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Sound wave propagation in transition-regime micro- and nanochannels
Nicolas G. Hadjiconstantinou
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

~Received 27 November 2000; accepted 26 October 2001!

We present an extension of the existing continuum theory for sound wave propagation in dilute
gases in ‘‘narrow’’ two-dimensional channels to arbitrary Knudsen numbers; the theory provides
predictions for the wavelength and attenuation coefficient as a function of the oscillation frequency.
A channel is considered narrow in the context of wave propagation when its height is much smaller
than the characteristic diffusion length based on the wave frequency. This criterion is easily satisfied
by small scale~transition-regime! channels for most frequencies of interest. Numerical simulations
for a dilute monoatomic gas using the direct simulation Monte Carlo are used to verify the
theoretical results. Good agreement is found between theory and simulation. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1431243#
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I. INTRODUCTION

In recent years much attention has been focused on
mechanics at the micrometer and submicrometer scale
systems approach microscopic scales, increasing devia
from the well established continuum laws are reported.1 In
gas flows, the deviation from continuum behavior is quan
fied by the Knudsen number,Kn5l/H, wherel is the mo-
lecular mean free path, andH is a characteristic lengthscale
For Kn*0.1, the continuum description is known to fail; th
regime 0.1,Kn,10 is known as the transition regime b
cause it represents a transition between diffusive~con-
tinuum! molecular behavior forKn&0.1, and ballistic mo-
lecular behavior~free molecular flow! for Kn*10. Here, we
focus on flows in two-dimensional channels which are
predominant building blocks in today’s microfabricatio
techniques. The characteristic lengthscaleH in this case is
the channel height.

In this paper, we investigate the characteristics of ax
plane waves in dilute gases in two-dimensional chann
with heights that place them in the transition regime. Due
the small channel dimensions, we expect the system to
within the ‘‘narrow channel’’ definition for most frequencie
of interest. A channel is considered narrow with regard
wave propagation if the diffusion length based on the os
lation frequency is much larger than the channel height,
is, if the ratiod5A2n/v/H is much larger than unity, wher
n is the kinematic viscosity andv is the wave angular fre
quency. This requirement is easily met in transition regi
flows if we assume that the neglect of inertial effects in
transition regime is governed by a criterion similar to the o
above. Consider gaseous argon at atmospheric pressure
example: AtKn50.1, any frequencyv,107 rad/s leads to
narrow channel behavior; atKn510, the narrow channe
approximation is valid for any frequencyv,1011 rad/s.

Solution to this problem is obtained by using a meth
devised by Lamb to investigate wave phenomena in the
row channel limit in the continuum case.2,3 This method al-
lows the determination of the wave propagation const
8021070-6631/2002/14(2)/802/8/$19.00
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without explicitly solving for the velocity field inside the
channel; only information about the steady-state bulk flo
rate in response to a constant pressure gradient is requ
Lamb’s method is based on the realization that for narr
systems as defined above, times long compared to the
tem’s diffusive time scale are still very short compared to
characteristic time of oscillation. This allows the coar
graining of the time description to the diffusive time scale
the system; in the resulting description, the effects of ine
are negligible and a diffusion equation is obtained2 that gov-
erns thesteady-stateoscillatory behavior of the system. Th
paradox of a diffusion equation, with its associated ‘‘infinite
disturbance propagation speed, describing the wave prop
tion characteristics of the system is resolved by recalling t
time has been coarse grained over the time required to es
lish the diffusive effects and the time derivative associa
with inertial effects has been dropped, leading to an appro
mation that does not capture the transient propagation
disturbances for times shorter than the viscous diffus
time. The terms ‘‘wave propagation’’ and ‘‘complex propa
gation constant’’ are used here for historical reasons, and
implied throughout the paper that their use refers to
steady-state response of the system~wavelength and attenu
ation coefficient! under oscillatory forcing.

Lamb’s method yields identical results for narro
channels3 to the full theory of wave propagation in the con
tinuum regime as developed by Kirchhoff4 since the approxi-
mations involved are consistent and physically correct. H
we utilize the fact that the propagation constant can be ev
ated without explicitly solving for the velocity field insid
the channel, to provide predictions for the wave propagat
constant in the transition regime that would otherwise
quire solution of the Boltzmann equation.

The theoretical predictions are verified using dire
Monte Carlo simulations~DSMC!.5 In all of the following
work we have used the hard-sphere gas model since for
verification and method demonstration purposes of this
per, it is preferable to use a model for which ample nume
© 2002 American Institute of Physics
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cal and theoretical results exist and the DSMC method
guaranteed to be exact. As will be clear in the next sect
the development of the theory is in no way dependent on
exact intermolecular force law. Additionally, the hard-sphe
model has been shown to capture average flow rates of
gases in tubes and channels reasonably well.6,7 Transport co-
efficient dependence on temperature is not an issue, sinc
thermal diffusion length will also be large compared to t
channel height~in gasesPr;1) and thus the flow will be
isothermal. Simulations in the range 0.3,d,24 verify the
theoretical result, but also show that the latter, strictly va
for d@1, can be considered valid at less extreme valuesd
than one would originally expect.

II. THEORY FOR WAVE PROPAGATION IN NARROW
CHANNELS

A. Continuum theory

We now give a fairly detailed outline of the theory fo
plane wave propagation in narrow channels and ducts in
continuum limit, first developed by Lamb.2,3 We extend this
theory to the transition regime in the next section.

We consider two-dimensional smooth channels of len
L with perfectly accommodating walls that are a distanceH
apart ~see Fig. 1!. The gas velocity field is denotedu
5u(x,y,t)5@u(x,y,t),v(x,y,t),w(x,y,t)#. For long chan-
nels (L@H), the velocity in the direction normal to the wal
is negligible and the pressure is uniform across any sec
of the channel@P5P(x,t)#. In this case the linearized equa
tion for momentum conservation is given by

r
]u

]t
5m

]2u

]y2
2

]P

]x
, ~1!

wherer is the average gas density, andm is the gas viscosity.
Under an excitation of the form exp(ivt), a response of the
form u(x,y,t)5ũ(x,y)exp(ivt), P(x,t)5 P̃(x)exp(ivt) is
expected. The amplitudesũ and P̃ are governed by

irvũ2m
]2ũ

]y2
52

dP̃

dx
, ~2!

or

]2ũ

]y2
1f2 ũ5

1

m

dP̃

dx
, ~3!

FIG. 1. Channel geometry. The walls aty52H/2, H/2 are diffuse, and the
wall at x5L is specular.
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wheref252 irv/m. The solution of this equation subjec
to a symmetry condition at the channel centerline and no
at the walls is

ũ5
1

mf2

dP̃

dx
2

cosfy

mf2cos
fH

2

dP̃

dx
. ~4!

A solution in terms of the bulk velocity in now sough
this approach reduces the problem into a one-dimensio
one, with the help of the concept of the channel resista
R, defined in the equation below. The amplitude of the b
velocity associated with the above response is

ũb5
1

H E
2H/2

H/2

ũ dy5
1

mf2

dP̃

dx
2

2

mf3H

dP̃

dx
tan

fH

2

[2
1

R
dP̃

dx
. ~5!

As ufH/2u→0 the effect of inertia becomes negligible an
the bulk flow rate reduces to the Poiseuille expression

ũb52
H2

12m

dP̃

dx
. ~6!

The conditionufH/2u→0 is of course equivalent to the na
row channel requirementd5A2n/v/H@1 that was devel-
oped in Sec. I through physical reasoning. This result sho
that in the absence of inertia, the wave propagation prob
is governed by the steady-state flow characteristics of
channel.

The final step to determining the wave propagation ch
acteristics is the substitution of the pressure gradient in te
of the fluid particle displacementj, where

u~x,y,t !5
]j~x,y,t !

]t
~7!

and

ub~x,t !5ũb~x!exp~ ivt !5
1

HE
2H/2

H/2 ]j~x,y,t !

]t
dy

5
]j̄~x,t !

]t
. ~8!

If T is the gas temperature, for isothermal changes~narrow
channel!2,4

]P

]x
52S ]P

]r D
T

r
]2j

]x2
. ~9!

Equation

ũb52
1

R
dP̃

dx
, ~10!

can thus be written as

]j̄

]t
5

P

R
]2j̄

]x2
. ~11!
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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The complex propagation constantb @ub}exp(2bx)# is thus
given by2,3

b2[~a1 ik !25 ivR/P, ~12!

wherek52p/l 5v/c is the wave number,l is the wave-
length,c is the sound speed, anda is the attenuation coeffi
cient. If we substituteR512m/H2 we obtain the well-known
result

b25
12ivm

PH2
, ~13!

for wave propagation in narrow channels that was origina
obtained by taking the limit of a narrow channel in Kirc
hoff’s general theory.4

The assumption of isothermal flow, motivated he
through physical reasoning, has been verified by Kirchho
general theory4 which includes the effects of heat condu
tion. Kirchhoff’s theory shows3 that the normalized tempera
ture variation relative to the normalized velocity amplitude
proportional tod21 and thus negligible in narrow channel

B. Transition regime

We now turn to wave propagation in the transition r
gime. We make use of the fact that equation

]P

]x
52S ]P

]r D
T

r
]2j

]x2
,

is a kinematic condition and thus applicable in all Knuds
regimes. The more general form of momentum conserva
valid for all Knudsen regimes requires

irvũ2
]t̃xy

]y
52

dP̃

dx
, ~14!

wheret̃xy is thexy component of the amplitude of the stre
tensor. When inertia is negligible, the equation reduces t

]t̃xy

]y
5

dP̃

dx
, ~15!

which shows that, similarly to the continuum case, the wa
propagation characteristics are governed by the steady-
flow characteristics of the channel. Despite the breakdow
continuum theory in the transition regime, we will continu
to used@1 as the criterion for negligible inertia and narrow
channel behavior. As will be seen in the results section,
remains an accurate, if slightly conservative, measure.

It has been shown6,8,9 that in the linear steady-flow re
gime there exists a flow resistanceR5R(Kn) defined by

ũb52
1

R~Kn!

dP̃

dx
, ~16!

that describes the flow rate in channels for all Knudsen nu
bers; this resistance can be determined by experiment6–8

linearized solutions of the Boltzmann equation,6,7,9 or mo-
lecular simulations.7

Knowledge of the flow resistanceR(Kn) allows the cal-
culation of the propagation constant with no reference to
Downloaded 20 Dec 2005 to 18.80.2.80. Redistribution subject to AIP l
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exact flow profile inside the channel as shown in the pre
ous section: Combining Eqs.~9! and ~16!, we obtain the
counterpart of Eq.~11! governing wave propagation in na
row channels in all Knudsen regimes

]j̄

]t
5

P

R~Kn!

]2j̄

]x2
. ~17!

Thus for a narrow channel the complex propagation cons
in the absence of inertia effects is given by

b2[~a1 ik !25 ivR~Kn!/P, ~18!

for all Knudsen numbers, provided the flow resistance is
appropriate function of the Knudsen number. The spec
functional form ofR(Kn) is of no consequence as no a
sumptions have been made concerning its form or orig
except that it describes flow in the linear regime.

Here we use the following scaling relation valid for a
Knudsen numbers6,9,10 to describe the flowrate in pressur
driven flow

Q̇5ũbH52
1

P

dP̃

dx
H2ART

2
Q̄, ~19!

and thus identify an expression for the flow resistan
R(Kn) which is valid for all Knudsen numbers. HereR
5kb /mm is the gas constant,kb is Boltzmann’s constant,mm

is the molecular mass, andQ̄5Q̄(Kn) is a proportionality
coefficient that can be determined by molecular simulat
or experiment.6 For the purposes of comparison with o
hard-sphere DSMC calculations, we will useQ̄(Kn) as de-
termined by solution of the linearized Boltzmann equatio9

for flow of a hard sphere gas in a two-dimensional chann
In the transition regime,Q̄(Kn) varies slowly about its mini-
mum value (1.5&Q̄(0.1,Kn,10)&3) occurring at Kn

'1. For real gas applications, appropriate values ofQ̄(Kn)
that describe real-gas behavior need to be used.

From Eq.~19! we can identify

R~Kn!5
P

HQ̄ART/2
, ~20!

leading to

c5A2vHQ̄ART/2 ~21!

and

a5A v

2HQ̄ART/2
. ~22!

These expressions are expected to hold in all Knudsen
gimes since both ingredients, Eqs.~9! and ~19!, are valid in
all Knudsen regimes. These predictions are shown below
be in agreement with direct Monte Carlo simulations of wa
propagation in narrow channels.
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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III. SIMULATION OF WAVE PROPAGATION

A. Numerical technique

We simulated gaseous argon~molecular massmm

56.63310226 kg, hard-sphere diameters53.66310210 m!
in a two-dimensional channel using standard DSM
techniques.5,11 We considered fully accommodating wall
our simulations will thus be compared with the theoreti

results using values ofQ̄ derived for fully accommodating
walls. The average gas pressure and temperature weP
51.0133105 Pa, andT5273 K, respectively, leading to
mean free pathl5mm /(A2ps2r)'6.2531028 m. The
choice of species should have no effect on our nondim
sionalized results that should apply to any dilute hard-sph
gas.

In the sake of brevity we will not present a description
the DSMC algorithm. Excellent introductory11 and detailed5

descriptions can be found in the literature; comparisons
DSMC simulation results with solutions of the linearize
Boltzmann equation and experimental results for dive
nonequilibrium phenomena spanning the whole Knud
range can be found in Refs. 5 and 12.

Sound waves are excited by imposing a sinusoida
varying particle influx atx50. Our simulations have show
that the particle influx generates apressuredisturbance in the
simulation domain that is subsequently propagated.
varying particle influx can be generated by a varying veloc
in the x direction ~the method used here! or a varying den-
sity; both methods yield identical results. The pressure
turbance atx50 is imposed using the well-known Maxwel
ian reservoir method: Particles exiting the domain atx50
are discarded, whereas particle influx is accounted for b
reservoir attached to the simulation domain atx50 and ex-
tending tox52LR . Each time step, particles at the requir
density~sinusoidally varying in time in the variable-densi
case! are generated inside the reservoir and are given vel
ties drawn from a Maxwellian distribution at the simulatio
temperature. The Maxwellian distribution has a tim
dependent mean velocity in thex direction that is equal to
the desired velocity~sinusoidally varying in time in the
variable-velocity case!. The particle positions are advance
in time ~one time stepDt); the particles that cross the plan
x50 and enter the simulation domain represent the h
space Maxwellian influx and are retained. The particles
maining in the reservoir are discarded and the simula
proceeds as usual. The length of the reservoir is set toLR

5vcutoffDt, where vcutoff56A2kbT/mm is a velocity for
which the probability~based on a Maxwellian distribution! is
very small.

In order to minimize the cost of our simulations, th
domain length,L, was taken to be of the order of one wav
length. The far end of the domain (x5L) was terminated by
a specular wall. In the absence of dissipation, the sys
would exhibit pure standing waves. In the present case,
reflected wave amplitude was negligible due to the high d
sipation associated with narrow channels.

More than 30~on average! molecules per cell were use
to ensure accurate solutions. The transport coefficient
DSMC are known13 to deviate from the dilute gas Ensko
Downloaded 20 Dec 2005 to 18.80.2.80. Redistribution subject to AIP l
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values as the square of the cell sizeDx with the proportion-
ality constant such that for cell sizes of the order of one m
free path, the error is of the order of 10%. To minimize th
error, we used three cells per mean free path forH.3l, but
the number of cells per mean free path was increased
smaller systems to ensure that there were at least eight
across the channel width. It has been shown14,15that the error
in the transport coefficients is proportional to the square
the time step, with the proportionality constant such that
time steps of the order of one mean free time, the error is
the order of 5%. The error due to a finite time stepDt is
negligible in our simulations; the time step was taken to
significantly smaller than the mean free timel/co @in fact,
Dt,l/(5co)] where co5A2kbT/mm is the most probable
velocity.

Temperature variations due to dissipation were clos
monitored, and the mean temperature was found to devia
most by 2%. A variation of this magnitude leads to a chan
of at most 1% in the adiabatic–isothermal sound speed
continuum transport coefficients, given that these vary
AT. We expect temperature effects in the transition regi
studied here to be similarly small.

The reservoir forcing was chosen such that the resul
wave amplitude,uoo , was small to avoid nonlinear effects
Our simulations have been performed with a wave amplitu
uoo'0.02cs that has been found, as discussed below, to
sufficiently small. Herecs5AgkbT/mm is the adiabatic
sound speed andg is the ratio of the specific heats. In th
continuum regime, the ratio between the viscous and non
ear inertial terms scales as (muoo /H2)/(ruoo

2 /l ). This scal-
ing indicates viscous effects dominate nonlinear inertial
fects if uoo!cd2. Although the continuum assumptio
breaks down in the transition regime, we will use this cri
rion as an indication of the importance of nonlinear inert
forces. Based on this criterion, we expect nonlinear effect
be negligible in all of our simulations. To verify this, w
performed simulations at selected frequencies withuoo

'0.05cs anduoo'0.01cs , which produced results that wer
indistinguishable~within statistical fluctuations! from our
original simulations withuoo'0.02cs .

After the initial transients have passed, the valueub(x,t)
was measured in the simulations at each time step in sl
along thex axis. Our sampling method16 accounts for the
transient nature of the simulation~that leads to zero time
averages!, by using the fact that the bulk velocity time
dependence is of the following known form:

ub~x,t !5uoo@e2axsin vt coskx2e2axcosvt sin kx#

[A~x!cosvt1B~x!sin vt. ~23!

The spatial dependence of the bulk velocity which conta
the information about the attenuation coefficient and
wavelength, can be recovered from the simulation throu
the application of a chi-square fit17 to the functional form of
Eq. ~23!. The desired amplitudesA(x) andB(x) are given by

A~xj !5
Ss2Suc2SscSus

Sc2Ss22~Ssc!2
, ~24!
icense or copyright, see http://pof.aip.org/pof/copyright.jsp



806 Phys. Fluids, Vol. 14, No. 2, February 2002 Nicolas G. Hadjiconstantinou
FIG. 2. Cosine and sine components,A(x) andB(x), of the velocity amplitude~in m/s! for v518.53106 rad/s,H50.4 mm. The smooth line indicates the
expected solution based on Eqs.~21! and ~22!, and the jagged line is the molecular simulation result.
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B~xj !5
Sc2Sus2SscSuc

Sc2Ss22~Ssc!2
, ~25!

where

Ss25(
i

M

sin2 vt i , Sc25(
i

M

cos2 vt i ,

Ssc5(
i

M

sin vt icosvt i

Sus5(
i

M

ub~xj ,t i !sin vt i ,

Suc5(
i

M

ub~xj ,t i !cosvt i ,

with xj being the position of slicej along thex axis, andM
being the number of time samples recorded. The Neld
Mead simplex method17 is used to perform a nonlinear ch
square fit ofA(x) andB(x) to extract the wave numberk and
the attenuation coefficienta. A phase shift is also included in
the parameter fits to allow for the phase difference betw
the enforced pressure disturbance and the observed vel
variation @see Eq.~16!#, and entrance effects.

B. Simulation results

Our simulations were performed in the frequency ran
0.253106 rad/s,v,18.53106 rad/s. Since the simulation
cost increases linearly with the simulated time which is p
Downloaded 20 Dec 2005 to 18.80.2.80. Redistribution subject to AIP l
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portional to the oscillation period (2p/v), v50.253106

rad/s was the lowest frequency we could simulate with
present computational resources.

An estimate for the magnitude of homogeneous abso
tion is given by the continuum formula that includes t
effects of viscosity and thermal conductivity18

ah5
v2

2rcs
3 F S 4

3
m1z D1

k

cp
~g21!G . ~26!

Here, cp is the specific heat at constant pressure,k is the
thermal conductivity, andz is the coefficient of bulk viscos-
ity which is equal to zero for an ideal gas. Based on t
estimate, we find that homogeneous absorption in our si
lations is expected to be negligible compared to the diss
tion due to the wall presence@Eq. ~22!#. High-frequency ef-
fects are also negligible at these frequencies.19

Figure 2 shows a typical simulation result forA(x) and
B(x). Figures 3 and 4 show the comparison between
theoretical and simulation results for the sound speed
attenuation coefficient, respectively, in the frequency ran
0.253106 rad/s,v,18.53106 rad/s for a channel heigh
H50.1 mm. The agreement is very good.

We also performed simulations atv518.53106 rad/s
for a variety of channel heights. The results of these simu
tions plotted as functions ofd are shown in Figs. 5 and 6
These figures show that the narrow channel theory is v
for d.1 and is qualitatively correct even ford'1 despite
the fact that it is expected to be valid only ford@1.
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Comparison between the the
oretical prediction of Eq.~21! shown
as a solid line and simulation result
denoted by stars at a fixed chann
height ofH50.1 mm.
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IV. CONCLUDING REMARKS

The agreement between the theoretical expression
the complex propagation constant and DSMC simulation
very good. Our simulation results indicate that in the tran
tion regime the narrow channel assumption can be con
ered valid ford.1, rather than the expectedd@1. Our con-
clusions are also not affected by the use of a ‘‘sharp
criterion that compares the diffusion length to the chan
half-height (2d). The development of a transition-regim
Downloaded 20 Dec 2005 to 18.80.2.80. Redistribution subject to AIP l
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counterpart to the continuum-based measure,d, may address
the slightly conservative predictions of the current measu

Although simulations were limited to the transition r
gime, the expressions presented are valid for arbitrary Kn
sen numbers and are thus expected to be valid in the
flow and free molecular flow regimes. In the slip-flo
regime,R(Kn) can be determined by the slip-flow correcte
version of the Poiseuille formulaR512m/H2.

Extension of these results to tubes and ducts of arbitr
-

s
el
FIG. 4. Comparison between the the
oretical prediction of Eq.~22! shown
as a solid line and simulation result
denoted by stars at a fixed chann
height ofH50.1 mm.
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FIG. 5. Comparison between the the
oretical prediction of Eq.~21! shown
as a solid line and the simulation re
sults at a fixed frequency (v518.5
3106 rad/s! denoted by stars. The
open circle denotes the sound speed
the absence of walls (d50).
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cross-section directly follows. Although in this work we us
the dilute hard-sphere gas model, we expect the result
approximate real monoatomic gas behavior well. Comp
son with experiments shows that the pressure-driven flow
in real gases can be captured fairly accurately by the di
gas model.6,7
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