
SOUPA: Standard Ontology for Ubiquitous and Pervasive Applications∗

Harry Chen, Filip Perich, Tim Finin, Anupam Joshi
Department of Computer Science & Electrical Engineering

University of Maryland, Baltimore County
{hchen4, fperic1, finin, joshi}@csee.umbc.edu

Abstract

We describe a shared ontology called SOUPA – Stan-
dard Ontology for Ubiquitous and Pervasive Applications.
SOUPA is designed to model and support pervasive comput-
ing applications. This ontology is expressed using the Web
Ontology Language OWL and includes modular component
vocabularies to represent intelligent agents with associated
beliefs, desires, and intentions, time, space, events, user
profiles, actions, and policies for security and privacy. We
discuss how SOUPA can be extended and used to support
the applications of CoBrA, a broker-centric agent archi-
tecture for building smart meeting rooms, and MoGATU, a
peer-to-peer data management for pervasive environments.

1. Introduction

Pervasive computing is a natural extension of the exist-
ing computing paradigm. In the pervasive computing vision,
computer systems will seamlessly integrate into the life of
everyday users, providing them with services and informa-
tion in an “anywhere, anytime” fashion. We believe in this
open and dynamic environment, intelligent computing enti-
ties must be able to share knowledge, reason about their en-
vironment, and interoperate.

In the past, many prototyping systems and architec-
tures have successfully demonstrated aspects of the perva-
sive computing paradigm, e.g., handheld devices are aug-
mented with context-aware applications to create personal-
ized tour guides for the museum visitors [1, 18], the user in-
terfaces and applications on a resource-poor mobile device
can dynamically migrate to a nearby resource-rich station-
ary computer when the user enters the office [3], and sys-
tems can route telephone calls to the present location of a
user by tracking the location of an electronic badge that the

∗ This work was partially supported by DARPA contract F30602-
97-1-0215, Hewlett Packard, NSF award 9875433, and NSF award
0209001.

user wears [31]. However, they offer only weak support for
knowledge sharing and reasoning.

A significant source of this weakness is that they are not
built on a foundation of common ontologies with explicit
semantic representation [9, 13]. For example, the location
information of a user is widely used for guiding the adaptive
behavior of the systems [27, 32, 29]. However, none have
taken advantageous of the semantics of spatial relations in
reasoning about the location context of the users. Addition-
ally, many systems use programming language objects (e.g.,
Java class objects) to represent the knowledge that the com-
puter systems have about the situational environment. Be-
cause these representations require the establishment of a
prior low-level implementation agreement between the pro-
grams that wish to share information, they cannot facilitate
knowledge sharing in an open and dynamic environment.

To address these issues, we believe a shared ontology
must be developed for supporting knowledge sharing, con-
text reasoning and interoperability in ubiquitous and per-
vasive computing systems. By defining such ontology, we
can help system developers to reduce their efforts in creat-
ing ontologies and to be more focused on the actual system
implementations.

In this paper, we describe a shared ontology for support-
ing pervasive computing applications. This ontology called
SOUPA – Standard Ontology for Ubiquitous and Perva-
sive Applications is expressed using the Web Ontology Lan-
guage OWL and includes modular component vocabularies
to represent intelligent agents with associated beliefs, de-
sires, and intentions, time, space, events, user profiles, ac-
tions, and policies for security and privacy.

The rest of this paper is organized as follows. In Section
2, we overview the OWL language and other related ontolo-
gies. In Section 3, we describe SOUPA and its ontological
structure. In Section 4, we discuss how SOUPA can be ex-
tended and used to support two different pervasive comput-
ing scenarios. One is in the context-aware smart meeting
domain based on CoBrA [8], and the other is in the peer-
to-peer data management domain based on MoGATU [25].
Conclusions are given in Section 5.

2. Background

The SOUPA project begins in November 2003 and is
part of an ongoing effort of the Semantic Web in Ubi-
Comp Special Interest Group1, an international group of re-
searchers from academia and industry that is using the OWL
language for pervasive computing applications and defin-
ing ontology-driven use cases demonstrating aspects of the
ubiquitous computing vision.

The goal of the project is to define ontologies for sup-
porting pervasive computing applications. The design of
SOUPA is driven by a set of use cases. While the SOUPA
vocabularies overlaps with the vocabularies of some exist-
ing ontologies, the merits of SOUPA is in providing per-
vasive computing developers a shared ontology that com-
bines many useful vocabularies from different consensus
ontologies. We believe SOUPA can help developers who
are inexperience in knowledge representation to quickly be-
gin building ontology-driven applications without needing
to define ontologies from scratch, and they can focus more
on the functionalities of the actual system implementations.

2.1. The Web Ontology Language OWL

The OWL language is a Semantic Web language for use
by computer applications that need to process the content
of information instead of just presenting information to hu-
mans [20]. This language is developed in part of the Seman-
tic Web initiatives sponsored by the World Wide Web Con-
sortium (W3C).

The current human-centered web is largely encoded in
HTML, which focuses largely on how text and images
would be rendered for human viewing. Over the past few
years we have seen a rapid increase in the use of XML as an
alternative encoding, one that is intended primarily for ma-
chine processing. The machine which process XML docu-
ments can be the end consumers of the information, or they
can be used to transform the information into a form appro-
priate for human understand (e.g., as HTML, graphics, and
synthesized speech). As a representation language, XML
provides essentially a mechanism to declare and use sim-
ple data structures, and thus it leaves much to be desired
as a language for expressing complex knowledge. Enhance-
ments to the basic XML, such as XML Schemas, address
some of the shortcomings, but still do not result in an ad-
equate language for representing and reasoning about the
kind of knowledge essential to realizing the Semantic Web
vision.

OWL is a knowledge representation language for defin-
ing and instantiating ontologies. An ontology is a formal
explicit description of concepts in a domain of discourse

1 http://pervasive.semanticweb.org

(or classes), properties of each class describing various fea-
tures and attributes of the class, and restrictions on proper-
ties [21].

The normative OWL exchange syntax is RDF/XML.
Ontologies expressed in OWL are usually placed on web
servers as web documents, which can be referenced by other
ontologies and downloaded by applications that use ontolo-
gies. In this paper, we refer to these web documents as the
ontology documents.

2.2. Related Ontologies

Part of the SOUPA vocabularies are adopted from a num-
ber of different consensus ontologies. The strategy for de-
veloping SOUPA is to borrow terms from these ontolo-
gies but not to import them directly. Although the seman-
tics for importing ontologies is well defined [2], by choos-
ing not to use this approach we can effectively limit the
overhead in requiring reasoning engines to import ontolo-
gies that may be irrelevant to pervasive computing applica-
tions. However, in order to allow better interoperability be-
tween the SOUPA applications and other ontology applica-
tions, many borrowed terms in SOUPA are mapped to the
foreign ontology terms using the standard OWL ontology
mapping constructs (e.g.,owl:equivalentClass and
owl:equivalentProperty).

The ontologies that are referenced by SOUPA include
the Friend-Of-A-Friend ontology (FOAF) [5, 26], DAML-
Time and the entry sub-ontology of time [22], the spatial
ontologies in OpenCyc [19], Regional Connection Calcu-
lus (RCC) [28], COBRA-ONT [7], MoGATU BDI ontol-
ogy [23], and the Rei policy ontology [15]. In the rest of
this section, we describe the key features of these related
ontologies and point out their relevance to pervasive com-
puting applications.

FOAF This ontology allows the expression of personal in-
formation and relationships, and is a useful building block
for creating information systems that support online com-
munities [12]. Pervasive computing applications can use
FOAF ontologies to express and reason about a person’s
contact profile and social connections to other people in
their close vicinity.

DAML-Time & the Entry Sub-ontology of Time The vo-
cabularies of these ontologies are designed for expressing
temporal concepts and properties common to any formal-
ization of time. Pervasive computing applications can use
these ontologies to share a common representation of time
and to reason about the temporal orders of different events.

OpenCyc Spatial Ontologies & RCC The OpenCyc spa-
tial ontologies define a comprehensive set of vocabularies
for symbolic representation of space. The ontology of RCC
consists of vocabularies for expressing spatial relations for

Figure 1. SOUPA consists of two sets of ontology documents: SOUPA Core and SOUPA Extension.
The OWL owl:imports construct is used to enable a modular design of the ontology. Different do-
main vocabularies are grouped under different XML namespaces.

qualitative spatial reasoning. In pervasive computing appli-
cations, these ontologies can be exploited for describing and
reasoning about location and location context [7].

COBRA-ONT & MoGATU BDI Ontology Both
COBRA-ONT and MoGATU BDI ontology are aimed for
supporting knowledge representation and ontology reason-
ing in pervasive computing environment. While the de-
sign of COBRA-ONT focuses on modeling contexts in
smart meeting rooms [7], the design of MoGATU BDI on-
tology focuses on modeling the belief, desire, and intention
of human users and software agents [23].

Rei Policy Ontology The Rei policy language defines a set
of deontic concepts (i.e., rights, prohibitions, obligations,
and dispensations) for specifying and reasoning about se-
curity access control rules. In a pervasive computing envi-
ronment, users can use this policy ontology to specify high-
level rules for granting and revoking the access rights to and
from different services [16].

3. SOUPA Ontologies

SOUPA consists of two distinctive but related set of on-
tologies: SOUPA Core and SOUPA Extension. The set of

the SOUPA Core ontologies attempts to define generic vo-
cabularies that are universal for different pervasive comput-
ing applications. The set of SOUPA Extension ontologies,
extended from the core ontologies, define additional vocab-
ularies for supporting specific types of applications and pro-
vide examples for the future ontology extensions.

Note that the structure of the ontology merely suggests
certain vocabularies are more general than the others in sup-
porting pervasive computing applications, and there is no
inherent computational complexity difference in adopting
either set of the ontologies.

3.1. SOUPA Core

This set of ontologies consists of vocabularies for ex-
pressing concepts that are associated with person, agent,
belief-desire-intention (BDI), action, policy, time, space,
and event. The ontologies are grouped into nine distinctive
ontology documents. Figure 1 shows a diagram of the on-
tology documents and their associated relations.

3.1.1. PersonThis ontology defines typical vocabularies
for describing the contact information and the profile of a
person. The OWL classper:Person is defined to repre-
sent a set of all people in the SOUPA domain, and is equiva-

lent to thefoaf:Person class in the FOAF ontology (i.e.,
theowl:equivalentClass property holds between the
per:Person and foaf:Person class). An individual
of the class can be described by a set of properties, which
include basic profile information (name, gender, age, birth
date, etc.), the contact information (email, mailing address,
homepage, phone numbers, instant messaging chat ID, etc.),
and social and professional profile (people that a person is
friend of, organizations that a person belongs to). In addi-
tion, all property vocabularies that are applicable to describe
a person in the FOAF ontology can also be used to describe
an individual of theper:Person class. This is because
all individuals of theper:Person class are also individ-
uals of thefoaf:Person class. The following shows a
partial ontology description of the person Harry Chen:

<per:Person>
<per:firstName

rdf:datatype="&xsd;string>Harry</per:firstName>
<per:lastName

rdf:datatype="&xsd;string>Chen</per:lastName>
<per:gender rdf:resource="&per;Male"/>
<per:birthDate

rdf:datatype="&xsd;date">1976-12-26</per:birthDate>

<per:homepage
rdf:resource="http://umbc.edu/people/hchen4"/>

<foaf:weblog
rdf:resource="http://umbc.edu/people/hchen4"/>

<per:hasSchoolContact rdf:resource="#SchoolContact"/>
<per:hasHomeContact rdf:resource="#HomeContact"/>

<foaf:workplaceHomepage
rdf:resource="http://ebiquity.umbc.edu"/>

<foaf:workplaceHomepage
rdf:resource="http://www.umbc.edu"/>

<foaf:workplaceHomepage
rdf:resource="http://www.cs.umbc.edu"/>

</per:Person>

<per:ContactProfile rdf:ID="SchoolContact">
<per:address rdf:datatype="&xsd;string">

Dept. of CSEE, UMBC, 1000 Hilltop Circle,
Baltimore, MD 21250, USA

</per:address>
<per:phone

rdf:datatype="&xsd;string>
+1-410-455-8648
</per:phone>

<per:email
rdf:resource="mailto:harry.chen@umbc.edu"/>

<per:im
rdf:resource="aim:goim?screenname=hc1379"/>

</per:ContactProfile>

<per:Email rdf:about="mailto:harry.chen@umbc.edu"/>
<per:Homepage rdf:about="http://www.aim.com"/>
<per:ChatID rdf:about="aim:goim?screenname=hc1379">

<per:providedBy rdf:resource="http://www.aim.com"/>
</per:ChatID>

<per:ContactProfile rdf:ID="HomeContact">
...

</per:ContactProfile>

<foaf:knows>
<foaf:Person>

<foaf:name>Tim Finin</foaf:name>
<foaf:mbox_sha1sum>

49953...148d37
</foaf:mbox_sha1sum>

</foaf:Person>

</foaf:knows>
</rdf:RDF>

3.1.2. Policy & Action Security and privacy are two
growing concerns in developing and deploying pervasive
computing systems [6, 17, 13]. Policy is an emerging tech-
nique for controlling and adjusting the low-level system be-
haviors by specifying high-level rules [11].

The SOUPA policy ontology defines vocabularies for
representing security and privacy policies and a descrip-
tion logic based mechanism for reasoning about the defined
policies. The defined vocabularies in this ontology are in-
fluenced by the Rei policy language [15].

A policy is a set of rules that is specified by a user or
a computing entity to restrict or guide the execution of ac-
tions. For example, in the context of system security, a sys-
tem administrator may use policies to define who has the
right to execute what services; in the context privacy pro-
tection, a user may use policies to restrict the type of per-
sonal information that can be shared by the public services.

The ontology representation of an action is defined in the
action ontology document. The classact:Action rep-
resents a set of all actions. Individuals of this class can have
a set of property values, which include (i)act:actor –
the entity that performs the action, (ii)act:recipient
– the entity that receives the effect after the action is per-
formed, (iii) act:target – the object that the action ap-
plies to, (iv)act:location – the location at where the
action is performed, (v)act:time – the time at which the
action is performed, (vi)act:instrument – the thing
that the actor uses to perform the action.

The following shows a partial ontology that defines a
special class of knowledge sharing action:
<owl:Class rdf:ID="ShareHarryLocInfoWithEBMembers">

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="&act;Action"/>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;actor">
<owl:hasValue>

<agt:Agent rdf:about="ctb@cobra1.cs.umbc.edu"/>
</owl:hasValue>

</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;target"/>
</owl:allvaluesFrom

rdf:resource="#LocationContextOfHarry"/>
</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;recipient"/>
<owl:allValuesFrom

rdf:resource="&eb;EbiquityMembers"/>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

<owl:Class rdf:ID="LocationContextOfHarry">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="&loc;LocationContext"/>
<owl:Restriction>

<owl:onProperty
rdf:resource="&loc:locationContextOf"/>

<owl:hasValue>

<per:Person
rdf:about="http://umbc.edu/people/hchen4"/>

</owl:hasValue>
</Restriction>

</owl:intersectionOf>
</owl:Class>

The above example describes a set of actions of which
the actor is the agentctb@cobra1.cs.umbc.edu , the
recipient is any member of the eBiquity group, the target,
or the information to be shared, is Harry’s location infor-
mation.

In SOUPA, a policy consists of rules that eitherpermitor
forbid the execution of certain described actions. Defined in
the policy ontology document, thepol:Policy class
represents a set of all policies. For a given policy individ-
ual, it may be associated with one or morepol:permits
or pol:forbids properties. The range of these two prop-
erties are thepol:PermittedAction class and the
pol:ForbiddenAction class, respectively.

The following example shows a policy that gives the
agent ctb@cobra1.cs.umbc.edu the permission to
share Harry’s location information with all eBiquity mem-
bers:

<pol:Policy rdf:about="&cobra;harrychen-policy">
<pol:policyOf>

<per:Person
rdf:about="http://umbc.edu/people/hchen4">
<per:name

rdf:datatype="&xsd;string">Harry Chen</per:name>
</per:Person>

</pol:policyOf>

<pol:defaultPolicyMode
rdf:resource="&pol;RequiresExplicitPermission"/>

<pol:permits
rdf:resource="#ShareHarryLocInfoWithEBMembers"/>

</pol:Policy>

The policy ontology also defines vocabularies for
describing meta information about individual poli-
cies. This information includes the author of a pol-
icy (pol:creator), the entity that enforces a pol-
icy (pol:enforcer), the creation time of a policy
(pol:createdOn), and the default reasoning mode of a
policy (pol:defaultPolicyMode).

The design of the SOUPA policy exploitsclassification
as a means to reason about policies. A typical process flow
of the system implementation is the following: (i) a user
or a system administrator defines a policy, (ii) the policy
is transmitted to the appropriate policy enforcer (e.g, a se-
curity or a privacy protection agent), (iii) before the pol-
icy enforcer can permit other agents to perform an action,
it creates an explicit representation of the action using the
SOUPA action ontology, (iv) this represented action is then
loaded into a description logic reasoner (e.g., Racer [14] or
FaCT2) along with the associated ontology, (v) the policy

2 http://www.cs.man.ac.uk/˜horrocks/FaCT/

enforcer will permit the execution of the action if the action
is classified as type ofpol:PermittedAction , and it
will forbid the execution of the action if the action is classi-
fied as type ofpol:ForbiddenAction .

In case if an input action is classified as both
pol:PermittedAction and pol:Forbidden-
Action , then the policy enforcer will report there is an
inconsistency in the policy and may forbid the execu-
tion of the action by default. In case if the action can-
not be classified as either classes, the policy enforcer will
decide whether the action should be permitted or for-
bidden based on the default policy mode (see the above
example). If the mode ispol:RequiresExplicit-
Permission , then the action will be forbidden. If the
mode is pol:RequiresNoExplicitPermission ,
then the action will be permitted.

3.1.3. Agent & BDI When building intelligent pervasive
computing systems, sometimes it is useful to model com-
puting entities asagents[33]. In SOUPA, agents are defined
with a strong notion of agency [33], which is characterized
by a set ofmentalisticnotions such as knowledge, belief, in-
tention, and obligation. In this ontology, both computational
entities and human users can be modeled as agents.

When the goals, plans, desires, and beliefs of different
agents are explicitly represented in the ontologies, this in-
formation can help independently developed agents to share
a common understanding of their “mental” states, help-
ing them to cooperate and collaborate. The explicitly rep-
resented human user’s mental states can help computing
agents to reason about the specific needs of the users in a
pervasive environment.

Two ontology documents are related to this ontology:
agent and bdi . The agt:Agent class represents a
set of all agents in the SOUPA domain and is associated
with three properties that can be used to characterize an
agent’s “mental” state:agt:believes , agt:desires ,
and agt:intends . The respective range values of
these properties are thebdi:Fact , bdi:Desire , and
bdi:Intention classes. The goals of an agent are con-
sidered to be a special type of desire, which is expressed by
defining theagt:hasGoal property as a sub-property of
theagt:desires property.

The bdi:Fact class is a subclass of the
rdf:Statement class, which represents a set of
reified RDF statements [4]. A reified RDF statement
consists of the rdf:subject , rdf:object , and
rdf:predicate properties.

Thebdi:Desire class defines a set of world states that
agents desire to bring about. Every instances of this class
can be characterized by the propertybdi:endState . The
range restriction of this property is unspecified in thebdi
ontology document. Application developers are responsi-
ble for defining the representation of different world states.

Some suggested representations are (i) symbolic names,
e.g., a set of pre-defined RDF resource URI and (ii) meta-
representation, e.g., each world state description is a set of
reified RDF statements.

The bdi:Intention class represents a set of plans
that agents intend to execute. Plans are defined in terms of
actions, pre-conditions, and effects. Thebdi:Plan class
is defined as a subclass of theact:Action class with
additional properties, namelybdi:preCondition and
bdi:effect .The representation of pre-conditions and ef-
fects are unspecified in this ontology, and it is left to be de-
fined by the application ontologies.

Sometimes it may be useful to describe whether or not
different desires of an agent are in conflict of each other,
and whether or not certain desires are achievable. The cause
of desire conflicts may be due to inconsistent beliefs in
the knowledge base or conflicting user preferences or sys-
tems policies. The cause of unachievable desires may be
due to the change of situational conditions. In thebdi on-
tology document, different subclasses of thebdi:Desire
class, bdi:ConflictingDesire , bdi:Non-
ConflictingDesire , bdi:AchievableDesire ,
andbdi:UnachievableDesire , are defined for clas-
sifying different types of agent desires.

3.1.4. Time SOUPA defines a set of ontologies for ex-
pressing time and temporal relations. They can be used to
describe the temporal properties of different events that oc-
cur in the physical world.

Part of the SOUPA ontology adopts the vocabularies of
the DAML-time and the entry sub-ontology of time. The
basic representation of time consists of thetme:Time-
Instant andtme:TimeInterval classes. All individ-
ual members of these two classes are also members of the
tme:TemporalEntity class, which is an OWL class
that is defined by taking the union of thetme:Time-
Instant and tme:TimeInterval classes. The set of
all temporal things that are divided into two disjoint classes:
tme:InstantThing , things with temporal descriptions
that are type of time instant, andtme:Interval-
Thing , things with temporal descriptions that are type of
time interval. The union of these two classes forms the
tme:TemporalThing class.

In order to associate temporal things with date/time val-
ues (i.e., their temporal descriptions), thetme:at property
is defined to associate an instance of thetme:Instant-
Thing with an XML xsd:dateTime datatype value
(e.g., 2004-12-25T12:32:12), and thetme:from and
tme:to properties are defined to associate an instance
of the IntervalThing with two differenttme:Time-
Instant individuals. The following example shows the
representation of a time interval with the associated tempo-
ral description:
<tme:TimeInterval>

<tme:from>
<tme:TimeInstant>

<tme:at rdf:datatype="xsd;dateTime">
2004-02-01T12:01:01

</tme:at>
</tme:TimeInstant>

</tme:from>
<tme:to>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">

2004-02-11T13:41:21
</tme:at>

</tme:TimeInstant>
</tme:to>

</tme:TimeInterval>

For describing the order relations between two differ-
ent time instants, the ontology defines the following prop-
erties: tme:before , tme:after , tme:beforeOr-
At , tme:afterOrAt , and tme:sameTimeAs . Both
tme:before and tme:after properties are defined of
type owl:TransitiveProperty . The tme:same-
TimeAs property expresses that two different time instants
are associated with equivalent date/time values and is de-
fined of typeowl:SymmetricProperty .

For describing the order relations between two dif-
ferent temporal things (i.e., time instants and time in-
tervals), the ontology defines the following properties:
tme:startsSoonerThan , tme:startsLater-
Than , tme:startsSameTimeAs , tme:ends-
SoonerThan , tme:endsLaterThan , tme:ends-
SameTimeAs, tme:startsAfterEndOf , and
tme:endsBeforeStartOf . The first three proper-
ties respectively express that for any two given temporal
things A and B, the starting time of A is before the start-
ing time of B, the starting time of A is after the starting
time of B, and the starting time of A is the same as the start-
ing time of B. The next three properties respectively express
that for any two given temporal things A and B, the end-
ing time of A is before the ending time of B, the ending time
of A is after the ending time of B, and the ending time of A
is the same as the ending time of B. Thetme:starts-
AfterEndOf property expresses that the beginning of
one temporal thing is after the ending of another tempo-
ral thing, and thetme:endsBeforeStartOf property
expresses the inverse of this property.

In the future we plan to extend this ontology to adopt
or map to additional vocabularies from the RDF Calendar
ontologies3 for modeling time intervals that may contain
repeating time intervals or instants. This new feature will
be useful for representing recurrent events such as weekly
meetings and classes.

3.1.5. SpaceThis ontology is designed to support reason-
ing about the spatial relations between various types of geo-
graphical regions, mapping from the geo-spatial coordinates
to the symbolic representation of space andvice versa, and

3 http://www.w3.org/2002/12/cal/

the representation of geographical measurements of space.
Part of this ontology vocabularies are adopted from the spa-
tial ontology in OpenCyc and the OpenGIS vocabularies
[10].

Two ontology documents are related to this ontology:
space andgeo-measurement . The first ontology doc-
ument defines a symbolic representation of space and spa-
tial relations, and the second document defines typical geo-
spatial vocabularies (e.g., longitude, latitude, altitude, dis-
tance, and surface area).

In the symbolic representation model, thespc:Spa-
tialThing class represents a set of all things that have
spatial extensions in the SOUPA domain. All spatial things
that are typically found in maps or construction blueprints
are calledspc:GeographicalSpace . This class is de-
fined as the union of thespc:GeographicalRegion ,
spc:FixedStructure , andspc:SpaceInAFixed-
Structure classes.

An individual member of thespc:Geographical-
Region class typically represents a geographical region
that is controlled by some political body (e.g., the coun-
try US is controlled by the US government). This relation is
expressed by thespc:controls property, the domain of
which isspc:GeopoliticalEntity and the range of
which isspc:GeographicalRegion . Knowing which
political entity controls a particular geographical region, a
pervasive computing system can choose to apply the appro-
priate policies defined by the political entity to guide its be-
havior. For example, a system may apply different sets of
privacy protection schemes based on the policies defined by
the local political entities.

To support spatial containment reasoning, individual
members of thespec:GeographicalSpace class can
relate to each other through thespc:spatially-
Subsumes andspc:spatiallySubsumedBy proper-
ties. For example, a country region may spatially subsumes
a state region, a state region may spatially subsumes a build-
ing, and a building may spatially subsumes a room. Know-
ing the room in which a device is located, we can infer the
building, the state and the country that spatially subsumes
the room.

In the geo-spatial representation model, the individ-
ual members of thespc:SpatialThing class are
described by location coordinates (i.e., longitude, lati-
tude, and altitude). This relation is expressed by the
spc:hasCoordinates property, the range of which is
thegeo:LocationCoordinates class. In this model,
multiple location coordinates can be mapped to a single ge-
ographical region (e.g., a university campus typically cov-
ers multiple location coordinates.). This relation is useful
for defining spatial mapping between different geograph-
ical locations and GPS coordinates. This information can
enable a GPS-enabled device to query the symbolic repre-

sentation of its present location for a given set of longitude,
latitude, and altitude.

3.1.6. Event Events are event activities that have both spa-
tial and temporal extensions. An event ontology can be used
to describe the occurrence of different activities, schedules,
and sensing events. In theevent ontology document, the
eve:Event class represents a set of all events in the do-
main. However, the definition of this class is silent about its
temporal and spatial properties.

The eve:SpatialTemporalThing class repre-
sents a set of things that have both spatial and tem-
poral extensions, and it is defined as the intersection
of the tme:TemporalThing and spc:Spatial-
Thing classes. To specifically describe events that have
both temporal and spatial extensions,eve:Spatial-
TemporalEvent class is defined as the intersection of
the eve:SpatialTemporalThing and eve:Event
classes.

The following example shows how the ontology can be
used to describe an event in which a Bluetooth device has
been detected on 2004-02-01 at 12:01:01 UTC, and the
event occurs at a location that is described by longitude -
76.7113 and latitude 39.2524:

<owl:Class rdf:ID="DetectedBluetoothDev">
<rdfs:subClassOf

rdf:resource="&eve;TemporalSpatialEvent"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="foundDevice">
<rdfs:domain
rdf:resource="#DetectedBluetoothDev"/>

</owl:ObjectProperty>

<DetectedBluetoothDev>
<spc:hasCoordinates>

<geo:LocationCoordinates>
<geo:longitude rdf:datatype...>

-76.7113
</geo:longitude>
<geom:latitude rdf:datatype...>

39.2524
</geom:latitude>

</geo:LocationCoordinates>
</spc:hasCoordinates>

<foundDevice rdf:resource="url-x-some-device"/>
<tme:at>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">

2004-02-01T12:01:01
</tme:at>

</tme:TimeInstant>
</tme:at>

<DetectedBluetoothDev>

3.2. SOUPA Extension

The SOUPA Extension ontologies are defined with two
purposes: (i) define an extended set of vocabularies for sup-
porting specific types pervasive application domains, and
(ii) demonstrate how to define new ontologies by extending
the SOUPA Core ontologies. At present, the SOUPA Exten-
sion consists of experimental ontologies for supporting per-

vasive context-aware applications in smart spaces and peer-
to-peer data management in a pervasive computing environ-
ment. Due to space limitation, in this section, we briefly de-
scribe the existing SOUPA Extension ontologies.

Meeting & Schedule For describing typical information
associated with meetings, event schedules, and event par-
ticipants.

Document & Digital Document For describing meta-
information about documents and digital documents, e.g.,
the creation date and the author of a document, the source
URL of a digital document, file size, and file type.

Image Capture When a camera phone takes a picture, this
event is type of image capturing event. This ontology de-
fines vocabularies for describing image capturing events
(where and when a picture is taken, which device has taken
the picture, etc.).

Region Connection CalculusA spatial ontology that sup-
plements the core space ontology. Based on the Region
Connection Calculus [28], this ontology defines vocabular-
ies for expressing spatial relations for qualitative spatial rea-
soning.

Location For describing sensed location context of a per-
son or an object. The location context is information that
describes the whereabouts of a person or an object, which
includes both temporal and spatial properties.

4. SOUPA Applications

To demonstrate SOUPA is feasible for supporting per-
vasive computing applications, we are prototyping two use
case scenarios. One is in the pervasive context-aware meet-
ing room domain based on CoBrA, and the other is in the
peer-to-peer data management domain based on MoGATU.
Our objective is to show that by defining a shared perva-
sive computing ontology, we can help system developers to
reduce their efforts in creating ontologies and to be more fo-
cused on the actual implementation of their systems.

4.1. CoBrA

CoBrA is a broker-centric agent architecture for support-
ing context-aware systems in smart spaces [8]. Central to
the architecture is the presence of a Context Broker, an in-
telligent agent that runs on a resource-rich stationary com-
puter in the space. It’s responsible for acquiring and main-
taining context knowledge, reasoning about the information
that cannot be directly acquired from sensors (e.g., inten-
tions, roles, temporal and spatial relations), detecting and
resolving inconsistent knowledge that is stored in the shared
model of context, and protecting user privacy by enforcing

policies. CoBrA has been used to prototype a smart meet-
ing system called EasyMeeting [9], in which the Context
Broker uses ontologies and logic inference rules to reason
about the location of meeting attendees based on the loca-
tion of their personal Bluetooth cellphones, and share this
information with other meeting services in the conference
room.

The SOUPA ontologies can be used in CoBrA to facil-
itate knowledge sharing and ontology reasoning. The fol-
lowing use case describes typical uses of the ontologies in
CoBrA:

Room 338 is a smart meeting room. On March 8th, 2004,
a presentation is scheduled to take place from 1:00-2:30 PM
in this room. Moments before the event starts, the room’s
Context Broker acquires the meeting’s schedule from the
Web, which is expressed in theschedule ontology, and
concludes the meeting is about to take place in the Room
338. As the meeting participants begin to arrive, the room’s
Bluetooth Sensing Agent detects the presences of differ-
ent Bluetooth enabled devices (e.g., cellphones, PDA’s). Be-
cause each device has a unique device owner profile, which
is expressed in theperson ontology, the sensing agent can
share this information with the Context Broker.

Based on the acquired information (e.g., what type of de-
vice it is, and who owns what devices) and without know-
ing any evidence to the contrary, the Context Broker con-
cludes the owners of the detected devices are also located
in the Room 338. Among the arrived participants, Harry
the speaker and President Hrabowski the distinguished au-
dience are two people that are listed in the meeting sched-
ule. This information is expressed in themeeting and the
schedule ontologies. The Context Broker shares their lo-
cation information, which is expressed in thespace and
time ontologies, with the subscribed Meeting Manage-
ment Agent.

Knowing that President Hrabowski has a distinguished
audience role, the Meeting Management Agent invokes a
greeting service to greet him. At 1:00 PM, the Context Bro-
ker informs the the same agent that all listedkeyparticipants
have arrived and that the presentation can start. Knowing all
the lights in the meeting are currently switched on and the
background music is also playing, the agent tells the light
controller to dim the lights and the music service to stop the
music.

4.2. MoGATU

MoGATU is a framework for handling pro-active peer-
to-peer semantic data management in a pervasive comput-
ing environment [24, 25]. The framework treats all devices
present in the environment as equal semi-autonomous peers.
To provide uniformed communication functionality and to
handle data management issues, this framework abstracts

all devices in the environment as a collection of Infor-
mation Managers, Information Providers, and Information
Consumers. It specifies several communication interfaces
for supporting ad-hoc IEEE 802.11 and Bluetooth like net-
works. Each InforMa is responsible for maintaining infor-
mation about peers in its vicinity. This information includes
the types of devices, and information and services they pro-
vide. An InforMa also maintains a data cache for storing in-
formation obtained from other mobile devices and to cache
information generated by its local Providers. Additionally,
each InforMa may include a user’s profile reflecting some
of user’s beliefs, desires, and intentions, a model adopted
by the SOUPA ontology. MoGATU is targeted toward per-
vasive environments, which invert the traditional sense of
data management in distributed databases that is based on
“passive data” and “active users” concepts [30].

A key use of the SOUPA ontologies in MoGATU is to ex-
press beliefs, preferences, intentions, and desires of an agent
or a user, and the priority values of plans and goals. The fol-
lowing use case describes typical uses of the ontologies in
MoGATU:

While Bob is getting ready to leave his new office, his
phone rings. It is his new friend Jane asking him to meet
her at the local shopping mall. Bob agrees to meet her and
notifies his palmtop about the decision. While he is walk-
ing through the building toward the parking lot and ulti-
mately toward his car, the palmtop fetches appropriate di-
rections from the web through the office network infras-
tructure. Once inside a car, the palmtop speaks out the direc-
tions and Bob follows them; however, the device knows that
Bob has a time constraint when he should meet Jane. It ac-
tivelly queries cars around Bob, to ask them if there is any
traffic delay on the selected route, and if they know of an al-
ternate, faster route. It turns out that there is a traffic jam
building up on the route, that was suggested by the web ser-
vice and that also would be planned by Bob’s car naviga-
tional system. The palmtop, therefore, queries surrounding
cars and is able to return with an alternate set of directions
that circumvent the afternoon traffic jam. Bob takes the dif-
ferent roads and is able to arrive at the mall’s entrance thirty
minutes early.

Bob decides to use the extra time to check out local
stores. His palmtop learns from the shopping mall broker
that it is now located inside the mall. The palmtop pro-
actively evaluates all intentions and desires of Bob, stored
in his profile, to see if it can assist Bob in satisfying some of
them. It infers that Bob needs a new pair of shoes. Accord-
ingly, it starts to query available shoe stores for their cur-
rent offers and also tries to negotiate addidional deals. As
Bob walks through the mall, the palmtop is able to collect
enough evidence store advertisements and other customers’
opinions on stores and their offerings. The palmtop com-
bines the collected knowledge and suggests Bob to visit the

shoe store in Nordstrom. This is because the palmtop was
able to negotiate a 20% sale coupon on Bob’s favorite shoe
brand. Bob decides to use the offer and purchases a pair of
shoes. The palmtop learns that from Bob’s credit card state-
ment and removes the associated goal. Consequently, upon
next visit of the mall, the palmtop will no longer place a
high priority on obtaining deals from shoe stores.

5. Conclusions

The use of ontologies is a key requirement for realizing
the vision of pervasive computing. We believe by defining
a shared pervasive computing ontology, we can help system
developers to reduce their efforts in creating ontologies and
to be more focused on the actual system implementations.
The SOUPA project is a step towards the standardization of
a shared ontology for ubiquitous and pervasive computing
applications.

We believe SOUPA will evolve as the pervasive com-
puting research progresses. The use of SOUPA shows great
promises in facilitating knowledge sharing and ontology
reasoning in both CoBrA and MoGATU. We expect the vo-
cabularies and the structures of SOUPA to change when the
research community becomes more experienced in develop-
ing ontology-driven applications.

The overall experience in developing the SOUPA ontol-
ogy was challenging. First, when building a shared ontol-
ogy that is aimed to reuse a number of different ontologies,
it was difficult to decide what is the most appropriate ontol-
ogy structure for organizing the defined vocabularies. Sec-
ond, because not all of the reused ontologies were devel-
oped using the same ontology language, and some of which
were developed to support different types of logic infer-
ences, often it was necessary to modify the structures and
the constructs of the existing ontologies before including
them into the SOUPA ontology. Third, developing method-
ologies to measure the success of the SOUPA ontology was
difficult.

In the current SOUPA ontology development process, we
have taken the following approaches to address the above
three issues: (i) we have developed use case scenarios with
functional specifications to help us decide the appropriate
structures for organizing ontological vocabularies, (ii) we
have chosen the OWL DL sub-language as the language to
build a shared ontology from the existing ontologies, (iii)
we plan to show the usefulness of the SOUPA ontology by
prototyping different pervasive computing systems to use
SOUPA.

6. Acknowledgments

The authors would like to thank the members of the Se-
mantic Web in UbiComp Special Interest Group for their

critical comments and feedbacks during the SOUPA devel-
opment.

References

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton. Cyberguide: A mobile context-aware tour
guide.ACM Wireless Networks, pages 421–433, 1997.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein.OWL
Web Ontology Language Reference, w3c recommendation 10
february 2004 edition, February 2004.

[3] F. Bennett, T. Richardson, and A. Harter. Teleporting - mak-
ing applications mobile. InProceedings of 1994 Workshop
on Mobile Computing Systems and Applications, Santa Cruz,
December 1994.

[4] D. Brickley and R. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. InW3C Recommendation. RDF
Core Working Group, 2004.

[5] D. Brickley and L. Miller. FOAF vocabulary specification.
In RDFWeb Namespace Document. RDFWeb,xmlns.com ,
2003.

[6] R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane1,
and M. D. Mickunas. Towards security and privacy for per-
vasive computing. InProceedings of International Sympo-
sium on Software Security, Tokyo, Japan, 2002.

[7] H. Chen, T. Finin, and A. Joshi. An ontology for context-
aware pervasive computing environments.Special Issue on
Ontologies for Distributed Systems, Knowledge Engineering
Review, 2003.

[8] H. Chen, T. Finin, and A. Joshi. A context broker for build-
ing smart meeting rooms. InProceedings of the Knowledge
Representation and Ontology for Autonomous Systems Sym-
posium, 2004 AAAI Spring Symposium. AAAI, March 2004.

[9] H. Chen, T. Finin, and A. Joshi. Semantic web in in the con-
text broker architecture. InProceedings of PerCom 2004,
March 2004.

[10] S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside. Ge-
ography Markup Language (GML 3.0). InOpenGIS Docu-
ments. OpenGIS Consortium, 2003.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pon-
der Policy Specification Language.Lecture Notes in Com-
puter Science, 1995:18–??, 2001.

[12] E. Dumbill. Finding friends with XML and RDF. InIBM
developerWorks, XML Watch. xmlhack.com, June 2002.

[13] F. L. Gandon and N. M. Sadeh. Semantic web technologies
to reconcile privacy and context awareness.Web Semantics
Journal, 1(3), 2004.

[14] V. Haarslev and R. M̈oller. Racer system description. InPro-
ceedings of the International Joint Conference on Automated
Reasoning 2001, 2001.

[15] L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach
to Security for the Semantic Web. In2nd International Se-
mantic Web Conference (ISWC2003), September 2003.

[16] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin,
and K. Sycara. Authorization and privacy for semantic web

services. AAAI 2004 Spring Symposium on Semantic Web
Services, March 2004.

[17] L. Kagal, J. Parker, H. Chen, A. Joshi, and T. Finin.Hand-
book of Mobile Computing, chapter Security, Trust and Pri-
vacy in Mobile Computing Environments. CRC Press, 2004.

[18] T. Kindberg and J. Barton. A web-based nomadic computing
system.Computer Networks, 35(4):443–456, 2001.

[19] D. B. Lenat and R. V. Guha.Building Large Knowledge-
Based Systems: Representation and Inference in the Cyc
Project. Addison-Wesley, February 1990.

[20] D. L. McGuinness and F. van Harmelen. OWL Web On-
tology Language Overview. InProposed Recommendation
(PR) for OWL. Web Ontology Working Group, W3C, 2003.

[21] N. F. Noy and D. L. McGuinness. Ontology development
101: A guide to creating your first ontology. Technical Re-
port KSL-01-05, Stanford Knowledge Systems Laboratory,
2001.

[22] F. Pan and J. R. Hobbs. Time in OWL-S. InProceedings of
AAAI-04 Spring Symposium on Semantic Web Services, Stan-
ford University, California, 2004.

[23] F. Perich. MoGATU BDI Ontology, 2004.
[24] F. Perich, A. Joshi, T. Finin, and Y. Yesha. On Data Manage-

ment in Pervasive Computing Environments.IEEE Transac-
tions on Knowledge and Data Engineering, October 2003.

[25] F. Perich, A. Joshi, Y. Yesha, and T. Finin. Neighborhood-
Consistent Transaction Management for Pervasive Comput-
ing Environments. In14th International Conference on
Database and Expert Systems Applications (DEXA 2003),
Prague, Czech Republic, September 2003.

[26] S. Powers.Practical RDF. O’Reilly & Associates, 2003.
[27] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The

cricket location-support system. InMobile Computing and
Networking, pages 32–43, 2000.

[28] D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based
on regions and connection. In B. Nebel, C. Rich, and
W. Swartout, editors,KR’92. Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third Inter-
national Conference, pages 165–176. Morgan Kaufmann,
San Mateo, California, 1992.

[29] A. Roy, S. K. D. Bhaumik, A. Bhattacharya, K. Basu, D. J.
Cook, and S. K. Das. Location aware resource management
in smart homes. InFirst IEEE International Conference
on Pervasive Computing and Communications (PerCom’03),
2003.

[30] M. Stonebraker. Position Paper on Monitoring Applications.
In NSF Workshop on Context-Aware Mobile Database Man-
agement (CAMM), January 2002.

[31] R. Want, A. Hopper, V. Falc̃ao, and J. Gibbons. The active
badge location system. Technical Report 92.1, Olivetti Re-
search Ltd. (ORL), 24a Trumpington Street, Cambridge CB2
1QA, 1992.

[32] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen,
D. Goldberg, J. R. Ellis, and M. Weiser. An overview of
the PARCTAB ubiquitous computing experiment.IEEE Per-
sonal Communications, 2(6):28–33, Dec 1995.

[33] M. J. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10(2):115–152, June 1995.

