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Abstract: Our goal is to develop sound synthesis technology that users can synthesize arbitrary sound
timbre, including musical instrument sounds, natural sounds, and their interpolation/extrapolation on
demand. For this purpose, we investigated sound interpolation based on physical modeling. A sound-
synthesis model composed of an exciter, a one-dimensional vibrator, and a two-dimensional resonator
is used, and smooth timbre conversion by parameter control is examined. Piano and guitar sounds are
simulated using this model, and interpolation between piano and guitar tones is investigated. The strat-
egy for parameter control is proposed, and subjective tests were performed to evaluate the algorithm. A
multidimensional scaling (MDS) technique is used, and perceptual characteristics are discussed. One
of the axes of the timbre space is interpreted as spectral energy distribution, so the spectral centroid is
used as a reference to adjust parameters for synthesis. By considering the centroids, smoothly interpo-
lating timbre is achieved. These results suggest the possibility of developing a morphing system using
a physical model.

Keywords: Sound interpolation, Physical modeling, Struck strings, Plucked strings, MDS, Spectral
centroid
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1. INTRODUCTION

Physical modeling synthesis is now becoming one of
the most promising methods used to simulate musical in-
strument sounds. Since the artificial instrument can have
the same control parameters as the real one, the users
can control its timbre more intuitively than other abstract
methods. Many artificial instruments have recently been
developed [1–3]. Researches on flexible model struc-
tures [4, 5] and on cost-effective algorithms for real time
implementation [6, 7] have been reported. Now there are
various synthesis systems with expressive control.

Controlling timbres of different musical instrument
sounds and between them using physical models, how-
ever, has not been attempted so far. Such techniques,
called timbre morphing, have been attacked by signal-
based methods. Several researchers, including one of the
authors, have discussed morphing or sound interpolation
techniques [8–11]. In the field of speech synthesis, speech
morphing has been investigated [12–14]. Morphing based
on the sinusoidal model or other analysis-based methods
is done by first interpolating model parameters extracted
from the two sounds, then resynthesizing using the inter-
polated parameters. The advantage of such an approach
is that almost any sound can be handled and that a variety

of timbre can be achieved. The main disadvantage is that
too many parameters must be handled for resynthesis, and
transient parts of a signal are difficult to treat.

Some morphing algorithms are already used in soft-
ware tools [10], and some computer music composers are
making use of them. However, evaluations in terms of
timbre perception have not been necessarily performed.
Jaffe [15] has outlined the evaluation criteria for synthesis
techniques, but comparative study has been insufficient.
As a result, the user must select parameters after a tedious
trial-and-error procedure in order to obtain the desirable
timbre. The situation is that intuitive control is difficult.

In the field of psychoacoustics, the perceptual space
for timbre has been derived by subjective tests using vari-
ous acoustic instrument and synthesized sounds [16–18],
and several features which affect the timbre perception
have been investigated. As an evaluation framework,
a multidimensional scaling (MDS) technique is usually
used. In this paper, MDS technique is utilized for evalua-
tion.

Our goal is to develop sound synthesis technology
that users can synthesize arbitrary sound timbre, includ-
ing musical instrument sounds, natural sounds, and their
interpolation/extrapolation on demand. We intend to uti-
lize the controllability of physical models in order to ap-
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ply a sound morphing system to various sounds. The mor-
phing techniques include 1) extracting the model param-
eters from the original signals, 2) modifying the param-
eters, and 3) synthesizing the signals. We are primarily
concerned here with smooth timbre control using a phys-
ical model.

According to an approach to physical modeling syn-
thesis, sound sources are physically modeled, and used
for synthesis. Here, interpolation of sound source is con-
sidered. For two sound sources having the same produc-
tion mechanism, sound interpolation can be achieved by
simply interpolating different physical parameters. For
two sources having a different production mechanism,
an integrated model that includes the different models is
considered (referred to as “structural interpolation”). Ac-
cording to this approach, all intermediate sounds have the
production mechanism, and as a result, sounds of natu-
ral and homogeneous quality are expected. Furthermore,
the number of parameters needed for synthesis is gener-
ally smaller than that of signal-based methods. The major
disadvantages are that a model or algorithm must be built
first and that the model limits the timbre range that can be
produced.

The purpose of this paper is to propose a synthesis
algorithm that achieves smooth and gradual timbre con-
version from one timbre to the other, i.e. timbre inter-
polation. Interpolation approaches are twofold: one is
“structural” and the other is “characteristic.” Piano and
guitar sounds are selected as two targets which are rep-
resented by a unified physical model, and the interpola-
tion between them is investigated. Both have a similar
mechanism: the strings are excited by an object, and the
vibration of the strings propagate to a resonator, and ra-
diate into the air. The key idea for interpolation is that
by properly adjusting the parameters, two different tim-
bre can be synthesized by one model, and that smooth
transition from one timbre to another may be possible.

In the next section, the physical model is briefly de-
scribed. Then the strategies for smooth interpolation are
presented, and the algorithm is evaluated by subjective
tests. The relationships between physical and perceptual
characteristics are investigated. Modification of the al-
gorithm is also introduced, and subjective tests are per-
formed to evaluate this modification. We discuss the ex-
perimental results and criteria for timbre interpolation in
section 4. Section 5 concludes the whole paper.

2. PHYSICAL MODEL

2.1. Model Structure
For the purpose of synthesis, cost-effective algo-

rithms which are tuned for real time processing are well-
known. However, in order to clarify the relationship be-

tween physical parameters and synthesized tones, we use
the classical method based on numerical solutions of dif-
ferential equations, and assume a simple model which is
composed of an exciter, a vibrator, and a resonator con-
nected in series (Fig. 1). The present model describes the
transverse, one-dimensional vibration of a string/strings
and that of a plate generated by an exciter. This can be
regarded as one of the simplest models for the piano.

The exciter and the vibrator model used here is basi-
cally the same as that reported by Hiller and Ruiz [19,20],
and further elaborated by Chaigne and Askenfelt [21, 22]
for the simulation of the vibration of a piano string struck
by a hammer. This struck-string model is modified to en-
able us to interpolate sound to obtain a timbre between
striking and plucking. The resonator model represents the
transverse vibration of the plate.

The next three subsections describe each component
of the physical model.

2.2. A Vibrator Model
The present model describes the transverse motion

of a one-dimensional vibrator with damping, which is
struck/plucked by a nonlinear hammer/plectrum. The vi-
brator includes strings and bars, i.e. elastic media.

The vibrations are governed by the following equa-
tion:

∂ 2y
∂ t2 =

T
µ

∂ 2y
∂x2 −

κ 2ES
µ

∂ 4y
∂x4 −2b1

∂y
∂ t

+2b3
∂ 3y
∂ t3 + f (x,x0,t), (1)

where y is string displacement, µ is line density, T is ten-
sion, E is Young’s modulus, κ is the radius of gyration,
S is the cross-sectional area, b1 and b3 are damping coef-
ficients, f (x,x0,t) is force density, and x0 is the distance
of the hammer from one end of the string. Stiffness and
damping terms are included. The two partial derivatives
of odd order with respect to time simulate a frequency-
dependent decay rate of the form,

d(ω) = b1 +b3 ω2,

where ω denotes angular frequency.
The force density term f (x,x0,t) represents the exci-

tation by a hammer, a plectrum, or fingers. This term is
limited in time and distributed over a certain width.

Fig. 1 A block diagram of a physical model used in the experiment.
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The string is assumed to be hinged at one end and con-
nected to a resonator at the other end, which corresponds
to the following four boundary conditions:

y(0,t) = 0, y(L,t) = z(x1,y1) (2)

and
∂ 2y
∂x2 (0,t) =

∂ 2y
∂x2 (L,t) = 0, (3)

where z(x1,y1) is resonator displacement and (x1,y1) is
the point at which the plate is connected to the end of the
string.

2.3. Excitation Model
According to Ref. [21], the motion of the piano ham-

mer and the collision process of the hammer with the
string are described as

MH
d2η
dt2 = −FH(t), (4)

FH(t) =
{

K|η (t)− y(x0,t)| p, η (t) ≥ y(x0,t)
0, η (t) < y(x0,t)

(5)

where η is hammer displacement, FH(t) is hammer force,
and MH is hammer weight. Coefficients K and p are
determined experimentally. The relationship between
f (x,x0,t) and FH(t) is

f (x,x0,t) =
FH(t)g(x,x0)

µ
∫ x0+δx

x0−δx
g(x,x0)dx

, (6)

where 2δx is hammer width, g(x,x0) is force distribution
along the string, and µ is line density of the string. This
is the struck-string model used in Ref. [21]. The duration
of contact between the hammer and string is derived au-
tomatically by solving Eqs. (1)–(6). We refer to this as
force duration time in the struck-string case tst.

On the other hand, the most primitive model for
plucking is described by specifying the initial shape of
a string. Recently, more elaborate physical models of the
plucking process have been reported [23, 24] and some
have been used for sound timbre control [25, 26]. They
are based on mass-spring representation. Since they are
developed independently with a hammer-string interac-
tion model, the struck-string model and the plucked-string
model have little in common. Here, we will explain how
to extend the struck-string model to the plucked-string
model.

Fig. 2 Behavior of an exciter and a string in the striking
and the plucking motions. The rectangle represents an
exciter, and the circle represents a string. The dotted
line means the equilibrium position of the string. (a)
Struck case. The hammer moves straight down (or up).
(b) Plucked case. The solid line represents a rod, and
the plectrum moves in a circular motion with the rod.

The most significant difference between striking and
plucking appears at the end of an excitation force signal
applied to a string. When a string is struck, the string is
pushed downward by a hammer, as shown in Fig. 2(a).
Compressive force given by Eq. (5) is exerted on both
the string and the hammer, as depicted by “contact and
compression.” Then, the string pushes back the hammer,
and when the distance between the string and the hammer
becomes zero, the hammer releases from the string nat-
urally, as shown by “natural release” in Fig. 2(a). When
a string is plucked, on the other hand, the finger or plec-
trum is pulled off the string suddenly and the excitation
force becomes zero at the end of the contact period, as
depicted by “sudden release” in Fig. 2(b). Hence, another
force duration time tf, specified by users, is introduced to
the conventional model. The proposed excitation model
is expressed as

FH(t)

=
{

K|η (t)− y(x0,t)| p, η (t) ≥ y(x0,t) and t < tf
0, others

(7)

If the value of tf is large enough to satisfy tf ≥ tst,
where tst denotes force duration in the struck-string case,
Eq. (7) expresses the conventional struck-string model
shown in Eq. (5). On the other hand, when tf is set so that
tf < tst, force signal is truncated before natural release, and
becomes zero at t = tf like a step function. This represents
one of the characteristics of plucked excitation. In the
experiment reported later, it will be shown that the pro-
posed model can treat both cases and intermediate condi-
tions continuously by controlling tf and other parameters.
We refer to this as “structural interpolation,” which means
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structural differences between struck and plucked string
are focused on. Frictional force, which may be exerted on
the exciter and the string, is not considered in this model.

2.4. A Resonator Model
A resonator model used here is a rectangular plate

with supported boundaries. This is one of the simplest
approximations for a piano soundboard. The soundboard
is connected to one end of a string/strings meeting at a
point.

The vibration of the plate connected with the
string/strings is described as

∂ 2z
∂ t2 = − κ 2E

ρ(1−ν2)
∇ 4z−2b1

∂ z
∂ t

+2b3
∂ 3z
∂ t3 +

Fs(t)
ρh

δ(x− x1)δ(y− y1), (8)

where z is plate displacement, ρ is density, ν is Poisson’s
rate, E is Young’s modulus, κ is the radius of gyration,
h is thickness, Fs(t) is the force exerted from the end of
the string/strings on the plate, δ(x) is Dirac’s delta, and
(x1,y1) is the junction between the strings and the plate.
The force Fs(t) is derived by

Fs(t) = T
∂y
∂x

∣∣∣∣
x=L

. (9)

2.5. Numerical Solution
Equations (1)–(4) and (6)–(9) can be digitized by us-

ing an explicit finite difference scheme, which lead to
the recurrence equations. The velocity signal at the junc-
tion between the string/strings and the plate, which corre-
sponds to a bridge, is calculated and used as synthesized
sound. The recurrence equations are not shown here for
simplicity.

When digitizing the continuous equations, the appro-
priate number of segments N must be chosen. For a stan-
dard explicit finite different scheme, stability and numer-
ical dispersion requirements determine the appropriate
value. Using the Fourier’s method, Chaigne has shown
this value in the lossless case (b1 = b3 = 0) for a string
(T �= 0) [23]. Nakamura has derived the appropriate N
when considering frictional damping coefficient b1 [27].
Here, both b1 and b3 are considered and the optimum N
value is determined. After some calculations, the solution
of the following equation

κ 2SE∆ t2

µL4 N4 +
T∆ t2

µL2 N2 −1+b1∆ t − 3b3

2∆ t
≤ 0 (10)

gives the maximum number Nmax, and the optimum N
value is determined as a maximum integer which is less

than Nmax. The value of Nmax varies with other parame-
ters, so N is calculated by other physical parameters for
synthesis. The number of plate segments is also deter-
mined so as to fulfill the stability requirement.

The next section describes attempts to control param-
eters in order to achieve smoothly interpolated sounds.

3. EXPERIMENT

3.1. Parameter Fitting
The problem of parameter estimation from acoustic

signals is beyond the scope of this paper. Here, some
parameters are found in Ref. [21], gained experimen-
tally, and others are selected by trial-and-error proce-
dures. Subjective listening tests were carried out, and
the FFT spectra of recorded sounds and those of the syn-
thesized sounds were compared. In fitting the resonator
parameters, our intent was not the precise modeling of
the piano’s plate or the guitar’s body. Instead, overall fre-
quency and time characteristics are imitated. The compar-
ison of the FFT spectrum of piano sounds with that of gui-
tar sounds showed that the piano’s spectrum has denser
peaks, and reaches higher frequency. It also showed that,
in terms of time characteristics, the piano has longer re-
verberation than the guitar. Therefore, relatively small
values were used for the damping coefficients of the plate
for the piano to simulate its longer reverberation. For the
guitar, larger damping coefficient values were used to en-
sure the frequency modes of the resonator are sufficiently
damped. After several trials, parameter sets for a piano-
like struck-string sound and a guitar-like plucked-string
sound were determined.

Then, the piano tone was simulated using the fitted
resonator and three slightly detuned strings. This resulted
in the production of beats, which is one of the most salient
features of real piano tones.

For the simulation of the guitar, the lowest mode fre-
quency of the resonator was fitted to 100 Hz by modify-
ing density and damping coefficient parameters. This cor-
responds to the Helmholtz resonance of the guitar body.
The stability condition requires a smaller N value than
that used in synthesizing the other sounds in considera-
tion, a different N was used for guitar synthesis.

3.2. Parameter Control
Consider two different media having different phys-

ical parameters, and interpolated sounds are synthesized
using these two parameter sets. Here, the interpolation
ratio α (0 ≤ α ≤ 1) is an index showing how close or far
the synthesized sound is to the timbre of the two end-
points. Here, α = 0 and α = 1 represent the timbre of the
endpoints, respectively. Interpolation was controlled by
parameter α .
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Fig. 3 Force signals with various values of α . α =
1.0 corresponds to striking (solid line), and natural
release occurs at 1.7 ms. α = 0.0 corresponds to
plucking (dotted line), and sudden release occurs at
2.4 ms. By changing parameter α , smooth interpolation
is achieved.

Fig. 4 Velocity waveforms at a point on a string for
α = 0.0, 0.3, 0.7, and 1.0 are shown. α = 0.0 cor-
responds to a plucked-string case, and α = 1.0 corre-
sponds to a struck-string case. For α = 0.0, a pulse-like
feature is clearly seen. This feature is one of the char-
acteristics of a plucked-string waveform.

3.2.1. Interpolation of excitation condition
Subscripts st and pl mean struck and plucked, respec-

tively. There are four parameters for the excitation con-
dition, namely, MH, K, p, and tf. All the four parameters
are related to the amplitude, shape, and the duration of
the force. Since proper values of these parameters are un-
known, and since it is desirable that the number of control

parameters be small, MH and K were fixed and p and tf
were interpolated for simplicity. For the plucking condi-
tion, tpl was simply fixed to tst/2. This condition was de-
termined after several trials using various values. Strictly
speaking, however, the duration time tpl could be deter-
mined by the displacement of the exciter η , the width
of the exciter w, and the radius of circular motion r, as
shown in Fig. 2(b). When the horizontal displacement of
the exciter exceeds w/2, release occurs and the time du-
ration tpl is calculated. When the interpolation parameter
α = 0.0 and α = 1.0 correspond to plucking and striking,
interpolated parameters are calculated by

p(α ) = α pst +(1−α )ppl, (11)

tf(α ) = α tst +(1−α )
tst

2
=

1+α
2

tst. (12)

An example of force signals for various α values is shown
in Fig. 3. By changing parameter α little by little, the
force signal varies gradually. For α = 1.0, several peaks
occur as a result of multiple impact with reflected waves
from the end of the string. This feature has been found in
conventional hammer-string interaction models [21]. For
α = 0.0, it is reasonable that the release occurs around
the maximum point in the force function, as depicted in
Fig. 3. Figure 3 shows that an interpolation is achieved in
the force domain.

Velocity waveforms at a point on a string for α = 0.0,
0.3, 0.7, and 1.0 is shown in Fig. 4. For α = 0.0, a pulse-
like feature is clearly seen in the velocity waveform. This
feature is one of the characteristics of a plucked-string
waveform.
3.2.2. Interpolation of vibrator and resonator parame-

ters
Damping coefficients of the vibrator b3, and those of

the resonator b1 and b3 were interpolated linearly between
the two endpoints. In order to avoid variations of fre-
quency partials, the other parameters were fixed.

In the next subsection, effects of changing the damp-
ing parameters on the synthesized tones are investigated,
and strategies to implement smooth interpolation are ex-
amined.

3.3. Strategies for Smooth Interpolation
This subsection describes the strategies to implement

timbre interpolation between simulated piano and guitar
tones. Subjective similarity tests were conducted in or-
der to evaluate the strategies, and the relationship between
physical characteristics of synthesized tones and percep-
tual spaces derived from the tests were examined. Prelim-
inary test results show that a simple linear interpolation of
all the parameters does not work well, as expected.

In order to implement smooth interpolation, the tran-
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Table 1 Values of the control parameters used for sound synthesis. tnr shows time duration until natural release occurs, and
determined by simulation. The symbol — means that the value is the same as in the left cell.

Parameters piano struck plucked guitar plucked 2

Exciter striking position i 0.12 — — — —
hammer mass MH [kg] 2.97×10−3 — — — —
stiffness coefficient K 4.5×109 — — — —
initial velocity VH [m/s] 5.0 — — — —

stiffness exponent p 2.5 — 3.5 — —
force duration tf [s] tnr — tnr/2 — —

Vibrator length L [m] 0.62 — — — —
radius a [m] 5.0×10−4 — — — —
density ρ [kg/m3] 8.07×103 — — — —
tension T [N] 1,058.9 — — — —
Young’s modulus E [N/m2] 2.0×1011 — — — —
damping coefficient b1 0.5 — — — —
number of string segments N 61 — — — —

tuning difference [cent] 0.9 0 — — —
damping coefficint b3 3.0×10−9 — 4.0×10−8 — 1.0×10−9

Resonator length (Lx, Ly) [m] (1.0, 1.0) — — — —
thickness h [m] 2.6×10−2 — — — —
Young’s modulus E [N/m2] 1.0×1010 — — — —
Poisson’s rate ν 0.3 — — — —
position of connection (x1, y1) (0.24, 0.36) — — — —

density ρ [kg/m3] 6.0×104 — — 1.4×103 6.0×104

damping coefficient b1 10.0 50.0 — 5.0 5.0
damping coefficient b3 1.0×10−7 — 1.0×10−5 — —
number of plate segments N 50 — — 20 50

sampling frequency fe [kHz] 48 — — — —

sition path was divided into three domains:
1. From a piano to a struck-string tone,
2. from a struck-string to a plucked-string tone, and
3. from a plucked-string to a guitar tone.
First, the gradual change in timbre from a piano tone

to a struck-string tone was created by the following pro-
cedure.

1. The piano tone was simulated using three slightly
detuned strings. The difference between strings in
cents was gradually changed to 0. This decreases
beats.

2. The damping coefficient of plate b1 was gradually
varied to the larger value. This avoids creating a
sharp resonance and an undesired change in the
time envelope.

Next, the transition from a struck-string sound to a
plucked-string sound was synthesized by:

1. interpolating excitation condition, and
2. interpolating damping coefficients of the string and

plate b3 linearly on a log scale, while keeping the
damping coefficient of plate b1 constant.

For the third domain, the lowest mode frequency of
the resonator was made to approach the Helmholtz reso-

nance of the guitar body by adjusting density and damp-
ing coefficient. A smaller number of plate segments N
was used to satisfy the stability condition.

The numbers of samples selected from the three do-
mains are the following. Piano to struck-string uses 4
tones. Plucked-string to guitar uses only 2 tones, because
there is very little difference between a guitar tone and
a plucked-string tone. For intermediate tones between
struck and plucked, 6 sounds are synthesized, at physi-
cally equal intervals, i.e. 0%, 20, 40, 60, 80, and 100%.

Using the above procedure, 10 sounds were synthe-
sized and their timbres were gradually changed from pi-
ano to guitar (referred to as Series A). Each sound is iden-
tified by indices from 1 to 10. The target fundamental
frequency was set to 329.63 Hz (middle E), and the du-
ration was 2.0 s. The parameters used for synthesis are
summarized in Table 1. Waveforms and FFT spectra of
the synthesized sounds are shown in Fig. 5.

3.4. Subjective Evaluation
Subjective evaluation is performed using the synthe-

sized tones. The last 10 ms of the stimuli was linearly
tapered in the case that pulse-noise might be heard. The
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Fig. 5 Waveforms and FFT spectra of the synthesized sounds are shown. The length for analysis is 500 ms. (a) A piano
tone. (b) A guitar tone. (c) A struck-string tone. (d) A plucked-string tone.

overall power of the stimuli was equalized. Ten subjects,
from 18 to 27 years of ages, were employed for this ex-
periment. In each trial, two tones randomly selected out
of 10 synthesized tones were presented, preceded by 0.5-
second-long white noise, and a decision interval of 2.5 s
was given. Sounds were recorded on DAT, and subjects
listen to the stimuli through headphones (STAX-Λ Pro).
Subjects judged the timbral similarity of the pair of tones
on a seven-point scale. The value 0 corresponds to the
“same,” and 6 corresponds to “totally different.” There
were 4 trials for each pair including both orders of the
tones, and 180 trials in total.

For each pair, a mean score of the judgement across
subjects and repetitions is calculated, and is regarded as a
subjective distance. A multidimensional scaling (MDS)
technique was adapted to the subject distance data. A
two-dimensional solution modeled the responses with a
stress of 12.2%. Figure 6 displays the solution.

Fig. 6 Perceptual timbre space of the 10 synthesized
tones (Series A). Two-dimensional space is generated
by MDS (Kruskal’s stress = 0.122). Index 1 means pi-
ano tone and 10 means guitar tone.
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Fig. 7 The spectral centroid values versus the stimulus
index is shown. When moving from piano to guitar, the
centroid value once increases, and decreases.

The plot shows degeneration for the indices 1–4 and
9–10. The path makes a curve, and the index 6 is not lo-
cated in between the two edges, although it has almost
the same distances from the edges. This result does not
satisfy intermediateness. This is because the subjective
distances show saturation.

In order to interpret the axes in timbre space, synthe-
sized signals are analyzed in terms of time and spectral
characteristics. Here, the spectral centroid and the time
envelope are calculated.

3.5. Signal Analyses
3.5.1. Spectral centroid

In the previous studies on timbral perception, the re-
lationship between one axis in sound timbre space and
the spectral energy distribution of a stimulus was often
pointed out (e.g. [16, 18]). As a representative of the
spectral distribution, the centroid frequency or the spec-
tral centroid is calculated, and the relationship between
the centroid and timbral perception is investigated.

The spectral centroid is calculated by the following
procedure.

1. For a windowed (Hanning) signal with 2N length,
FFT spectrum is calculated.

2. For the FFT spectrum X(k), k = 0, . . . , N −1, the
mean power for each subband A( j) is calculated by

A( j) =
1
L

L−1

∑
i=0

|X(i+ jL)|2, j = 0, . . . , M−1,

where M is the number of subbands and L is the
number of samples included in each band.

3. Convert to log power (so that its minimum is zero),
and normalize by the total power, and derive the
relative power B( j).

B( j) =
10log(A( j)+1)

M−1

∑
j=0

10log(A( j)+1)

, j = 0, . . . , M −1

Spectral centroid C is calculated by

C =
M−1

∑
j=0

B( j)
2 j +1

2M
.

The centroid value is normalized by half the sampling fre-
quency, so when the number of subbands is 1, C = 0.5.
The main effect of using the subbands is smoothing, i.e.,
detailed variations are neglected. The signal is trun-
cated from the start with length 2N = 32,768 samples
(� 0.68 s), and used for analysis.

The spectral centroids versus the stimulus index is
shown in Fig. 7. The number of subbands = 24, 48, and
96 is investigated, and there was little difference between
the trend of the centroids. Therefore, 24 (bandwidth =
1 kHz) is used. From stimuli 4 to 6, the centroid increases
rapidly, and from 7 to 10, it decreases linearly. When
moving from piano to guitar, the centroid value once in-
creases, and decreases again.

In Fig. 6, the plot moves monotonically from right to
left in terms of the axis parallel to the straight line which
connects the two edges. For another axis which perpen-
dicular to the first one, the plot of the tone first moves
downward and reaches the bottom at the index 6, then
moves upward. From Figs. 6 and 7, it is suggested that
this second axis has a relationship with the spectral cen-
troid of the stimuli.
3.5.2. Time envelope

Time envelopes of the synthesized sounds are calcu-
lated and compared. Here, segmental power is calcu-
lated every 20 ms. Tones of both end-points have differ-
ent characteristics, and intermediate tones show almost
the same curves. Synthesized piano tone exhibits ampli-
tude modulation, which is due to the slight detuning of
the strings. Simulated guitar tone also has envelope varia-
tions because of the resonance between the string and the
body. However, no correlation was found between time
envelopes and the plot in Fig. 6.

3.6. Consideration of the Spectral Feature
From the experimental results obtained above, it was

suggested that the spectral centroid was related to one axis
in the perceptual space. In this section, a modified syn-
thesis algorithm is proposed using the spectral centroid
value. The basic idea is that the timbres of the sounds
may be changed linearly by keeping their centroid values
changing linearly.

As an adjusting parameter of the centroid, frequency
damping coefficient of a string b3 is used. This parameter
has a relationship with damping for high-frequency band
in spectral envelopes, and the value is in proportion to
damping, i.e., when b3 value is high, the high-frequency
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band is also highly damped. Furthermore, when the high-
frequency band of the spectrum is damped more, the spec-
tral centroid becomes smaller. Therefore, the algorithm
for calculating a series of interpolated sounds which uses
the spectral centroid can be considered in the following.

1. The spectral centroids for the both endpoints’
sounds are calculated.

2. For each interpolation rate, the initial b3 value of
the string is calculated by linear interpolation on a
log scale. The plate’s b3 value is also calculated by
linear interpolation on a log scale.

3. The target value for the spectral centroid is calcu-
lated by interpolating the endpoints’ centroids lin-
early.

4. The synthesized tone is created, and the centroid is
calculated. If the difference between this value and
the target value is smaller than the threshold, calcu-
lation is stopped. If not, the damping coefficient b3

of the string is modified, and go to Step 4 again.
5. The process above is done for all interpolation

rates.

Using this method, two series of tones are synthe-
sized. As a difference threshold for the centroid, 0.005 is
used, and increment/decrement step size for the b3 value
is set to 2.0×10−10, around 5–10% of the b3 values used.
The first series (referred to as Series B) uses the same
endpoints as used for Series A (as described in section
3.3). The second series (referred to as Series C) does not
use the simulated guitar tone, and uses another parameter
set for the plucked-string endpoint, which is referred to as
“plucked 2” in Table 1. This tone has higher energy in the
high-frequency band than the one used in Series B. The
spectral centroid of this sound is expected to have a much
higher value in comparison with that of the piano tone.
For Series C, the centroids of some samples did not reach
their target values even when b3 = 0.0. So, the struck-
string point (index 4) was also used as an endpoint and
two straight lines are drawn between three endpoints for
the target centroid trend.

Using the synthesized tones, subjective tests are per-
formed, and the subjective distances are measured. Ex-
perimental procedure is the same as in section 3.4.

Two-dimensional solutions of the MDS calculated
from the similarity data for Series 1 and 2 are shown in
Figs. 8 and 9, respectively. Each solution modeled the
response with a stress of 7.1 and 4.5%, respectively.

In Fig. 8, the plot shows degeneration for the indices
1–3. The path again makes a curve, and all stimuli are
located near the straight line which connects both edges,
especially when excluding the stimulus 9. Therefore, the
intermediateness is relatively confirmed.

Fig. 8 Perceptual timbre space of the 10 synthesized
tones (Series B). Two-dimensional space is generated
by MDS (Kruskal’s stress = 0.071). Index 1 means pi-
ano tone and 10 means guitar tone.

Fig. 9 Perceptual timbre space of the 10 synthesized
tones (Series C). Two-dimensional space is generated
by MDS (Kruskal’s stress = 0.045). Index 1 means pi-
ano tone and 10 means plucked-string tone.

By comparing Figs. 6 with 8, the effect of varying
damping coefficient b3 on the plot is clear. That is, when
a different b3 value is used, the plot moves upward. The
stimulus 9 moved too much to locate near the stimulus 10
by considering the centroid. The reason for this is that the
simulated guitar tone is heard differently from the other
plucked-string sounds because of the resonance, and that
the similarity of the centroid values does not necessarily
indicate increasing perceptual similarity.

Figure 9 shows degeneration for 1–4. The path looks
smooth, and it is shown that smooth interpolation is com-
pleted. The plot of the samples is more equally spaced
than that in Figs. 6 and 8.

4. DISCUSSION

By considering the spectral centroid, the tones ap-
proach the straight line which connects both endpoints.
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That is, the intermediateness is improved. However, the
distances between the adjacent tones have variance, as
depicted in Fig. 8. This depends on how to determine
the interpolation rates for intermediate sounds. In the
present situation, perceptual feedback is needed on this
point. When spectral centroid values of the endpoints
are fairly different (Series C), smoother interpolation is
achieved. In this case, contribution of the centroid to the
timbral similarity judgement is considered to increase.

Next, two criteria are discussed. First, continuity cri-
terion is considered. When a transition is continuous,
it seems that subjective distances between the adjacent
tones are closely located, and that they are equally spaced.
So, the mean and the standard deviation values of the dis-
tances between adjacent pairs are regarded as the conti-
nuity measures.

Cm =
1

N −1

N−1

∑
i=1

di,i+1,

Cσ =

√
1

N −1

N−1

∑
i=1

d2
i,i+1 −C2

m,

where di,i+1 denotes the distance between stimuli i and
i + 1, N is the number of stimuli. When all the tones are
equally spaced, Cσ = 0. Furthermore, when they are lo-
cated in line, Cm = 1/(N −1) .

For intermediateness, the mean distance between the
interpolated tones and the straight line connecting both
endpoints is calculated.

I =
1

N −2

N−1

∑
i=2

d̂i,

where d̂i denotes the distance between the interpolated
tone i and the straight line connecting both endpoints.
When all the tones are located in line, I = 0.

All values are normalized by the distance between the
two edges, and shown in Table 2. When comparing Series
A with B, all criteria decrease in value by considering the
centroid. Series C has the most continuity of the three se-
ries, and its values are less than half the values for Series
A. In terms of intermediateness, on the other hand, Series
B has the smallest value. Although these criteria seem to
be acceptable, they depend on stimuli used, and the num-
ber of stimuli, etc. Much investigation will be needed for
various tones.

5. SUMMARY AND CONCLUSIONS

Our goal is to develop sound synthesis technology
that can be used to synthesize arbitrary sound timbre, in-
cluding musical instrument sounds, natural sounds, and
their interpolation/extrapolation on demand. Such a tech-
nology will enrich expression, and make a breakthrough

in music and contents creation. For this purpose, we in-
vestigated sound interpolation based on physical model-
ing. An interpolation algorithm using a sound-synthesis
model composed of a one-dimensional string and excita-
tion by striking and plucking was proposed. Global char-
acteristics of a piano and a guitar were simulated, and the
interpolation between piano and guitar tones was investi-
gated. The strategy for parameter control was proposed,
and subjective tests were performed to evaluate the algo-
rithm. A multidimensional scaling technique was applied
to evaluate our algorithm, and perceptual characteristics
were discussed. One axis of the timbre space was in-
terpreted as spectral energy distribution, so the spectral
centroid was used as a reference to adjust parameters for
synthesized tones. The results showed that both consid-
ering continuity of parameters and the centroids, smooth
interpolation was achieved. The result of this paper sug-
gests the possibility of developing a morphing system by
using a physical model.

Much future work remains to be done. First, the re-
lationship between the interpolation rate α for physical
parameters and perceptual scale is not known. In this re-
port, linear interpolation is basically used, but the result
suggests the need for the consideration of some nonlinear
functions. Other future work includes extending the tim-
bral range. One way to do this is to build models to treat
bowing, wind instruments, percussion instruments, etc.

After the parameter estimation problem from sound
signals is solved, comparison with an algorithm using a
sinusoidal model will be needed to investigate various as-
pects of morphing, including continuity and intermedi-
ateness. Merits and demerits of both algorithms should
be clarified.

This is a preliminary report for sound morphing by
physical modeling. In this paper, the psychoacoustical re-
search aspect was rather prominent, and the need for veri-
fication of the timbre of synthesized tones from a percep-
tual point of view was pointed out. Once the performance
of this algorithm is evaluated in terms of interpolation be-
tween two natural sounds, a system can be made available
to users for extrapolating and freely modifying sounds for
their musical creations.

Table 2 Criteria for continuity and intermediateness.

Criteria Series A Series B Series C
(centroid is considered)

Continuity Cm 0.41 0.32 0.17
Continuity Cσ 0.25 0.19 0.12
Intermediateness I 0.082 0.057 0.060
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