates of localizations decreased as the

distance increased, the proposed method provided frame-

wise localization estimates with a higher probability than the

others. Above all, the proposed method consistently provided

comparable or more accurate DOA estimates than the others,

which indicated that the proposed method accomplished suc-

cessful sound source localization even for the real-recorded

data in a hall.

V. CONCLUSION

In this paper, we presented a robust sound source localization

method based on GCC-PHAT in noisy and reverberant envi-

ronments. To estimate the DOA robust against diffuse noise

and reverberation, t-f components of observations directly

emitted by a source were selected by the diffuseness that

was computed from the CDR. In particular, the ‘‘inversed’’

diffuseness was binarized with a very rigorous threshold to

choose highly reliable components for accurate DOA estima-

tion even in noisy and reverberant environments. The exper-

imental results for both simulated and real-recorded data

consistently demonstrated the robustness of the presented

method against diffuse noise and reverberation.
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