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Abstract. A simple linearized hydrodynamical theory for magnetic fluids in the presence 
of a strong external magnetic field is presented. The equations are solved for a sound 
wave propagating at angle b, from the external field direction. The sound velocity is 
shown to be anisotropic, depending on b,. The anisotropy is estimated to be about 
for a field of 104 G and shows an interesting frequency dependence. 

1. Introduction 

A magnetic fluid is a colloid of tiny (100 A) magnetic particles or grains suspended in a 
carrier fluid such as water (Rosenweig 1966). The magnetization of the fluid varies with 
the applied magnetic field H, typically reaching a saturation of 102-10s G for large fields. 
The grains are kept in suspension by thermal agitation. In addition, to help reduce 
coagulation, the particles are coated with a dispersing agent such as oleic acid. Neverthe- 
less, because of the magnetic attraction between the grains some coagulation does occur, 
the extent of which depends on the colloidal number density, the temperature, and the 
applied magnetic field. At low number densities the grains will exist either singly (mono- 
mers) or in pairs (dimers) and it is possible to calculate the relative number of dimers 
and monomers using statistical mechanics arguments (Jordan 1973). As the concentration 
of grains increases several of them will combine to form long needles or chains. The 
chain length increases with concentration and decreases with temperature and is large 
enough (-20 pm) to be observed by an optical microscope (Hayes 1975). In the pres- 
ence of an external magnetic field the chains line up along the direction of the field. It 
has been suggested (de Gennes and Pincus 1973) that the coagulation can be interpreted 
in terms of ‘liquid’ and ‘solid’ states of the grains separated by definite phase transitions. 

The hydrodynamics of a magnetic fluid has been discussed by Jenkins (1972) who 
included the local magnetization m (U, t )  as an extra hydrodynamical variable indepen- 
dent of the usual variables such as pressure, density, temperature and velocity. In the 
presence of a strong external field, m should be locked nearly parallel to Hand deviations 
from this direction will be small. In this case it is more convenient to separate m into 
a scalar representing the concentration of the grains, and a unit vector n (the director) 
which lies along the average orientation of the magnetic easy axis of the grains. We 
assume that the grains are uniaxial magnetically and the magnetic easy axis is locked in 
the grain. 

In this paper we formulate the linearized hydrodynamics appropriate for a small 
amplitude sound wave propagating in the presence of a strong external magnetic field. 
The orientation director n is coupled into the equations for density and velocity. The 
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sound velocity is found to be anisotropic, depending on the angle between the propaga- 
tion vector q and the field H. The anisotropy A is estimated to be of order 10-5 and is 
frequency dependent. It shows anamolous behaviour at the characteristic frequency wc 
of the orientation and also exhibits relaxation behaviour for large damping. 

2. Hydrodynamics 

We begin by writing the magnetization density as 

m (v, t )  = (pm(v, t)/pom> man (v, t )  (1) 

where pm is the local density of magnetic particles and has an average value porn, and 
mo is the average magnetization throughout the fluid; and for a large external field H, it 
is independent of H (saturation). It depends on the nature and concentration of magnetic 
grains. Finally n is a unit vector parallel to m. Now pm = Cp and porn = Cop0 where C 
is the concentration of magnetic particles and p is the total density of the fluid. Then 

m(v, t )  = [moC(v, t )  p(r, t )  n(v, t)llCopo. (2) 

We are interested in the case where the fluctuations from equilibrium are small. We 
write p=po+p’, C=Co+C’ and n=no+n’, where p’, C‘ and n’ are small and no is 
parallel to the external field H. Linearizing equation (2) in the primed variables we 
obtained 

m(v, t)=ut?ono+mo [(p’ipo) no+(C’/Co) no+n’]=mo+m’. (3) 

The first term mo = mono is the average, constant magnetization in the fluid. The next 
three terms in equation (3) give the various contributions to the fluctuating part m‘. 
The first of them gives the contribution arising from density fluctuations with no change 
in the concentration. This term is completely determined by p’ and hence does not lead 
to new terms in the hydrodynamics. The second gives the contribution arising from 
concentration fluctuations at constant density. They are described by a diffusion-like 
equation similar to that in a non-magnetic binary fluid (Mountain and Deutch 1969). 
Although concentration fluctuations can lead to new terms in the damping of sound 
waves, their effect on the sound velocity will be presumed to  be small. The last term 
gives the contribution arising from orientation fluctuations of the grains. These fluctua- 
tions will be described by an equation for n similar to that used in the description of 
nematic liquid crystals (Leslie 1968, Stephen 1970, Forster et a1 1971). 

Having determined which variables will enter our hydrodynamical description we 
must next specify the free energy of the fluid. There are two types of interactions we 
must consider. The first is the interaction between pairs of magnetic grains. The inter- 
action energy will be of order Upw pMp,  where p is the dipole moment of a grain and Mp 
is the magnetization of the grain. Typically Mp N 500-1000 (CGS). In the presence of an 
external magnetic field H there will be an interaction between the grains and the field: 
U H N  pH. Thus for large fields (104 G) U H ~  U, and we can ignore the grain-grain inter- 
actions. In this case a simple form for the free energy should be valid 

E= -mo(n.H). (4) 

Note that H refers to the external field. In general there are internal fields created by the 
fluid, but these are of order mo and therefore small compared to H for a large enough H.  
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The linearized hydrodynamical equations are the continuity equation 

aP’ -+ p o p .  U) = 0, at 

the conservation of momentum 

and the director equation 

where Cartesian tensor notation has been used where neccssary. In equations (6) and (7) 

Tij =p&j + tij (8) 

where p is the pressure and tij is the (Leslie 1968) ‘viscosity’ tensor. The important 
terms are 

tej = - O~ZIZ&* - cx3nji?i*. (9) 

Other terms involve the viscosities a1, 014, a5 and 016 and the velocity gradients. These 
will not affect the sound velocity to first order, whereas the terms retained in equation (9) 
will. They would have to  be included if we wanted to calculate the damping of sound 
waves however. We use the notation of Stephen (1970) in equation (9); 012 and 013 are 
reversed in the notation of Leslie (1968). The terms in fit“ and dij are 

In equation (7), I is the moment of inertia density for the grains and is estimated by 
I -  poCoa2 where n is the characteristic length of the largest magnetic unit able to rotate 
rigidly under an applied torque. In nematic liquid crystals a lis the molecular length, 
and the inertial term is negligibly small except at very high frequencies (Groupe d’Etude 
1969). However, in magnetic fluids the term might be important if long needles form 
and are not broken up by the sound wave. The director force gs is given by 

gd = aE/ani (12) 

and equation (7) is to be solved under the constraint n2 = 1. 
Let the external field H be in the z direction. There is an obvious symmetry in the 

xy plane so that we can take the sound wave as propagating in the xz plane with no loss 
of generality. Then v y = O  and all gradients in the y direction vanish. Let 4 be the 
angle between H and the propagation vector q, and let 0 be the angle between n and H.  
If we write n, = cos 0 N 1 and nx = sin 0 N 8, then equation (7) reduces to  a single equation 
for the orientation angle 0 :  

where h = yz /y l .  
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We next evaluate tgj from equation (9). From conservation of angular momentum 
and the Onsager reciprocal relations (Parodi 1970) it can be shown that y l  = CO-1 (012 - 013) 

and y2 = Co-l(012 + 013). Using equation (7) to  solve for r i g *  in equation (9), and inserting 
into equation (6) we find that the velocity equations are 

3% ap aJ 
aZ 

av,  ap aJ 
po -+-+3Co(X+l)--=O. at aZ ax 

po z+z+tCo(A- 1) -=o 

Terms involving the velocity gradients have been omitted for the same reason that 
velocity gradient terms are omitted from equation (9). J is given by 

The pressure can be written p =PO +p’ ,  where PO is constant and p’ is a small fluctuation. 
For sound waves we have 

p’=(appp)sce p’ and p’=vo2 pf. (17) 
The thermodynamic derivative is evaluated at  constant entropy (s), as well as constant 
orientation and concentration. uo is defined by equation (17) and represents the sound 
velocity in the zero frequency (hydrodynamic) limit. Below we will find corrections to 
this for finite frequencies which involve the effect of the orientation oscillations. 

3. Sound propagation 

We look for solutions of the form 

with similar expansions for uqx,  u g z  and e. Insertion of equation (18) into equations 
(5),  (13), (14) and (15) leads to four coupled linear equations in pg, vqz,  v q z  and e,. For 
a nontrivial solution the determinant of the coefficients must vanish and this leads to 
the dispersion relation 

(1 - (w/wc)2+iw~) (vo2q2- w2) 

=(iylC0/4p0w) q2(1 -w2/wc2) [U0242 (A cos 293- 1 ) 2 -  w2 (A2-2A cos 24+  l)] 
(19) 

where r = yl/moH is the relaxation time, and wc = (moH/I)1/2 is the natural frequency for 
the orientation fluctuations. 

q1=q sin 4 and q3=q cos 4. (20) 

For a given w, equation (19) determines q. For propagating waves we will have 
(ylw/povo2)g 1 so that vo2q2riw2. This suggests that we try a perturbation solution to 
equation (1 9) of the form 

q =(wive) +q’ (21) 
where q’ is small. We linearize equation (19) in q f ,  treating the right-hand side as small. 
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The solution for q' is 

-2ovoq'=$Coh2(iylw/povo2) w2 (1 - w2/wc2) 
x {[(1-w2/wc~)-iw~]/[(1 -w2/wc2)2+w2~2]) sin2 24. (22) 

Note that q' in equation (22) is complex. Writing q'=qr'+iqi' and defining the phase 
velocity as v = w/q,. we find that 

v=vo(l+A) (23) 

(24) 

where A is given by 

A =  Co(X2/8) (ylw/povo2) (1 - w2/wc2) {wT/[(~ - w2/wc2)2+ w2~74]} sin2 24. 

The speed of sound is thus anisotropic and depends upon the angle C#I between q and the 
field H. The anisotropy vanishes for 4 = 0, n/2 indicating that the sound wave exerts no 
torque on the magnetic dipoles and hence there is no interaction with H in these cases. 

The anisotropy A is also frequency dependent. For low frequencies U T <  1, w <  wc 
and A +. 0. There is no magnetic interaction in this case because the frequency is so 
slow that 0 has time to relax to zero within an oscillation of the wave. This is the equilib- 
rium hydrodynamic limit. There is anamolous behaviour in A when w = w c  and it 
changes sign at  this point. For very large frequencies W T B  1, w $ w c  and A approaches 
the limiting value A,. For 4 = ~ / 4 ,  

Am= - C0(X2/8) ( ~ ~ T / ~ o u o ~ )  wc2 = - Co(A2/8) (yi2/povo2Z). (25) 

We can determine the maximum and minimum values of A by looking for the roots of 
aA/aw = 0. This yields the quadratic equation 

(l-CY2)x2-2x+l=O (26) 

where x= w2/wc2 and a= wC7. The solution is 

x = ( l  +a)/(l-CY2) (a#  1) 
X = 4  (a=l ) .  

Suppose a< 1, then x1: 1 & a. The root x = 1 - a gives a positive value of A 

A ~ ~ ~ c c c Y ( ~  -CY). (29) 

The root x = 1 + cy. gives a negative value of A 

AminK - CY (1 + a). (30) 

The behaviour of A(x) in this case will look like that sketched in figure 1. As a increases 
the separation in x between Amax and Amin increases. For E N  1 there is only one non- 
zero (x=+) and this gives a positive value for A. Thus, the minimum disappears and 
goes over to an inflection point so that A(x) looks like that sketched in figure 2. Finally 
for a> 1 the only positive root is x =  I/.. This gives a maximum independent of a as 
shown in figure 3. 

The case 1=0 is appropriate if the needles tend to break up under the influence of the 
sound wave: then wC+ CO and equation (24) reduces to a purely relaxation type of 
behaviour 

A(w)=(CoX2/8) (ylw/pov02)  CUT/(^ + w2+)] sin2 24. (31) 
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Figure 2. Behaviour of A ( x )  for M E  1. 

Figure 3. Behaviour of A (x) for a$1 

Figure 4. A ( w )  when Z=O, WC+ CO. 
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The frequency dependence is shown in figure 4. A is always positive and approaches a 
constant limit A,' as COT$ 1, that is 

A,' = Cox2 (~?oH/8po~o2) sin2 24. (32) 
We can estimate the magnitude of A,' by putting CON 1, A N  1, mocz: lO2-lO3, Hcz: 104, 

po" 1 and U O N  lo5 all in CGS units. This gives A,- 10-4-10-5 which is very small but 
within the resolution of phase-sensitive detection techniques (Moran and Luthi 1969). 

There are several possible contributions to A which we have ignored. Inclusion of 
viscous dissipation would lead to  a term in equation (24) of second order in viscosity 
(Mountain 1966). For low viscosity this should be negligible, but could easily be corrected 
for if present. Concentration and temperature fluctuations will lead to terms involving 
additional relaxation. These terms can be separated out from the effect of orientation 
fluctuations if the relaxation times for the three processes are well separated. Also the 
coupling for the latter two processes should be much smaller than that due to orientation 
fluctuations when the external field is large. 

The imaginary part of q' in equation (22) leads to the damping of the sound waves, 
as can be seen from equation (18). It is usual to consider the ratio qa'/w2 

q('/w2=&CoX (yilpou03) ((1 - w2/wc2)2/[(1 - w2/uC2>2+ ~ 2 ~ 2 1 )  sin2 24. (33) 

This represents the damping due to orientation fluctuations and it is also anisotropic. 
For low frequencies ( w T < ~ ,  w < w C )  and for high frequencies ( w T B I ,  w $ w c )  it 
approaches the same limit, 

whereas it vanishes at w = w c .  Therefore we get symmetric behaviour about w = w c .  
If I-0 then wC+0o and equation (33) reduces to a form typical of a relaxation process. 
It has the maximum value, given by equation (34), for U T <  1 and decreases monotonically 
to zero for W T $ ~ .  For 4=45" the maximum value is about 10-16yl, using the same 
estimates as before. This must be compared to the damping produced by ordinary 
viscosity, also anisotropic (Forster et al 1971), which we have ignored: 

qv/w2- 7/pou03 10-15~ (35) 

where 7 is an average viscosity. If ~ 1 ~ 7 ,  as expected, the damping due to viscosity is 
about an order of magnitude larger than that due to relaxation of the orientation. Note, 
however, that qv/w2 is independent of w ,  hence it may be possible to observe equation 
(34) as the dispersive term in the total damping. To the first order, contributions to the 
damping from concentration and temperature fluctuations will also be nondispersive. 
Higher-order terms will involve the concentration and temperature relaxation times and 
will be independent of the external field H. 

4. Conclusions 

A simple linearized hydrodynamical theory for magnetic fluids in the presence of a 
strong external magnetic field has been presented. The theory involves two additional 
variables not present in an ordinary fluid. One is the concentration of magnetic particles 
and the other is a unit vector (the director) parallel to the local magnetization, which is 
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described by an equation similar to that used to describe orientation fluctuations in 
nematic liquid crystals. The equations are solved for a sound wave propagating at  an 
angle C$ from the external field direction. The sound velocity is shown to be anisotropic, 
depending on the angle y5. The anisotropy A, which is estimated to be about 10-5 for a 
field of IO4 G, shows an interesting frequency dependence. The variation with frequency 
gives information on the size of the needles or chains which remain stable against the 
perturbing sound wave. I t  would be interesting to consider the phase velocity and 
damping of sound near the ‘liquid’ and ‘solid’ phase transitions of the grains, since one 
might expect anomalies in some of the transport coefficients, particularly viscosity. For 
dilute samples, Brillouin light scattering might be possible. If the needles remain stable 
additional Brillouin lines due to propagating orientation fluctuations would arise. 
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