
Soundness and Separability of Workflow Nets
in the Stepwise Refinement Approach

Kees van Hee, Natalia Sidorova, and Marc Voorhoeve

Eindhoven University of Technology
Department of Mathematics and Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
k.m.v.hee@tue.nl, n.sidorova@tue.nl, wsinmarc@win.tue.nl

Abstract. Workflow nets are recognized as a modelling paradigm for
the business process modelling. We introduce and investigate several cor-
rectness notions for workflow nets, ranging from proper termination of
cases to their mutual independence. We define refinement operators for
nets and investigate preservation of correctness through these operators.
This gives rise to a class of nets that are provably correct.
Keywords: Petri nets; workflow; modelling; verification; correctness;
soundness; separability; serialisability.

1 Introduction

Petri nets are frequently used to model and analyse workflow processes in busi-
ness process design (c.f. [1, 3]). The nets used in this area are appropriately called
workflow nets (WF-nets). In software engineering, the same WF-nets can be used
for modelling the life cycles of objects. A case (transaction, object) starts as a
token in the initial place of the WF-net and after a series of steps this token
evolves into a marking consisting possibly of several tokens. An important prop-
erty is proper completion: from such a marking, it must be possible to reach the
final marking of one token in the final place. This property is called soundness,
c.f. [1, 4]. Soundness can be verified by more or less standard Petri net algorithms
(e.g. coverability analysis).

In [4], it is argued that soundness alone is not compositional w.r.t. refine-
ment; it is possible to refine a transition in a sound net with another sound net
and obtain a non-sound result (see e.g. Figure 1 in Section 3). For this reason,
soundness is considered in that work for free choice, safe and well-structured
nets, and compositionality is proven for each of these classes.

In this paper we propose and investigate a generalization of the notion of
soundness. We say that a workflow net is k -sound if any marking reached from
k tokens in the initial place can reach the same k tokens in the final place. The
original soundness becomes 1-soundness, and we propose to call workflow nets
sound iff they are k -sound for each k > 0. A practical advantage of the new
notion of soundness is introducing a possibility to avoid “earmarking” tokens
to distinguish several cases processed in the net. Imagine processing n orders

2

in the net. If the workflow net is 1-sound but not sound, every order has to be
earmarked by adding a unique id-colour, thus guaranteeing a treatment of the
order in isolation. If the net is sound, one can assure a proper completion of the
task with k orders without introducing id’s.

We show that the new notion of soundness is compositional w.r.t. refinement.
Next, we prove several bisimilarity results, which allows to carry over temporal
properties of nets to their refinements when the refinement is given by a sound
(in the new sense) net. Unlike 1-soundness, no apparent verification algorithm
for soundness exists, though we prove some classes of WF-nets to be sound.

Soundness is of course not the only correctness criterion. Analysis of a model
can be done e.g. by proving temporal requirements specified in a temporal logic.
It would be interesting to find a class of nets whose properties are the same for
the WF-nets with removed earmarkings as for the original nets. The concept of
serialisability in transaction processing [5] is based on the property that cases
are independent of each other: the presence or absence of other cases does not
influence the options for a specific case. This leads us to a similar concept of
serialisability for WF-nets: the property that the set of traces of the WF-net
with id-markings is equal to the set of traces of its abstraction. We show that
state machines and cycle-free marked graphs are serialisable. On the negative
side is the fact that serialisability is not a congruence w.r.t. refinement.

An attempt to soften the requirements results in a notion of weak separabil-
ity : every marking reachable from the initial state with k tokens is representable
as a sum of k markings each of which is reachable from a single initial token. Ev-
ery serialisable net is clearly weakly separable. We show that weak separability
together with 1-soundness imply soundness. Weak separability is a congruence
w.r.t. place refinement, but not a congruence w.r.t. transition refinement. Look-
ing for a compositional notion of separability, we come to a definition that is
similar to serialisability, however, it does not require the trace equivalence be-
tween the net with id-tokens and its abstraction, but the equivalence of sets of
Parikh vectors. One additional requirement turns this notion to the composi-
tional one, that we call split-separability.

For business applications, weak separability is important because it formal-
izes the idea of independent cases: each marking is the sum of the markings of
the individual cases and therefore all properties of the markings of a batch of
cases are “cumulated properties” of the individual cases. The additional prop-
erty of separability says that also the firings of a batch of cases is in fact the sum
of the firings of the individual cases. If we associate to each firing the consump-
tion of some resource, like money or energy, then separability implies that the
consumption of the batch of cases equals the sum of the individual consumptions.

We prove state machines and cycle-free marked graphs to be sound, serial-
isable and split-separable. Combined with refinement, this fact gives rise to a
class of WF-nets, that we call ST-nets, which are sound and split-separable by
construction.

The rest of the paper is organized as follows. In Section 2, we sketch the basic
definitions related to Petri nets and WF-nets. In Sections 3, we formulate the

3

new notion of soundness and give weak bisimilarity results for sound refinements.
In Section 4, we introduce and analyse the notions of soundness and separability.
Afterwards, in Section 5 we define a class of separable by construction ST-nets
and give a factorisation algorithm to invert refinement. We conclude in Section 6
with discussing the obtained results and directions for the future work.

2 Preliminaries

Let S be a set. A bag (multiset) m over S is a function m : S → N. We use + and
− for the sum and the difference of two bags and =, <,>,≤,≥ for comparisons
of bags, which are defined in a standard way, and overload the set notation,
writing ∅ for the empty bag and ∈ for the element inclusion. We list elements of
bags between brackets, e.g. m = [p2, q] for a bag m with m(p) = 2, m(q) = 1,
and m(x) = 0 for all x �∈ {p, q}. The shorthand notation k .m is used to denote
the sum of k bags m.

For sequences of elements over a set T we use the following notation: The
empty sequence is denoted with λ; a non-empty sequence can be given by listing
its elements between angle brackets. The Parikh vector −→σ : T −→ N of a
sequence σ maps every element t ∈ T to the number of occurrences of t in
σ. −→σ (t) stands for the number of occurrences of t in σ. A concatenation of
sequences σ1, σ2 is denoted with σ1σ2; tσ and σt stand for the concatenation
of t and sequence σ and vice versa. A projection of a sequence σ on elements
of a set U (i.e. eliminating the elements from T \ U) is denoted as πU (σ). The
shuffle σ‖γ of two sequences is the set of sequences obtained by interleaving the
elements of σ and γ; formally we have λ ‖σ = σ‖λ = σ and aσ‖bγ = {ax | x ∈
σ‖bγ} ∪ {by | y ∈ aσ‖γ}.

Transition Systems A transition system is a tuple E = 〈S , Act,T 〉 where S
is a set of states, Act is a finite set of action names and T ⊆ S × Act × S is
a transition relation. A process is a pair 〈E , s0〉 where E is a transition system
and s0 ∈ S an initial state.

We denote (s1, a, s2) from T as s1
a−→ s2, and we say that a leads from s1

to s2. For a sequence of transitions σ = 〈t1, . . . , tn〉 we write s1
σ−→ s2 when

s1 = s0 t1−→ s1 t2−→ . . .
tn−→ sn = s2, and s1

σ−→ when s1
σ−→ s2 for some s2. In

this case we say that σ is a trace of E . Finally, s1
∗−→ s2 means that there exists

a sequence of transitions σ ∈ T ∗ such that s1
σ−→ s2. We use action label τ to

denote silent actions and write s1 =⇒ s2 when s1 = s2 or s1
τ−→ . . .

τ−→ s2. We
write s1

a=⇒ s2 if s1 =⇒ s ′1
a−→ s ′2 =⇒ s2. To indicate that the step a is taken in

the transition system E we write s a−→E s ′, s a=⇒E s ′ resp.
The strong trace set ST (E , s0) of a process 〈E , s0〉 is defined as {σ ∈ Act∗ |

s0
σ−→}. Two processes are strongly trace equivalent iff their strong trace sets

are equal. ST (E1) = ST (E2). The weak trace set T (E , s0) is defined as {σ ∈
(Act \ {τ})∗ | s0

σ=⇒}. Two processes are weakly trace equivalent iff their weak
trace sets are equal.

4

Bisimulation Given two systems N1 = 〈S1, Act,T1〉 and N2 = 〈S2, Act,T2〉.
A relation R ⊆ S1 × S2 is a simulation iff for all s1 ∈ S1, s2 ∈ S2, s1Rs2 and
s1

a−→ s ′1 implies that there exists a transition s2
a−→ s ′2 such that s ′1 R s ′2.

Relation R is a bisimulation [11] if R and R−1 are simulations.
Weak (bi)simulation is defined by copying the definitions for plain (bi)simula-

tion and replacing a−→ by a=⇒ throughout. Two processes 〈E , s〉 and 〈F , r〉 are
called (weakly) bisimilar iff there exists a (weak) bisimulation R such that s R r .
We often add the adjective “strong” to non-weak simulation relations. Strong
and weak bisimilarity are equivalence relations. 1

Petri nets A labelled Petri net is a tuple N = 〈SN ,TN ,FN , lN 〉, where:

– SN and TN are two disjoint non-empty finite sets of places and transitions
respectively, the set SN ∪ TN are the nodes of N ;

– FN is a mapping (SN ×TN)∪ (TN ×SN) → N which we call a flow function;
– lN : TN → Act labels each transition t ∈ TN with some action lN (t) from

Act.

We assume that Act contains all transitions of all nets to be encountered. Unless
stated otherwise, we assume that the labeling function maps a transition onto
itself. If the identity function is not used, some transitions are labelled with the
silent action τ .

We drop the N subscript whenever no ambiguity can arise and present nets
with the usual graphical notation. A path of a net is a sequence 〈x1, . . . , xn〉 of
nodes such that ∀ i : 1 ≤ i ≤ n − 1 : F (xi , xi+1) > 0.

Markings are states (configurations) of a net. We consider a marking m of
N as a bag over S and denote the set of all markings reachable in net N from
marking m as M(N ,m). The set of markings from which marking m can be
reached is denoted as S(N ,m).

Given a transition t ∈ T , the preset •t and the postset t• of t are the bags
of places where every p ∈ S occurs in •t F (p, t) times and in t• F (t , p) times.
Analogously we write •p, p• for pre- and postsets of places. To emphasize the fact
that the preset/postset is considered within some net N , we write •

N a, a•
N . We

overload this notation further allowing to apply preset and postset operations
to a bag B of places/transitions, which is defined as the weighted sum of pre-
/postsets of elements of B .

A transition t ∈ T is enabled in marking m iff •t ≤ m. An enabled transition
t may fire, thus performing action l(t). This results in a new marking m ′ defined
by m ′ def= m − •t + t•. For a firing sequence γ in a net N , we define •

Nγ and
γ•
N respectively as

∑
t∈γ

•
N t and

∑
t∈γ t•N , which are the sums of all tokens

consumed/produced during the firings of γ. So m
γ−→N (m + γ•

N − •
Nγ).

1 All systems proved to be weakly bisimilar in this paper are in fact branching bisim-
ilar. This follows from Theorem 3.1 in [9]: a weak bisimulation where one of the
related systems is τ -free is a branching bisimulation.

5

We interpret a Petri net N as a transition system/process where markings
play the role of states, firings of the enabled transitions define the transition
relation and the initial marking corresponds to the initial state. The notions of
reachability, traces, simulation and bisimulation, etc. for Petri nets are inher-
ited from the transition systems. When mN R mM for some markings mN ,mM

and bisimulation R we say that (N ,mN) and (M ,mM) are bisimilar, written
(N ,mN) ∼ (M ,mM).

Workflow Petri nets In this paper we primarily focus upon the Workflow
Petri nets (WF-nets) [1]. As the name suggests, WF-nets are used to model
the ordering of tasks in workflow processes. The initial and final nodes indicate
respectively the initial and final states of cases flowing through the process.

Definition 1. A Petri net N is a Workflow net (WF-net) iff:

– N has two special places (or transitions): i and f . Place (transition resp.)
i is an initial place (transition): •i = ∅, and f is a final place (transition):
f • = ∅.

– For any node n ∈ (S ∪T) there exists a path from i to n and a path from n
to f .

We will call a WF-net sWF-net or tWF-net to indicate whether a WF-net has
places or transitions as initial and final nodes. A tWF-net can be extended with
an additional initial place and a terminal place up to an sWF-net.

3 Refinement and Soundness of Workflow Nets

When constructing models, the concept of refinement is very natural. A single
task on a higher level can become a sequence of subtasks also involving choice and
parallelism, i.e. it can be refined to a tWF-net. Similarly, being at some location
(place of the net) resources (tokens) can undergo a number of operations, which
can be reflected with a substitution of this place with an sWF-net. To build
composed nets from WF-net components we will use two simple operations:
Given two WF-nets L,M .

– Place refinement of a place p ∈ SL with sWF-net M yields a WF-net N =
L ⊗p M , built as follows: p ∈ SL is replaced in L by M ; transitions from •p
become input transitions of the initial place of M and transitions from p•

become output transitions of the final place of M .
– Transition refinement of a transition t ∈ TL with tWF-net M yields a WF-

net N = L ⊗t M , built as follows: t ∈ TL is replaced by M ; places from •t
become input places of the initial transition of M and places from t• become
output places of the final transition of M .

We consider transition and place refinements as basic techniques of our
component-oriented design methodology. Note that the refinement of the initial

6

i fd

c

e

a

b

g

h
i'

x

z

y f'

N: M:

Fig. 1. Refining 1-sound nets

and final places are legitimate operations, and are in fact sequential compositions
of nets.

The refinement operators satisfy the following trivial equations.

Lemma 2. Let A,B ,C be WF-nets, a, c ∈ SA ∪TA, c �= a and b ∈ SB ∪TB . If
A⊗a B, B ⊗b C and A⊗c C are defined, then (A⊗a B)⊗b C and A⊗a (B ⊗b C)
are defined and equal as well as (A ⊗a B) ⊗c C and (A ⊗c C) ⊗a B are.

Soundness of WF-nets A natural requirement for WF-nets is that in any
case the modelled process should be able to reach the end state, no matter
what happens to it. This requirement has been called soundness by [1, 3]. That
formulation of soundness does not combine with refinement, though. In Fig-
ure 1, WF-nets N ,M are depicted that are sound according to the standard
definition of soundness. However, the net L = N ⊗d M is not sound: [i] ∗−→L

[c, e, i ′2] ∗−→L [c, e, y2, f ′] ∗−→L [c, y2, h]. From this last state, no successor state
can be reached: it is a deadlock containing nonterminal nodes. The reason is
that net M terminates properly when started from [i] but not from [i2].

This example shows that we need a stronger notion of soundness that would
require a correct outcome of the WF-net work for initial markings with an ar-
bitrary number of tokens in the initial place. For this reason, we generalize the
soundness notion; the original soundness becomes 1-soundness according to the
new definition.

Definition 3. An sWF-net N = 〈S ,T ,F , l〉 with initial and final places i and
f resp. is k-sound for k ∈ N iff [f k] is reachable from all markings m from
M(N , [ik]).
A tWF-net N with initial and final transitions ti , tf respectively is k-sound iff
the sWF-net formed by adding to SN places pi , pf with •pi = ∅, p•

i = [ti], •pf =
[tf], p•

f = ∅ is k-sound.
A WF-net is sound iff it is k-sound for every natural k.

Note that by the definition of soundness, M(N , [ik]) ⊆ S(N , [f k]) for any
k -sound net N .

7

i
a

f
a

i f
 b

p q

N: M:

Fig. 2. Bisimilar Petri nets which are not WF-bisimilar nets

Bisimulation of WF-nets The notion of bisimulation for WF-nets must in-
clude the requirement of proper initialisation/termination. Consider e.g. nets N
and M given in Figure 2. They are bisimilar Petri nets, however, N is sound
while M has a deadlock and is not sound. We want to be able to transfer the
conclusion about the soundness of a WF-net to all WF-bisimilar nets, therefore
we do not consider nets N and M as WF-bisimilar.

Definition 4. Given relation R ⊆ (N → SN) × (N → SN) on markings of
sWF-nets N and M . R is a WF-simulation iff R is a simulation and

(∀ k , x : [ikN]R x : x = [ikM]) and (∀ k , x : [f k
N]R x : x = [f k

M]).

R is a weak WF-simulation iff R is a weak simulation and

(∀ k , x : [ikN]R x : [ikM] =⇒ x) and (∀ k , x : [f k
N]R x : x =⇒ [f k

M]).

A strong/weak WF-simulation between tWF-nets N ,M is a relation that
can be extended (by adding pairs of markings) to become a strong/weak WF-
simulation between the sWF-nets N ,M obtained by adding initial and terminal
places to N ,M respectively.

R is a strong/weak WF-bisimulation iff R and R−1 are strong/weak WF-
simulations. We will say that the WF-nets N and M are strongly/weakly WF-
bisimilar iff there exists a strong/weak WF-bisimulation R between N and M
such that ∀ k :: [ikN]R [ikM] ∧ [f k

N]R [f k
M].

It is easy to show that WF-bisimilarity is an equivalence relation. Moreover,
the following property holds:

Lemma 5. Let N ,M be WF-bisimilar WF-nets and N is sound. Then M is
sound as well.

Soundness and bisimulation of refinements We prove that refinement with
sound nets yields weakly WF-bisimilar nets.

Theorem 6. Let M be a sound sWF-net with all transitions τ -labelled, L be
a net with a place p ∈ SL and N = L ⊗p M. Then L and N are weakly WF-
bisimilar.

Proof. Let R = {(m + [p�],m + x) | m ∈ (SL \ {p}) → N} ∧ x ∈ S(M , [f �
M]).

We prove that this relation is a weak WF-bisimulation. Note that [ikL]R [ikN] and

8

t t
p(t)

τ

Fig. 3. Split refinement of transition t

[f k
L]R [f k

N]. Also, the “WF” requirement is satisfied, so it is sufficient to prove
that (1) R is a weak simulation and (2) R−1 is a weak simulation.

(1): Suppose (m + [p�])R (m + x) and (m + [p�]) a−→L (m ′ + [pr]) with
m ′ ∈ (SL \ {p}) → N. If the transition a does not affect p-tokens, we have
r = � and (m + x) a−→N (m ′ + x), with (m ′ + [pr])R (m ′ + x). Now suppose the
transition consumes s and produces t p-tokens, so s ≤ � and r = �− s + t . Since
x ∈ S(M , [i �

M]), x ∗−→M [f �
M], and thus x ∗−→N [f �

M]. Since the transitions of M
are τ -labelled, we have (m + x) =⇒N (m + [f �

M]) a−→N (m ′ + [f �−s
M] + [i tM]), so

(m + x) a=⇒N (m ′ + y) with y ∈ S(M , [f r
M]) (due to the soundness of M), so

(m ′ + [pr])R (m ′ + y).
(2): Suppose (m + [p�])R (m + x) and (m + x) a−→N (m ′ + y). In case that

a ∈ TM , we have m ′ = m, (m + x) =⇒N (m + y) and y ∈ S(M , [f �
M]) due to

the soundness of M , and so (m + [p�])R (m ′ + y). If a ∈ TN , we set FL(a, p) =
r ,FL(p, a) = s. Thus by the construction of N , x ≥ [f s

L] and y = x − [f s
L] + [irL].

Also, (m + [p�]) a−→L (m ′ + [p�−s+r]). Since M is sound and x ∈ S(M , [f �
M]), we

have y ∈ S(M , [f �−s+r
M]), so (m ′ + [p�−s+r])R (m ′ + y). ��

We prove another bisimulation result for transition refinement with sound
nets. First, we introduce a simple transition refinement —split refinement (see
Fig. 3): transition t is replaced with the tWF-net Σt with places {pt} and tran-
sitions {it , ft} such that •it = f •t = ∅, i•t = •ft = [pt]. In this section, we suppose
that it has label t and ft has label τ .

Lemma 7. Let N be a WF-net with t ∈ TN and M = N ⊗t Σt . Then

R def= {(m,m + [pk
t] − k .t•N) | m ∈ (SN → N) ∧ m ≥ k .t•N }

is a weak WF-bisimulation for N and M .

Proof. Consider some markings m, μ such that m R μ, say μ = m + [pk
t]− k .t•N .

Suppose m u−→N m ′. Then μ =⇒M m u−→M m ′, so m u=⇒M m ′. Clearly
m ′ R m ′. Now suppose μ

u−→M μ
′. If the transition that fired is it , then μ

′ =
μ−•

M t + [pt], so m ≥ •
M t , so m u−→N m ′ with m ′ = m − •

M t + t•M and m ′ R μ
′.

If that transition is ft , then u = τ and μ
′ = μ−[pt] + t•M , so taking m ′ = m, we

have m =⇒N m ′ and m ′ R μ
′. In all other cases, the transition that fired was

u and •
Nu = •

Mu and u•
N = u•

M . Since μ ≥ •
Nu and μ

′ = μ−•
Nu + u•

N , we can
take m ′ = m − •

Mu + u•
M and have m u=⇒N m ′. This covers all cases. Clearly, R

satisfies the additional requirements of a WF-bisimulation. ��

9

Theorem 8. Let L be a net with t ∈ TL and M a sound tWF-net with all
transitions except iM labelled with τ . Then L and N = L ⊗t M are weakly WF-
bisimilar.

Proof. Let M be the extension of M with the initial and final places and all
transitions relabelled with τ . By Lemma 2, (L ⊗t Σt) ⊗pt

M = ((L ⊗t M) ⊗iM

ΣiM)⊗fM ΣfM . Thus, by Lemma 7, L⊗t M is weakly WF-bisimilar to (L⊗t Σt)⊗pt

M , which by Theorem 6 is weakly WF-bisimilar to L⊗t Σt and by Lemma 7 is
weakly WF-bisimilar to L. ��

The theorems on weakly bisimilar refinements can be applied to yield sound-
ness preservation.

Theorem 9. Let L,M be sound WF-nets with n ∈ SL ∪ TL such that N =
L ⊗n M is defined. Then N is sound.

Proof. If n ∈ SL, we use Theorem 6 after relabelling transitions of M with τ . L
and N are weakly WF-bisimilar. Note that the relabelling does not influence the
soundness. Suppose [ikN] ∗−→ m within N , then there exists a state m ′ of L with
m R m ′ such that [ikL] ∗−→ m ′. Since m ′ ∗−→ [f k

L] within L, there exists a state μ

of N such that m ∗−→ μ and μ R [f k
L]. By the definition of WF-bisimulation we

have μ = [f k
N]. If n ∈ TL, we use Theorem 8 similarly. ��

4 Separability

With introducing the new notion of soundness, we extended the applicability of
WF-nets for the compositional design process. However, soundness is not the only
criterium for the correctness of the behaviour. In general, one looks for a Petri
net model that meets its specification given e.g. by a temporal logic formula; note
that the behaviour should satisfy the specification whatever number of tokens
is chosen to be placed into the initial place of the WF-net. The challenge is to
reduce the number of cases to be considered, when possible.

In this section we introduce a notion of separability, a behavioural property
stating that the behaviour of a WF-net with k initial tokens can be seen in some
sense as a combination of the behaviours of k copies of the net each of which
has one initial token.

4.1 Workflow nets with id-tokens and serialisability

In this subsection, we extend the semantics of labelled Petri nets by introducing
id-tokens: we consider a token as a pair (p, a), where p is a place and a ∈ Id is
an identifier (a primitive sort of a colour). We assume Id to be a countable set. A
transition t ∈ T is enabled in an id-marking m iff there exists a ∈ Id such that
m contains tokens •t with identifier a. A firing of t results in consuming these
tokens and producing tokens with identifier a to t•. To make it clear whether
the firing happens in a classical Petri net or in a net with id-tokens, we write t�−→

10

a

b

c

d
e

Fig. 4. Serialisable net with id-tokens that is not bisimilar to its abstraction

for firings in nets with id-tokens. Later on, we will use the extended semantics
when working with id-tokens, and the standard semantics for classical tokens.

Though being a very simple sort of coloured nets, WF-nets with id-tokens
are often expressive enough to reflect the essence of a modelled business process
taking care of separating different cases which are processed in the net concur-
rently.

A net with id-tokens can be abstracted into a classical labelled Petri net in a
natural way by removing the token id’s. We denote the abstraction function as
α and a marking obtained from a coloured marking m as α(m) resp. It is easy to
see that the obtained net is a sound abstraction of the original net, i.e. it shows
more behaviour (see [6] for the definition of sound abstraction):

Lemma 10. Let N be a Petri net and m its id-marking. Then there exists a
simulation relation between (N ,m) and (N , α(m)).

Proof. It is trivial to show that R = {(m, α(m) | m ∈ M(N)} is a simulation
relation. ��

There is no simulation between (N ,m) and (N , α(m)) in general (consider
e.g. the trace adcbace for the WF-net in Figure 4).

Still, it would be interesting to see whether there exists a class of nets whose
behaviour is trace equivalent to the behaviour of nets with id-tokens. For this
purpose, we introduce a notion of serialisability.

Definition 11. An sWF-net N is serialisable iff for any k ∈ N, any firing
sequence σ such that [ik] σ−→ there exist firing sequences σ1, . . . , σk such that
[i] σ1−→, . . . , [i] σk−→ and σ ∈ (σ1‖ . . . ‖σk).

Theorem 12. Let N be an sWF-net. Then N is serialisable iff for any id-
marking M such that α(M) = [ik] for some k ≥ 0, we have {σ | [ik] σ−→N } =
{σ | M σ�−→N }.

Proof. (⇒): Let N be a serialisable net, M =
∑

j [(i , cj)] and k be given as
specified. By Lemma 10 every trace of (N ,M) is a trace of (N , [ik]). We only
have to prove that every trace of (N , [ik]) is a trace of (N ,M). Let σ be a
trace of (N , [ik]). Due to the serialisability of N there exist σ1, . . . , σk such that
[i] σ1−→, . . . , [i] σk−→ and σ ∈ (σ1‖ . . . ‖σk). Then we have [(i , cj)]

σj�−→ (since all
the tokens produced and consumed in the firings of σj have colour cj). Hence,
∑

j [(i , cj)]
σ�−→ and σ is a trace of (N ,M).

11

(⇐): Now assume we have the described property for N and we have to
prove that N is serialisable. Let [ik] σ−→ for some k . Consider a marking M =∑

j [(i , cj)] with j �= l ⇒ cj �= cl for all j , l ∈ {1, . . . , k}. Since σ is also a trace
of (N ,M) and all tokens of M have different colours, we can split σ according
to the colours of firings into σ1, . . . , σk such that σ ∈ (σ1‖ . . . ‖σk). We have
[(i , cj)]

σ�−→j for all j ∈ {1, . . . , k}. Hence, [i] σ−→j for all j ∈ {1, . . . , k}. So N is
serialisable. ��

Trace equivalence between the nets with id-tokens and their abstractions for
serialisable nets allows to perform the verification of trace properties, e.g. LTL-
properties, on the abstractions of the nets, thus simplifying the verification task.
The same holds for some problems of the performance analysis. If one associate
time or price to every transition of the net independent of token’s id’s, then the
analysis results obtained with an abstracted net hold for the original net as well.

4.2 Serialisable subclasses of WF-nets

In this subsection we consider two subclasses of WF-nets which we prove to be
serialisable.

Definition 13. Let N = 〈S ,T ,F 〉 be a Petri net. N is a state machine (SM)
iff ∀ t ∈ T :| •t |≤ 1∧ | t• |≤ 1.

Definition 14. Let N = 〈S ,T ,F 〉 be a Petri net. N is a marked graph (MG)
iff ∀ p ∈ S :| •p |≤ 1∧ | p• |≤ 1.

Marked graphs are dual to state machines in the graph-theoretic sense and
from the modelling point of view. State machines can represent conflicts by a
place with several output transitions, but they can not represent concurrency and
synchronization. Marked graphs, on the other hand, can represent concurrency
and synchronization, but cannot model conflicts or data-dependent decisions.

We will refer to the marked graph tWF-nets and state machine sWF-nets as
MGWF-nets and SMWF-nets respectively.

Theorem 15. All SMWF-nets are sound and serialisable.

Proof. Let N be an SMWF-net and [ik] σ−→ m. We shall prove by induction
on the length of σ that σ can be serialized. The case σ = ε is trivial, so let the

statement hold for σ′, [ik] σ′
−→ m ′ and we prove the statement for σ = σ′t . By the

induction hypothesis, σ′ can be serialized into σ′
1, . . . , σ

′
k such that [i]

σ′
j−→ mj .

Since •t ≤ m ′ and | •t |≤ 1, there exists an ml such that ml ≥ •t . Thus [i] σl t−→
and σ can be serialized. So N is serialisable.

In an SMWF-net, | •t |=| t• |= 1 for any transition t , meaning that the num-
ber of tokens in the marking cannot change with any firing. So only markings
of the form

∑
1≤j≤k [pj] are reachable from [ik]. By the definition of WF-nets,

every place lies on a path from i to f . Since N is an SMWF-net, the exis-
tence of a path from place pj to place f is equivalent to [pj]

∗−→N [f]. Hence,
∑

1≤j≤k [pj]
∗−→ [f k] and N is sound. ��

12

Cycle-free MGWF-nets are sound and serialisable. The proof depends upon
the following lemma.

Lemma 16. Let N be a cycle-free MGWF-net with transitions t , u ∈ TN and a
place a ∈ SN such that there exist paths in N from t to a and from a to u and
∅ σ−→N m for some σ,m. Then we have m(a) ≤ −→σ (t) −−→σ (u).

Proof. Note that N is a tWF-net, so traces σ with ∅ σ−→N must start with a
firing of the initial transition i . Since N is cycle-free, the existence of a path
between nodes implies that these nodes are different. We use induction on the
length of the path from t to u. For the path of length 2, i.e. a ∈ t• and a ∈ •u,
the proof is immediate. If the path is longer, we can e.g. find b ∈ SN , v ∈ TN

such that there exists a path tbv . . . a . . . u. By the induction hypothesis, m(a) ≤
−→σ (v) −−→σ (u) and m(b) ≤ −→σ (t) −−→σ (v). Hence, m(a) + m(b) ≤ −→σ (t) −−→σ (u),
so m(a) ≤ −→σ (t) −−→σ (u) ��

As a corollary, if σ contains one firing of the initial transition i and a firing
of a transition t , the marking m with ∅ σ−→ m satisfies m(p) = 0 for any place
p on a path between i and t . We can now prove our theorem.

Theorem 17. All cycle-free MGWF-nets are sound and serialisable.

Proof. Let ≤ be the following partial order on sequences: σ ≥ ρ iff ∀ t :: −→σ (t) ≥
−→ρ (t). We use induction like in the proof of Theorem 15, strengthening the
induction hypothesis: σ can be serialized into σ1, . . . , σk in such a way that
σ1 ≥ . . . ≥ σk . So let N be the extension of an MGWF-net with the initial
an terminal places and suppose [ik] σt−→. By the induction hypothesis on σ we
have a decreasing serialization σ1, . . . , σk with [i]

σj−→ and σ ∈ σ1‖ . . . ‖σk . Let
m be a marking such that [ik] σ−→ m and mj such that [i]

σj−→ mj for all
j ∈ {1, . . . , k}. From Lemma 16, we know that σt has at most k occurrences
of t , so σ has at most k − 1 occurrences of t . Due to the ordering of σj ’s, we
can conclude that σk does not contain t . Let n ≤ k be the smallest index such
that σn does not contain t . We have mj ∩ •t = ∅ for j < n by the corollary of
Lemma 16. Moreover, for j ≥ n we have mj ∩ •t ≤ mn ∩ •t , since there exist
traces γj not containing t such that σjγj = σn . Since N does not contain mul-
tiple edges, we deduce from •t ≤ m =

∑
j mj that •t ≤ mn . So we can serialize

σt into traces σ1, . . . , σn−1, σn t , σn+1, . . . , σk . Since σn−1 contained t , we have
σn−1 ≥ σn t , completing the induction step. Again, 1-soundness follows from the
WF-net property. ��

Serialisability is not compositional As it normally happens with the no-
tions based on the traces of the systems, the serialisability is not compositional.
Figure 5 shows a net obtained as a place refinement of a marked graph with a
state machine, which are both serialisable as we know from the theorems proven
above. The trace aecabf of the refined net cannot be serialized.

13

a
b

c

f

d

e

Fig. 5. Not serialisable net

4.3 Weak separability

Our next approach is to look at the markings of the net only:

Definition 18. An sWF-net N is weakly separable iff for any k ∈ N and any
marking m, [ik] ∗−→ m implies that there exist markings m1, . . . ,mk such that
m = m1 + . . . + mk and [i] ∗−→ mj for j = 1, . . . , k.
We say that a tWF-net N is weakly separable iff the sWF-net obtained by adding
a place with the outgoing arc to the initial transition of N and a place with
ingoing arc from the final transition of N is weakly separable.

Property 19. Serialisability implies weak separability.

Proof. If [ik] ∗−→ m, there exists a σ such that [ik] σ−→ m, so there exist
σ1, . . . , σk ,m1, . . . ,mk such that [i] σ1−→ m1, . . . [i]

σk−→ mk and σ ∈ (σ1‖ . . . , ‖σk).
Clearly, m = m1 + . . . + mk . ��

Requirements that weak separability puts on a net are essentially weaker
than the ones of serialisability, which also means that we loose some options for
analysis on the class of weakly separable nets in comparison to the serialisable
nets. However, weak separability is sufficient to reduce the problem of soundness
to 1-soundness:

Theorem 20. Let N be a weakly separable and 1-sound net. Then N is sound.

Proof. Consider a marking m reachable from [ik] where k is an arbitrary positive
natural number. Since N is weakly separable, there exist m1, . . . ,mk such that
m = m1 + . . . + mk and [i] ∗−→ m1, . . . , [i]

∗−→ mk . Since N is 1-sound, m1
∗−→

[f], . . . ,mk
∗−→ [f], which means that m ∗−→ [f k]. So N is sound. ��

A legitimate question would be whether weak separability implies soundness
even without additional requirements. The answer to this question is negative:
Figure 6 gives a weakly separable net which is not sound, and moreover not
1-sound.

Corollary 21. The class of all weakly separable nets is not a subclass of all
sound nets.

The reverse is also not true: Figure 7 shows a sound free-choice2 net (see [8])
which is not separable.
2 N is a free-choice Petri net iff ∀ t1, t2 ∈ T , •t1 ∩ •t2 �= ∅ implies •t1 = •t2.

14

Fig. 6. A weakly separable net that is not 1-sound

a

b

c

d

e
g

h

Fig. 7. A sound net that is not weakly separable

Corollary 22. The class of all sound free-choice nets is not a subclass of all
weakly separable nets.

Thus, the notion of separability is in some sense orthogonal to the notion of
soundness.

Like soundness and unlike serialisability, weak separability is a congruence
with respect to the place refinement:

Theorem 23. Let L,M be weakly separable WF-nets, moreover M is a sound
sWF-net and p ∈ PL. Then the net N = L ⊗p M is weakly separable.

Proof. We may assume L to be an sWF-net since a tWF-net could be trans-
formed to the sWF-net just by adding initial and final places. Let i , f , iM , fM be
respectively the initial and final places of L and M . We shall prove that N is
weakly separable.

Let [ik] ∗−→N m. Then there is a trace σ such that [ik] σ−→N m. As the nodes
of L and M are disjoint, m can be represented as mL + mM for some mL,mM

where mL is a marking over PL \ {p} and mM is a marking over PM . Similarly,
trace σ can be projected into two traces σL, σM such that σL ∈ T ∗

L, σM ∈ T ∗
M .

Note that σ ∈ σL‖σM .
Since (N , [ik]) and (L, [ik]) are weakly bisimilar (Theorem 6), σL is a trace

of (L, [ik]): [ik] σL−→L mL. Due to the weak separability of L, mL can be split
into a sum mL,1 + . . . + mL,k , such that [i] ∗−→L mL,1, . . . , [i]

∗−→L mL,k . Due
to the soundness of M , we can prove by induction on the length of σ that
mL = mL + [pn] and [inM] ∗−→ mM for some n. Due to the weak separability
of M , mM can be split into a sum mM ,1 + . . . + mM ,n , such that [i] ∗−→M

mM ,1, . . . , [i]
∗−→M mM ,n . Now we choose an arbitrary bijective function that

maps every occurrence of p in each of mL,i to a mM ,j , replace every p by mM ,j

according to the chosen mapping and thereby get the splitting of m we are
looking for. ��

15

a

b

c

t

e

h

g

a

b

c

i

e

h

g
f

p

Fig. 8. Not weakly separable transition refinement of a weakly separable net

Applying transition refinement in the same way does not necessarily result in
a weakly separable net. Figure 8 gives a weakly separable net and a refinement
of this net where transition t is substituted with a sound weakly separable tWF-
net. The resulting net is not weakly separable: marking [p] is reachable from
the initial marking [i2], however, it cannot be split into a sum of two markings
reachable from [i]. Note that the net is nevertheless sound !

4.4 Separability

Finally, we shall try and introduce a notion stronger than weak separability but
not as restrictive as serialisability. Moreover, we shall look for a subclass of nets
where this notion is compositional w.r.t. refinements.

Definition 24. An sWF-net N is separable iff for any k ∈ N, any firing se-
quence σ such that [ik] σ−→, there exist firing sequences σ1, . . . , σk such that
[i] σ1−→, . . . , [i] σk−→ and −→σ = −→σ1 + . . . + −→σk .

The following properties follow immediately from the corresponding defini-
tions:

Property 25. (1) Serialisability implies separability. (2) Separability implies weak
separability.

Note that the class of serialisable nets is strictly included in the class of
separable nets: a not serialisable WF-net from Figure 5 is separable: e.g. the
problematic trace aecabf can now be separated into aebf and ac.

For business applications of WF-nets, separability can be used to provide
cost-effective management by simplifying the cost analysis. If costs are associated
to every transition firing, the total cost of processing of k orders given by a trace
in a WF-net is equal to the sum of costs of processing of k individual orders,
each given by a trace with 1 initial token.

Unlike serialisability, separability turns out to be a congruence w.r.t. the
place refinement operation:

Theorem 26. Let L,M be separable WF-nets. If p ∈ PL and M is a sound
sWF-net then L ⊗p M is separable.

16

Proof. We may assume that L is an sWF-net; if not, we extend it. Let N =
L ⊗p M and write iL = iN as i . Assume p �= i . Suppose [ik] σ−→N m for some
m. We shall construct σ1, . . . , σk such that �σ =

∑
1≤j≤k �σj , where [i]

σj−→N for
all j .

Let � = σ•
N (p),n = •

Nσ(p). We define γ, ρ as the projections of σ on TL,TM

respectively, so �σ = �γ + �ρ. Due to the existence of a weak WF-bisimulation
between N and L, we have [ik]

γ−→L. The separability of L implies then the
existence of γ1, . . . , γk such that �γ =

∑
j �γj with [i]

γj−→L for all j . Let �j =
γj

•
L(p),nj = •

Lγj (p) for all j . Since γ•
N (iM) = γ•

L(p) = � and likewise •
Nγ(fM) =

n, we have
∑

1≤j≤k �j = � and
∑

1≤j≤k nj = n. We have [i �
M]

ρ−→M m ′ with
m ′(fM) = n. Due to the separability of M , we can find ρ1, . . . , ρ� such that
[iM]

ρj−→M m ′
j with n of the traces ρj complete (i.e. [iM]

ρj−→ [fM] and �ρ =∑
1≤j≤� �ρj). Since

∑
j �j = �,

∑
j nj = n, we can partition the ρj ’s into disjoint

sets R1, . . . ,Rk with respectively �1, . . . , �k elements such that mj of the traces in
Rj are complete for each j . We construct σj with [i]

σj−→N by adding transitions t
from γj one by one preceded by •

Lt(p) completed traces from Rj . Since •
Lγj (p) =

nj , all the completed traces in Rj are used in this process. We add the incomplete
traces in any sequential order at the end. This we do for 1 ≤ j ≤ k . These σj

satisfy the requirement. If p = i we can copy the above proof, setting � = k and
�j = 1 for all j . ��

Transition refinement is still a problem: Figure 9 shows a refinement of a sep-
arable net which yields an inseparable net: the trace abicg cannot be separated.
Therefore, we constrict the class of separable nets in the following way:

Definition 27. An sWF-net N is split-separable iff S(N) = (. . . (N⊗t1Σt1)⊗t2

. . .)⊗tn Σtn , TN = {t1, . . . , tn} (the net obtained by applying the split-refinement
to every transition of N), is separable.

Due to Lemma 2, the order of split-refinements in the above definition is not
important.

Property 28. Split-separability implies separability.

a

b

d

t

g

e

j
h

c

a

b

d

i

g

e

j
h

c

f

Fig. 9. Not separable transition refinement of a separable net

17

Proof. Let L be a split-separable net and N = S(L) its split-refinement, so N is
separable. We shall prove that L is separable. We label it with t and ft with τ
for every transition t ∈ TL. Then N and L are weakly bisimilar. Now let σ be a

trace of L, [ik] σ−→L and σ′ some corresponding trace of N , [ik] σ′
−→N . σ′ can be

separated into σ′
1, . . . , σ

′
k , [i]

σ′
1−→N , . . . , [i]

σ′
k−→N and

−→
σ′ =

−→
σ′

1 + . . . +
−→
σ′
k . Due to

bisimilarity, σ1, . . . , σk obtained from σ′
1, . . . , σ

′
k by replacing every it with t and

removing all ft ’s are the traces of L and −→σ = −→σ1 + . . .+−→σk . So L is separable. ��

Lemma 29. Let L be a split-separable net and N = L ⊗t Σt for some t ∈ TL.
Then N is split-separable.

Lemma 30. Any split refinement of a split-separable net is split-separable.

Proof. Notice that the net S(S(N)) can be obtained from S(N) by place refine-
ment. Since S(N) is separable, S(S(N)) is also separable (Theorem 26). ��

Theorem 31. Let L,M be split-separable WF-nets. (1) If p ∈ PL and M is a
sound sWF-net then L ⊗p M is split-separable. (2) If t ∈ TL and M is a sound
tWF-net then L ⊗t M is split-separable.

Proof. (1) Let N = L⊗pM . We have to prove that N is separable, i.e. N ′ = S(N)
is separable. Since L and M are split-separable, L′ = S(L) and M ′ = S(M) are
separable too. Due to Lemma 2, S(N) = S(L)⊗p S(M). Hence, by Theorem 26,
S(N) is separable.
(2) By Lemma 29, L′ = L⊗t Σt is split-separable. Now construct M ′ by adding
initial and final places to M (M ′ is split-separable as well) and consider N ′ =
L′ ⊗pt

M ′. N ′ is split-separable due to part (1) of this theorem. Label iM and ft
in N ′ to τ , then N ′ is weakly bisimilar to N , where all labels are visible. So N
is split-separable too. ��

Theorem 32. SMWF-nets and acyclic MGWF-nets are split-separable.

Proof. Since SMWF-nets and acyclic MGWF-nets are serialisable, they are also
separable. Now notice that the classes of SMWF-nets and acyclic MGWF-nets
are closed under the split-refinement operation, hence, these nets are split-
separable. ��

5 ST-nets

It is hard to find algorithms that check soundness and/or separability for an
arbitrary WF-net, but we can define classes of nets that are sound and (split)
separable by construction. One such class, called ST-nets, is treated in this sec-
tion. These nets are constructed from state machines and marked graphs by
means of refinement. In many cases, modelling problems can be solved by (prov-
ably correct) ST-nets.

18

Algorithm 36 (CheckST(N)).
Δ := CompDistEnd(N); compute distances to the end node
X := SN ∪ TN \ {fN}; initialise search for x
while X �= ∅ do search loop

pick x ∈ X ; pick a candidate
M := FindFactor(N , x , Δ); search for a factor
if M �= SN ∪ TN ∧ CheckSMMG(M) SM/MG factor found
then return(CheckST (Quotient(N ,M))) recursive call
else X := X \ {x} continue search

od; No smaller SM/MG factor found
return(CheckSMMG(N))

Algorithm 37 (FindFactor(N , x , Δ)).
X = x•; initialise possible internal nodes
Y = ∅; initialise possible end nodes
while X • �⊆ (X ∪ Y) ∨ •X �⊆ (X ∪ {x}) do stop when augmentation stabilises

X := X ∪ X • ∪ (•X \ {x}) ∪ •Y ; augmentation step
Y := {y ∈ X | Δ(y) = Minz∈X Δ(z)}; compute candidates for y
if ∃ f : Y = {y} ∧ x �= y ∧ type(x) = type(y) test for candidate y
then X := X \ Y else Y := ∅ fi adjust X ,Y

od; augmentation stable
return(X ∪ Y ∪ {x}) SN ∪ TN if unsuccessful

Fig. 10. Factorization algorithm

Definition 33. The set N of ST-nets is the smallest set of nets N defined as
follows:
– if N is an acyclic MGWF-net, then N ∈ N ;
– if N is an SMWF-net, then N ∈ N ;
– if N ∈ N , s ∈ SN and M ∈ N is an sWF-net, then N ⊗s M ∈ N ;
– if N ∈ N , t ∈ TN and M ∈ N is a tWF-net, then N ⊗t M ∈ N .

Property 34. Let N be an ST-net, N = L⊗n M for some WF-net L, n ∈ SL∪TL

and ST-net M . Then L is an ST-net as well.

Theorem 35. All ST-nets are sound and split-separable.

Proof. Follows immediately from Theorems 15, 17, 9, 32 and 31. ��

Algorithm 36 checks whether a given WF-net N is an ST net. It looks for a
subnet of N , which is an STWF- or MGWF-net, i.e. N = L⊗n M for some node
n of a WF-net L. We call such a net M a factor of N and L the quotient. By
Definition 33 and Property 34, N is an ST-net iff L is an ST-net. So the algorithm
proceeds recursively with checking whether L is an ST-net. There exist various

19

ways to speed up the algorithm but we choose the given presentation for the
sake of simplicity.

The algorithm starts by computing the distance function Δ : (SN ∪TN) → N

that gives the length of the shortest path of a node x to fN . Then we pick up an
arbitrary node x �= fN and compute the smallest SM/MG factor (if any) with
initial node x , with following Algorithm 37. Note that a factor of N with initial
node x and terminal node y corresponds to a set S of nodes containing x , y and
all successors of nodes n ∈ S \{y} and predecessors of nodes n ∈ S \{x}, i.e. such
that •(S\{x}) ⊆ S and (S\{y})• ⊆ S . This observation allows us to compute the
smallest such S by successive augmentation, starting with the set S containing all
nodes from x•. The candidate for being the terminal node y in each augmentation
step is the node that is nearest to the end node fN , which is the reason for
calculating Δ. The algorithm uses the function type on nodes that returns either
“place” or “transition”. The minimal distance computation (CompDistEnd),
SM/MG check (CheckSMMG) and quotient computation (Quotient) are trivial
and have not been elaborated further.

6 Conclusion

In this paper we studied workflow nets that allow “batched” cases. This per-
spective led to a strengthened notion of soundness. Advantages of this notion is
that sound in the new sense WF-nets can be used freely as components without
restricting their use to e.g. safe nets. Bisimilarity results speed up verification of
temporal properties for composite nets.

Comparison of 1-soundness and (strengthened) soundness led to the notion
of separability: independency of individual cases within a batch. Weakly sepa-
rable and 1-sound nets are (strongly) sound. We introduced a notion of split-
separability and proved its compositionality w.r.t. refinement, allowing a hier-
archical approach to modelling and validation. A particular application of this
approach are the processes that can be modelled by ST-nets, which are “sound
by construction” and split-separable.

Future work We investigated a strengthening of 1-soundness, though as argued
in [7], 1-soundness is too strong a notion for some applications. It is interesting
to investigate e.g. separable nets that are not fully sound.

Decidability and computability are an issue. Clearly, 1-soundness can be
assessed by coverability analysis (c.f. [12]), but soundness and separability are a
different matter. A decision algorithm for separability of 1-sound WF-nets can
be found, but as yet not an efficient one. Soundness is probably undecidable in
general, as well as separability, but it is still a question for further investigations.

Soundness and separability of communicating WF-subnets (c.f. [10]) will need
extension of our class of operators that preserve soundness and separability.
We intend to develop component-oriented strategies for connecting nets. Wider
classes of nets than WF-nets can be considered as well. The use of net compo-

20

nents with several entry and/or exit nodes enables a component-based modelling
strategy that allows more freedom than refinement alone.

Acknowledgment We are grateful to the referees for their constructive remarks
and suggestions.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In Azéma, P. and Balbo,
G., editors, Proceedings ATPN ’97, LNCS 1248, Springer 1997.

2. W.M.P. van der Aalst, J. Desel and A. Oberweis, editors Business Process Man-
agement, Models, Techniques and Empirical Studies. LNCS 1806, Springer 1998.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: models, methods
and systems. The MIT Press, 2000.

4. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-net-based techniques. In [2], pages 161-183.

5. S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-
Hill 1984.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximaton of fixpoints. In Fourth An-
nual Symposium on Principles of Programming Languages (POPL) (Los Angeles,
Ca), pages 238–252. ACM, January 1977.

7. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert and M.C. Norrie, editors, Proceedings CAISE ’01, LNCS
2068, pages 157-170, Springer 2001.

8. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,
1995.

9. R.J. van Glabbeek and R.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics (extended abstract). In G.X. Ritter, editor, Proceedings IFIP
’89, pages 613-618. North Holland 1989.

10. E. Kindler, A. Martens and W. Reisig. Inter-operability of Workflow Applications:
Local Criteria for Global Soundness. In [2], pages 235-253.

11. R. Milner. Operational and algebraic semantics of concurrent processes. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol. B, chapter 19,
pages 1201–1242. Elsevier Science, 1990.

12. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing workflow
processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

