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Abstract — Sound source localization (SSL) is a major 

function of robot auditory systems for intelligent home robots. 
The steered response power-phase transform (SRP-PHAT) is a 
widely used method for robust SSL. However, it is too slow to 
run in real time, since SRP-PHAT searches a large number of 
candidate sound source locations. This paper proposes a 
search space clustering method designed to speed up the SRP-
PHAT based sound source localization algorithm for 
intelligent home robots equipped with small scale microphone 
arrays. The proposed method reduces the number of candidate 
sound source locations by 30.6% and achieves 46.7% error 
reduction compared to conventional methods.1 
 

Index Terms — Sound source localization, steered response 
power (SRP), search space clustering, small scale microphone 
array, robot auditory system, intelligent home robot. 

I. INTRODUCTION 
Following on from recent advances in humanoid robot 

technology, intelligent service robots are expected to work in 
the living environment in the near future. They will support 
human activities, such as housekeeping and assistance for 
elderly people. While much of the previous effort in the 
development of robot technology focused on robot locomotion 
and vision systems, establishing an effective communication 
method between humans and robots is an imperative. Speech 
recognition is one of the most promising communication tools 
for human-robot interaction, for both expert and non-expert 
users, since it offers bidirectional interaction and diverse 
levels of control. Thus, the development of the robot auditory 
system plays a potentially important role in developing 
intelligent home robots working seamlessly with human users 
[1]. 

A core component of the robot auditory system for human-
robot interaction in home robot environments is sound source 
localization (SSL) [2]. When a user interacts with a humanoid 
robot using spoken language, the robot must be able to 
automatically find the location of the user, i.e., the location of 
the voice source. Fig. 1 describes a sound source localization 
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scenario for the small service robot developed at Samsung 
Electronics. For example, if the user says “Come here!” to the 
robot from a distance, the robot must be able to identify the 
user’s location, to respond appropriately. Moreover, the 
accurate estimation of the sound source location enhances 
speech quality by beamforming multichannel sound signals. 
This is useful for robots to recognize distant speech. In 
addition, sound source localization is one way to find the 
location of the speaker even in the dark. 

Many sound source localization methods have been 
proposed. For example, methods based on the time difference 
of arrival (TDOA) use generalized cross correlation (GCC) [3] 
to estimate the TDOAs and relate them to the location of the 
sound source. Methods based on high resolution spectral 
analysis [4] use spatial spectra derived from the signals to 
locate sound sources. Steered response power (SRP) methods 
[5] electronically steer the microphone array to locate the 
sound source with the highest power. The steered response 
power with the phase transform filter (SRP-PHAT) is a robust 
method for sound source localization when room reverberation 
is present [6]. However, SRP-PHAT methods usually employ 
a grid search scheme that examines a large number of the 
candidate sound source locations. Therefore, SRP-PHAT 
using the computationally intensive grid search method cannot 
be used in real-time systems, such as those of small size 
service robots with limited computational power. 

Several search methods have been proposed for real-time 
SRP-PHAT [7]-[9]. A hierarchical search method was 
proposed in [7] that gradually prunes the candidate sound 
source locations in a coarse-to-fine search. A drawback of this 
method is that it may prematurely prune the sound source with 
the highest power, before it reaches the final decision. A 
hybrid method was proposed to speed up SRP-PHAT in [8]. 
This method first generates a small set of candidate sound 
source locations using a TDOA-based search. It then performs 
a SRP-PHAT-based grid search on this small set of candidate 
locations. If TDOA estimation is unsuccessful in the first step, 
then SRP-PHAT will fail in the final decision. This method 

Fig. 1. Sound source localization of a small size home robot to find the
user’s location. 
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decreases sound source localization performance in low signal-
to-noise (SNR) environments due to its dependency on TDOA 
estimation to generate the small set of candidate locations. In [9], 
the cross-correlation functions are used to find the time delays 
that may correspond to the sound source location. An inverse 
mapping function relates a relative time delay to a set of 
candidate locations. Only the output powers of the locations that 
are inversely mapped by the time delays are considered to find 
the maximum power location. However, this method may fail to 
find the maximum power location, because it searches only a 
few locations that are inversely mapped by the relative time 
delay. In summary, none of these methods are admissible; their 
search results may differ from those of a full grid search, 
especially in noisy reverberant environments. 

We are interested in an efficient search method that always 
locates the sound source with the highest power in real-time 
using SRP-PHAT for small size robots with small scale 
microphone arrays. The resolution of the sound source 
localization result obtained by the SRP-PHAT method 
depends on the sampling rate and the microphone array 
geometry. If we can divide the whole search space in advance 
into sub-regions, each containing only the points with the 
same TDOAs of sound signals, and examine only the 
representative point from each sub-region to locate the sound 
source with the highest power, we can dramatically reduce the 
computational cost of the conventional grid search method. In 
this paper, we propose the search space clustering (SSC) 
method that efficiently divides the search space into sub-
regions, each of which contains only the points with the same 
TDOAs. The proposed method constructs a look-up table that 
contains the complete set of the unique regions having 
different TDOA values for the sound signals. By searching 
only one representative point per region, the computational 
cost can be greatly reduced without diminishing the accuracy 
of sound source localization compared to a full grid search. 
We demonstrate that the proposed method can be effectively 
applied to the auditory system of a small size service robot 
with a four-sensor microphone array. 

This remainder of this paper is organized as follows. In 
sections II and III, we review SRP-PHAT theory and propose 
the SSC method for real-time SRP-PHAT using small scale 
microphone arrays. Sections IV and V evaluate the 
performance of SRP-PHAT using the proposed SSC method   
in simulation and real room environments, respectively. 
Finally, we draw conclusions in section VI. 

II. REVIEW OF SRP-PHAT 
Consider an array of N microphones. Given the source 

signal, xn(t), received by the n-th microphone at time t, the 
output, y(t,q), of the delay-and-sum beamformer is defined as 
follows: 
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where, qn,τ  is the direct time of travel from location q to the n-
th microphone. Filter-and-sum beamformers using a weighting 
function may be used to deal with complex noises, such as 
reverberation. In the frequency domain, the filter-and-sum 
version of (1) can be written as: 
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where, ( )nX ω  and ( )nG ω  are the Fourier transforms of the n-
th microphone signal and its associated filter, respectively. In 
(2), the microphone signals are phase-aligned by the steering 
delays and summed after the filter is applied. 

The sound source localization algorithm based on the 
steered response power steers the microphone array to focus 
on each spatial point, q, and calculates the output power, P(q), 
of the microphone array for the focused point q as follows: 
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where, )()()( * ωωω kllk GG=Ψ . In SRP-PHAT, the filter to 
reduce the effect of reverberation is defined as: 
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After calculating the steered response power, P(q), for each 

candidate location, the point q̂  that has the highest output 
power is selected as the location of the sound source, i.e., 

 
)(maxargˆ qPq

q
=    .                            (5) 

 
The SRP-PHAT method has a very high computational cost, 
since it uses a grid search method to find the maximum power 
location, q̂ , in (5) by computing the output power at every 
point in the grid defined in three dimensional space. In the 
next section, we propose a search space clustering method that 
effectively reduces the search space of SRP-PHAT without 
decreasing its accuracy. 

III. SEARCH SPACE CLUSTERING 
Although SRP-PHAT calculates the output power at every 

point in the grid to find the sound source location with the 
highest output power, the output powers of the candidate 
locations are not all unique due to the finite sampling rate of 
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the analog to digital conversion. As shown in (3), the output 
power of a candidate location depends on the microphone 
signals and the phase differences caused by the steering delay 
required to focus the microphone array on the location. The 
phase difference is also in the discrete time domain, since the 
signals are converted into the digital domain. If any two 
candidate points are closely located, such that the phase 
differences, i.e., TDOAs, in the discrete time domain are the 
same, the output powers for the two locations are 
indistinguishable by (3). Therefore, if the candidate locations 
that have the same TDOAs are clustered together and the 
representative coordinate of each clustered group is stored in a 
look-up table in advance, then the computational cost can be 
greatly reduced, because only the pre-computed coordinates of 
the points in the look-up table will be searched using (3) in (5) 
without going through every point in the grid. 

The look-up table is constructed in advance using a top-
down clustering algorithm. First, the sample difference, sk,l,q 
that corresponds to TDOA for each microphone pair 
(microphones k and l ) at the location q is obtained as: 

 

( ))(round ,,,, qkqlqlk rs ττ −×=                        (6) 

 
where, r is the sampling rate. Initially, the entire search 
space is clustered as a single block. If the block is not 
sufficiently small and contains at least two points with 
different TDOAs, it is divided into eight smaller-sized 
blocks. This division process is repeated until every block 
in the search space becomes sufficiently small to contain 
only the points with the same TDOA. For instance, 

consider a microphone array system of four sensors. We 
can compute six TDOAs for a location q and collect them 
into a TDOA vector, since there are six microphone pairs in 
the system. That is, 

 
T

qqqqqqq sssssss ],,,,,[ ,4,3,4,2,3,2,4,1,3,1,2,1= .             (7) 

 
Given a block, as in Fig. 2 (a), we calculate eight TDOA 
vectors, i.e., one at each of the eight vertices of the block. If 
these eight TDOA vectors are not identical, the block is 
divided into eight smaller blocks, as shown in Fig. 2 (b). 
After the division process is completed, any two blocks 
with identical TDOA vectors are merged. Finally, the 
centroid of each block is stored in a look-up table. The 
proposed search space clustering method is very effective 
for small scale microphone array systems, where the 

number of unique points (i.e., centroids) with different 
TDOAs is much less than the total number of candidate 
locations in the grid. The search space clustering algorithm 
is summarized in Table I. 

IV. EVALUATION IN SIMULATION ENVIRONMENTS 
We evaluated SRP-PHAT with the proposed SSC method 

using the sound data simulated by the image method described 
in [10] to analyze performance under various SNR and 
reverberation conditions. Sound data were generated in a  5 x 
6 x 2 m3 room. We used a square microphone array of 0.17 x 
0.17 m2 with four sensors. The center of the microphone array 
was located at (2.5, 2, 0.3) meters in the room. The sound 
sources were placed in various positions, as shown in Fig. 3. 
The heights of the sound sources were 1.2 and 1.6 meters. We 
evaluated the performance of SRP-PHAT with SSC under 
three different SNR conditions (10, 20, and 30 dB) and three 
different reverberation times (20, 200, and 300 milliseconds). 
The source signal was contaminated with white noise to create 
different SNR signals. The source sound duration was 30 
seconds. The frame length was 128 milliseconds and the 
sampling rate was 16 kHz. 

(a) (b) 

Fig. 2. If the TDOAs at the eight vertices of a given block in (a) are not 
the same, the block is divided into eight smaller blocks, as in (b). 
 

TABLE I 
SEARCH SPACE CLUSTERING ALGORITHM 

Given the initial block b  representing the entire search space:  
}{bB ←  

φ←C  
while B  is not empty 

Calculate the TDOAs of each microphone pair at every 
vertex of b . 
if the TDOAs at all vertices of b  are the same 

}{bBB −←  
}{bCC ∪←  

else 
The block b  is divided into a set of smaller size blocks, 

821 ,...,, bbb , as shown in Fig. 2. 
end 
Any two blocks with the same TDOAs in C  are merged. 
The centroids of the blocks in C  are stored in a look-up table. 
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We compared the performance of SRP-PHAT with SSC to 
the conventional SRP-PHAT with the grid search scheme to 
analyze accuracy. We used various grid sizes ranging from 1 
to 20 centimeters for conventional SRP-PHAT. Conventional 
SRP-PHAT had to search 60,000,000 candidate locations, for 
a grid size of 1 centimeter. Conversely, there were only 5,203 
representative locations in the look-up table generated by SSC. 
That is, a reduction in the search space by a factor of 11,531. 

Fig. 4 and Fig. 5 show the sound source localization 
performance for varying SNR levels and reverberation times. 

Accuracy was measured as the percentage of correctly 
estimated directions of arrival (DOA) in the azimuth. The 
estimated DOA that lies within 10± of the true azimuth was 
counted as correct. Fig. 4 compares the sound source 
localization accuracy of SRP-PHAT with SSC to conventional 
SRP-PHAT, for various grid sizes (1, 10, 15, and 20 
centimeters), under three different SNR conditions (10, 20, 
and 30 dB). The reverberation time in Fig. 4 was 20 
milliseconds. Similarly, Fig. 5 compares sound source 
localization accuracy for three different reverberation times 
(20, 200, and 300 milliseconds). The average SNR in Fig. 5 
was 30 dB. SRP-PHAT with the SSC outperformed 
conventional SRP-PHAT with the grid sizes of 10, 15, and 20 
centimeters, regardless of the SNR levels in Fig. 4 and the 
reverberation times in Fig. 5. Fig. 4 and 5 illustrate that the 
SRP-PHAT with SSC performed with the same accuracy as 
conventional SRP-PHAT with the finest grid size of 1 
centimeter. This demonstrates that SRP-PHAT with SSC 
always locates the sound source with the highest output power 
that conventional SRP-PHAT with the finest grid size can find. 

V. EVALUATION IN REAL ENVIRONMENTS 
We recorded sound data in a classroom to evaluate the 

performance of SRP-PHAT with the SSC in real 
environments. A square microphone array of 0.17 x 0.17 m2 
with four sensors was attached on the shoulder of a plaster cast 
of the small size home robot shown in Fig. 6. The location of 
the microphones and the sound sources, the room size, and the 
source speech for the recording in the real environment, were 
the same as the conditions used for the simulated data 
generated in the previous section. The room reverberation time 
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Fig. 4. Sound source localization accuracies of SRP-PHAT with the
proposed SSC method, compared to conventional SRP-PHAT, with 
varying grid sizes (1, 10, 15, and 20 centimeters), and three different SNR 
conditions (10, 20, and 30 dB). 
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Fig. 3. Locations of the microphones and the sound sources for the 
simulated data experiments. 
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Fig. 5. Sound source localization accuracies of SRP-PHAT with the 
proposed SSC method, compared to conventional SRP-PHAT, with 
various grid sizes (1, 10, 15, and 20 centimeters), under three different
reverberation times (20, 200, and 300 milliseconds). 
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was about 530 milliseconds, and the average SNR of the 
recorded data was about 23 dB. Only those frames with SNR 
greater than 20 dB were processed for sound source 
localization. 

Table II compares SRP-PHAT with SSC to conventional 
SRP-PHAT for various grid sizes (1, 10, 15, and 20 
centimeters), in terms of their location accuracy, the number 
of candidate locations, and processing time (real-time factor). 
Accuracy was measured as the percentages of correctly 
estimated DOAs in azimuth as well as in elevation. An 
estimated DOA that lies within 10±  of the true azimuth and 
elevation was considered correct. As shown in Table II, when 
compared to conventional SRP-PHAT with a grid size of 20 
centimeters, SRP-PHAT with SSC reduced the number of 
candidate locations by 30.6%, whilst achieving error 
reductions of 41.9% in azimuth (from 10.5% to 6.1%) and 
50.7% in elevation (from 14.6% to 7.2%). SRP-PHAT with 
SSC dramatically reduced the number of the candidate 
locations by a factor of 11,531 compared to the conventional 
SRP-PHAT method with its finest grid size of 1 centimeter, 
without any loss of localization accuracy. SRP-PHAT with the 
proposed SSC method can run in 0.56 times of real-time. 

Fig. 7 shows the performance of SRP-PHAT with SSC 
relative to the performance of conventional SRP-PHAT. The 
figure shows the proposed method yields performance 
improvements of 4.7% for azimuth accuracy and 8.1% for 
elevation accuracy relative to conventional SRP-PHAT for a 
grid size of 20 centimeters, which corresponds to an error 
reduction of 41.9% in azimuth and 50.7% in elevation, as 
discussed previously. 

VI. CONCLUSION 
In this paper, we proposed a novel search space clustering 

method for SRP-PHAT that significantly reduces the 
computation time of conventional SRP-PHAT without 
performance degradation. The proposed method achieves this 
performance gain by the dramatic reduction in the search 
space, using the TDOA estimations in a way that guarantees 
the reduced search space always includes the location with the 
highest power.  As a result, SRP-PHAT with SSC will always 
find the highest output power locations, unlike conventional 
methods in [7]-[9]. Therefore, SRP-PHAT with the proposed 
SSC method is admissible for sound source localization. 

SRP-PHAT with the proposed SSC method has many 
advantages over conventional SRP-PHAT using the grid 
search method. First, SRP-PHAT with SSC always finds the 
sound source location with the global maximum output power 
under varying SNR conditions and reverberation times. 
Second, we observed that the proposed SSC method 
dramatically reduced the number of the candidate locations to 
be searched by SRP-PHAT, radically improving computation 
time. For example, the reduction in the candidate locations, 
compared to conventional SRP-PHAT, ranged from 30.6% for 
the grid size of 20 centimeters to over 99.9% for the finest grid 
size of 1 centimeter. Finally, despite the dramatic search space 
reduction, SRP-PHAT with SSC, still achieved an error 
reduction of 41.9% in azimuth and 50.7% in elevation. In the 
real environment experiments, the robot was able to 
distinguish 18 directions for incoming sounds with 93.9% of 
the azimuth accuracy and 92.8% of the elevation accuracy. 
Following these promising results, the proposed method can 
be successfully used for the real-time auditory system of small 
size home robots with four sensor microphone arrays. 

TABLE II 
LOCALIZATION ACCURACY, NUMBER OF SEARCH POINTS AND REAL-

TIME FACTOR 

Grid Search 
 

20cm 15cm 10cm 1cm 

Search Space 
Clustering 

Azimuth (%) 89.5 89.9 93.6 93.9 93.9 

Elevation (%) 85.4 88.8 89.2 92.8 92.8 

Number of 
Search Points 7,500 19,000 60,000 6x107 5,203 

Real-Time 
Factor  0.63 1.0 2.8 220 0.56 
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Fig. 7.  Sound source localization performance of the SRP-PHAT with the
proposed SSC method compared to the conventional SRP-PHAT with 
various grid sizes (1, 10, 15, and 20 centimeters) in real environment. 

 
 

Fig. 6. Location of microphones for a small size home robot. 
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The proposed method greatly reduces the size of the search 
space and thus the computational cost of SRP-PHAT for the 
small scale microphone arrays. Although we observed a 
significant reduction in the size of the search space when large 
scale microphone arrays were used, the reduction rate was not 
as dramatic as in the case of small scale microphone arrays. 
We are currently developing a search space clustering 
algorithm that is scalable to the larger systems. 
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