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Abstract Increase of sound transmission loss(TL) of the fuselage is vital to build a
comfortable cabin environment. In this paper, to find a convenient and accurate means for
predicting the fuselage TL, the fuselage is modeled as a composite cylinder, and its TL is
predicted with the analytical, the statistic energy analysis (SEA) and the hybrid FE&SEA
method. The TL results predicted by the three methods are compared to each other and they
show good agreement, but in terms of model building the SEA method is the most
convenient one. Therefore, the parameters including the layup, the materials, the geometry,
and the structure type are studied with the SEA method. It is observed that asymmetric
laminates provide better sound insulation in general. It is further found that glass fiber
laminates result in the best sound insulation as compared with graphite and aramid fiber
laminates. In addition, the cylinder length has little influence on the sound insulation, while
an increase of the radius considerably reduces the TL at low frequencies. Finally, by a
comparison among an unstiffened laminate, a sandwich panel and a stiffened panel, the
sandwich panel presents the largest TL at high frequencies and the stiffened panel
demonstrates the poorest sound insulation at all frequencies.

Keywords Sound transmission loss . SEA . Fuselage . Cylinder

1 Introduction

Acoustic transmission is one of the principal design drivers for composite fuselages [1].
Therefore the prediction of sound transmission loss (TL) of a fuselage structure is of major
importance. There are two major noise sources when the airplane is in flight; one is the
turbulent boundary layer noise and the other is the engine noise. The engine noise can also
be divided into airborne noise and structure-born noise. In this study only the airborne noise
is considered as the noise source.
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For the airborne noise from the engine, a large number of investigations have been
devoted to the prediction of fuselage TL. In these studies the fuselage structure was usually
idealized as the cylinder. The published models mainly considered three classical types of
constructions: monolithic, stiffened and sandwich. Koval [2] studied the TL of infinite
isotropic cylinders considering the external airflow and internal shell pressurization. The
impedance of the shell and its content were used to determine the TL. He also developed a
theory to investigate the TL of orthotropic and laminated composite shells [3, 4]. A
program to predict the noise transmission into aircraft was developed by ESDU [5]. In this
program, the noise excitation included single frequency plane waves and broadband noise
in a diffused field. The structure was assumed as an eccentrically stiffened cylinder with
isotropic materials. Yvette Y. Tang [6] predicted the TL through a cylindrical sandwich shell
with honeycomb core. In his paper, the thin shell theory and the first order shell theory were
compared to each other. For the first order shell theory, the shear and rotation effects were
taken into account. Results show that the shear waves transmit sound through the shell,
resulting in a decrease of TL in high frequencies. K. Daneshjou et al. [7, 8] combined the
work of Koval and Yvette to generate two more explicit analytical models with thin shell
and first order theory respectively. Besides the analytical models, some commercial
software has also been used to predict the TL of more complex structures. Rajesh Arjunan
[9] performed a parametric analysis of curved honeycomb composites panels with the
software “Va one” in his master thesis. Zhuang Li [10] made a TL prediction on sandwich
composites with AutoSEA, whereby a two-room method experiment is performed to verify
the modeling results. The predicted and measured results show good agreement.

The transmission loss of elastic structures can be numerically estimated using finite
element methods (FE), boundary element methods (BEM) and statistic energy analysis
(SEA). FE and BEM can model the vibro-acoustic behavior of a structure more accurately
compared to SEA. However they require extensive computational resources in the case of
large structures and high frequencies. In contrast, the SEA method can be more convenient
and rapid in the case of large structures so it is often used to model the sound transmission.
In the SEA method, the structure is divided into different subsystems. For example, a
fuselage consists of crown panels, side panels and keel panels, windows, and frames
subsystems. Each subsystem can also be represented by three parts: one represents out-of-
plane motion and the other two represent in-plane stretching and shear motion respectively.
For each subsystem, the principle of energy conservation must be abided [11]. There are
two approaches for applying the SEA methodology [12]. The first, “mode approach”, is
based on modeling each subsystem as resonant responses. Most of the references mentioned
here have adopted this method. The second, “wave approach”, is based on modeling each
subsystem as a superposition of waves travelling throughout the subsystem [13–15].

In this paper, an analytical model regarding an infinite-length composite cylinder is built.
Next, a SEA model and a hybrid FE&SEA model are used to predict the TL of a limited-
length cylinder. The TL results computed by these three models are compared to each other.
Finally, due to its efficiency, the SEA model is used for studying the effect of different
parameters on the fuselages TL.

2 Analytical Model

As shown in Fig. 1, it is assumed that a plane wave with incident angle γ hits the cylinder.
The cylinder radius is 1,975 mm and the length is infinite. Because of the cylindrical
structure, all analyses are conducted in cylindrical coordinates {z, 8, r} denoting axial,
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circumferential and radial direction respectively. The properties of the Carbon/Epoxy
materials used here are:

E1 ¼ 221 GPa;E2 ¼ 6:9 GPa;G12 ¼ 4:8 GPa; v12 ¼ 0:25; r ¼ 1600 kg=m3; tply ¼ 0:159mm

The original laminates layup is [0/90/45/−45/0]s, c1, c2 are the sound speed in the cabin
air and the ambient air, and ρ1, ρ2 are the densities of the cabin air and the ambient air
respectively. And c1=c2=343 m/s, ρ1=ρ2=1.29 kg/m3.

The thin shell theory is used to build a mathematical model based on the following
assumptions:

1. The ratio of the shell thickness to the cylinder radius is much smaller than 1;
2. The effect of rotational inertia is negligible;
3. The layer deformation complies with the Kirchhoff hypothesis;
4. There is no relative displacement at the interface of layers;

2.1 The Sound Transmission Loss

The sound transmission loss (TL) of the shell is defined as the ratio of the transmitted
power WT and the incident power WI per unit length of the cylinder:

TL ¼ 10 log10
WI

WT

� �
ð1Þ

where,

W I ¼ cos gð Þ � P2
0

r1c1
� R ð2Þ

WT ¼ 1

2
� Re

Z 2p

0
PT
2 � @

@t
ðwÞ»rdφ

� �
; r ¼ R ð3Þ

in which γ is incident angle of acoustic wave, P0 is the amplitude of the incident wave
(constant value), R is the radius of the cylinder, ρ1 and c1 are density and sound speed of the
external air. PT

2 is the transmitted wave pressure as a function of time and frequency, 8 the

z

r
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Fig. 1 Schematic diagram of
incident acoustic plane wave onto
the fuselage
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angle around the cross section (Fig. 1), w the shell displacement in radial direction. The
superscript * denotes the complex conjugate of the argument.

As can be seen in Eqs. 1–3, the unknown PT
2 and w should be given to predict the

transmission loss. Their expressions will be discussed in the following section.

2.2 The Governing Equation of Sound Wave

The governing equations of sound waves are dissimilar for the inside and outside of
cylinders. These governing equations lead to the expression for the acoustic pressure and
the full set of shell displacements.

2.2.1 Inner Cavity

For the internal cavity of the cylinder, it is supposed that the shell interior is totally
absorptive and we assume that only an inward traveling wave exists [6]. The acoustic
pressure of the inner cavity satisfies:

c22r2pT2 � @2

@t2
pT2 ¼ 0 ð4Þ

where, r2 ¼ 1
r

@
@r r @f

@r

� �
þ 1

r2
@2f
@φ2 þ @2f

@z2 , is the Laplace operator expressed in cylindrical

coordinates, and c2 is the sound speed in the cylinder.

2.2.2 Outer Cavity

Because the airflow outside the cylinder is a combination of the incident wave and the
reflected wave, the outflow of the cylinder (the external flow and the reflected sound wave)
must satisfy the convected wave equation [6]:

c21r2 pI1 þ pR
� 	� @

@t
þ V � r

� �2

pI1 þ pR1
� 	 ¼ 0 ð5Þ

in which V is the velocity of the external airflow, where V=<Vx, Vy, Vz>. In this case,
because the external airflow propagates in axial direction, Vx=0, Vy=0. pI1 is the pressure of
the incident wave and pR1 is the pressure of the reflected wave.

2.3 Equations of Motion

The equations of motion are given here for expressing the shell displacements as a function
of time [4]:
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where qz, qφ, qr are the external forces per unit area in the axial, circumferential and radial
directions respectively. N and M are the forces and moment resultants. u, v, w are the shell
displacements of the neutral face in the axial, circumferential and radial directions
respectively.

I is the mass inertia and can be expressed by:

I ¼
XN
k¼1

Z x k½ �

x k�1½ �
r dx ð9Þ

where ρ is the density per layer and xf is the centroid line position of the kth layer (Fig. 2).
In this circumstance, because the pressure is varies only in the radial direction,
qz ¼ qφ ¼ 0; qr ¼ pI1 þ pR1 � pT3 . The expressions for the incident wave pressure PI

1,
the reflected wave pressure PR

1 and the transmitted wave pressure PT
3 will be introduced

later.
The forces (N) and moments (M) relations can be calculated by:
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where:
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Fig. 2 Laminates layup
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Q[k] are the transformed stiffness matrices [16] for the laminated layers with
different fiber angles θ (Fig. 2). The strains and curvatures for Eq. 10 can be written as
[17]:

"z ¼ @

@z
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R
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� �
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R
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R
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Substitution of Eq. 10 into Eqs. 6–8 leads to the expressions for the shell displacements
<u, v, w> as a function of time.

2.4 Boundary Conditions at the Fluid–Structure Interfaces

On the internal and external shell surfaces, the particle velocities of the acoustic media in
the radial direction have to be equal to the normal velocity of the shell [7]. Applying
Newton’s second law, the equations which describe the effect of acoustic pressure on the
motion of the shell can be derived as:
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2.5 Solutions

To obtain the solution of Eqs. 4 and 5, the incident wave pI1 can be expressed as

ð18Þ

and the reflected wave pR1 :

ð19Þ

where P0 is the amplitude of the incident wave, n is the order of the circumferential mode,
ω=2πf is the frequency and An is the unknown constant. J is the Bessel function of the first
kind of integer order n (n=0, 1, 2, 3, . . .). 2 is the Hankel function of the second kind
with integer n; it represents the outgoing wave from the cylinder [7].

ξn is the Neumann factor given by:

xn ¼
1 n ¼ 0

2 n � 1

(
ð20Þ
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and

k1z ¼ k1 cos gð Þ; k1r ¼ k1 sin gð Þ ð21Þ
k1 is the wave number for the region outside the cylinder and γ is the incident wave angle,
as shown in Fig. 1. As the acoustic wave satisfies the governing equation for the outer
cavity, Eq. 5, substitution of Eqs. 18, 19 and 21 into that relation gives (for V � r ¼ vz @

@z)
the following expression for k1:

k1 ¼ w
c1

1

1þM1 cos gð Þ
� �

ð22Þ

where M1=vz/c1 is the Mach number of the external flow.
The transmitted wave pT2 is:

ð23Þ

where Bn is a temporally unknown complex amplitude factor; k2r and k2z are the wave
numbers in the radial and circumstantial direction respectively. 1 is the Hankel function of
the first kind with integer n. It represents the incoming wave for the cylinder.

Because the travelling waves in the cylinder and outside the cylinder are both driven by
the incident-travelling wave, the wave number in the z direction should match throughout
the system, therefore k1z = k2z. With:

k22 ¼ k22z þ k22r; k2 ¼
w
c2

ð24Þ

k2r can be described as:

k2r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k21z

q
ð25Þ

The displacements can now be expressed by:

u ¼ i
X1
n¼0

Une
i wt�k1zz�nφð Þ ð26Þ

v ¼ i
X1
n¼0

Vne
i wt�k1zz�nφð Þ ð27Þ

w ¼
X1
n¼0

Wne
i wt�k1zz�nφð Þ ð28Þ

where Un, Vn, Wn are the unknown parameters which will be determined in the following
section; they are dependent on the frequency ω and the order of the circumferential mode n.

2.6 Results

By collecting the equations of motion (6–8) and boundary condition (16–17), a system of
five equations consist of P0, Un, Vn, Wn, An and Bn is obtained. Finally the solutions for
<Un, Vn, Wn, An, Bn> vector are expressed by P0 which can be eliminated later.
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Substitution of Eqs. 23 and 28 into Eq. 3 results in:

ð29Þ

where: Z 2p

0
cos2 nφð ÞR dφ ¼ pR

xn
ð30Þ

Eq. 29 can be simplified as:

ð31Þ

Finally, the transmission coefficient τ can be predicted by substituting Eqs. 2 and 31 into
Eq. 1:

ð32Þ

TL ¼ �10 log10 t gð Þð Þ ð33Þ
where τ(γ) is the transmission coefficient for a particular incident angle γ. For the diffused
sound field (the wave hits the cylinder in all directions with equal sound intensity), the
average sound transmission coefficient, τav, is given as:

tav ¼
Z p

2

0
t gð Þ sin 2gð Þdg ð34Þ

TLav ¼ �10log10 tavð Þ ð35Þ

3 Introduction of the SEA and the FE&SEA Method

As mentioned before, the SEA is not as accurate as the FE method at low frequencies. In
order to compare it with the analytical model, both the SEA and the hybrid FE&SEA
methods will be introduced here.

3.1 The SEA Method

For the SEA method an effective transmission model is built, consisting of the source SEA
acoustic cavity, the junction area and the receiving SEA acoustic cavity, as shown in Fig. 3.
Typically, the first cavity is excited by a power source or constraint and the second cavity
only receives energy via the selected transmission path.
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The Effective Transmission Loss is calculated using the following equation [18]:

TL ¼ 10log10
Aw

8p2n1c21h2

E1

E2
� n1

n2

� �� 

ð36Þ

where A is the junction area, E1 is the energy of the source cavity, and E2 is the energy of
the receiving cavity. n1 and n2 are the mode density in source and receiving cavities
respectively. c1 is the acoustic wave velocity in the source cavity. η2 is the loss factor in the
receiving cavity.

3.2 The Hybrid Method

For the hybrid FE&SEA model, TL is the transmission loss between an SEA diffused
acoustic field and an SEA semi-infinite fluid separated by an FE subsystem. First the
cylinder model is built and meshed in the software “Patran” and then it is imported into the
software “VA one”. The normal mode analysis is conducted with the external “Nastran”
solver for the determination of the natural frequency. Next the FE faces are created on the
existing mesh. The diffuse acoustic field (DAF) is applied on these FE faces. A semi-
infinite fluid, which is a baffled acoustic half space describing the radiation of sound into an
unbounded space, is connected to the cylinder. Finally, a complete hybrid model is built as
shown in Fig. 3(b).

The TL is calculated by determining the net power radiated into the SEA semi-infinite
fluid, and then normalizing the net power by the incident power associated with the DAF.
The results depend on both the pressure difference between the DAF and SEA semi-infinite
fluid and the FE faces area A.

The cylinder length is 10 m and the radius is 1.975 m. The material properties and
composites layup are the same as that used in the analytical model. The loss factor of the
cylinder shell is 1% and no special noise treatment is applied on the cylinder.

DAF

semi-infinite

FE mesh

FE faces

a

Inner
cavity

Junction

Outer
cavity

b

Fig. 3 Sound transmission mod-
els by two different methods: (a)
SEA method, (b) FE&SEA
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4 Comparison of the Results Computed by the Three Methods

In this part, the TL predicted by the analytical, SEA and FE&SEA methods are compared to
each other. For the comparison it is assumed that the external air speed is zero. First, the
results of the analytical model are compared with that of Koval’s analytical model [4]. As
shown in Fig. 4, for an incident angle of 45° there is little difference between the results
provided by these two models.

Second, the results generated by the three methods are compared under the diffused
acoustic field. For the analytical method, Eqs. 34 and 35 are used to obtain the TL of the
DAF by averaging the TL of different incident angles.

Figure 5 shows the transmission loss computed by the analytical model, the SEA model
and the hybrid FE&SEA respectively. For the hybrid model, the FE method is applied in the
low frequency range (20~800 Hz) and SEA is used for the middle and high frequencies. It
can be seen that all of them have two minimum values, one is between 400~600 Hz and the
other is between 4,000~6,000 Hz. The first one corresponds to the ring frequency fR and
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the other to the critical frequency fc. Some equations to estimate the ring frequency and
critical frequency are [19]:

fR ¼ 1

2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eφa

r a � m2
12

� 	
s

ð37Þ

fc ¼ c2

2p

ffiffiffiffiffiffiffiffi
I

D11

r
ð38Þ

where a ¼ Ez=Eφ, Ez and Eφ are the composites modulus of elasticity, D11 is the first
element of the matrix D in Eq. 13, c is the sound speed through the cylinder, and I can be
obtained by Eq. 9. Based on Eqs. 37 and 38 and mechanical properties of the laminate, the
results fR=541 Hz and fc=4,626 Hz are readily obtained. They are comparable with the
results in the Fig. 5.

The middle region between them is mass controlled. The panel vibration and noise
transmission are mainly controlled by the stiffness below fR, and mainly controlled by the
damping above fc. At the ring frequency, the longitudinal wavelength in the cylindrical shell
is equal to the circumference wavelength and an axisymmetric resonance occurs [15]. At
the critical frequency, the wavelength of the forced flexural wave in the fuselage structure
equals the wavelength of the bending acoustic wave. When this takes place, the intensity of
the transmitted wave approaches the intensity of the incident wave. The bending waves
become “acoustically fast” and the panel radiates from its whole area instead of just its
edges or corners [20].

The three curves in Fig. 5 show the same trend as the frequency increases. The positions
of fR and fc become close to each other. It can be seen that the SEA results are higher than
the analytical and the FE&SEA results at low frequencies. At high frequencies, the results
of the analytical model show a higher TL. This is probably due to the thin shell theory
assumption and the absence of transverse shear. Kamran Daneshjou [8] studied the effect of
transverse shear using the first order shell theory and found that it increased the TL
prediction (Fig. 10 in his paper).

5 Study on Composite Cylinders by the SEA Model

The human hearing ability is in the range 20–20,000 Hz, but the hearing sensibility of the
human ear is not constant over the audible frequency range. Figure 6 shows that the ear is less
sensitive to low frequencies and very sensitive to frequencies around 3,000–4,000 Hz.

In the following parts, because the SEA models are more convenient to predict the TL
and human’s ear is less sensitive to noise at low frequencies, the SEA method is used to
study the influence parameters on the TL of composites cylinders. The parameters include
the laminate layup, the fiber material, the cylinder dimensions and the structure morphology
(sandwich or stiffened structure).

5.1 Effect of the Laminate Layup

One of the advantages of composite materials over isotropic materials is their ability for
structural tailoring. In order to evaluate the effect the layup has on the transmission loss,
four different arrangements are here chosen (as shown in Table 1).

Appl Compos Mater (2012) 19:865–883 875



For the layup [45/−45/45/−45/45]s, an increase of the 45° ply improves the shear stiffness
G12 but reduces the extensional stiffness Eφ and bending stiffness D11, leading to a downward
shift of the ring frequency and a upward shift of the critical frequency. For the layers [0/10/20/
30/40/50/60/70/80/90] and [0/90]5, the absolute value of bending-extensional coupling B is
not zero. This layup can dissipate more vibration energy in its own structure, and thus the TL
of these two is larger than that of the others outside the mass-controlled range. For the layup
[0/90/45/−45/0]s, its TL is the lowest outside the mass-controlled range (Fig. 7).

5.2 The Effect of Material

The material choice is an important issue for composite fuselage design. Thus three
different kinds of composites are here selected to evaluate their influence on the TL. For a

Fig. 6 Equal loudness curves
[21]

Table 1 Mechanical properties of different layups

Layup Ez[Pa] Eφ[Pa] G12[Pa] B D11

[45/−45/45/−45/45]s 1.77E10a 1.77E10 5.62E10

0 0 0

0 0 0

0 0 0

0
B@

1
CA 11.5

[0/90/45/−45/0]s 1.08E11 6.78E10 2.54E10

0 0 0

0 0 0

0 0 0

0
B@

1
CA 22.9

[0/90]5 1.14E11 1.14E11 4.80E9

�9E3 0 0

0 9E3 0

0 0 0

0
B@

1
CA 20.9

[0/10/20/30/40/50/60/70/80/90] 8.42E10 8.42E10 2.49E10

�3:8E4 0 �5:3E3

0 3:8E4 5:37E3

�5:3E3 5:37E3 0

0
B@

1
CA 19.5

a E10 denotes 1010
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representative comparison, the models with different kinds of materials have the same layup
and thickness. The three different kinds of materials are shown in Table 2.

As shown in Fig. 8, the curve which represents the Fiberglass/Epoxy composites has the
largest TL at the mass controlled range. This is because of the higher density of Fiberglass.
In addition, the Fiberglass/epoxy composite shows a larger mass controlled range due to its
lower modulus of elasticity and bending stiffness referring to Eqs. 37 and 38. At low
frequencies, Graphite/Epoxy has the larger TL because of the highest stiffness of Carbon
fiber.

5.3 The Effect of Radius and Length

In the SEA methodology, the cylinder is regarded as a single subsystem. To investigate the
effect of the geometry on the TL, the radius and length of the cylinder are varied. Other
parameters like materials properties and atmospheric conditions are kept constant.

Figures 9 and 10 show the effect of L and R on the cylinder TL respectively. It can be
seen in Fig. 9 that the length L has little influence on the TL. However, as shown in Fig. 10,
an increase of the radius R leads to a decrease of the ring frequency. This can be explained
by Eq. 37. Moreover, the cylinder with smaller R exhibits a larger TL at low frequencies.
Finally, it is worth noting that R has no effect on the TL at high frequencies.
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Table 2 Properties of three kinds of materials

Graphite/Epoxy Fiberglass/Epoxy Aramid/Epoxy

Density[kg/m3] 1,600 1,900 1,500

E1[Pa] 2.21E11 5.6E10 7.6E10

E2[Pa] 6.9E9 1.3E10 5.5E9

v12 0.25 0.26 0.34

G12[Pa] 4.8E9 4.2E9 2.3E9
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5.4 Effect of the Structure Morphology

The stiffened and sandwich structure are the most commonly applied configurations in
aerospace because of their mechanical efficiency. In contrast to their mechanical properties,
their sound insulation capability is seldom studied. Therefore, in this section, firstly some
representative sandwich structures are studied and then compared to classical laminates.
Secondly, a representative sandwich panel is compared to its stiffened counterpart.

5.4.1 Comparison Between the Sandwich Panels and the Laminates

In order to investigate whether the sandwich structure is a good choice in terms of sound
insulation, an anisotropic foam is added inbetween the laminate facings. The effect of core
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thickness and structural layout (sandwich and monolithic) are also investigated. The core
properties are:

Ec ¼ 350 MPa;Gc ¼ 150 Mpa; vc ¼ 0:31; rc ¼ 120 kg=m3

The core thicknesses tc are 10 mm, 20 mm and 30 mm respectively.
As shown in Fig. 11, unlike laminated composites, the sandwich structures show very

shallow dips in the TL-Frequency curves except for the thinnest panel with tc=10 mm. This
phenomenon is comparable to Figs. (5–8) of [6]. The absence of dips is caused by the much
higher bending stiffness of sandwich panels when compared to laminates, as shown in
Table 3. For the sandwich structure, the increased bending stiffness causes fc to shift
towards low frequencies; in this region the SEA method cannot accurately predict the dips.
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The raised bending stiffness also results in the less distinct dips for the TL of sandwich
panels [22]. Furthermore, increase of the core thickness leads to a larger TL at high
frequencies but has little effect at low frequencies. The TL increase from tc=10 mm to tc=
20 mm is larger than that from tc=20 mm to tc=30 mm.

In Fig. 12, in order to study the influence of the laminate thickness on the TL, the TL of a
10-layered laminate is compared to that of a 20-layered laminate (double thickness of the 10-
layered). It can be seen that an increase of the thickness leads to an overall TL enhancement.
In addition, a forward shift of fR and a backward shift of fc do take place. For investigating
the core effect, a sandwich panel with tc=21.2 mm is chosen with the same weight as the 20-
layered laminates. As shown in Fig. 14, the TL of the sandwich structure is lower than that of
the 20-layered laminate at the range 20~2,000 Hz. However, it is much larger than the TL of
the 20-layered laminate above 2,000 Hz; it attributes to the high inherent damping ability of
the viscoelastic core. At 3,000~4,000 Hz where humans are most sensitive to sound (Fig. 6),
the laminates provide poor sound insulation because of the second dips (Fig. 12).
Nevertheless, the sandwich structure presents a much better sound insulation at this range.

5.4.2 Comparison Between Sandwich and Stiffened Structure

In this section, a stiffened panel will be compared to a sandwich panel in terms of sound
insulation. For the stiffened panel the skin is also made of 10-layered Carbon/Epoxy
composite, and the stiffener material is aluminum (only isotropic materials are allowed to

Table 3 Bending stiffness Sb and critical frequency fc

10-layered laminates Sandwich tc=10 mm Sandwich tc=20 mm Sandwich tc=30 mm

Sb [Nm] 23 7,240 25,125 53,789

fc [Hz] 4,626 552 323 238

The bending stiffness of the sandwich is estimated by: Sb ¼ 1=2ð ÞEf tf tf þ tcð Þ2
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be chosen as a stiffener in the “VA one” software). The Z stiffeners dimensions and their
pitches are shown in Fig. 13; they are aligned in the axial direction of the cylinder. For the
sandwich panel, the core thickness is 28 mm in order to have the same weight with the
stiffened structure. As a reference, the TL of a 20-layered laminate is also added in Fig. 14.
However, it should be noted here that the 20-layered laminate has less weight than the
stiffened and sandwich panels.

As shown in Fig. 14, the stiffened structure has lower TL than the sandwich structure,
especially at frequencies above 1,000 Hz. The TL of the stiffened panel is even lower than
the TL of the non-stiffened laminate. L.A. Krakers [14] tested the sound transmission of
three cylinders including one non-stiffened cylinder, and two cylinders stiffened by 6
stringers and 12 stringers respectively. The results show that the non-stiffened cylinder has
larger TL than the two stiffened panels. Another acoustic transmission measurement on a
stiffened fuselage demonstrates that the window area has larger TL than the stringer area
[23]. This phenomenon takes place because the excitation efficiency of the stiffened
structure is higher than that of the monolithic and the sandwich structures. Furthermore, for
the stiffened cylinder, the mass-controlled range is not as apparent as that for the laminate.
In addition, it presents more dips than the laminate and sandwich structure. An overview of
the simulation results is given in Table 4.
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6 Conclusion

The investigation presented here focuses on the prediction of sound transmission loss of a
fuselage by different methods. The fuselage is modeled as a cylindrical composite shell.
First, an analytical method is given to predict the TL of an infinite-length cylinder. Second,
the statistic energy analysis (SEA) method and a hybrid finite element (FE)&SEA model
are applied for predicting the cylinder TL. Third, the three methods are compared to each
other. Fourth, although the hybrid method provides more accuracy compared with the SEA
model at low frequencies, the SEA model is finally chosen for studying the influence of
geometric and material parameters have on the TL of cylinders. The reason for this model
choice lies in its computational efficiency and low degree of complexity. The following
parameters are studied:

& Laminate layup
& Fiber material
& Cylinder dimensions
& Structure morphology

It is found that for a typical laminate asymmetric layups do amplify bending-
extensional coupling, which in turn enhances the TL. A thickness increase of the 45°
layers leads to a downward shift of the ring frequency and an upward shift of the
critical frequency. Furthermore, Fiberglass/Epoxy laminates exhibit the largest TL in the
mass-controlled region and the damping-controlled region as compared to Graphite/
Epoxy and Aramid/Epoxy laminates. Next, in terms of the geometry, the length of the
considered cylinders has little influence on its TL, but on the other hand, increasing the
radius decreases the ring frequency and the TL at low frequencies. Finally, for the
sandwich structure, an increase of the core thickness leads to a backward shift of the
critical frequency and a large TL enhancement at high frequencies. Based on the non-
stiffened laminate, the stiffened panel provides a lower TL but the sandwich panel
improves the TL dramatically at frequencies above 2,000 Hz.

In conclusion, it is convenient to predict the TL of fuselages with the SEA method
mentioned in this paper. The TL predicted by this method is well-comparable to the one
computed by the analytical method. However, it is too simple to model a real fuselage
as a cylinder, thus the fuselage with windows, floors and interior insulation blankets
will be studied as part of future research, including experimental verification.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Table 4 Summary of the transmission loss of different structure types

Non-stiffened cylinder Sandwich cylinder Stiffened cylinder

TL at 20~2,000 Hz Highest Middle Lowest

TL at 2,000~2,000 Hz Middle Highest Lowest

Dips of the TL curve 2 or 3 Very few More than 4

882 Appl Compos Mater (2012) 19:865–883



References

1. Davis, G.W., Sakata, I.F.: Design considerations for composite fuselage structure of commercial transport
aircraft. NASACR 159296, Lockheed-California company (1981)

2. Koval, L.R.: On sound transmission into a thin cylindrical shell under flight conditions. J. Sound Vib.
48, 265–275 (1976)

3. Koval, L.R.: On sound transmission into an orthotropic shell. J. Sound Vib. 63, 51–59 (1979)
4. Koval, L.R.: Sound transmission into a laminated composite cylindrical shell. J. Sound Vib. 71, 523–530

(1980)
5. ESDU07001: Noise transmission into aircraft cabins (2007)
6. Tang, Y.Y., Robinson, J.H., Silcox, R.J.: Sound transmission through a cylindrical sandwich shell with

honeycomb core. NASA (1996)
7. Daneshjou, K., Nouri, A., Talebitooti, R.: Sound transmission through laminated composite cylindrical

shells using analytical model. Arch. Appl. Mech. 77, 363–379 (2007)
8. Daneshjou, K., Nouri, A., Talebitooti, R.: Analytical model of sound transmission through laminated

composite cylindrical shells considering transverse shear deformation. Appl. Math. Mech. 29, 1165–
1177 (2008)

9. Arjunan, R.: Vibroacoustic parametric analysis of honeycomb composite fuselage for improved
transmission loss, Master Thesis, Vichita State University (2007)

10. Li, Z.: Vibration and acoustical properties of sandwich composite materials, PhD Thesis, Auburn
University (2006)

11. ESDU99009: An introduction to statistical energy analysis (1999)
12. Ghinet, S., Atalla, N., Osman, H.: The transmission loss of curved laminates and sandwich composite

panels. J. Acoust. Soc. Am. 118, 774 (2005)
13. Ford, R.D., Lord, P., Walker, A.W.: Sound transmission through sandwich constructions. J. Sound Vib. 5,

9–21 (1967)
14. Krakers, L.A.: Parametric fuselage design, PhD Thesis, Delft University of Technology (2009)
15. Fahy, F.J., Gardonio, P.: Sound and structural vibration: radiation, transmission and response, 2nd edn.

Academic, Oxford (2007)
16. Adams, R.C., Advani, S.: Composites-asm handbook volume 21 (2001)
17. Soedel, W.: Vibrations of shells and plates. Marcel Dekker, New York (1993)
18. ESI-group: Va one 2007 user guide (2007)
19. Blaise, C.L.A., Gotteland, M., Barbe, M.: On sound transmission into an orthotropic infinite shell:

comparison with Koval’s results and understanding of phenomena. J. Sound Vib. 150, 233–243 (1991)
20. ESDU02020: An introduction to aircraft noise (2002)
21. http://hyperphysics.phy-astr.gsu.edu/hbase/sound/eqloud.html#c2 (Accessed 21 September, 2009)
22. Nilsson, A.C.: Wave propagation in and sound transmission through sandwich plates. J. Sound Vib. 138,

73–94 (1990)
23. Wal, H.; Nilsson, A.C.: Sound-transmission measurements on composite and metal fuselage panels for

different boundary conditions, NLR-TP-2005-570. National Aerospace Laboratory (2005)

Appl Compos Mater (2012) 19:865–883 883

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/eqloud.html#c2

	Sound Transmission Loss Prediction of the Composite Fuselage with Different Methods
	Abstract
	Introduction
	Analytical Model
	The Sound Transmission Loss
	The Governing Equation of Sound Wave
	Inner Cavity
	Outer Cavity

	Equations of Motion
	Boundary Conditions at the Fluid–Structure Interfaces
	Solutions
	Results

	Introduction of the SEA and the FE&SEA Method
	The SEA Method
	The Hybrid Method

	Comparison of the Results Computed by the Three Methods
	Study on Composite Cylinders by the SEA Model
	Effect of the Laminate Layup
	The Effect of Material
	The Effect of Radius and Length
	Effect of the Structure Morphology
	Comparison Between the Sandwich Panels and the Laminates
	Comparison Between Sandwich and Stiffened Structure


	Conclusion
	References


