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Ecoacoustic monitoring has proliferated as autonomous recording units (ARU)
have become more accessible. ARUs provide a non-invasive, passive method to
assess ecosystem dynamics related to vocalizing animal behavior and human
activity. With the ever-increasing volume of acoustic data, the field has grappled
with summarizing ecologically meaningful patterns in recordings. Almost
70 acoustic indices have been developed that offer summarized
measurements of bioacoustic activity and ecosystem conditions. However,
their systematic relationships to ecologically meaningful patterns in varying
sonic conditions are inconsistent and lead to non-trivial interpretations. We
used an acoustic dataset of over 725,000 min of recordings across 1,195 sites
in Sonoma County, California, to evaluate the relationship between 15 established
acoustic indices and sonic conditions summarized using five soundscape
components classified using a convolutional neural network: anthropophony
(anthropogenic sounds), biophony (biotic sounds), geophony (wind and rain),
quiet (lack of emergent sound), and interference (ARU feedback). We used
generalized additive models to assess acoustic indices and biophony as
ecoacoustic indicators of avian diversity. Models that included soundscape
components explained acoustic indices with varying degrees of performance
(avg. adj-R2 = 0.61 ± 0.16; n = 1,195). For example, we found the normalized
difference soundscape index was the most sensitive index to biophony while
being less influenced by ambient sound. However, all indices were affected by
non-biotic sound sources to varying degrees. We found that biophony and
acoustic indices combined were highly predictive in modeling bird species
richness (deviance = 65.8%; RMSE = 3.9 species; n = 1,185 sites) for targeted,
morning-only recording periods. Our analyses demonstrate the confounding
effects of non-biotic soundscape components on acoustic indices, and we
recommend that applications be based on anticipated sonic environments. For
instance, in the presence of extensive rain and wind, we suggest using an index
minimally affected by geophony. Furthermore, we provide evidence that a
measure of biodiversity (bird species richness) is related to the aggregate biotic
acoustic activity (biophony). This established relationship adds to recent work that
identifies biophony as a reliable and generalizable ecoacoustic measure of
biodiversity.
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1 Introduction

Monitoring animal diversity enables us to understand how
species and communities change across time and space in
relation to natural and anthropogenic forces, such as climate
change (Magurran et al., 2010). Ecoacoustic monitoring provides
cost- and time-effective methods to quantify ecosystem changes
(Pijanowski et al., 2011; Sueur et al., 2014). Recording of
environmental sounds across landscapes can capture animal
community dynamics by tracking native and invasive vocalizing
species (Wood et al., 2019), as well as the multiple drivers
responsible for biodiversity loss, such as agricultural expansion
(Dröge et al., 2021) and logging (Burivalova et al., 2019;
Rappaport et al., 2022). Studies relating biodiversity to acoustic
patterns are promising but require further exploration for
operational monitoring and conservation efforts (Sueur and
Farina, 2015; Gibb et al., 2018; Burivalova et al., 2019).

Ecoacoustics leverages differences in sound emanating from a
landscape, i.e., a soundscape (Pijanowski et al., 2011), to infer
patterns and changes in animal and human communities. Over
the past 15 years, ecoacoustic studies have focused on establishing
methods that attempt to distill ecologically-meaningful information
from recordings (Sueur and Farina, 2015). These efforts have
resulted in the creation of approximately 70 acoustic indices
(Buxton et al., 2018b) that summarize the time and frequency
domain of acoustic recordings to provide simple metrics of
acoustic activity (Sueur et al., 2008; Pijanowski et al., 2011; Gasc
et al., 2015) and biodiversity-related patterns (Sueur et al., 2008; Ross
et al., 2021).

Although such indices allow for more convenient and efficient
summarization of acoustic data than the expert knowledge and time
required for identifying individual sound events (e.g., bird species;
Snyder et al., 2022), explicit links among acoustic indices (Bradfer-
Lawrence et al., 2020) and biotic acoustic activity (“biophony”) or
biodiversity are limited (Duarte et al., 2021), and empirical
relationships between biophony and established biodiversity
indicators remain equivocal. These gaps persist even though
biophony is commonly conceptualized in ecoacoustics as a proxy
for biodiversity and is treated as the intrinsic soundscape property
that drives acoustic index patterns (Pijanowski et al., 2011). This lack
of explicit, foundational association between biophony and acoustic
indices has led to disparate findings. For example, in one study,
acoustic indices have been found to reflect avian species richness in
temperate habitats but were weaker in tropical ones (Eldridge et al.,
2018), while another tropical study found similar indices were
related to bird abundance and biological activity (Retamosa
Izaguirre et al., 2018). Other studies have demonstrated that
acoustic indices have no relationship to avian species richness
(Moreno-Gómez et al., 2019).

Inconsistencies in relationships among acoustic indices and
biodiversity measures may be partly due to non-biotic sounds
mixing with biotic sounds in recordings; however, these
confounding issues are rarely accounted for (Fairbrass et al.,
2017; Duarte et al., 2021) and have only recently been
systematically investigated (e.g., Ross et al., 2021). A meta-

analysis of acoustic index applications revealed that although
acoustic indices were significantly related to biological activity in
74% of studies, they were also related to anthropogenic activity in
88% of studies (Buxton et al., 2018b). The influence of
anthropogenic acoustic activity (i.e., “anthropophony”; Fairbrass
et al., 2017), ambient weather sounds (i.e., “geophony”;
Depraetere et al., 2012; Sánchez-Giraldo et al., 2020), and
ambient noise (Gasc et al., 2015) present further difficulty in
applying acoustic indices as ecosystem monitoring tools.

The efficacy of acoustic indices and their predictable
interpretation across study domains remains unclear, resulting in
reduced generalizability. Gibb et al. (2018) discuss current issues in
“accuracy, transferability, and limitations of many [ecoacoustic]
analytical methods” and further highlight how comparison of
acoustic index values becomes non-trivial across study sites and
surveys, particularly outside of undisturbed forest regions (i.e., in the
presence of variable sonic conditions). These issues are particularly
vexing, as affordable autonomous recording units (ARU) have led to
increasingly large datasets requiring automated methods for
interpretation (Snyder et al., 2022). Indices should be
interpretable across new study domains to establish spatial and
temporal consistency for tracking change (Bradfer-Lawrence et al.,
2020). We believe a significant factor resulting in the lack of
transferable interpretation is the effect of non-biotic sounds on
index values, which must be better understood and accounted for to
facilitate interpretable transferability.

Here we categorize soundscapes into acoustic activity events
(Krause, 2002; Pijanowski et al., 2011), which we call soundscape
components. Soundscape components include anthropophony
(anthropogenic sounds), biophony (animal sounds), geophony
(wind and rain), quiet (lack of emergent sound), and interference
(ARU feedback), collectively ABGQI (Quinn et al., 2022). We use
these terms to reflect the presence of the events they represent, such
as a birdcall, amphibian chorus, engine noise, or wind gust at a 2-s
temporal resolution which we then aggregate to percent time present
as opposed to abstract representations of acoustic activity in
frequency bands or acoustic index values. Grinfeder et al. (2022)
developed a model that classified anthropophony, biophony,
geophony, and quiet that demonstrated the ability of soundscape
components to track soundscape trends over long periods.
Additionally, two studies used manual (Mullet et al., 2016) and
supervised, deep learning (Fairbrass et al., 2019) methods to classify
biophony in large acoustic datasets, with the latter method
outperforming the ability to capture biophony when compared to
a suite of acoustic indices (Fairbrass et al., 2019). These studies
provide evidence that soundscape components may provide a more
transferable and flexible method for assessing levels of biodiversity
represented by biophony and human impact across landscapes,
adding to the potential for soundscape components to be used
for ecosystem monitoring.

We leverage a 5-year dataset from low-cost ARUs with over
725,000 min of acoustic recordings across 1,195 sites spanning
urban to natural habitats in Sonoma County, California,
United States. Our objectives here are to 1) understand how
multiple acoustic indices are modeled by the amount of ABGQI
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events at a site level, 2) explore the relationship between biophony
and bird diversity to determine if biophony can be used as an
indicator of bird diversity, and 3) offer a solution to the confounding
effects of non-biotic soundscape components on acoustic indices.
We build upon studies that have related acoustic indices to
soundscape components (Fairbrass et al., 2017), measures of
biodiversity (Gasc et al., 2015), and compare patterns here with a
study that analyzed the effects of sonic conditions on index
interpretation (Ross et al., 2021).

2 Methods

2.1 Study region and data collection

As part of the Soundscapes to Landscapes project (Snyder et al.,
2022; soundscapes2landscapes.org, hereafter S2L), citizen scientists
deployed passive ARUs across Sonoma County, California,
United States (4,152 km2), overlapping with the bird breeding
season from late March to June, through years 2017–2021
(Figure 1). At each site, ARUs recorded 1 min every 10 min,
amounting to 144 min of acoustic recordings per 24 h. S2L
employed two different ARU models: AudioMoths (AM)
programmed with an upper-frequency range of 24 kHz (sampling

rate = 48,000 Hz, digitization depth = 16-bit; flat frequency
response ±2 dB between 100 and 10,000 Hz; sensitivity −18 dB V/
Pa re: 94 dB SPL @ 1 kHz; Hill et al., 2018) and LG phone recorders
with an upper-frequency range of 22.05 kHz (sampling rate =
44,100 Hz, digitization depth = 16-bit; flat frequency response
between 50 and 20,000 Hz; sensitivity −45 ± 2 dB V/Pa re: 94 dB
SPL @ 1 kHz; Campos-Cerqueira and Aide, 2016). We established
an approximate minimum distance of 500 m between ARUs
deployed at the same time, though 22 intentionally paired AM-
LG deployments were included in analyses from 2021
(i.e., distance = 0 m). AMs were covered in a protective vinyl
pouch, while LG recorders were housed in a hard shell with an
external microphone. In both cases, ARUs were affixed to woody
vegetation if present or a temporary stake at approximately 1.5 m.
We used 1,195 unique sites and 726,801 min of acoustic data for
analyses (Table 1).

2.2 Acoustic features

2.2.1 Acoustic indices
We calculated 15 acoustic indices for each 1-min recording

(Table 2 and Supplementary Material S1). We chose these indices
because they have been frequently applied in terrestrial ecoacoustic

FIGURE 1
Sonoma County, California, United States land use/land cover classes from Sonoma County Fine-scale Vegetation and Habitat Map
(sonomavegmap.org) used as a component of site selection stratification from 2017 to 2021 (n = 1,195).
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TABLE 1 Summary of acoustic sampling by year and device.

LG ARU AM ARU Percent AM (%) Total sites Total minutes

Year Sites Minutes Sites Minutes

2017 119 75,643 0 0 0 119 75,643

2018 52 38,914 35 30,650 40 87 69,564

2019 26 16,726 305 179,883 92 331 196,609

2020 0 0 186 133,869 100 186 133,869

2021 24 10,672 448 240,444 95 472 251,116

Total 221 141,955 974 584,846 82 1,195 726,801

TABLE 2 Fifteen acoustic indices and descriptors for soundscape analysis from ecoacoustic studies.

Index name Abbreviation Relationships between index behavior and ecoacoustic
source

Acoustic Complexity Index ACI Strong positive correlation between the number of bird vocalizations with
increasing significance when aggregated over extended recording periods
Pieretti et al. (2011)

Acoustic Diversity Index ADI (=H′) Higher values coincide with dawn and dusk choruses. Separately, low values
were observed at agricultural sites Villanueva-Rivera et al. (2011)

Acoustic Evenness Index AEI Values are higher when evenness is low, reflecting sounds occurring inmostly
one frequency band (perfect inequality) Villanueva-Rivera et al. (2011)

Bioacoustic Index BI Values correlate with avian abundance from concurrent point counts
Boelman et al. (2007)

Temporal Entropy Ht The modulation of amplitude/sound over time Sueur et al. (2008). A valuable
indicator of species diversity Towsey et al. (2014)

Spectral Entropy Hs (also Hf) The modulation of the frequency spectrum of sounds Sueur et al. (2008). A
valuable indicator of species diversity Towsey et al. (2014)

Acoustic Entropy H Computed as the product of Ht and Hs, it increases from 0 (pure tone) to 1
(fully stochastic, random noise) with species richness. Wind, water, and
human activity may decrease reliability Sueur et al. (2008)

Median of amplitude envelope M Estimates the number of animal vocalizations Depraetere et al. (2012)

Normalized Difference Soundscape
Index-Anthropophony

NDSI-α Focuses on the power spectral density between 1 and 2 kHz; increasing with
more anthropophony Kasten et al. (2012)

Normalized Difference Soundscape
Index—Biophony

NDSI-β Focuses on the largest 1 kHz PSD bin between 2 and 8 kHz; increasing with
more Biophony Kasten et al. (2012)

Normalized Difference Soundscape
Index

NDSI The ratio of (NDSI-α - NDSI-β)/(NDSI-β + NDSI-α) in the range [‒1 to +1].
A value of +1 indicates no anthropophony, while −1 indicates no biophony
(Kasten et al. (2012)

Roughnessa RN Captures temporal changes in sound over all frequency bins; developed for
binaural analyses Rychtáriková and Vermeir, (2013)

Rugositya RUGO Continuous signals have lower values, while noisy signals have higher values
Atauri Mezquida and Llorente Martínez, (2009)

Spectral flatnessa SFM Tends to 1 for noisy signals and 0 for perfect oscillation (Mitrović et al., 2010;
Bormpoudakis et al., 2013)

Zero-Crossing Ratea ZCR Measures the number of times per second that a signal crosses the
instantaneous pressure of 0; trends high for noisy and low for tonal sounds
(Bormpoudakis et al. (2013); Eldridge et al. (2018)

aAcoustic descriptors–referred to here as acoustic indices.

Frontiers in Remote Sensing frontiersin.org04

Quinn et al. 10.3389/frsen.2023.1156837

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1156837


and bioacoustic research (Sueur et al., 2014) and have consistently
demonstrated varying sensitivity to sources of biophony, geophony,
and anthropophony. We used minute-level values of indices to
calculate two mean site-level values used in statistical analyses,
one for 24-h and a second for morning only (4 a.m.–12 p.m.;
used in bird species richness analyses).

2.2.2 Soundscape components
We used the percent presence of ABGQI soundscape events to

investigate how sonic conditions in a large acoustic dataset relate to
ecological indicators. We detected ABGQI events in our recordings
using a convolutional neural network (CNN) classifier initially
developed by and full details can be found in Quinn et al.
(2022). Briefly, we generated probabilities for each ABGQI class
for 21,804,030 2-s (2-s) samples (the CNN produces an independent
probability for each class for each 2-s sample). The ABGQI
probabilities were classified as present or absent using optimized
class wise threshold values. The 2-s presences for each ABGQI class
were then averaged for each site, resulting in a feature value for each
soundscape component ranging from 0% to 100% present at the site-
level. Two site-averages were calculated, one for 24-h and a second
for morning only (4 a.m.–12 p.m.; used in bird species richness
analyses). For example, if a site had 1,200 2-s samples from 40 1-min
recordings, and anthropophony was predicted present in 300 of
these 2-s samples, then 25% of recordings would be predicted to
contain anthropophony. Notably, our ABGQI CNN treats each
soundscape component independently, so any combination of
soundscape components can be predicted for a given 2-s sample
and will not necessarily sum to 100%. We interpret the effects of
soundscape components as follows.

- Biophony: reflects general vocalizing animal activity. These
primarily include bird calls and frog and insect choruses while
capturing flying insect activity more uncommonly.

- Anthropophony: primarily reflects anthropogenic activity
such as vehicle traffic, various combustion engines, and
airplane activity.

- Quiet: reflects the general absence of emergent sound. We
classified quiet to explicitly model periods of silence and not
assume the absence of other soundscape components implied
silence, as the CNN model included classification error of
ABGI. A positive effect implies a relationship with more quiet
periods, while a negative effect implies stronger effects from
other soundscape components.

- Geophony: primarily reflects wind, as Sonoma County
recordings show increased wind levels in the late afternoon
(Quinn et al., 2022), and is considered non-ecologically
meaningful ambient sound.

- Interference: reflects broad-frequency, rapid spikes in acoustic
activity related to physical interferences with the ARU (e.g.,
branches hitting the ARU) or internal electronic malfunctions
and is influenced by internal ARU self-noise. Interference
results in higher acoustic activity that may be associated
with events such as gusty winds, and we interpreted this as
non-meaningful noise in recordings regardless of the cause of
the interference event.

2.2.3 Acoustically-derived bird species richness
We used acoustically-derived bird species richness to measure

biodiversity, which we then related to acoustic indices and
soundscape components. The S2L project developed a separate
CNN-based classification approach to identify 54 of the most
common vocalizing bird species across Sonoma County (Clark et
al., 2023). We derived bird species classification from three CNNs at
2-s intervals. For each bird species, we used the highest accuracy
CNN to calculate the presence and absence of the species in all
recordings and applied a lower cutoff of n = 3 positive classifications
per site to indicate a presence for a given site, resulting in 1,185 sites
with bird observations. We then summed all species detections at
each site to arrive at site-level species richness for 24 h of recording
and a “morning-only” subset targeting high bird activity periods
(4 a.m.–12 p.m.). For both summaries, all 54 bird species had
presences across sites, with the minimum richness of zero species
for both datasets and the highest richness of 51 species (µ = 27.1 ±
7.3) for 24-h and 48 species (µ = 21.7 ± 6.7) for morning-only data,
respectively.

2.3 Statistical analyses

2.3.1 Generalized additive modeling
We used generalized additive models (GAMs) to relate

soundscape components and acoustic indices with one another
and with bird species richness. GAMs are an even more flexible
modeling option than generalized linear models, which provide
benefits over ordinary linear models, such as allowing for non-
normal error distributions and non-linear model structures (Wood,
2017).

All GAMs were fit using the R (R Core Team, 2022) package
“mgcv” (Wood, 2017) using backward variable selection from full
models. We generated partial dependence plots (PDPs) in R using
the draw function from the “gratia” package (Simpson, 2022). We
interpreted PDP slopes as the magnitude of influence a covariate
had on the response, where higher absolute slope values were
more influential for those areas in the covariate’s domain.
Comparatively, a covariate with a near-zero slope had
minimal effect on the response when included. For our final
GAMs, we reported error distribution, link function, adj-R2, and
deviance, where applicable. We report deviance because it can
better approximate non-normal error distributions for GAMs;
however, deviance and adj-R2 are equivalent for GAMs with a
Gaussian error distribution. See Supplementary Material S2 for
the full GAM fitting procedure.

2.3.2 Acoustic index sound composition
We investigated how soundscape components vary with each

acoustic index using GAMs. All models were nested versions of the
full model:

E AcousticIndexi( ) �ARUi + log Minutesrecordedi( )
+f1 Anthropophonyi( )+f2 Biophonyi( )

+f3 Geophonyi( )+f4 Quieti( )
+f5 Interferencei( )

(1)
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where for each site observation i, fj represents smooth functions for
soundscape components, ARU has two levels (AM and LG, not
individual device), and Minutes recordedi is the logarithm of the
number of 1-min recordings. We scaled soundscape component
covariates using a min-max normalization. We used PDPs and slope
summaries from soundscape component models to interpret
significant model covariates for each acoustic index. Because
GAMs had splines fit with up to k = 5 basis functions, a partial
effect could have positive and negative effects throughout the
covariate domain. Positive effects implied a covariate resulted in
increases in the response, while negative effects implied an inverse
relationship.

2.3.3 Case study: accounting for interference
GAM analyses indicate that the presence of ABGQI CNN-

classified interference heavily influenced the ACI; thus, we
performed an experiment to account for this effect. We removed
any 1-min recording containing an interference sample and
recalculated the average site soundscape components and ACI
values. Removing recordings with interference reduced the
dataset to 300,572 recordings (41.4% of data) and reduced sites
to 1,194, though the average minutes per site were reduced from
608 ± 317 min to 251 ± 186 min, resulting in the rate of soundscape
components changing (Table 3). We followed the same procedure to
model ACI with GAMs as found in the “Generalized additive
modeling” section. The resulting final model reflects the
relationship between soundscape components and ACI without
the effect of interference.

2.3.4 Relationship between acoustic features and
bird species diversity

We explored how soundscape components were associated with
site-level bird species richness. First, we constructed a GAM to see
how variance in biophony could be explained by bird species
richness (Eq. 2):

E Biophonyi( ) � ARUi + log Minutes recordedi( ) + f1 Richnessi( )
(2)

where Richnessi is each site’s acoustically-derived bird species
richness. We then designed three models to compare the ability
of biophony and acoustic indices to predict bird species richness and
reflect their joint ability to function as biodiversity indicators. First,
biophony was used alone to model bird richness (Eq. 3):

E Richnessi( ) � ARUi + log Minutes recordedi( ) + f1 Biophonyi( )

(3)

Recent research suggests multiple acoustic indices can better
represent diversity measures like avian vocal diversity (Buxton et al.,
2018a; Allen-ankins et al., 2023) and be used to aid soundscape
labeling of birds, insects, and geophony (Scarpelli et al., 2021) when
used together. Therefore, we developed a GAM to relate all
15 acoustic indices to bird species richness to investigate 1)
which acoustic indices best capture variation in richness and 2)
the directional effect of significant acoustic indices (Eq. 4):

E Richnessi( ) � ARUi + log Minutes recordedi( ) + f1 ACIi( )
+ f2 ADIi( ) + f3 AEIi( ) + f4 BIi( ) + f5 Hi( )
+ f6 Hsi( ) + f7 Hti( ) + f8 Mi( ) + f9 NDSIi( )
+ f10 NDSI − αi( ) + f11 NDSI − βi( ) + f12 Ri( )
+ f13 Rugosityi( ) + f14 SFMi( ) + f15 ZCRi( )

(4)
Our third GAM combined biophony and all acoustic indices to

assess the ability of all acoustic indicators to model bird species
richness (Eq. 5):

E Richnessi( ) � ARUi + log Minutes recordedi( ) + f1 ACIi( )
+f2 ADIi( ) + f3 AEIi( ) + f4 BIi( ) + f5 Hi( )
+f6 Hsi( ) + f7 Hti( ) + f8 Mi( ) + f9 NDSIi( )
+f10 NDSI − αi( ) + f11 NDSI − βi( ) + f12 Ri( )
+f13 Rugosityi( ) + f14 SFMi( ) + f15 ZCRi( )
+f16 Biophonyi( )

(5)
We compared all model performances and variable selection

for the morning-only and 24-h data to investigate whether
targeting periods when bird species are more active results in
a stronger relationship between acoustic features and bird
species richness. We followed the approach outlined in the
“Generalized additive modeling” section for all bird species
richness models.

3 Results

3.1 Effects of soundscape components on
acoustic indices

We modeled acoustic indices using soundscape components
(Eq. 1), with model mean and standard deviation deviance explained
of 66.8% ± 13.9% (Table 4). Because of the relatively large sample

TABLE 3 The change in the rate of soundscape components after removing 1-min recordings with interference (mean and standard deviation).

Soundscape component All recordings No interference recordings

Anthropophony 7.9% ± 11.5% 8.1% ± 12.8%

Biophony 29.4% ± 19.0% 30.7% ± 20.7%

Geophony 7.6% ± 10.2% 5.4% ± 9.8%

Quiet 25.9% ± 21.8% 30.2% ± 22.9%

Interference 15.9% ± 18.8% —
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size (n = 1,195 sites), covariate significance levels were frequently
highly significant (p < 0.05) when soundscape components were
retained in the final GAMs (Supplementary Materials S3, S4). All
final GAMs contain biophony, interference, and the ARU fixed
effect. However, no model contains the number of recordings. The
fitted model for BI is the only model not to include anthropophony,
quiet is not in the final model for ACI, and geophony is not included
in NDSI-α, NDSI, SFM, and RN (all abbreviations defined in
Table 2).

Figure 2 shows the influence on index values from the partial
dependence on each sound component individually. Interference
influences ACI most intensely based on all soundscape
components’ high positive slope values. Furthermore, all
sounds positively affect the value of ACI, and quiet is not
included in the final model. Comparatively, RN is weakly
influenced by interference, with values clustered around a
slope of zero, while anthropophony and biophony have more
significant, generally positive effects on RN.

3.2 Case study: accounting for ambient
sounds

After removing 1-min recordings with interference, we found
biophony changed from being one of the least influential
covariates modeling ACI to being the most influential
soundscape component (Figure 3). Further, ACI became more
robust to anthropophony, as indicated by lower slope values
(Figure 4). Geophony’s effect is less linear and slightly more
influential, although higher slope values occur primarily in
geophony’s sparse higher values. Geophony’s effect on ACI

may have increased because it is tightly linked to non-internal
ARU interference events (e.g., wind co-occurring with
interference), and when these events were removed, other
geophony types (e.g., rain and running water) could explain
more variation in ACI. After removing interference, GAM
deviance decreased slightly from 79.5% to 74.4%. Quiet is
included in the final GAM, although it was non-significant
(p = 0.12).

3.3 Relationships of acoustic indices and
biophony with bird species richness

The GAM modeling biophony as a function of bird species
richness (Eq. 2) had 40.3% deviance explained (i.e., a measure of
model fit), 12.9% RMSE, and included both ARU and the log
number of recordings for the 24-h data. The morning-only model
had higher performance (deviance = 45.4%) but higher error
(RMSE = 15.3%). Both datasets show a strong positive
relationship between bird species richness and biophony
across all species richness values. Model fits capture the mean
trend in bird species richness related to biophony but
underestimate the variance at intermediate species richness
values (e.g., 15–35 species).

We found the highest performing GAM modeling bird
species richness (according to the greatest explained
deviance) was the combined acoustic indices and biophony
GAM using the morning-only dataset (Table 5). This model
resulted in the highest deviance (65.8%; RMSE = 3.9 species;
Figure 5), 2% higher than the 24-h model. In general, the
morning-only GAMs, regardless of covariates, performed

TABLE 4 Final GAM results and model structure, sorted by high to low deviance. Acoustic index abbreviations can be found in Table 2.

Acoustic Index Error distribution Link function Adj-R2 Deviance (%)

ZCR Beta Logit 0.78 80.4

ACI Gamma Log 0.29 79.5

M Gaussian Identity 0.79 79.3

H Beta Logit 0.71 73.6

Hs Beta Logit 0.71 71.7

NDSI-α Beta Logit 0.65 71.4

AEI Beta Logit 0.67 70.9

Ht Beta Logit 0.66 68.9

Rugosity Beta Logit 0.67 68.8

NDSI-β Beta Logit 0.66 68.5

NDSI Beta Logit 0.67 67.8

ADI Beta Logit 0.64 66.6

SFM Gamma Log 0.52 56.0

BI Gamma Log 0.48 53.9

RN Gaussian Identity 0.24 24.4

Mean — -- 0.61 66.8
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FIGURE 2
The effect of each sound component on index values in the GAM for each acoustic index, evaluated using the partial dependence of each sound
component’s inner 99% range of values while holding all other components to their mean value. PDPs (Supplementary Material S4) show the index’s
sensitivity to the sound component. Because these values are obtained for each component while holding the others constant, the total variance in index
values for the sound component is highlighted. Higher variance in an index’s partial effect slope reflects higher sensitivity to the sound component.
Values of x = 0 denote a zero slope in the PDPs and do not imply non-significance.

FIGURE 3
ACI GAM PDP slope summaries modeled recordings (A) without and (B) with interference, respectively.
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better than the 24-h GAMs. Most notably, there was a 6.8%
better performance for the morning-only biophony GAM (Eq.
(3)) than the 24-h GAM.

The highest performing, morning-only GAM includes the log
number of recordings along with biophony, ADI, AEI, BI, H, M,
NDSI, NDSI-α, NDSI-β, RN, and ZCR (PDP in Supplementary
Material S6). The number of recordings has a positive effect on
bird species richness. Biophony, NDSI-β, and AEI have the
largest effects of the included covariates, while ADI, BI, and
RN have the smallest effects on bird species richness. AEI, BI,
NDSI-β, and ZCR have concave-down shaped PDPs, but BI
decreases across its entire domain. Biophony also has a
concave-down PDP with the strongest positive effect from
0%–25%. NDSI-α has a concave up trend, while RN has a
concave down to concave up trend across its domain,
approximating a flattened sinusoid. H and M have negative
linear effects, while ADI and RN have roughly linear, positive
effects. Notably, NDSI has an unreliable PDP interpretation due
to high concurvity and covariance structure with NDSI-α and
NDSI-β. The 24-h model contained all covariates in the morning-
only model in addition to ACI (Eq. 5).

4 Discussion

4.1 Contribution of soundscapes
components to acoustic indices

All GAMs from Eq. 1 contained ARU effects suggesting
systematic differences between ARU models. We believe this is
most likely due to the hardware specification differences in the
LG ARUS compared to the AM ARUs (see methods) where AM
ARUs were more sensitive to distant sounds (Campos-Cerqueira
and Aide, 2016) and highlights the need to include ARU type when
considering sonic conditions (Haupert et al., 2022). Additionally, no
acoustic index final models included the number of recordings. In
our analyses, the amount of data collected did not strongly modulate
the relationships between soundscape components and acoustic
indices. However, Bradfer-Lawrence et al. (2019) recommend
continuously sampling 120 h of data per site, or 26 weeks with
the 1-min-in-10 as used here, to achieve stability in acoustic
indicator variance, while our mean recording duration per site
equated to 99 h of deployed recording time or 9.9 cumulative
hours of recordings. We did not record for a sufficient duration

FIGURE 4
Cubic spline (black line) of PDPs of ACI modeled without interference. The y-axis shows the mean model ACI values (centered on zero), and the
x-axis shows covariate values with ticks reflecting the density of observations. Changes across a covariate’s domain reflect its influence on ACI value.
Shaded regions reflect 95% credible intervals of the spline, and blue points indicate partial residuals. Note that geophony values >0.5 are sparse yet heavily
affect the behavior and precision of the spline.

TABLE 5 Performance of bird species richness models with covariates of biophony (Eq. 3), acoustic indices (Eq. 4), and combined biophony and acoustic indices (Eq.
5), respectively. Normalized RMSE (NRMSE) was calculated using RMSE divided by species richness range (48 for morning-only and 51 for 24-h datasets).

Model covariates 24-h data Morning-only data

Deviance (%) RMSE (NRMSE) Deviance (%) RMSE (NRMSE)

Biophony (Eq. 3) 43.7 5.4 species (10.5%) 50.5 4.6 species (9.6%)

Acoustic Indices (Eq. 4) 50.9 5.0 species (9.9%) 52.6 4.5 species (9.4%)

Biophony + Acoustic Indices (Eq. 5) 63.8 4.3 species (8.5%) 65.8 3.9 species (8.1%)
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to observe decreased variance at 120 h of recording, as in Bradfer-
Lawrence et al. (2019), which may lead to this disparity in
findings.

We found that biophony positively influenced NDSI-β, NDSI,
AEI, BI, RN, ZCR, and ACI. This suggests these indices are related to
vocalizing animals as these sounds were encompassed in the
biophony CNN training and therefore possess ecologically-
meaningful information about animal activity and diversity.
Similarly, indices with greater influence from anthropophony and
quiet could provide information related to anthropogenic impact on
ecosystems and areas with quiet landscapes (Pavan, 2017), which in
some cases could indicate ecosystem decline if there were previously
high levels of biophony (Quinn et al., 2022). Indices strongly affected
by geophony and interference (ACI, AEI, M, Rugosity, H, Ht, and
ADI) should be used and interpreted judiciously because their
outcomes may be more of a reflection of ambient noise than the
ecology of the study domain.

Our findings corroborate some studies on soundscape
components and acoustic indices yet contradict others. For
example, Bradfer-Lawrence et al. (2019) found that high amounts
of anthropophony and geophony led to high ADI values, while we
found the inverse for anthropophony and a more complex but
generally inverse relationship with geophony in our data, which
aligns more with findings from Fairbrass et al. (2017). Patterns for H
were consistent with prior work, namely, that anthropophony,
geophony, and interference influence H to a larger degree than
biophony; however, this contrasts with Ross et al. (2021), where H
was relatively insensitive to confounding soundscape influences.
Sueur et al. (2008) recommend a low-pass frequency filter
of <200 Hz to reduce anthropophony and geophony effects;
however, this recommendation would be minimally effective in
our data because anthropophony events affected soundscapes up
to 5,000 Hz (Quinn et al., 2022 Supplementary Material). The low-
pass frequency filter would be adequate for most sources of

geophony in our dataset. Other work has demonstrated ACI to
be robust against rain events and NDSI as highly sensitive to rainfall
(Sánchez-Giraldo et al., 2020). Here, we contribute to these findings
and demonstrate ACI’s significant relationship to wind-related
geophony, consistent with Depraetere et al. (2012) and NDSI’s
lack of a significant relationship with wind events. Overall, many
of our findings relating indices to observed richness agree with
findings in other studies (e.g., ACI, BI, H, and M in Bradfer-
Lawrence et al., 2019). However, we provide evidence that the
anthropogenic (NDSI-α) and biotic (NDSI-β) components of
NDSI have strong positive relationships with anthropophony and
biophony, respectively, and may be more informative as separate
indices than NDSI, which integrates both components. This finding
corroborates prior results that demonstrate NDSI and the biotic
component of NDSI are insensitive to confounding sonic conditions
(Ross et al., 2021).

We also found that removing unwanted noise from interference
events resulted in a more reliable application of ACI, as
recommended in prior work (Fairbrass et al., 2017). This result
supports the hypothesis that acoustic indices such as ACI may be
generalizable across spatial and temporal domains and therefore
measure universally meaningful aspects of the soundscape, so long
as extraneous biasing sounds are accounted for beforehand. This is
particularly important for the AM ARUs which recorded
significantly more interference events than LG ARUs and could
result in erroneous interpretation of interference as biophony. Even
though biophony accounted for more variance in ACI than other
soundscape components when removing interference, the level of
data loss here may not be an ideal solution to improve index
reliability for other recording archives. To avoid this data loss,
the application of ACI would be most effective in sonically
consistent environments using ARUs that are not prone to rapid,
broad-frequency interference events. Recording schedules could also
be designed to account for data loss to achieve desired total samples
after the removal of interference. Previous studies have
recommended accounting for low-amplitude sound pulses when
applying ACI (Farina et al., 2016), though these methods do not
appear to scale to our broad-frequency interference events. We
believe source separation techniques will provide better options for
events such as interference while minimizing data loss (Lin and
Tsao, 2020) or future statistical analysis of the interaction between
interference and other soundscape components.

Indices strongly affected by multiple soundscape components
are more difficult to interpret in complex landscapes that contain
multiple sonic conditions across numerous land-use and land-cover
types like Sonoma County, while indices affected to a lesser extent by
soundscape components are more straightforward to interpret
(i.e., NDSI, R, and BI). Indicators strongly influenced by
biophony and robust to the other soundscape components may
be applied more broadly (NDSI and NDSI-β) than indices where
biophony does not have as much influence (H, Hs, M). Depending
on the acoustic index, anthropophonymay be a meaningful category
(e.g., NDSI-α) or a non-meaningful source of noise (e.g., ACI). We
summarized the trends of acoustic indices with soundscape
components (Table 6), and we recommend that future
ecoacoustic work apply appropriate indices given a study’s sonic
characteristics and desired acoustic target (e.g., sound pollution or
biotic events).

FIGURE 5
Predicted and observed bird species richness from the combined
morning-only acoustic index and biophony GAM with the log number
of recordings as a fixed effect. The density of sites is shown for
observed and predicted values, and the red line indicates the 1:
1 fit line.
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4.2 Predicting bird diversity with derived
acoustic features

We sought to relate acoustic indices directly to species
richness and followed recommendations to use indices in
combination instead of independently (e.g., Buxton et al.,
2018a; Bradfer-Lawrence et al., 2019). Our GAM approach
with only acoustic indices (Eq. 4) resulted in comparable
accuracy (adj-R2 = 0.53; deviance/goodness of fit = 52.5%; n =
1,185) to another multi-index study that implemented Random
Forest models to predict bird species vocalizations (R2 =
0.40–0.51; Buxton et al., 2018a). Even though these findings
were comparable, the ability of acoustic indices to represent
bird species richness may be limited in acoustically-complex
and heterogeneous environments (Buxton et al., 2018a) based
on the effects of non-ecologically meaningful sounds on acoustic
index patterns (Table 6). However, bird species richness models
are not the only utility for multi-index models. Ensemble acoustic
index modeling is promising when distinguishing degraded
habitats from healthy habitats in marine settings (Williams
et al., 2022) and terrestrial habitats (Bradfer-Lawrence et al.,
2020) and monitoring vertebrate groups (Allen-ankins et al.,
2023).

To extend the ability for acoustic indices to reflect biodiversity,
we leveraged the automated detection of soundscape components to
provide an empirical approach to predicting bird species diversity.
The combined acoustic indices and biophony GAM (Eq. 5) slightly
overpredicted at low species richness values and underpredicted at
higher values (Figure 5). This pattern, particularly at higher richness
values, may reflect the saturation and the inability of recordings to
capture increases in species richness (Burivalova et al., 2019) or the
model’s tendency to favor mean behavior over extreme values.
However, the former explanation relates to sonic condition
interactions, which result in the “masking” of unique signals.
Notably, unlike anthropophony and geophony sources, animals
are known to adjust their vocalization frequency and amplitude
to increase propagation and success of signal reception (Pijanowski
et al., 2011). Another consideration is that our detection data only
included 54 species (a max richness of 48 in the morning data and 51
in the 24-h data), and a model with higher species richness values
could resolve this potential saturation issue.

In the morning-only biophony and acoustic indices GAM,
positive trends in biophony and NDSI-β support their utility as
biodiversity indicators. Furthermore, reducing acoustic

covariates from 16 to 11 suggests high redundancy in acoustic
indices’ ability to explain variation in bird species richness. The
negative trend in M aligns with other work showing that higher
signal vocalizing activity leads to lower M values (Bradfer-
Lawrence et al., 2019). However, this change from having a
weak influence from biophony (Eq. 1) to a strong influence as
a predictor of bird species richness demonstrates the need for
caution when interpreting index effects.

In the 24-h dataset, acoustic indices were better predictors of
bird species richness (Eq. 4) than biophony alone (Eq. 3). However,
the performance for the morning-only biophony model (Eq. 3) had
comparable performance to the acoustic index, 24-h GAM (Eq. 4).
Our modeling is consistent with other work relating individual
indices to bird richness and biophony (e.g., ADI: Machado et al.,
2017; Ht, NDSI, ADI, AEI, M, ACI; Ross et al., 2021). Additionally,
the ability for indices to better represent richness in a modeling
framework over correlative analyses is consistent (Supplementary
Material S7; Mammides et al., 2017). Overall, though, correlative
relationships among indices and bird richness were weak here
(|ρ| ≤ 0.35), and biophony had the strongest relationship (ρ =
0.56 for the morning only), reinforcing our emphasis on the utility
of biophony as a more robust predictor of biodiversity metrics
compared to acoustic indices. The ability of biophony to explain
similar levels of species richness compared to 15 acoustic indices
supports the utility of biophony as a viable ecoacoustic metric on
par with combined acoustic indices and allows for targeted
morning-only data collection. If biophony is unavailable,
acoustic indices may provide higher performance and
representation of bird species richness when using a 24-h
sampling approach. Adding biophony to acoustic indices in an
ensemble model (Eq. 5) increased the performance beyond
comparable acoustic index models of bird diversity (Eq. 4;
Buxton et al., 2018a).

4.3 Extension of biophony in ecoacoustics

Our analyses corroborate a finding from Fairbrass et al. (2017)
and Ross et al. (2021) that acoustic indices applied in complex
acoustic environments can reflect biotic activity, yet other sound
sources significantly affect their replicability and make
interpretation non-trivial. Namely, our analyses support NDSI-β
as both relatively robust in varying sonic conditions (Ross et al.,
2021) and the most representative index of bird species richness

TABLE 6 When applying acoustic indices, consider the potential effects of soundscape components. We supply the dominant interpreted directional effects of the
soundscape component on the index based on Figure 2 and PDPs in Supplementary Materials.

Soundscape
component

Indicators positively related to
sonic condition

Indicators negatively related to
sonic condition

Indicators not sensitive to sonic
condition

Anthropophony ACI, AEI, M, NDSI-α ADI, H, Hs, Ht, NDSI, NDSI-β, RN, Rugosity,
SFM, ZCR

BI

Biophony ACI, AEI, BI, Ma, NDSIb, NDSI-βb, RN, ZCR ADI, Ha, Hs
a, Ht, NDSI-αb, Rugosity, SFM

Geophony ACI, AEI, BI, M ADI, H, Hs, Ht, NDSI-β, Rugosity, ZCR NDSI, NDSI-α, RN, SFM

Interference ACI, AEI, BI, M, NDSI, NDSI-β, RN, SFM ADI, H, Hs, Ht, NDSI-α, Rugosity, ZCR
aBiophony is the least influential soundscape component, excluding quiet.
bBiophony is the most influential soundscape component, excluding quiet.
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when biophony is unavailable. It is thus essential to understand
assumptions and underlying effects of non-biotic sounds before
interpreting index values (Gasc et al., 2015).

These analyses build on research that establishes that the
cumulative amount of biophony, here quantified by our CNN,
is a robust ecoacoustic indicator of biodiversity (Mullet et al.,
2016; Fairbrass et al., 2019; Grinfeder et al., 2022). Compared to
more traditional acoustic indices, biophony has the potential to be
more directly related to animal diversity as it captures biotic
events as opposed to an abstracted summary of acoustic energy as
acoustic indices do, which at present can result in non-trivial
relationships with underlying acoustic sources of sound.
Furthermore, we believe CNN-derived metrics like biophony
are potentially more robust to non-calibrated ARUs and
methodological inconsistencies that influence acoustic index
variation, but this issue requires formal study.

Our approach to quantifying biophony requires generalizability
tests with other datasets and locations. Ideally, a future study would
fine-tune the ABGQI CNN to reflect sounds in a different study
domain. Even though this approach would require significant work
to generate reference sound data, biophony as a general soundscape
class is less intensive to generate from CNNs than those that detect
species presences, which involve expert knowledge to identify
reference species vocalizations (Clark et al., 2023). Non-experts
can help in the effort to generate biophony reference data, as it
does not involve species identification (Snyder et al., 2022). If not
used as an ecoacoustic metric, biophony is valuable as a tool to aid
researchers in filtering the ever-expanding size of acoustic datasets
into relevant subsets for more efficient, targeted analyses
(Pijanowski and Brown, 2022). In future efforts, periods with
biophony may be broken into finer taxonomic granularity to
understand specific family or species dynamics (Hao et al., 2022),
expanding biophony’s value in conservation efforts (Dumyahn and
Pijanowski, 2011).

With the rapidly advancing field of deep learning, CNN
classification and source separation techniques (Lin and Tsao,
2020) may soon be more user-friendly to the point of competing
with acoustic index calculations. Even if adapting our CNN or the
development of a new CNN is outside a project’s scope, acoustic
indices remain an approachable and relatively low-cost option for
generating acoustic activity summaries, ensuring correct
assumptions and a general understanding of how non-biotic
noise influences values. Non-index quantification of soundscape
dynamics using metrics like biophony may be more generalizable to
measure changes in biodiversity and soundscapes incurring
disturbance (e.g., increased anthropophony) and for targeted
conservation and study (Grinfeder et al., 2022).

5 Conclusion

Our overarching goal was to understand how sonic conditions
represented using soundscape components affect acoustic indices
and improve interpretation. We applied a CNN classifier to detect
soundscape components automatically, used statistical models to
investigate their relationship with 15 common acoustic indices, and
provided recommendations to contextualize the effects of
soundscape components when applying these 15 acoustic indices.

We found combining biophony and acoustic indices particularly
informative for predicting bird species richness. We also validated
how acoustic indices more reliably reflect biophony when non-biotic
ambient noises are quantified and excluded from models. We aimed
to provide a more flexible method to measure species richness
acoustic activity than species-level identification in novel acoustic
datasets. Our work supports applying more automated methods,
such as CNN soundscape component detection, to acoustically
assess and monitor biodiversity by establishing the combination
of biophony and acoustic indices as useful ecoacoustic monitoring
tools for bird species richness.
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