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Abstract. Workflow nets, a particular class of Petri nets, have become one of the standard ways to model and
analyze workflows. Typically, they are used as an abstraction of the workflow that is used to check the so-called
soundness property. This property guarantees the absence of livelocks, deadlocks, and other anomalies that can
be detected without domain knowledge. Several authors have proposed alternative notions of soundness and
have suggested to use more expressive languages, e.g., models with cancellations or priorities. This paper provides
an overview of the different notions of soundness and investigates these in the presence of different extensions of
workflow nets. We will show that the eight soundness notions described in the literature are decidable for workflow
nets. However, most extensions will make all of these notions undecidable. These new results show the theoretical
limits of workflow verification. Moreover, we discuss some of the analysis approaches described in the literature.
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1. Introduction

Before we outline the content of the paper, we first motivate the need for workflow verification techniques. Then
we justify the setting chosen, followed by a discussion on the tradeoff between expressiveness and decidability.

1.1. Motivation

In the last 15 years, we have witnessed a shift from “data-aware” information systems to “process-aware” infor-
mation systems [DAH05]. To support business processes an enterprise information system needs to be aware
of these processes and their organizational context. Early examples of process-aware information systems were
called WorkFlow Management (WFM) systems [AH04, GHS95, JB96, LR99, Mue04, Wes07]. In more recent
years, vendors prefer the term Business Process Management (BPM) systems. BPM systems have a wider scope
than the classical WFM systems and are not just focusing on process automation. BPM systems tend to provide
more support for various forms of analysis and management support. Both WFM and BPM aim to support
operational processes that we refer to as “workflow processes” or simply “workflows”.

Correspondence and offprint requests to: W. M. P. van der Aalst, E-mail: w.m.p.v.d.aalst@tue.nl



334 W. M. P. van der Aalst et al.

WFM and BPM systems are driven by process models. Therefore, it is important to ensure the correctness of
such models. Unfortunately, existing commercial systems do not support the verification of workflows. Moreover,
as shown in various case studies, process designers tend to make many errors. Consider for example the study
reported in [MNA07] which is based on more than 2000 process models and showed that more than 10 percent of
these models is flawed. Even established sets of models such as the SAP reference model (consisting of 604 EPC
models) turn out to have many errors (more than 20 percent is flawed). Typical errors are deadlocks (a case gets
stuck), livelocks (a case cannot progress), and other anomalies. Repairing such errors can be time consuming and
costly. Therefore, workflow verification is highly relevant. However, as workflow languages get more expressive,
it becomes more difficult to analyze them. This paper explores the theoretical limits of workflow verification.

1.2. Soundness of WF-nets

The flow-oriented nature of workflow processes and mainstream workflow notations makes the Petri net formal-
ism a natural candidate for the modeling and analysis of workflows. Most workflow management systems provide
a graphical language which is close to Petri nets. Although the routing elements are different from Petri nets, the
informal semantics of the languages used are typically token-based and hence a (partial) mapping is relatively
straightforward. A characteristic of workflow processes is that they are typically case-oriented, i.e., processes can
be instantiated for multiple cases but the life-cycles of different cases do not get intertwined.

As an example, let us consider Fig. 1a which models a workflow in terms of BPMN (Business Process Mod-
eling Notation) [Whi09]. BPMN is becoming the de facto standard for business process modeling. However, in
the past other notations (EPC, BPEL, etc.) have been equally successful and it is to be expected that in the future
other notations will come and go. Moreover, languages such as BPMN have no formal semantics. Fortunately,
it is easy to translate the basic constructs of such languages (XOR/AND-splits/joins) onto Petri nets given their
flow-oriented nature and intended token semantics. Figure 1b illustrates this. Both models describe a complaints
handling workflow that starts with a registration step after which two parallel branches are started. The top branch
is concerned with the handling of a questionnaire. After sending the questionnaire to the customer that submitted
the complaints, there are two possibilities. The customer may return the questionnaire in time and subsequently
it is processed. Otherwise, a timeout occurs and this step is skipped. In the lower branch of the workflow, the
complaint is first processed. After this the result is evaluated. Based on this evaluation, the complaint is checked
or not. If it is checked, the result may be OK or not. If it is not OK, the complaint is processed again. This is
repeated until no check is needed or the check is OK. Finally, after completing both parallel branches, the com-
plaint is archived. Note that the BPMN notation has special symbols for XOR/AND-splits/joins. These are called
gateways. For example, the “+” gateway following the registration step is a so-called AND-split. Both parallel
branches are synchronized by the “+” gateway just before archive. Similarly, “×” gateways model XOR-splits and
XOR-joins. For example, the evaluate step is followed by an “×” gateway modeling the corresponding choice.

The corresponding Petri net shown in Fig. 1b has a particular structure starting with a source place start and
ending with a sink place end. The modeled workflow can be instantiated by putting tokens on the input place
start. Each of these tokens represents the creation of a particular case. The goal is that after a while there will be
a token with a sink place in output place end for each initiated case.

This paper focuses on processes having the structure shown in Fig. 1b. These are so-called workflow nets
(WF-nets). WF-nets were introduced in [Aal97, Aal98] and are currently the most widely used model to formally
describe workflow processes.

In the context of WF-nets a correctness criterion called soundness has been defined [Aal97, Aal98]. A
WF-net such as the one sketched in Fig. 1b is sound if and only if the following three requirements are
satisfied: (1) option to complete: for each case it is always still possible to reach the state which just marks
place end, (2) proper completion: if place end is marked all other places are empty for a given case, and
(3) no dead transitions: it should be possible to execute an arbitrary activity by following the appropriate route
through the WF-net. In [Aal97, Aal98] it was shown that soundness is decidable and that it can be translated into
a liveness and boundedness problem, i.e., a WF-net is sound if and only if the corresponding short-circuited net
(i.e., the net where place end is connected to place start) is live and bounded.
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Fig. 1. A BPMN model and its corresponding WF-net. A WF-net is a Petri net with a start and an end place. The goal is that a case initiated
via place start successfully completes by putting a token in place end. a Example process expressed in terms of BPMN. b Same process mapped
onto a WF-net

1.3. On the tradeoff between expressiveness and decidability

Since the mid-nineties many people have been looking at the verification of workflows. These papers all assume
some underlying model (e.g., WF-nets) and some correctness criterion (e.g., soundness). Hence there are two
dimensions when considering workflow verification:

• Expressiveness of the model. Some authors assume a model that is less expressive than WF-nets, e.g., there
are many variants of the so-called workflow graph model [SO00] which is essentially a free-choice net and
thus easier to analyze than WF-nets without restrictions. Other authors propose more expressive models, e.g.,
models that allow for cancellation, priorities, data dependencies, recursion, and complex joins such as the
inclusive OR-join [Kin06, WAHE06].

• Correctness criterion. The notion of soundness defined in [Aal97, Aal98] is intuitively appealing. However,
some authors suggest weakening the correctness notion [DA04, DR01, Mar03, Mar05a, PW06b] while others
propose to strengthen the correctness notion [HSV04, HSSV05, Too04].
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In this paper, we are interested in the verification of different variants of WF-nets using different soundness
notions. We will systematically consider four classes of WF-nets and eight notions of soundness and focus on the
decidability of the corresponding 4*8=32 verification problems.

The four classes of WF-nets are based on two possible extensions of WF-nets: reset arcs and inhibitor arcs. We
will show that other extensions do not influence the expressive power of WF-nets and therefore are less relevant.
Reset arcs are closely linked to notions of cancellation present in some of the more advanced languages. Inhibitor
arcs allow for the modeling of advanced constructs such as priorities, preemption, OR-joins, etc.

The eight notions of soundness used in this paper have been identified after a thorough analysis of the litera-
ture. Some of the notions weaken one or more of the requirements in the original definition [Aal97, Aal98], e.g.,
the requirement that the net should not have dead transitions or the requirement that the net should always ter-
minate properly. Other notions strengthen some of the conditions stated in [Aal97, Aal98], e.g., the requirement
that soundness still holds even if the net is instantiated multiple times in parallel.

Thus far the decidability of soundness has not been investigated systematically. In fact, as far as we know,
this is the first paper to investigate decidability of soundness for WF-nets with reset and/or inhibitor arcs.

The main motivation for this research is that researchers continue to come up with new workflow models and
verification techniques. By providing a systematic overview, we hope to reveal the fundamental limits of work-
flow verification. This way we hope to avoid that authors continue to come up with verification problems and
approaches that turn out to be special cases of already known results, i.e., we want to help the researchers with
positioning their research problems as special cases of already known results, thus avoiding the re-invention of
the wheel. Moreover, we show that most correctness notions are in fact undecidable when combined with cer-
tain extensions that correspond to reset or inhibitor arcs. This clearly shows the theoretical limits of workflow
verification.

1.4. Outline

The remainder of this paper is organized as follows. First, we briefly present an overview of related work (Sect. 2).
A more detailed review of related work is given in later parts of the paper, e.g., when introducing the various
soundness notions. Then, Sect. 3 presents some of the preliminaries (mathematical notations and Petri net basics).
Section 4 presents the basic notion of a WF-net and introduces the four classes of WF-nets investigated in this
paper. In Sect. 5 the classical notion of soundness is introduced followed by definitions of seven other notions
of soundness considered in the literature. Section 6 presents the main results. It systematically investigates the
four classes of WF-nets and eight notions of soundness and focuses on the decidability of the corresponding 32
verification questions. Section 7 provides pointers to different analysis approaches. The goal is not to present new
methods but to provide a high-level overview of existing approaches. Here we also emphasize that despite the
fact that many verification questions are undecidable, a more pragmatic approach can help in finding numerous
errors. Section 8 concludes the paper by summarizing the results and reflecting on the state-of-the-art in workflow
verification.

2. Related work

Since the mid nineties, many researchers have been working on workflow verification techniques [Aal97, Aal98,
Aal00, AHV02, ALM+08, BP98, BB00, BK02, BZ04, DR01, DAV05, FBS02, FBS04, HSV04, HSS05, KGMW00,
KMR00, LZLC02, LMSW06, Mar05a, Mar05b, MRS05a, MRS05b, MMN+06, MNA07, SO97, SO00, SW01,
VVL07, VA05, VAH07, VBA01, Wom06, WAHE06, WEAH05]. It is impossible to give a complete overview here.
Moreover, most of the papers on workflow verification focus on rather simple languages, e.g., AND-XOR-graphs
which are even less expressive than classical Petri nets. Therefore, we only mention the work directly relevant to
this paper.

This paper extends the results given in [AHH+09] where it is shown that soundness is undecidable for
WF-nets with reset arcs. In this paper, these results are extended in two directions: (1) various notions of
soundness are investigated (not only classical soundness); (2) also WF-nets with inhibitor arcs are considered.
Moreover, unlike [AHH+09], this paper aims to provide a survey of workflow correctness notions and discuss
potential analysis techniques.
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The use of Petri nets in workflow verification has been studied extensively. In [Aal97, Aal98] the foundational
notions of WF-nets and soundness are introduced. In [HSV03, HSV04] two alternative notions of soundness
are introduced: k -soundness and generalized soundness. These notions allow for dead parts in the workflow but
address problems related to multiple instantiation. In [Mar03, Mar05a] the notion of weak soundness is pro-
posed. This notion allows for dead transitions. The notion of relaxed soundness is introduced in [DA04, DR01].
This notion allows for potential deadlocks and livelocks, however, for each transition there should be at least one
proper execution. Lazy soundness [PW06b, PW06a] is another variant that only focuses on the end place and
allows for excess tokens in the rest of the net. Finally, the notions of up-to-k -soundness and easy soundness are
introduced in [Too04]. More details on these notions proposed in the literature are given in Sect. 5.

Most soundness notions (except generalized soundness [HSV03, HSV04]) can be investigated using classical
model checking techniques that explore the state space. However, such approaches can be intractable or even
impossible because the state-space may be infinite. Therefore, alternative approaches that avoid constructing the
(full) state space have been proposed. [Aal00] describes how structural properties of a workflow net can be used to
detect the soundness property. [VA05, VAH07] presents an alternative approach for deciding relaxed soundness in
the presence of OR-joins using invariants. The approach taken results in the approximation of OR-join semantics
and transformation of YAWL nets [AH05] into Petri nets with inhibitor arcs. In the general area of reset nets,
Dufourd et al.’s work has provided valuable insights into the decidability status of various properties of reset nets
including reachability, boundedness and coverability [DFS98, DJS99, FS01]. For decidability results for ordinary
Petri nets we refer to [CW99, Esp98a, Esp98b, EN94].

A number of authors have investigated reduction rules for Petri nets and for various subclasses of Petri nets.
In Murata’s paper [Mur89], six reduction rules are presented for Petri nets and this set of rules can be used as a
starting point for workflow-net reduction rules. In [DE95], a set of reduction rules is proposed for free-choice Petri
nets while preserving well-formedness. Berthelot presents a set of reduction rules for general Petri nets [Ber87].
Reduction rules have been suggested to be used together with Petri nets for the verification of workflows
(cf. Chapter 4 in [AH04]). Similar approaches have been applied to other languages such as EPCs [KNS92, Kin06],
BPMN [Whi09], etc. Six reduction rules that preserve correctness for EPCs including reduction rules for trivial
constructs, simple splits and joins, similar splits and joins, XOR loops and optional OR-loops are proposed in
[DAV05]. In [SO00] a set of reductions rules for AND-XOR graphs (i.e., a special case of free-choice nets) is
presented. The authors claim that these rules are complete (i.e., any correct workflow can be reduced completely).
However, as shown in [AHV02, LZLC02] this is not the case. This can be easily corrected by using the reduction
rules presented in [DE95] or by using a more direct method (e.g., based on the Rank Theorem as shown in
[AHV02]). None of the reduction rules mentioned above takes cancellation into account. This case is handled in
[WVA+09]. In [VWAH10] the soundness preserving reduction rules are extended to nets with inhibitor arcs.

In this paper, we focus on WF-nets without resources, interaction, or data. These can be added by intro-
ducing resource places (cf. resource-constrained WF-nets [BP98, HSSV05, JKJ10]), communication places
(cf. open WF-nets [AMSW09, LMSW06, LW10, MRS05a, MRS05b, Wol09]), or data places ([TAS09]) and
analyzed using dedicated techniques.

The focus of this paper is on the verification of Petri-net-based workflow models. Although Petri nets are
the most widely used formal method for modeling and analyzing workflows, also process algebraic techniques
have been proposed. CSP, CCS, and the pi-calculus have been used to model the so-called workflow patterns
and provide semantics for languages such as BPMN and BPEL. For example, [WG07] and [PW09] show how
the well-known workflow patterns [AHKB03] can be represented in CSP and pi-calculus respectively. Languages
such as BPMN have been mapped onto Petri nets [ODA+09], but also process algebras such as CSP can be
used to provide semantics [WG08]. In [WG09] Dwyer’s property specification patterns [DAC99] are applied in
the context of BPMN, i.e., for a given process model it is checked whether particular temporal properties hold.
Model checkers such as FDR can be used to check such properties [WG08, WG09].

We would also like to refer to some empirical work on workflow verification. A detailed analysis of
the SAP reference model is presented in [MMN+06, MVD+08]. Here 604 EPC models [KNS92, Kin06] are
automatically translated to YAWL [AH05] and analyzed using Petri-net invariants. This study showed, using
a simple technique such as invariants, that at least 5.6 percent of SAP’s EPC models have obvious flaws
(deadlocks, etc.). Many errors resulted from the fact that splits of one type were joined by splits of another
type. Another typical problem was that fragments of the same model were modeling different entities. For exam-
ple, a job application was mixed up with the need to fill a position. As a result, part of the model was about
a position while other parts of the model talked about the handling of possibly many applications related to a
single position.
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Fig. 2. A basic Petri net with places {p1, p2, p3, p4, p5, p6} and transitions {t1, t2, t3, t4, t5}

Because the SAP model assumes a 1-to-1 correspondence between a position and an application, it deadlocks
when there are multiple applications for the same position. Later this study was extended to a larger set of models
(more than 2000 EPC models from various sources) using more precise analysis techniques [MNA07]. Of these
more than 2000 models at least 10 percent has errors. This more refined analysis showed that 20.9 percent of
the SAP models are actually flawed. In [VVL07] a set of 340 real business processes modeled with the IBM
WebSphere Business Modeler is analyzed. We would also like to point to the comparative analysis of various
workflow verification approaches described in [FFJ+09]. Here large collections of real-life models are used to
compare the performance of various tools and techniques.

Empirical research clearly shows that modelers are likely to make errors if they are not supported by analysis
tools. This illustrates the practical relevance of the research on workflow verification.

3. Preliminaries

This section introduces basic Petri-net related concepts [DE95, Jen97, Mur89] used in the remainder of this paper.

3.1. Basic Petri nets

First, we informally introduce the classical Petri net. In the next subsection, this model is extended and further
formalized.

Definition 3.1 (Basic Petri net) A basic Petri net is a triple (P ,T ,F ). P is a finite set of places, T is a finite set of
transitions (P ∩ T � ∅), and F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation).

Figure 2 shows a basic Petri net. Places are represented by circles and transitions are represented by squares.
For any relation/directed graph G ⊆ A×A (including the graph defined by the flow relation of a Petri net F ),

we define the preset •a � {a1 | (a1, a) ∈ G} and postset a• � {a2 | (a, a2) ∈ G} for any node a ∈ A. We use G• a
or a G• to explicitly indicate the context G if needed. Based on the flow relation F we use this notation as follows.
•t denotes the set of input places for a transition t . The notations t•, •p and p• have similar meanings, e.g., p•
is the set of transitions sharing p as an input place. In the Petri net shown in Fig. 2: •p5 � {t3, t4}, p5• � {t5},
•t3 � {p2, p3}, t3• � {p4, p5}, etc.

At any time a place contains zero or more tokens, drawn as black dots. The state of the Petri net, often
referred to as its marking, is the distribution of tokens over its places, i.e., M ∈ B(P ). B(P ) � P → N denotes
all multi-sets (bags) over P . M (p) denotes the number of times p is included in the multi-set, i.e., how many
tokens place p contains in marking M . We assume that the standard operators are defined for bags and hence
also for markings, e.g., union (X + Y ), difference (X − Y ), presence of an element in a multi-set (x ∈ X ), sub-
multi-set (X ≤ Y ), and size (|X | � ∑

a∈A X (a)). Concrete multi-sets are denoted using square brackets, e.g.,
[p13, p22, p3] � [p1, p1, p1, p2, p2, p3] denotes the marking with three tokens in place p1, two tokens in place
p2, and one token in place p3.
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In the Petri net shown in Fig. 2 only one place is initially marked (p1), i.e., M � [p1]. Note that more places
could be marked in the initial state and that places can be marked with multiple tokens.

For a basic Petri net, we assume the standard firing rule, i.e., a transition t is said to be enabled with respect
to some marking M if and only if each input place p of t contains at least one token. An enabled transition may
fire, and if transition t fires, then t consumes one token from each input place p of t and produces one token for
each output place p of t . For example, in Fig. 2, t1 is enabled and the firing of t1 will result in the state that marks
places p2 and p3. In this state t2, t3, and t4 are enabled. If t2 fires, t3 becomes disabled, but t4 remains enabled.
Similarly, if t4 fires, t3 becomes disabled, but t2 remains enabled, etc.

In the next subsection, we will formalize the firing rule for an extended class of Petri nets. Before doing so, we
introduce some well-known subclasses of Petri nets.

Definition 3.2 (Net classes) Let N � (P ,T ,F ) be a basic Petri net.

• N is a state machine net if and only if ∀t∈T |• t | � |t • | � 1.
• N is a marked graph if and only if ∀p∈T |• p| � |p • | � 1.

• N is a free-choice net if and only if ∀t1,t2∈T (•t1 ∩ •t2 �� ∅) ⇒ (•t1 � •t2).

The Petri net shown in Fig. 2 does not fit into any of the classes defined above. If we remove transition t3, the
resulting net is free-choice. These different net classes are relevant from the viewpoint of analysis. For example,
liveness and boundedness (two behavioral properties) can be decided in polynomial time for free-choice nets
while this is not the case for non-free-choice nets [DE95].

A Petri net is connected if there is a path from any node (place or transition) to any other node in the graph
while ignoring the direction of the arcs, i.e., the Petri net cannot be partitioned in two disconnected parts. In
the remainder we assume any Petri net to be connected and having at least two nodes, i.e., at least a place and a
transition.

3.2. Extended Petri nets

The basic Petri net model (Definition 3.1) is very simple and is not able to express all routing constructs one
may encounter in real-life workflows. However, there are several obvious extensions of the basic model. Some of
these extensions enhance the expressiveness (e.g., reset and inhibitor arcs) while other extensions only provide
convenient shorthands (e.g., arc weights).

When modeling workflows in term of Petri nets, transitions correspond to activities. Let A be a universe of
activity labels, i.e., a ∈ A refers to some activity. Multiple transitions can refer to the same activity, i.e., have the
same activity labels. The special label τ refers to a silent step [GW96]. We also say that transitions bearing the τ
label are “invisible”, i.e., transitions not corresponding to any activity and only added for routing purposes. Note
that τ �∈ A.

Definition 3.3 (Extended Petri net) An extended Petri net is a tuple (P ,T ,F , W ,A,L,R,H ), where:

• (P ,T ,F ) is a basic Petri net,
• W ∈ F → N\{0} is an (arc) weight function,
• A ⊆ A is a set of (activity) labels,
• L ∈ T → A ∪ {τ } is a labeling function,
• R ∈ T → 2P is a function defining reset arcs, and
• H ∈ T → 2P is a function defining inhibitor arcs.

Figure 3 illustrates the four extensions mentioned in the above definition. Figure 3a shows the extension
with arc weights. The arc from place p1 to transition t1 denotes an ordinary arc, i.e., W (p1, t1) � 1 indi-
cating that t1 consumes one token from p1 when firing. The arc from transition t1 to place p2 has weight
10, i.e., W (t1, p2) � 10 indicating that t1 produces ten tokens for p2 when firing. We extend the weight
function for the situation that there is not an arc connecting two nodes, i.e., W (x , y) � 0 if (x , y) �∈ F .
Moreover, for extended nets we redefine the preset and postset operator to return bags rather than sets:
•a � [xW (x ,y) | (x , y) ∈ F ∧ a � y ] and a• � [yW (x ,y) | (x , y) ∈ F ∧ a � x ].
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Figure 3b illustrates the notion of transition labels, i.e., each transition has a label. Note that multiple tran-
sitions may have the same label, e.g., L(t1) � L(t3) � X in Fig. 3b. The label defines the “observable effect”.
In workflow terms: the label refers to the activity being executed while firing the corresponding transition. As a
convention we will not show labels graphically if the labels coincide with transition identifiers, i.e., if L(t) � t ,
the label is omitted and just the transition identifier is shown (cf. Fig. 3a).

The notion of reset arcs is illustrated in Fig. 3c. Here the four double-headed arcs are reset arcs. Note that
R(tr ) � {p2, p3, p4, p5} and R(t) � ∅ for all other transitions t . Transition tr is enabled if and only if there is a
token in place pr , i.e., reset arcs do not influence enabling. However, after the firing of tr all tokens are removed
from the four places p2, p3, p4, and p5.

Figure 3d has one so-called inhibitor arc. The arc connecting p2 and t4 specifies that p2 has to be empty
when t4 fires. Note that t4 is enabled if and only if p3 contains at least one token and p2 contains no tokens.
Note that in this example this implies that t2 has priority over t4, i.e., t4 can only occur after t2 has removed the
token from p2. Note that H (t4) � {p2} and H (t) � ∅ for all other transitions t .

After this informal introduction of the firing rule and the various extensions, we formalize this notion.

Definition 3.4 (Firing rule) Let N � (P ,T ,F ,W ,A,L,R,H ) be an extended Petri net and M ∈ B(P ) be a
marking.

• A transition t ∈ T is enabled, notation (N ,M )[t〉, if and only if, M ≥ •t and M (H (t)) � 0.1

• An enabled transition t can fire while changing the state to M ′, notation (N ,M )[t〉(N ,M ′), if and only if,
M ′ � πP\R(t)(M − •t) + t•.2

The additional requirement M (H (t)) � 0 (i.e.,
∑

p∈H (t) M (p) � 0) states that all places in H (t) need to be empty
for t to be enabled. The resulting marking M ′ � πP\R(t)(M − •t) + t• is obtained by first removing the tokens
required for enabling: M − •t . Then all tokens are removed from the reset places of t using projection. Applying
function πP\R(t) removes all tokens except the ones in the non-reset places P\R(t). Finally, the specified numbers
of tokens are added to the output places. Note that t• is a bag of places.

(N ,M )[t〉(N ,M ′) defines how a Petri net can move from one marking to another by firing a transition. We
can extend this notion to firing sequences. Suppose σ � 〈t1, t2, . . . , tn 〉 is a sequence of transitions present in
some Petri net N with initial marking M . (N ,M )[σ 〉(N ,M ′) means that there is also a sequence of markings
〈M0,M1, . . . ,Mn 〉 where M0 � M , Mn � M ′, and for any 0 ≤ i < n: (N ,Mi )[ti+1〉(N ,Mi+1). Using this notation
we define the set of reachable markings R(N ,M ) as follows: R(N ,M ) � {M ′ ∈ B(P ) | ∃σ (N ,M )[σ 〉(N ,M ′)}.
Note that by definition M ∈ R(N ,M ) because the initial marking M is trivially reachable via the empty sequence
(n � 0).

The notions from Definition 3.4 can easily be lifted to the level of labels. (N ,M )[(a)〉 means that starting in
state M it is possible to reach a marking through a (possibly empty) sequence of silent transitions such that a
transition t with a visible label a (L(t) � a ∈ A) becomes enabled. (N ,M )[(σ )〉(N ,M ′) means that there exists
some sequence σ ′ such that (N ,M )[σ ′〉(N ,M ′) and the projection of σ ′ onto its visible labels yields σ .

For a marked Petri net we also define classical behavioral properties such as liveness and boundedness.

Definition 3.5 (Liveness, boundedness) Let N � (P ,T ,F ,W ,A,L,R,H ) be an extended Petri net and
M ∈ B(P ) be a marking.

• (N ,M ) is live if and only if ∀M ′∈R(N ,M ) ∀t∈T ∃M ′′∈R(N ,M ′) (N ,M ′′)[t〉.
• (N ,M ) is bounded if and only if R(N ,M ) is finite.
• (N ,M ) is safe if and only if ∀M ′∈R(N ,M ) ∀p∈P M ′(p) ≤ 1.

A marked Petri net is live iff from any reachable marking it is possible to (again) enable any transition. A
place p is bounded iff there is a k ∈ N such that M ′(p) ≤ k for any reachable marking M ′. A marked
Petri net is bounded iff all of its places are bounded. This is the case if and only if the number of reachable
markings is finite. A net is safe iff the number of tokens per place is bounded by 1, i.e., safeness is a special case
of boundedness.

1 M (P ′) � ∑
p∈P ′ M (p) denotes the number of tokens in the set of places P ′ ⊆ P , i.e., M (H (t)) � 0 if and only if the places in H (t) are

all unmarked.
2 πA(X ) denotes the projection of multi-set X onto A, i.e., (πA(X ))(a) � X (a) if a ∈ A and (πA(X ))(a) � 0 if a �∈ A.
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Fig. 3. Four extended Petri nets illustrating the different extensions. a Extended Petri net with arc weights. b Extended Petri net with transition
labels. c Extended Petri net with reset arcs. d Extended Petri net with inhibitor arcs
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4. Workflow nets

In the previous section, we considered arbitrary Petri nets without having an application in mind. However, when
looking at workflows, we can make some assumptions about the structure of the Petri net. The idea of a workflow
process is that many cases (also called process instances) are handled in a uniform manner. The workflow defini-
tion describes the ordering of activities to be executed for each case. For example, the workflow for the handling
of insurance claims describes how an individual claim is processed. Although at any point in time there may be
many claims in the pipeline, the workflow definition only looks at one case in isolation. Each of the cases will have
a well-defined starting point and ending point. There is a point in time where the instance starts, i.e., the process
is instantiated for a particular case, and, hopefully, there is a point in time where the instance is completed. Even
if one considers multiple start activities and multiple end activities, from a conceptual viewpoint there is still a
unique initial state and a unique final state.

These basic assumptions lead to the notion of a WorkFlow net (WF-net) [Aal97, Aal98]. Using Fig. 1b we
already informally introduced this notion and now it is time to formalize it.

Definition 4.1 (WF-net) An extended Petri net N � (P ,T ,F ,W ,A,L,R,H ) is a WorkFlow net (WF-net) if
and only if

• There is a single source place i , i.e., {p ∈ P | • p � ∅} � {i}.
• There is a single sink place o, i.e., {p ∈ P | p• � ∅} � {o}.
• Every node is on a path from i to o, i.e., for any n ∈ P ∪ T : (i ,n) ∈ F ∗ and (n, o) ∈ F ∗ where F ∗ is the

reflexive transitive closure of relation F .

• There is no reset arc connected to the sink place, i.e., ∀t∈T o �∈ R(t).

Figures 2 and 3 show five WF-nets. In each of these nets i � p1 is the source place and either p4 or p6 is the sink
place o. Every node in each of these Petri nets is on a path from i to o. The requirement that ∀t∈T o �∈ R(t) has
been added to emphasize that termination should be irreversible, i.e., it is not allowed to complete (put a token
in o) and then undo this completion (remove the token from o).

Transitions in a WF-net correspond to activities. Note that Definition 4.1 allows for multiple start (i•) and
end (•o) activities. It is also easy to generalize this definition to multiple start and end places. However, to simplify
notation we assume a single start and end place. Definition 4.1 also does not explicitly address notions such as
AND/XOR-splits/joins. By default a transition corresponds to an AND-join/AND-split activity. To model an
XOR-join or XOR-split activity, the desired behavior can be added using silent transitions (transitions with label
τ ) or duplicate transitions (multiple transitions having identical labels). Such transformations are trivial as shown
in [Aal98].

Definition 4.1 focuses on the control-flow and abstracts from resources, interaction, and data. While the defi-
nition can be extended with additional perspectives, we deliberately abstract from such things for several reasons.
First of all, WF-nets are not proposed as an end-user language. We envision that people use languages such as
(extended) EPCs [Kin06], BPMN [Whi09], etc. or some proprietary workflow language. The control-flow aspects
of such languages can be mapped onto WF-nets. We aim to investigate the foundations of workflow modeling
and analysis and do not want to focus on a particular language. Resources, interaction, and data can be added
by introducing resource places (cf. resource-constrained WF-nets [BP98, HSSV05]), communication places (cf.
open WF-nets [LMSW06, MRS05a, MRS05b]), or data places ([TAS09]). When cases compete for resources
and resources may be locked by individual cases, these interactions may cause deadlocks. Similarly, dataflow
problems may cause livelocks. However, for a more realistic modeling of these perspectives one needs to resort
to colored Petri nets [Jen97] or other models allowing for the modeling of more involved resource allocation
strategies and dataflow. As a result, analysis (other than simulation) tends to get intractable. Moreover, it may
be impossible to accurately model these perspectives. For example, a decision may be based on some complex
calculation, external data, or human judgment. Hence, many decisions need to be modeled as non-deterministic
choices anyway. Therefore, it seems natural to abstract from these aspects and first analyze the control-flow in
isolation as further motivated in [Aal98] and many other papers on workflow verification.
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5. Soundness

Based on the notion of WF-nets we now investigate the fundamental question: “Is the workflow correct?”. If one
has domain knowledge, this question can be answered in many different ways. For example, one can express par-
ticular properties in temporal logics such as LTL, CTL, etc. As shown in [WG09] Dwyer’s property specification
patterns [DAC99] can be applied in this context. In this paper, we focus on generic questions not requiring any
domain knowledge Hence, one needs to resort to generic questions such as: “Does the workflow terminate?”,
“Are there any deadlocks?”, “Is it possible to execute activity A?”, etc. Such kinds of generic questions triggered
the definition of soundness [Aal97, Aal98]. In this paper, we consider different soundness notions. However, we
first start with the original definition given in [Aal97].

Definition 5.1 (Classical soundness [Aal97, Aal98]) Let N � (P ,T ,F ,W ,A,L,R,H ) be a WF-net. N is sound
if and only if the following three requirements are satisfied:

• Option to complete: ∀M∈R(N ,[i ]) [o] ∈ R(N ,M ).

• Proper completion: ∀M∈R(N ,[i ]) (M ≥ [o]) ⇒ (M � [o]).

• No dead transitions: ∀t∈T ∃M∈R(N ,[i ]) (N ,M )[t〉.
Figure 1b was used to informally introduce the notion of soundness. Note that here i � start and o � end. Each
of the five WF-nets depicted in Figs. 2 and 3 is sound.

The first requirement in Definition 5.1 states that starting from the initial state (just a token in place i ), it is
always possible to reach the state with one token in place o (state [o]). If we assume a strong notion of fairness,
then the first requirement implies that eventually state [o] is reached. Strong fairness, sometimes also referred
to as “impartial” or “recurrent” [KA99], means that in every infinite firing sequence, each transition fires infi-
nitely often. Note that weaker notions of fairness are not sufficient, see Figure 2 in [KA99]. However, such a
fairness assumption is reasonable in the context of workflow management since all choices are made (implicitly
or explicitly) by applications, humans or external actors. If we required termination without this assumption,
all nets allowing loops in their execution sequences would be called unsound, which is clearly not desirable.
The second requirement states that the moment a token is put in place o, all the other places should be empty.
The last requirement states that there are no dead transitions (tasks) in the initial state [i ]. It is easy to see that
the second requirement is implied by the first one.

As pointed out in [Aal97, Aal98], classical soundness of a WF-net without reset and/or inhibitor corresponds
to liveness and boundedness of the so-called short-circuited net. The short-circuited net is the Petri net obtained
by connecting o to i , thus making the net cyclic.

Lemma 5.1 (Soundness, liveness and boundedness) Let N be a WF-net and N the extended Petri net obtained
by connecting o to i through a new transition t∗.

• If N is sound, then (N , [i ]) is live.

• If N has no reset and inhibitor arcs, then N is sound if and only if (N , [i ]) is live and bounded.

Proof. If N is sound, then the moment a token is put into o all other places are empty. Hence, t∗ can only bring the
net back to the initial state. Moreover, the set of reachable states does not change by adding t∗ and all transitions
remain non-dead. Since (N , [i ]) can return to the initial state again and again, the net is live.

If N has no reset and inhibitor arcs, then the results presented in [Aal98] apply. Hence soundness coincides
with liveness and boundedness of the short-circuited net. �

Note that if N is sound, the net does not need to be bounded. For example, there could be a reset arc removing
an arbitrary (i.e., unbounded) number of tokens before producing a token for o.

After the initial paper on soundness of WF-nets [Aal97, Aal98] many other papers followed. Some extend
the results while others explore alternative notions of soundness. In the remainder of this section we define seven
alternative notions described in the literature. These notions strengthen or weaken some of the requirements
mentioned in Definition 5.1.

The first notion of soundness focuses on the “option to complete”, i.e., the first requirement in Definition 5.1.
Moreover, this notion is parameterized with a variable k which indicates the initial number of tokens in the source
place.
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Fig. 4. A WF-net that is 1-sound but not 2-sound

Definition 5.2 (k -soundness [HSV03, HSV04]) Let N be a WF-net. N is k -sound if and only if ∀M∈R(N ,[ik ]) [ok ] ∈
R(N ,M ).

Note that any WF-net is 0-sound and that 1-soundness corresponds to the first requirement in Definition 5.1. In
Lemma 11 in [HSV04] it is shown that also for k -soundness the “option to complete” implies “proper completion”
(like for classical soundness). We introduce k -soundness mainly to be able to define useful notions such as weak
soundness and generalized soundness.

Consider the WF-net shown in Fig. 4. This WF-net is classical sound and therefore also 1-sound. From the
marking [p1] there are two firing sequences both leading to [o]: 〈t1, t4, t5〉 and 〈t2, t3, t6〉. However, the net is
not 2-sound, e.g., the sequence 〈t1, t1, t4, t3〉 results in a deadlock not being the desired final state. In fact it is
not sound for any k ≥ 2.

The notion of 1-soundness is also known as weak soundness [Mar03, Mar05a].

Definition 5.3 (Weak soundness [Mar03, Mar05a]) Let N be a WF-net. N is weak sound if and only if N is
1-sound.

Figure 5 shows three WF-nets that are all weak sound. The WF-net shown in Fig. 5a is not classical sound,
because transition t3 is dead. It is also not 2-sound because it is possible to reach state [p3] when starting in [p12]
(i.e., a token is missing in the final state). Figure 5b is not 2-sound because of a similar problem (state [p3] is
reachable from [p12]). Figure 5c is not 2-sound because the workflow may deadlock in state [p1, p3]. It is easy to
see that similar problems occur when k > 2.

For a given k , it is easy to construct a WF-net that is k -sound but not k + 1-sound. Therefore, we define the
notion of up-to-k -soundness.

Definition 5.4 (up-to-k -soundness [Too04]) Let N be a WF-net. N is up-to-k -sound if and only if N is l -sound
for all 0 ≤ l ≤ k

Generalized soundness [HSV03, HSV04] intuitively corresponds to up-to-∞-soundness, i.e., k -sound for any
k ∈ N.

Definition 5.5 (Generalized soundness [HSV03, HSV04]) Let N be a WF-net. N is generalized sound if and only
if for all k ∈ N: N is k -sound.

The soundness notions discussed so far consider all possible execution paths and if for one path the desired end
state is not reachable, the net is not sound. In a way this implies that the workflow is “lunacy proof”, e.g., the
user cannot select a path that will deadlock. The notion of relaxed soundness assumes a responsible user or
environment, i.e., the net does not have to be “lunacy proof” as long as there exist “good” execution paths.
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(a)

(b)

(c)

Fig. 5. Some more WF-nets that are 1-sound but not k -sound for any k ≥ 2. a A 1-sound net, b a classical sound net, c a classical sound net

Definition 5.6 (Relaxed soundness [DA04, DR01]) Let N be a WF-net. N is relaxed sound if and only if for each
transition t ∈ T : ∃M ,M ′∈R(N ,[i ]) (N ,M )[t〉(N ,M ′) ∧ [o] ∈ R(N ,M ′).

Figure 6a shows a net that is not weak sound but that is relaxed sound. Note that firing sequences 〈t2, t4, t6〉
and 〈t1, t3, t4, t5〉 represent “good” executions ending in [p6] and covering all transitions. It is assumed that the
incorrect firing sequence 〈t1, t3, t4, t6〉 is avoided. As shown in [DA04] it is possible to automatically convert a
relaxed sound WF-net into a sound WF-net by blocking the undesired paths, i.e., the workflow engine can select
the “good” behavior. The relaxed sound WF-net in Fig. 6a can be converted into a sound WF-net by adding a
place connecting t2 and t6.

The soundness notions discussed so far focus on ending in a state with no tokens in any place other than the
sink place. Lazy soundness weakens this requirement, i.e., tokens may be left behind as long as the sink place is
marked precisely once.

Definition 5.7 (Lazy soundness [PW06b, PW06a]) Let N be a WF-net. N is lazy sound if and only if the following
two requirements are satisfied:

• Option to complete: ∀M∈R(N ,[i ]) ∃M ′∈R(N ,M ) M ′(o) � 1.

• Proper completion: ∀M∈R(N ,[i ]) M (o) ≤ 1.

The net in Fig. 6b is lazy sound. Note that t3 can even fire repeatedly after putting a token in p5. The last notion
of soundness, named easy soundness, only considers the possibility of the option to complete.
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Fig. 6. Some more WF-nets illustrating relaxed, lazy, and easy soundness. a A relaxed sound WF-net, b a lazy sound net, c an easy sound net
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Fig. 7. Relationships between different various kinds of soundness (→ = “implies”)
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Definition 5.8 (Easy soundness [Too04]) Let N be a WF-net. N is easy sound if and only [o] ∈ R(N , [i ]).3

Figure 6c is easy sound but does not satisfy any of the other 7 soundness notions. It is easy sound because the
firing sequence 〈t1, t2〉 indeed leads from [i ] to [o].

While introducing the various soundness notions, we already indicated that some soundness notions are
stronger than other soundness notions. Figure 7 shows the different implications. Classical soundness implies
relaxed soundness and weak soundness. Weak soundness corresponds to the first requirement of classical sound-
ness. Relaxed soundness corresponds to a weakening of this first requirement. It is trivial to see that generalized
soundness implies weak soundness and up-to-k soundness. Up-to-k soundness of course also implies k soundness.
Weak soundness implies lazy soundness because it weakens the “option to complete” and “proper completion”
requirements by just considering sink place o. Easy soundness is implied by relaxed soundness and by weak
soundness since both imply that there is at least one path from [i ] to [o]. Note that Fig. 7 only shows the transitive
reduction of all implications, e.g., because of transitivity generalized soundness also implies lazy soundness.

The eight soundness notions mentioned in Fig. 7 will be considered in the remainder of this paper. Sev-
eral other soundness notions have been defined in the literature. For example, in the context of open WF-nets
[LMSW06, MRS05a, MRS05b], cross-organizational WF-nets [KMR00], and interacting BPMN/pi-calculus
processes [PW06a] additional notions of soundness have been defined. However, these notions do not look at a
single WF-net in isolation and therefore are outside the scope of this paper. Note that when considering interaction
and/or resources different notions are needed.

6. Decidability

In this section we explore the different notions of soundness and the various classes of WF-nets and their decid-
ability. Here we will focus on extended WF-nets and the eight notions of soundness defined earlier. First, we show
that arc weights and transition labels are not relevant for decidability. Then, we show that WF-nets with inhibitor
arcs are more expressive than nets with reset arcs. Based on these initial insights we present our decidability
results.

6.1. Removing arc weights and labels

This subsection shows that arc weights and transition labels are not relevant for decidability. It is easy to see
that transition labels do not influence soundness. Moreover, as Fig. 8 shows, weighted arcs can also be removed.
In Fig. 8 it is assumed that k is the maximal arc weight on the input side and output side of p. Note that there
happens to be an input transition producing k tokens and an output transition consuming k tokens. In the general
case there may be arbitrarily many input and output transitions as long as they consume/produce not more than
k tokens from/for place p. Suppose there is an output transition which consumes l ≤ k tokens from p in Fig. 8a.
In Fig. 8b this transition will have l out of the k newly added places as input. Any subset of these places will do,
e.g., {p1, . . . , pl }.

Note that the construction does not introduce any new type of arcs, e.g., inhibitor arcs are only needed if they
were already present in the original net. Moreover, if the initial net has a WF-net structure, the resulting net also
has this structure.

Since we can abstract from arc weights and transition labels, we restrict ourselves to core WF-nets in the
remainder.

Definition 6.1 (Core WF-nets) A core WF-net is a WF-net (P ,T ,F ,W ,A,L, R,H ) where A � T , for all t ∈ T :
L(t) � t , and for all f ∈ F : W (f ) � 1. A core WF-net can be represented by (P ,T ,F ,R,H ).

Since arc weights and transition labels are just “syntactical sugaring”, we do not need to consider them when
investigating soundness. For example, if generalized soundness is decidable for WF-nets without arc weights, then
it will also be decidable for WF-nets with arc weights.

3 In [Too04] this notion was named weak soundness but interpreted differently from [Mar03, Mar05a]. Hence, in this paper this notion is
referred to as “easy” soundness to avoid confusion.
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Fig. 8. Removing arc weights: place p is split up into k places and transitions are added such that tokens can freely move among these places.
The arc weights 2 and k can be replaced by any weight 1 ≤ l ≤ k and the construction also works for more/less input/output transitions.
a Net with arc weights. b Net without arc weights

6.2. Inhibitor arcs can emulate reset arcs

Reset and inhibitor arcs are clearly more than “syntactical sugaring” and really add to the expressiveness,
i.e., one can construct WF-nets with reset or inhibitor arcs that do not have an equivalent WF-net without
such arcs.4 However, as shown below, WF-nets with reset arcs can be translated into equivalent WF-nets with
inhibitor arcs. First, we show this for arbitrary extended Petri nets.

Proposition 6.1 (Inhibitor arcs can emulate reset arcs) Let N be an extended Petri net. All reset arcs can be replaced
by inhibitor arcs without changing the behavior (modulo branching bisimulation [GW96]).

Proof. It is easy to see that the construction shown in Fig. 9 can be used to remove any reset arc. Transition t is
replaced by a start transition ts and an end transition te . The start transition ts has the same label as transition
t and the end transition te has a τ label. Each transition with a reset arc is replaced by a small network as shown
in Fig. 9. Place x is added to guarantee mutual exclusion, i.e., there is one such place and all original transitions
in the new net consume a token from x and return a token to x while all new start transitions consume a token
from x and all new end transitions produce a token for x . As a result, any firing of ts is followed by zero of more
firings of tc , followed by one firing of te . The effect of firing in one sequence ts (tc)n te is equivalent to firing t in
the original. It is easy to establish a branching bisimulation relation between both nets by associating the label
of t to ts and giving transitions tc and te a τ label. �

Proposition 6.1 is also applicable to (core) WF-nets, i.e., by adding a new global start and end transition,
place x can be marked and unmarked and the “WF-net structure” remains intact.

In the remainder of this section we investigate decidability for the eight notions of soundness and WF-nets
with reset and/or inhibitor arcs. Here, we often use the following corollary.

4 Note that the term “equivalent” is ill defined in this context. Although this statement is not very sensitive to the notion of equivalence
considered, one can think of standard equivalence notions such as branching bisimulation [GW96].
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Fig. 9. Construction showing that reset arcs can be translated into inhibitor arcs

Corollary 6.1 (Undecidability of soundness for WF-nets with inhibitor arcs) If a particular soundness property
(classical soundness, k -soundness, weak soundness, etc.) is undecidable for WF-nets with reset arcs it will also be
undecidable for WF-nets with inhibitor arcs.

This corollary follows directly from Proposition 6.1. Any WF-net with reset arcs can be converted into a
Petri net without reset arcs and just inhibitor arcs. Note that the resulting net is not a WF-net because of the
initially marked x place. However, by adding a new “start transition” and a new “end transition”, the net can be
transformed into an equivalent WF-net.

6.3. Classical soundness

In this subsection, we explore the decidability of soundness for WF-nets. If a WF-net has no reset and no inhibitor
arcs, we can use Lemma 5.1 to show that soundness is decidable. Such a WF-net N is sound if and only if (N , [i ])
is live and bounded. Since liveness and boundedness are both decidable, soundness is also decidable. For some
subclasses (e.g., free-choice nets), this is even decidable in polynomial time [Aal97, Aal98].

Unfortunately, soundness is not decidable for WF-nets with reset and/or inhibitor arcs. First, we show that
reset arcs make the verification problem undecidable.

Theorem 6.1 (Undecidability of soundness) Soundness is undecidable for WF-nets with reset arcs.

Proof. Reachability is known to be undecidable for reset nets while coverability is decidable. In [AHH+08,
AHH+09] a construction is given to relate reachability to soundness. The main idea is to provide a construction
such that the reachability of a particular marking M of an arbitrary marked net (N ,MI ) corresponds to the
non-soundness of a larger WF-net N ′ which embeds N , i.e., M is reachable from (N ,MI ) if and only if N ′ is not
sound. The construction is rather tricky and involved, therefore, it is not shown here. �

Theorem 6.1 shows that the ability of cancellation combined with unbounded places makes soundness unde-
cidable. This is a relevant result because many workflow languages have such features. Since inhibitor arcs can
emulate reset arcs (cf. Proposition 6.1), the undecidability result also applies to WF-nets with inhibitor arcs.

6.4. Weak soundness

Next, we investigate the decidability of weak soundness, also known as 1-soundness. Weak soundness corresponds
to the first requirement of classical soundness. Since the second requirement is implied by the first one, the only
difference is the third requirement, i.e., for weak soundness it is not required that there are no dead transitions.
From the viewpoint of decidability this is less relevant because dead transitions can be removed from a WF-net
with reset arcs.
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Fig. 10. The original WF-net is weak sound if and only if the constructed WF-net is k -sound. Because k tokens are put in place start ,
transition b fires once to initialize the original net. If the original net puts one token in o, then c can fire once followed by k executions of b,
thus producing k tokens for place end

Corollary 6.2 (Undecidability of weak soundness) Weak soundness is undecidable for WF-nets with reset arcs.

Proof. Let N be an arbitrary WF-net with reset arcs but no inhibitor arcs. Remove all dead transitions in (N , [i ])
and let N ′ be the resulting WF-net. This is possible because coverability is decidable for reset nets [DFS98, FS01]
and therefore it is possible to check for each transition t whether •t is coverable from the initial marking (see
also the proof of Theorem 6.1). Now N is weak sound if and only if N ′ is sound. Since Theorem 6.1 shows that
soundness is undecidable, weak soundness is also undecidable. �

If a WF-net has no reset and no inhibitor arcs, weak soundness is decidable. Note that we can first remove all
dead transitions from N , then soundness corresponds again to liveness and boundedness of the short-circuited
net, which is decidable [Aal97, Aal98].5 It is also obvious that, in this case, weak soundness can be checked by
simply inspecting the well-known coverability graph [Mur89].

Because of Corollary 6.1, soundness is also undecidable for WF-nets with inhibitor arcs.

6.5. k-Soundness

Now we consider the situation of k -soundness with k ≥ 2. Just like 1-soundness, the decidability results are equal
to classical soundness. The question whether a net is weak sound can be translated into a k -soundness question,
and vice versa, for any k as shown in Fig. 10.

Corollary 6.3 (Undecidability of k -soundness) For any k ≥ 2: k -soundness is undecidable for WF-nets with reset
arcs.

Proof. We will show that decidability of k -soundness for WF-nets with reset arcs would imply decidability of
weak soundness for WF-nets with reset arcs, which would contradict Theorem 6.1. Let N be an arbitrary WF-net
with reset arcs. From N we construct the WF-net Nk which embeds N and has parameter k ≥ 2 as shown in
Fig. 10. Clearly, Nk is a WF-net. Again the arc weights can be removed as shown in Fig. 8; this is the reason for
adding the additional transitions at the beginning and end. Moreover, it is easy to verify that N is weak sound if
and only if Nk is k -sound. Therefore, we can apply Theorem 6.1 to show undecidability. �

Note that k -soundness is also undecidable for WF-nets with inhibitor arcs (cf. Corollary 6.1), but is decidable
for WF-nets without reset and/or inhibitor arcs.

6.6. Up-to-k-soundness

Up-to-k -soundness can be translated into k “l -soundness” problems where 1 ≤ l ≤ k . Therefore, intuitively it is
no surprise that the results are identical.

5 The removal of dead transitions could potentially transform a WF-net into a non-WF-net. However, this can be repaired easily by adding
a new source place is , start transition ts , sink place oe , end transition te , and self-loop place x . ts consumes a token from the new source
place is and produces a token for the old source place i and the self-loop place x . te consumes a token from the old sink place o and x , and
produces a token for the new sink place oe . All original transitions have x as a self loop, i.e., they consume a token from and produce a token
for x .
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Fig. 11. The original WF-net is weak sound if and only if the constructed WF-net is up-to-k -sound
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Fig. 12. The original WF-net is weak sound if and only if the constructed WF-net is generalized sound. Note that a short-hand notation is
used; transition a has an inhibitor arc for each place in the original net

Corollary 6.4 (Undecidability of up-to-k -soundness) For any k ≥ 2: up-to-k -soundness is undecidable for WF-nets
with reset arcs.

Proof. We will show that decidability of up-to-k -soundness for WF-nets with reset arcs would imply decidability
of weak soundness for WF-nets with reset arcs, which would contradict Theorem 6.1. Let N be an arbitrary
WF-net with reset arcs. From N we construct the WF-net Nk which embeds N and has parameter k ≥ 2 as
shown in Fig. 11. This net is identical to the one in Fig. 10 apart from the “bypass” transition x . N is weak
sound if and only if Nk is up-to-k -sound and therefore the latter is also undecidable. Note that if less than k
tokens are put into the source place, the original net N is not activated and the tokens bypass N via x . Therefore,
k -soundness of the net in Fig. 10 is the same as up-to-k -soundness of the net in Fig. 11. �

Using Corollary 6.1 it can be shown that up-to-k -soundness is also undecidable for WF-nets with inhibitor
arcs.

6.7. Generalized soundness

While weak-soundness and k -soundness are closely related to classical soundness, generalized soundness is quite
different because it marks the source place with an arbitrary (i.e., non-predefined) number of tokens. Let us first
consider the situation without reset and/or inhibitor arcs. Even in this simple setting it is not possible to use
the coverability graph [Mur89] to decide soundness. The reason is that the problem corresponds to inspecting
infinitely many coverability graphs. Fortunately, in [HSV04] it was shown that generalized soundness is decidable
for WF-nets without reset and/or inhibitor arcs.

Theorem 6.2 (Decidability of generalized soundness [HSV04]) Generalized soundness is decidable for WF-nets
without reset and/or inhibitor arcs.

Proof. See [HSV04]. �

Let us now consider a WF-net with inhibitor arcs and no reset arcs. It is well-known that the reachability
problem is undecidable for Petri nets with inhibitor arcs [CW99]. This can be used to prove that generalized
soundness is undecidable.
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Fig. 13. Construction showing that generalized soundness can be expressed in terms of weak soundness for WF-nets with inhibitor arcs

a

start

i
original

net
o

end

b

Fig. 14. Failed attempt to show that generalized soundness is undecidable for WF-nets with reset arcs

Proposition 6.2 (Undecidability of generalized soundness) Generalized soundness is undecidable for WF-nets with
inhibitor arcs.

Proof. Let N be an arbitrary inhibitor WF-net. Let N ′ be the net obtained using the construction shown in
Fig. 12.

For any k and any reachable state of (N ′, [startk ]), a blocks if there is still a token in the original net and will
continue to block until b removes the last token from N .

Assume N is weak sound. It is easy to see that any token put into i , can always evolve to a state with a token
in o and where the rest of the original net is empty and a continues to block. In this state b can fire and this can
be repeated for all k tokens initially put in place start . Hence N ′ is generalized sound.

Assume N ′ is generalized sound. Hence the net N ′ is also weak sound which implies that N is weak sound.
Therefore, N ′ is generalized sound if and only if N is weak sound. Since weak soundness is undecidable for

WF-nets with inhibitor arcs, generalized soundness is also undecidable. �

In Fig. 12, the original WF-net N is activated only once, i.e., a blocks any new activations until b removes
the last token from N . This is sufficient for proving undecidability. However, using Fig. 13, we also explore the
reverse situation. Let N be the original net in Fig. 13 and let N ′ be the extended WF-net as shown in the same
figure. N is generalized sound if and only if N ′ is weak sound. This construction provides additional insight in
the relation between weak and generalized soundness.

Generalized soundness is decidable for WF-nets without reset/inhibitor arcs and undecidable for WF-nets
with inhibitor arcs. Therefore, the remaining question is: “Is generalized soundness decidable for WF-nets with
reset arcs?”. The answer to this question is unknown, i.e., it is still an open problem.

One may think that a construction similar to Fig. 12 is possible for reset arcs. Such an attempt is made in
Fig. 14. Let N be the original net in Fig. 14 and let N ′ be the extended WF-net as shown in the same figure. The
goal would be to show that N is generalized sound if and only if N ′ is weak sound. However, this construction
does not work because the N ′ produces a single token for place end, independent of the number of tokens ini-
tially put in start. The thing that is missing is a “counter” like place v in Fig. 13. However, using reset arcs it is
impossible to make such a construction. It is also not possible to use the construction of Theorem 6.1, because
if multiple cases enter the construction, the original net fragment is able to reach states not reachable from MI .
It is not possible to temporarily block the entry of additional cases, because the WF-net starts empty (i.e., no
“mutex place” is possible) and no inhibitor arcs are allowed. Therefore, decidability of generalized soundness for
WF-nets with reset arcs remains an open problem.
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Fig. 15. Construction showing that relaxed soundness is decidable for WF-nets without reset/inhibitor arcs, i.e., t is involved in a “good run”
in the original model (left) if and only if [o, pt

yes ] is reachable in the adapted model (right)

6.8. Relaxed soundness

Relaxed soundness differs fundamentally from notions such as classical, weak, and generalized soundness,
because it allows for deadlocks, etc. as long as there is a “good execution” possible for each transition.

Theorem 6.3 (Undecidability of relaxed soundness) Relaxed soundness is undecidable for WF-nets with reset arcs.

Proof. Unlike the proof of Theorem 6.1, relaxed soundness is directly related to reachability. The main idea is to
provide a construction such that the reachability of a particular marking M of an arbitrary marked net (N ,MI )
corresponds to the relaxed soundness of a larger WF-net N ′ which embeds N , i.e., M is reachable from (N ,MI ) if
and only if N ′ is relaxed sound. The construction of such a WF-net is non-trivial. Hence, we refer to the detailed
proof provided in [AHH+08, AHH+09]. �

Combining Theorem 6.3 and Proposition 6.1 shows that relaxed soundness is also undecidable for WF-nets
with inhibitor arcs.

Relaxed soundness is decidable for WF-nets without reset/inhibitor arcs. In most cases, a direct inspection of
the coverability graph will be sufficient to conclude this. Often one can also use a partially constructed reachability
graph to show relaxed soundness. If the net is unbounded, there may be cases where such simple inspections are
inconclusive. A conclusive strategy to check for relaxed soundness would be to add two places (e.g., pt

yes and
pt
no) for transition t that record whether t has been fired or not. Note that transition t needs to be duplicated

into t1 and t≥2 as shown in Fig. 15. Transition t1 corresponds to the first execution of t while t≥2 corresponds
to later executions. A “good execution” in the original model leads from [i ] to [o]. Now the reachability of state
[o, pt

yes ] corresponds to a “good” execution sequence where t occurred at least once. This can be repeated for
all transitions, and, since reachability is decidable for classical Petri nets, this implies that relaxed soundness is
decidable for WF-nets without reset/inhibitor arcs.

6.9. Lazy soundness

Lazy soundness focuses on the marking of place o and does not require the net to be empty after putting a token
in o. Nevertheless, we can use the construction of Theorem 6.1 to show that the property is undecidable for
WF-nets with reset arcs

Theorem 6.4 (Undecidability of lazy soundness) Lazy soundness is undecidable for WF-nets with reset arcs.

As a result, lazy soundness is also undecidable for WF-nets with inhibitor arcs. The property is, however,
decidable for WF-nets without reset and/or inhibitor arcs, e.g., by inspecting the coverability graph.
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Fig. 16. Construction showing that easy soundness is undecidable for WF-nets with reset arcs

6.10. Easy soundness

The last soundness notion we consider is easy soundness. Recall that this notion simply checks whether there is
an execution path from [i ] to [o].

Theorem 6.5 (Undecidability of easy soundness) Easy soundness is undecidable for WF-nets with reset arcs.

Proof. Let (N ,MI ) be an arbitrarily marked Petri net with reset arcs but no inhibitors. Without loss of generality
we again assume that N is connected and that every transition has input and output places.

To show that easy soundness is undecidable, we construct a new net (N ′, [i ]) which embeds (N ,MI ) such that
N ′ is easy sound if and only if some marking MX is reachable from (N ,MI ). By doing so, we show that reachability
in an arbitrary reset net can be analyzed through soundness, making easy soundness also undecidable.

Figure 16 shows N and N ′ using the notation used before.

• Assume marking MX is reachable from (N ,MI ). This implies that MX is also reachable in (N ′, [i ]) and that
b can fire without leaving any tokens behind in the set of places of the original net. Hence, firing b results in
[o] and clearly the net is easy sound.

• Assume N ′ is easy sound, i.e., there is a firing sequence leading from [i ] to [o]. Hence there was a moment
when b fired. If at this point in time the marking was not exactly MX , then tokens are left behind in the original
net. Since all transitions have input and output places, the remaining tokens cannot be removed completely
and hence all subsequent markings are larger than [o]. Hence, just before b fired, the marking was exactly MX

showing that MX is indeed reachable from (N ,MI ). �
Easy soundness is therefore also undecidable for WF-nets with inhibitors. The property is decidable for

WF-nets without reset/inhibitor arcs because reachability is decidable for classical Petri nets.

6.11. Summary

As shown, all eight soundness properties are decidable for WF-nets without reset and/or inhibitor arcs. For
WF-nets with reset arcs the decidability of generalized soundness is still unknown. For all other cases, soundness
is undecidable. Nevertheless, there are pragmatic approaches that allow for the discovery of design errors even if
such features are present. This will be explained further in the next section.

7. Analysis

In this section, we focus more on the pragmatic side of workflow verification. While for WF-nets without
reset and/or inhibitor arcs all soundness properties are decidable, for extended WF-nets (e.g., nets with reset
and/or inhibitor arcs) these notions are typically undecidable. Note that most workflow and process mod-
eling languages (e.g., BPMN, EPCs, Staffware, BPEL, FileNet, etc.) have a control-flow language where the
basic elements correspond to WF-nets without reset and/or inhibitor arcs, while the more advanced constructs
require reset or inhibitor arcs. Therefore, one can argue that, as a rule-of-thumb, for simple models (indepen-
dent of the language used) any form of soundness is decidable while for models using notions such as pri-
orities, cancellation, etc. no form of soundness is decidable. However, even if more advanced constructs are
used, workflow verification is still possible! Note that even if soundness is undecidable for a particular class
of WF-nets, for many representatives of such a class, it may still be possible to conclude soundness or non-
soundness. There may be rules of the form “If WF-net N has property X , then N is sound” or “If WF-
net N has property Y , then N is not sound”. As shown in [MNA07, MMN+06, MVD+08] it is possible to
find many errors using such an approach. In [MMN+06, MVD+08] it was shown that at least 5.6 percent
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Fig. 17. N is the WF-net without the reset/inhibitor arc, NR is the net with the reset arc, NI is the net with the inhibitor arc, and NRI is the
net with both the reset arc and inhibitor arc
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Fig. 18. The coverability graph of N

of the process models in SAP’s reference model are not sound. However, this 5.6 percent is merely a lower
bound. In [MNA07] an even larger set of more than 2000 process models from practice was analyzed. It could
be shown that at least 10 percent of these models are not sound. These examples show that even if soundness is
undecidable, errors can be discovered. Similarly, for many models it is still possible to guarantee soundness even if
the general verification problem is undecidable.

As for many specific process models it is possible to make useful conclusions even if the general question is
undecidable, we advocate a more down-to-earth approach. In this section, we discuss three analysis approaches
in relation to the verification problems discussed earlier.

7.1. Coverability graph

The construction of a coverability graph is one of the standard approaches for analyzing classical Petri nets
[Mur89]. If the state-space is finite, the coverability graph coincides with the reachability graph where nodes
correspond to reachable markings and arcs correspond to state transitions. If the state-space is infinite, the cover-
ability graph contains so-called ω markings indicating that the number of tokens on a particular place may grow
unbounded. Figure 17 shows a WF-net (please ignore the dashed arcs for the moment) and the corresponding
coverability graph is shown in Fig. 18.

Based on the coverability graph one can see that the WF-net without the dashed arcs, i.e., net N , is not sound
(classical soundness). Node p5 + ω.p3 in Fig. 18 indicates that it is possible to reach a state with one token in
p5 and an arbitrarily large number of tokens in p3.6 This proves that N is not sound (no proper completion).
Moreover, it can be used to show that N is also not weak sound. For any k ≥ 2 the coverability graph can be
constructed and this will show that the net is also not k -sound. Therefore, it is possible to show that N is also
not up-to-k sound or generalized sound. However, using the coverability graph in Fig. 18 it can be shown that N
is lazy sound and easy sound. Using the construction illustrated in Fig. 15, a set of adapted coverability graphs
can be used to prove relaxed soundness. In general, the coverability graph (or a set of coverability graphs) can
be used to decide on any type of soundness except for generalized soundness. For generalized soundness one can
use the approach described in [HSV04].

6 To be more precise: for any k ∈ N there exists an l ≥ k such that state [p5, p3l ] is reachable.
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Let us consider again the WF-net shown in Fig. 17. NR is the net with the dashed reset arc and
without the dashed inhibitor arc. NR is classical sound, weak sound, k -sound, up-to-k sound, generalized sound,
relaxed sound, lazy sound, and easy sound. NI is the net with the inhibitor arc and not the reset arc and NRI is
the net with both arcs. NI and NRI also satisfy all eight notions of soundness.

In the presence of reset or inhibitor arcs, the coverability graph cannot be used to come to a conclusive
answer. If the state space is finite, the reachability graph can be constructed and seven notions of soundness can
be checked (all except generalized soundness). Note however that boundedness is undecidable for nets with reset
or inhibitor arcs [DJS99]. Nevertheless, the coverability graph of a WF-net where the reset and inhibitor arcs are
ignored, provides a kind of “upper-bound” for the model with reset and inhibitor arcs. Let NX be a WF-net such
that after moving the reset and inhibitor arcs, NX coincides with N in Fig. 17. Based on the coverability graph in
Fig. 18, we can conclude that for such an NX there can never be two tokens in p5 or a token in p2 and p4 at the
same time. This illustrates that the coverability graph can be seen as an over-approximation of the true behavior.

7.2. Invariants

As shown in [Aal00, VBA01] structural techniques can be used to analyze WF-nets without reset and/or inhibitor
arcs. In this setting, the absence of certain invariants points towards errors as explained below.

A place invariant is a weighted sum over the places that is invariant under each possible transition firing. In
Fig. 17 the sum of tokens on the places p1, p2, p4, and p5 is constant independent of the initial marking, i.e., it
is a structural property. The absence of particular place invariants hints at problems. For example, in WF-net N
shown in Fig. 17 there is no place invariant adding a positive weight to all places. This typically suggests some
structural anomaly. In this case, there is a positive invariant involving all places except p3 and there is no such
invariant involving p3. This is caused by the fact that p3 is unbounded and this is indeed the primary reason why
N is not classical/weak sound. Hence, the lack of such an invariant is a useful diagnostic.

A transition invariant assigns a weight to all transitions such that if each transition is able to fire the number of
times indicated by the weight, the system is back in the initial state. Note that it is not guaranteed that a transition
invariant is realizable, i.e., it is a structural property independent of the initial marking and there may be too few
tokens to allow each of the transitions fire the designated number of times. When applying transition invariants
one should consider the so-called short-circuited net mentioned earlier. The short-circuited net is the Petri net
obtained by connecting o to i via a new transition t∗ thus making the net cyclic. When considering classical
soundness or relaxed soundness, there should be a semi-positive transition invariant for each transition, i.e., for
each transition t it should be possible to find an invariant that assigns a positive weight to both t and t∗. If it is
not possible to find such an invariant for t , the transition cannot contribute to any execution sequence leading
from [i ] to [o].

The above shows that using invariants one can generate useful diagnostics for WF-nets without reset and/or
inhibitor arcs. It is easy to see that invariants are less useful for nets with reset arcs because these arcs destroy the
nice linear algebraic properties that follow from the marking equation [Mur89]. However, all the properties still
hold for WF-nets with inhibitor arcs. This is shown in detail in [VAH07]. Consider NI in Fig. 17 (i.e., the WF-net
with the inhibitor arc). If NI is classical sound or relaxed sound, then for each t here has to be an invariant that
assigns a positive weight to t and the short-circuiting transition t∗. This is indeed the case. In fact, the transition
invariant that assigns weight 1 to all transitions including t∗ is such an invariant. If such invariant(s) would not
exist, the WF-net with the inhibitor arc could not be classical/relaxed sound. Also note that inhibitor arcs leave
place invariants intact, i.e., the behavioral properties of place invariants obtained by ignoring inhibitor arcs still
hold when inhibitor arcs are added.

In a practical setting, invariants can be used to discover lots of errors. For example, in [MMN+06, MVD+08]
it is shown that many errors in the SAP reference model can be discovered using transition invariants.
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Fig. 19. A sound WF-net that can be reduced to the trivially correct WF-net

7.3. Reduction rules

The construction of a coverability graph can be considered as a “brute force” approach while the use of
structural techniques such as invariants aims at a more efficient analysis. However, in many cases the “brute
force” takes too long and structural techniques give inconclusive answers. Reductions rules provide a different
approach and can be used in combination with other techniques. The goal of a reduction rule is to make the net
smaller without changing specific properties such as soundness. There are basically two reasons for using reduc-
tion rules in the context of WF-nets. First of all, by making the WF-net smaller without changing its soundness
properties, it becomes easier to apply other methods such as the construction of the coverability graph. Second,
using reduction rules it is possible to provide better diagnostics, i.e., by reducing the trivially correct parts of a
WF-net, the focus can be on the erroneous or suspicious constructs that remain.

To illustrate the use of reduction rules, we consider the sound WF-net shown in Fig. 19 (top one). Note that
this net satisfies all eight forms of soundness. We can apply the liveness and boundedness preserving reduction
rules described in [Ber87] and by doing so we obtain the net shown at the bottom of Fig. 19. The dashed lines
illustrate the scopes of the various applications of the reduction rules. The reduced model is trivially sound, so the
original model was also sound. We can apply the liveness and boundedness preserving reduction rules of [Ber87]
to get this result, because a WF-net is classical sound if and only if the corresponding short-circuited net is live
and bounded [Aal97, Aal98].

Figure 20 shows how reduction rules can be used to show that a WF-net is not sound and highlights the
problematic parts. By applying the liveness and boundedness preserving reduction rules, we can reduce the top
net into the small net at the bottom. The reduced net clearly shows the problem, i.e., a lack of synchronization.
Note that the short-circuited counterparts of both WF-nets are unbounded and hence these WF-nets are not
sound. Note that all the classical liveness and boundedness preserving reduction rules [Ber87] that do not depend
on the initial marking also preserve the other notions of soundness. However, these rules do not necessarily apply
to Petri nets with reset and/or inhibitor arcs.

In [VWAH10, WVA+09] the liveness and boundedness preserving reduction rules are extended to reset and/or
inhibitor arcs, i.e., new rules are given and existing rules are modified. This set of rules can be applied to WF-nets
such as the one shown in Fig. 21. The top net is classical sound, but is a bit difficult to interpret. (Note that the
net is also weak and relaxed sound, but not 2-sound.) Using the rules presented in [VWAH10, WVA+09] the net
can be reduced without changing things with respect to weak/classical soundness. In the resulting WF-net only
half of the transitions remain.
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Fig. 20. A WF-net that is not sound and that cannot be reduced completely
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Fig. 21. Partial reduction of a WF-net with reset and inhibitor arcs
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Fig. 22. One of the liveness and boundedness preserving reduction rules presented in [VWAH10]: Fusion of Series of Places (FSP)

A detailed discussion on the application of reduction rules to soundness analysis is beyond the scope of
this paper. However, we informally show one of the reduction rules that preserves liveness and boundedness
for nets with reset and/or inhibitor arcs. Using the Fusion of Series Places (FSP) rule shown in Fig. 22, we can
reduce two places and one transition to one place. Thus, this rule effectively removes a transition and a place.
The conditions are sketched informally in Fig. 22. Tokens which reside in the first place p can be considered to be
“ghost tokens” for the second place q . Since there is no transition having p as input place other than t , tokens in
p can/will always end up in q . If some transition needs to consume a ghost token in p, the intermediate transition
t should fire first, replacing the ghost token in p by a tangible one in q . Since t should not be blocked and have
other side-effects, t should not have any reset or inhibitor arcs. There can be reset and/or inhibitor arcs connected
to p and q . However, these two places should be “identical” in terms of such arcs. Under such circumstances, p
and q can be merged into r and t is no longer needed. The net before applying the FSP rule is live if and only
if the net after applying the FSP rule is live. Moreover, the net before applying the FSP rule is bounded if and
only if the net after applying the FSP rule is bounded. This is proven in [VWAH10]. Note that the FSP rule was
applied repeatedly in Figs. 19, 20, and 21. For WF-nets without reset and inhibitor arcs, soundness corresponds
to liveness and boundedness. This is not the case for WF-nets with reset and inhibitor arcs. However, it is easy to
prove that the FSP rule also preserves soundness for arbitrary WF-nets with reset and inhibitor arcs.

The above examples illustrate that reduction rules can be used to simplify the problem and provide diag-
nostics. For particular languages variants of the above rules can be developed. See [DAV05] for a small set of
reduction rules for EPCs. In [MNA07] a more extensive set of reduction rules for EPCs is given. Using these
rules in combination with state space analysis, many errors were found in a sample of more than 2000 non-trivial
EPCs from industry [MNA07]. Moreover, the reduction rules could also be used to highlight the errors.

In this section, we discussed three different approaches to tackle workflow verification problems. The goal was
not to present a particular analysis technique but to provide an overview. This overview shows that for WF-nets
without reset and/or inhibitor arcs, standard techniques such as the coverability graph and reduction rules can
be used to decide soundness. Moreover, even though reset and/or inhibitor arcs are present and soundness is in
principle undecidable, often it is still possible to apply these techniques and obtain valuable answers. Empirical
studies show that in such cases many errors can be discovered even if soundness is undecidable in the general
case.

8. Conclusion

Over the last decade many papers on workflow verification have appeared. Some of these papers use Petri nets as
a representation language. Other papers use a wide variety of similar graph-based languages (e.g., EPCs, BPMN,
or simple AND-XOR graphs). Moreover, also process-algebraic notations have been proposed to model and
analyze workflows. However, independent of the representation used, there is always the basic notion of the
creation of a process instance (case) and the successful completion of it. This naturally leads to various notions
of soundness, i.e., reasoning about the correctness of a workflow model without any domain knowledge. Typical
ingredients are absence of deadlocks and livelocks, proper termination, non-dead tasks, etc. Different soundness
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notions have been presented in the literature. Therefore, there is a need to compare the different notions, also in
term of expressiveness. This paper provides a rigorous analysis of the different notions of soundness.

In order to investigate the various soundness notions, we use the so-called extended WF-nets as a starting
point. These nets support the basic routing constructs but also allow for more advanced patterns through the
so-called reset and inhibitor arcs. Notions such as cancellation, priority, etc. can be modeled using such arcs. In
total 32 verification problems have been investigated for four classes of WF-nets and eight notions of soundness.
For WF-nets without reset and/or inhibitor arcs all eight notions of soundness are decidable. However, as shown
in this paper, most (if not all) notions of soundness become undecidable when reset and/or inhibitor arcs are used.
Only for the combination of generalized soundness and WF-nets with reset arcs, did we not find a conclusive
answer. This remains an open problem and a topic for future research.

As explained in Sect. 7, undecidability does not make things hopeless. Many errors can be discovered using
techniques such as invariants and reduction rules. Applying such techniques to real-life models typically results
in the discovery of many errors. This has been demonstrated in some recent case studies [MMN+06, MVD+08,
FFJ+09, MNA07, VVL07].

Given the importance of workflow technology, it is important to advance the state-of-the-art in workflow
verification. Future work should aim to address the following questions.

• How to deal with additional perspectives? The focus of this paper has been on control-flow. However, also
interaction, data, and resources play a role. Hence, it is necessary, but definitely not sufficient, to verify (con-
trol-flow) soundness. Unfortunately, naive extensions involving interaction, data, and resources will easily lead
to verification questions that are undecidable. Therefore, the aim is to find the right abstractions to partially
incorporate these other perspectives.

• Why do workflow designers make errors? As shown in [MNA07], people designing processes easily make
errors. Moreover, initial studies suggest that it is possible to predict when workflow designers make errors. It
is important to conduct more empirical studies and use the knowledge extracted in context sensitive editors.
For example, the editor could ask questions about the workflow when it suspects that the user may have made
an error.

• When and why do people deviate? Workflow models can be seen as normative. However, in most cases people
can deviate. For example, workflow systems increasingly provide run-time flexibility and classical ERP systems
do not enforce processes at all. Therefore, it becomes more and more important to analyze non-conformance
afterwards. See [RA08] for techniques to check conformance by comparing event logs with normative models.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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