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The method of multiple scales is used to analyze the wave propagation in two-dimensional 
hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall 
wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The 
results show that neither of these resonating modes could occur without strongly generating the 
other. 
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INTRODUCTION 

We consider acoustic waves propagating in an invis- 
cid, nonconducting, perfect gas confined in a two-dimen- 
sional hard-walled duct having a nonuniform cross sec- 
tion. We assume the walls to have weak sinusoidal un- 

dulations. We make lengths, velocities, and time di- 
mensionless using the average width of the duct d, the 
undisturbed speed of sound c, and the characteristic 
time d/c. In dimensionless quantities, the walls of the 
duct are located by 

y = ½ sink•x , lower wall , (la) 

y = 1 + ½ sin(k•x + 0) , upper wall , (lb) 

where ½ is a small dimensionless parameter character- 
izing the weakness of the wall undulations, kw is the 
wavenumber of the undulations, and 0 is the phase dif- 
ference between the undulations of the two walls. 

Since the gas is assumed to be inviscid and noncon- 
ducting, its irrotational motion can be described by a 
dimensionless potential function •(x, y, t). For linear 
motions and harmonic time variations of the form •(x, 
y, t)=•b(x, y)exp(-icot), c• satisfies 

v"• + o/• = 0, (2) 

where to is the dimensionless frequency of oscillation. 
For an inviscid fluid and a hard wall, the flow is tangen- 
tial to the walls; that is, 

•b• = ½•bxk w cosk•x , at y = ½ sink•x , (3) 

•b• = ½•bxk w cos(k•x + 0) , at y = 1 + ½ sin(k•x + 0) . (4) 

Straightforward expansions of the form •b 0 + ½•bx were 
obtained for the solutions of this problem by Isakovitch x 
for the case of a waveguide with only one undulating 
wall, by Samuels •' for the case of a waveguide with in- 
phase wall undulations (i.e., 0 =0), and by Salant a for 
the above general problem. Unfortunately, all the above 
expansions are not uniform because the correction ½•bx 
dominates the first term •b 0 for frequencies near what 
Isakovitch, Samuels, and Salant call the resonant fre- 
quencies. In this paper, we determine a uniform ex- 
pansion by using the method of multiple scales. 4 Before 
determining this uniform expansion, we carry out a 
straightforward expansion in the next section to exhibit 
the nonuniformity. 

I. A STRAIGHTFORWARD EXPANSION 

In this section, we follow Salant and seek an expan- 
sion of the form 

½(x,y) = ½0(x,y) + (5) 

Substituting Eq. 5 into Eqs. 2-4, transferring the 
boundary conditions from y = ½ sink,ox and y = 1 + ½ sin(k,ox 
+ 0) to y =0 and y = 1 by developing 4>x and 4>• in Taylor 
series expansions, expanding for small ½, and equating 
coefficients of like powers of ½, we obtain 

Order ½0 

V•'4)o + •o•'4>0 ='0 , (6) 

(•0• =0, aty=0, (7) 

(•0•=0, aty=l; (8) 
Order ½ 

v•'$• +o•"$• = 0, (9) 

qS•=q5oxkwcoskuyx-q5o•sinkuyx , at y=0 , (10) 

qb•=qb0xkwcos(k•.x+0)-q50•sin(kwx+0) , aty=l . 
(11) 

The solution of Eqs. 6-8 is taken to be 

•b 0 =A cosn•ry exp(ik•x) , (12) 

where 

k•=oo•'-n•'•, n=0,1,2, --- . (13) 

For traveling waves, n•r must be less than •o. 

Substituting for •0 into Eqs. 10 and 11, we have 

c) • = {'iA (knk,o - n%r •') exp[i(k, + k,o)x] 
I ß 

+ •iA(knk,o +n•'rr •') exp[i(k•- k,o)x] , at y =0 , (14) 

q• • = « iA (knk,o - n•'rr •') cosn•r exp[i (k,, + k ,o)x + iO ] 

• ' n•'•r •' exp[i(k•- k,o)x iO] , + •iA (knk,o + ) costar - 
at y = 1. (15) 

We seek a particular solution to Eqs. 9, 14, and 15 of 
the form 

1 

q• = •iA(knk,o -n%•)4,•( y) exp[i(k, + k,o)x] 

+ «iA(knk,o +n•'rr•')4'•.(y)exp[i(kn - k,o)x] . (16) 

Substituting Eq. 16 into Eqs. 9, 14, and 15 and equating 
the coefficients of exp[i(k,,ñk,o)x], we obtain 
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(17a) 

(17b) 

(sa) 

(18b) 

(8c) 

The solutions of Eqs. 17 and 18 are 

4,• = (a s sinai) 'x {sina s sinaft + [cosa s - cosnrr 
xexp(- iO cos•rj)] cos%y}, j = 1 and 2 . (19) 

The present expansion is in agreement with that obtained 
by Salant. 

The functions 4 b -•, and hence, 0t- oo as a s -rn•r, 
which corresponds to the resonant frequencies 

z (k. +k•) z +mZ•r z with integer m (.O r = , ß (20) 

Hence, the above straightforward expansion is not valid 
when •o--•o r. An expansion valid near the resonant fre- 
quencies is obtained in the next section by using the 
method of multiple scales. Since k[ =•o •'- rn•'• 2 from 
Eq. 13, the resonant frequencies occur whenever 

• =•.+• . (2•) 

Note that, for the special case 0 = 0, m takes on all odd 
values when n is even and m takes on all even values 

when n is odd. For the special case 0 = •r, m- n is even. 
For 0 S0 and % rn takes on all integer values. The res- 
onant case kw = k, +km occurs only for standing waves, 
while the other case occurs for both standing and trav- 

eling waves. In this paper, we consider the traveling 
case only. 

II. EXPANSIONS VALID NEAR RESONANT 
FREQUENCIES 

In this section, we determine uniform expansions for 
the resonant case kw=k,- kin. To this end• we seek 
asymptotic expansions to the solutions of Eqs. 2-4 of 
the form 

, 

O(x,y)=Cko(Xo, X•,y) + ½ck•(Xo, X•, y) +. . . , (22) 

where x 0 =x is a fast scale characterizing the wavelengths 
of the acoustic waves and xt = ½x is a slow scale charac- 
terizing the amplitude and phase modulations due to the 
resonance. Substituting Eq. 22 into Eqs. 2-4 and equat- 
ing coefficients of like powers of ½, we obtain 

Order ½o 

o"0o 

•0•=0, aty=0, 

00•=0, aty=l; 

(23) 

(24) 

(25) 

Order ½ 

2 0%o OX•O + + =-- , 3y z 8x03x z 
(26) 

(27) 

(28) 

The solution of Eqs. 23-25 is taken to contain the two 
interacting mddes; that is, 

0o =A.(xO cosmrry exp(ik.,xo) +An(x•) cosnrry exp(iknxo), 
(29) 

where Am(x•) and An(x•) are still undetermined at this 
level of approximation; they are determined at the next 
level of approximation. Substituting f9 r 00 from Eq. 29 
into Eqs. 26-28, we obtain 

(30) 

+ «i • As(k•kw +j•'•r •') exp[i(ks - k•)x0] , at y = 0 , 
s=m.n (31) 

O• = «i • As(ksk• -j•'•') cosier exp[i(ks + k•)xo + iO] 

+ «i Z As(k•kw +J z•rz) cosj•r exp[i(k s - kw)xo - iO] , 
aty=l , (32) 

where primes denote differentiation with respect to xx. 

Equations 30-32 will have a finite solution, and hence 
the resulting expansion is uniform if, and only if, a so- 
called solvability condition is satisfied. To determine 
this solvability condition and carry out the expansion 
further, we express the nearness of k• to k n -km by in- 
troducing the detuning parameter (r according to 

k•=k,-k•+½g, g=0(1), 

and express (k,- k•)xo and (k• + kw)x o as 

(k, - k•)xo = kmxo - gx• , 

(k• + k•)xo = k,xo + •x• . 

(33) 

(34a) 

(34b) 

To determine the solvability condition for Eqs. 30-32, 
we seek a particular solution of the form 

(35) Oz = i4• (y) exp(ik•xo) + i4•, ( y) exp(ik,xo) . 
Substituting Eq. 35 into Eqs. 30-32, using Eqs. 34, 
and equating the coefficients of exp(ikmxo) and exp(iknx o) 
on both sides, we obtain 

4•,,, + 4•,,, = - 2k.,A., eosm•ry , 

4•'•(0) = «An(knkw +n•'rr•') exp( - irrxz) , 

4,'., (1) -• •A.(k.k• +n•'• •') cosn•r exp[- i(o'x• +0)] , 
" 2k•A• cosnrry •n +rtzIrZ•n = -- ' 

4• (0) = «A., (k.,kw - mart z) exp(irrxz) , 

=' _ iA,,,(k,,,kw mZrr z) eosmrr exp[i(rrxz +0)] . 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

The general solution of Eq. 36 is 
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ibm = cx cosm•ry + c a sinm•ry - (km/mrr)y A• sinm•ry . 
(42) 

Substituting Eq. 42 into Eqs. 37 and 38, we have 

mrrc•. = «An(knk w +n•'•) exp(_ icrx•) , (43) 
, 

(m•rc•.- kmax')cosm•r = «A.(k.k• +n•'•) 
xcosnTrexp[- i(rrx• +0)] . (44) 

Solving Eq. 4a for ca and substituting the result into 
Eq. 44, we obtain the following solvability condition for 
Eqs. 36-38: 

A• = « k•(k,k,o +hart a) [1- (- 1) m+• exp(-iO)]A,exp(-icrx•) . 
ß (45) 

Similarly, the solvability condition for Eqs. 39-41 is 

A• = « k;•(kmk,o - matra)[1 - (- 1)m*" exp(iO)]Am exp(it•x•) . 
(46) 

We seek a solution to Eqs. 45 and 46 of the form 

Am =am exp(sx•) , A, =a, exp[(s +iJ)x•], (47) 
where a s and s are constants. Substituting this assumed 
solution into Eqs. 45 and 46 and eliminating the a's, 
we get 

s (s + itr) = 9 , (483) 
where 

12 = «(kmkn)'•(kmk•- m•'7r •') (knk • +n•'7r •') [1 - (- 1) m+n cos0] . 

(4•[b) 
The solution of Eq. 48a is 

1 

s = •i[- rr ñ (o2 - 49) •/a] . (49) 

Since kw = kn -km + ½o' from Eq. 33, 

kmkw _ rrt•.rr •. = knkm _ k•m + (O. km_ rrt•.rr •. = knkm _ coa + (O. km <0 , 
because k, <co and km < co. Hence s is pure imaginary and 
Am and A, are bounded as a consequence. Therefore, 
qb 0 and qb• are bounded according to Eqs. 29, 42; and 

43, and the response is not very large in contrast with 
the straightforward expansion obtained in the previous 
section. However, Eqs. 29, 45, and 46 show that the 
nth mode cannot exist without the ruth resonant mode. 

Consequently, sinusoidal wall undulations can be used to 
generate the ruth mode from the nth mode if km = k,- k•. 

Ill. CONCLUDING REMARKS 

A straightforward perturbation solution of the form 
qb =qb0 + ½qb• is obtained for the acoustic wave propagation 
in a hard-wailed two-dimensional duct whose walls have 
weak sinusoidal undulations of the order of the small di- 

mensionless parameter ½. The results show that if the 
mth mode corresponding to the frequency co with the 
wavenumber km passes through the duct, the wall undu- 
lations will generate two weak waves with the wavenum- 
bers k• +km and k•- kin, where k• is the wavenumber of 
the wall undulations. If kw, km= k, where k, is the wave- 
number of the nth mode, the straightforward expansion 
breaks down because ½qb• is not small compared with qb 0. 
For traveling waves, only the resonant case k•= k,- km 
occurs. An expansion valid when k• =km- k, is then ob- 
tained. The results show that the mth mode cannot ex- 
ist without strongly generating the nth mode; however, 
both modes travel unattenuated through the duct. 
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