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Abstract

Background Droplet based single-cell RNA sequence analyses assume all acquired RNAs are endogenous to cells. However, any cell
free RNAs contained within the input solution are also captured by these assays. This sequencing of cell free RNA constitutes a
background contamination that confounds the biological interpretation of single-cell transcriptomic data. Results We demonstrate
that contamination from this ‘soup’ of cell free RNAs is ubiquitous, with experiment-specific variations in composition and
magnitude. We present a method, SoupX, for quantifying the extent of the contamination and estimating ‘background corrected’ cell
expression profiles that seamlessly integrate with existing downstream analysis tools. Applying this method to several datasets using
multiple droplet sequencing technologies, we demonstrate that its application improves biological interpretation of otherwise
misleading data, as well as improving quality control metrics. Conclusions We present ‘SoupX’, a tool for removing ambient RNA
contamination from droplet based single cell RNA sequencing experiments. This tool has broad applicability and its application can
improve the biological utility of existing and future data sets.

Key words: scRNA-seq; Decontamination; Pre-processing

Introduction

Droplet based single-cell RNA sequencing (scRNA-seq) has enabled
quantification of the transcriptomes of hundreds of thousands of
cells in single experiments [1, 2]. This technology underpins recent
advances in understanding normal and pathological cell behaviour
[3, 4, 5, 6, 7, 8]. Moreover, large scale efforts to create a ‘Human
Cell Atlas’ critically depend on the accuracy and cellular specificity
of the transcriptional readout produced by droplet based scRNA-seq
[9, 10].

A core assumption of droplet based scRNA-seq is that each
droplet, within which molecular tagging and reverse transcription
take place, contains mRNA from a single-cell. Violations of this as-
sumption, which may distort the interpretation of scRNA-seq data,
are common in practice. Clear examples include droplets that con-
tain multiple cells (doublets), and empty droplets. Attempts to de-
tect and remove doublets are an active area of research [11, 12, 13].

Another phenomenon that violates this assumption is the se-
quencing of cell free RNA from the input solution, admixed with

a cell in its enclosing droplet. It is recognised that these contami-
nating non-endogenous RNAs are present even within data sets of
the highest quality [2]. Nevertheless, no systematic effort has been
made to quantify and compensate for their presence. The prevailing
strategy for addressing cell free RNA molecules is to assume their
contribution is negligible. The one exception to this is the case of
mixed genotype single cell experiments where the genotype can be
used to identify contamination and remove it [14].

Here, we show that this ‘soup’ of cell free mRNAs is ubiqui-
tous and non-negligible in magnitude. Since the character and ex-
tent of ambient mRNA contamination varies by experiment, with
increased contamination in necrotic or complex samples, ambient
mRNAs may significantly confound the biological interpretation of
scRNA-seq data. We present SoupX, a method for quantifying the
extent of ambient mRNA contamination whilst purifying the true,
cell specific signal from the observed mixture of cellular and exoge-
nous mRNAs.

In this paper we begin by briefly describing the SoupX method.
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Key Points

• The signal from droplet based single cell RNA sequencing is ubiquitously contaminated by capture of ambient mRNA.
• SoupX is a method to quantify the abundance of these ambient mRNAs and remove them.
• Correcting for ambient mRNA contamination improves biological interpretation.

Following this we consider a range of datasets, summarised in Table
S1. We first investigate two “species mixing” datasets run on the
Chromium 10X [2] and DropSeq [15] platforms, which allow us to
directly identify contaminating mRNAs and test our method’s accu-
racy. We then demonstrate how SoupX can be applied in practice
using a dataset of peripheral blood mononuclear cells (PBMCs) [2].
We further explore the biological benefits of SoupX using a complex
‘kidney tumour’ dataset, which consists of 12 kidney tumour biopsies
[16]. Finally, we conclude with some general remarks about ambi-
ent RNA contamination and the effects of failing to account for its
presence.

The SoupX method

Droplet based scRNA-seq methods produce counts of unique molec-
ular identifiers (UMIs) for genes in thousands of cells. The aim of a
scRNA-seq experiment is to infer the number of molecules present
for each type of gene within each cell from this data. However,
the observed counts arise from a mixture of mRNAs produced by
the captured cell and those present due to background contamina-
tion. SoupX aims to remove the contribution of the cell free mRNA
molecules from each cell and recover the true molecular abundance
of each gene in each cell.

The algorithm consists of the following three steps (summarised
in Figure 1):

i. Estimate the ambient mRNA expression profile from empty
droplets.
ii. Measure or set the contamination fraction, the fraction of
UMIs originating from the background, in each cell.
iii. Correct the expression of each cell using the ambient mRNA
expression profile and estimated contamination.

SoupX produces a modified table of counts, which can be used in
place of the original count matrix in any downstream analysis tool.

To estimate the background expression profile we consider all
droplets with fewer than Nemp UMIs, which we assume unambigu-
ously do not contain cells. The fraction of background expression
from gene g, bg is then given by,

bg =

∑
d ng,d∑
d
∑
g ng,d

(1)

where ng,d is the number of counts for gene g in droplet d and the
sum over d is taken over all droplets with fewer than Nemp UMIs
(Figure 1). The species mixing experiment allows us to compare how
accurately bg recapitulates the true background expression found
within each cell, revealing that any value of Nemp < 100 produces
a good correlation, with the best correlation given when Nemp < 10
(Figure S1).

The most challenging part of using SoupX is estimating or speci-
fying the number of UMIs in each cell that are contributed by back-
ground contamination. In general, the observed number of UMIs for
gene g in cell c is given by,

ng,c = mg,c + og,c (2)

where mg,c are the cell endogenous counts and og,c are the counts

from the background. We assume the relative abundance of genes
that make up the background does not differ between cells, which
allows us to write,

og,c = Ncρcbg (3)

where Nc =
∑
g ng,c, and ρc is the background contamination frac-

tion. In generalmg,c is unknown and what we are aiming to measure.
However, there often exist certain combinations of genes and cells
for which we can assume mg,c = 0. It is the appropriate identifica-
tion of these cells and genes that represents the greatest challenge in
applying our method. How to do this in practice will be discussed
below.

Given a set of genes/cells for which we can assume there is no
cell endogenous expression (i.e., mg,c = 0) we can calculate the cell
specific contamination fraction,

ρc =

∑
g ng,c

Nc
∑
g bg

(4)

where the sum is taken across all genes in cell c for which it is
assumed mg,c = 0. Our method will optionally use clustering infor-
mation to refine the set of cells for which it can be assumed that
mg,c = 0. If it can be shown for any cell c in cluster P that mg,c > 0,
then it is assumed that mg,c > 0 for all c ∈ P (see Figure 1 and
Section ).

Having determined the contamination fraction ρc and the back-
ground expression profile bg, the cell endogenous counts are intu-
itively given by,

mg,c = ng,c – Ncρcbg (5)

where ng,c are the observed counts, Nc =
∑
g ng,c, and bg and ρc are

calculated as described above.

Although the intuition of Equation 5 is correct, in practice mg,c
is estimated by maximising a multinomial likelihood as described in
Section . This procedure is further enhanced when cluster assign-
ments are given, by performing the correction on counts aggregated
at the cluster level, then distributing the corrected counts between
cells in the cluster in proportion to their size (see Figure 1). This ad-
ditional step helps overcome the sparsity of scRNA-seq data, which
would otherwise make it impossible to distinguish a single count due
to contamination from a single count due to endogenous expression
in many circumstances.

The estimated value of mg,c can then be used in place of ng,c in
any downstream analysis.

Properties of ambient RNA

We next investigate the properties of ambient RNA contamination
in data where ground truth is available, the “species mixing” exper-
iments combining mouse and human cell lines [15, 2]. Figure 2A
shows the relative abundance of human and mouse mRNAs in each
droplet in the 10X data. Droplets containing human (top-right) and
mouse (bottom-right) cells show that ∼ 1% of observed transcripts
are cross species contamination. This rate of cross species contami-
nation provides a lower bound on the total rate of ambient mRNA
contamination as there will also be an additional contribution due to
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Figure 1. A visual summary of the SoupX method, using data from the PBMC dataset.
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contaminating mRNAs from the same species (we later show the true
contamination rate is ∼ 2%). A similar effect is seen in the Drop-Seq
based species mixing data (Supplementary Figure S2). These obser-
vations demonstrate that cell free mRNA contamination is present
even in highly controlled experiments.

To investigate the composition of cell free mRNAs, we compared
the aggregate expression profile of all droplets containing cells to
all droplets with ≤ 10 UMIs, which we assumed to contain only
ambient mRNAs. These two profiles were highly correlated in the
10X species experiment (Figure 2B) with a high correlation found
in all other datasets considered (Pearson correlation 0.71 to 0.96,
median 0.86; Table S2). The strength of the correlation implies
that cell free contamination represents an approximately uniform
sampling of the cells in the sequencing batch (i.e., channel).

Next we estimated the contamination fraction, the fraction of
expression derived from the cell free mRNA background in each cell.
In each cell we identify a set of genes that must have originated
from the ambient mRNA; human transcripts in mouse cells and visa-
versa. For these genes/cells it is assumed that mg,c = 0 and the
contamination fraction is calculated using Equation 4. Figure 2C
reveals that there is little variation in the contamination fraction
within a channel, in both the 10X and DropSeq data.

In most experiments there is less power to determine cell-specific
contamination fractions and so SoupX assumes a constant contam-
ination fraction within a channel. When clustering information is
provided, the redistribution of counts from cluster level to individual
cells, automatically removes more counts from contaminated cells,
even when only a global estimate of the contamination is given (Fig-
ure S3; Section ). Where a cell specific expression estimate is needed,
SoupX employs a hierarchical bayes method to share information be-
tween cells (Section ).

It may be hypothesised that the absolute number of contami-
nating mRNA molecules is the quantity that is approximately con-
stant and that the contamination should vary with the number of
mRNA molecules contributed by the captured cell. That is, that
contamination fraction should vary as a function of cellular mRNA
contribution, with the number of detected UMIs being a proxy for
this. Consistent with this, Figure 2C shows that the greatest con-
tamination occurs in droplets with the fewest UMIs. However, the
contamination fraction is still approximately constant across most
of the UMI range. This is likely a consequence of the fact that the
capture efficiency of molecules in droplet based experiments varies
by as much as an order of magnitude [17]. Thus variation due cap-
ture efficiency is likely to swamp variation due to “cell size” in most
experiments, making constant contamination fraction a reasonable
approximation.

To test the accuracy of SoupX in removing contaminating counts
while retaining those due to endogenous expression we compared the
fraction of expression from cross-species and within-species genes
before and after SoupX contamination correction. This analysis re-
vealed (Figure 2D) that mouse expression in human cells (and visa-
versa) was decreased by at least a factor of two and usually an order
of magnitude by the SoupX contamination removal in both 10X and
DropSeq experiments. By contrast the fraction of expression de-
rived from genes corresponding to the correct species was effectively
unchanged for all cells.

Application of SoupX to PBMC data

Next we tested our method on a data set consisting of PBMCs [2],
measured in a single channel. We used the Seurat package [18, 19]
to produce a tSNE representation of the data and annotated clusters
of cells based on the expression of canonical marker genes (Figure
3A).

The main challenge in applying our method to this dataset was
the selection of an appropriate set of genes that could be assumed
to be unexpressed in some cells. That is, identifying the genes and

cells for which it is safe to assume that mg,c = 0.

To aid appropriate selection of such a gene set, we reasoned that
the ideal genes for estimating the contamination rate would be ubiq-
uitously present at a low level in all droplets due to high expression
in the ambient RNA. They would also be present at a high level in
those droplets that contain a cell endogenously expressing the gene,
allowing us to unambiguously separate droplets with endogenously
expressing cells (i.e., where mg,c > 0) from those where the expres-
sion is solely due to contamination (mg,c = 0).

Based on this reasoning, we developed a heuristic that ranks the
500 genes with the highest expression in the background by their bi-
modality of expression across all droplets in a channel. A plot based
on applying this heuristic to the PBMC data shows the expression
distribution across all cell containing droplets in the dataset (Fig-
ure S4). This heuristic suggests that immunoglobulin genes, such as
IGKC and IGLC2, are both highly expressed in the soup and highly
specific in their expression, making them good candidates for esti-
mating the contamination fraction in this dataset. Note that this
heuristic is intended only as an aid for selecting a biological sensible
set of genes, not as an automated tool suitable for gene selection
without manual intervention.

To select a precise set of cells for which we could use IG genes to
estimate the contamination, we identified all cells whose IG expres-
sion was significantly greater than in the background contamination
(Poisson test, FDR 0.05; Section ). These represent cells endogenous
expressing IG. We only used cells from clusters with no cells iden-
tified as endogenously expressing IG to estimate the contamination
rate (Figure 3B). For the PBMC data, this identified IG expression in
T cells as purely due to contamination and calculated a background
contamination rate of ∼ 5%.

Having calculated the global contamination rate for the PBMC
data, we then corrected the PBMC data for background mRNA con-
tamination and reanalysed the data with Seurat using the same set-
tings. Comparing cluster membership before and after correction
revealed that the same number of clusters was identified, but some
cells changed which cluster they belonged to (Figure 3C).

Next we identified marker genes for each cluster in both the cor-
rected and uncorrected PBMC data using a Wilcoxon Rank Sum test
and calculated the expression fold change between the cluster and
all other cells. We compared the fold changes for the same genes in
the same clusters before and after correction and found that correc-
tion for background contamination systematically increased the fold
change contrast for marker genes (Figure 3D). That is, correction for
background contamination made marker genes more specific to the
cluster they were markers of. Furthermore, additional genes were
found as markers in the corrected data, that were not identified in
the uncorrected data.

As a specific example, we found that correction of ambient RNA
contamination changes the pattern of expression of LYZ in the
PBMC data (Figure 3E-F). This improved the specificity of LYZ as
a marker gene for mononuclear phagocytes (Figure 3E) by removing
its expression from all other cell types, while leaving its expression
in mononuclear phagocytes unchanged (Figure 3F).

Ambient RNA confounds interpretation in complex
experiments

As a further test of the biological utility of our method we consid-
ered an experiment combining 7 kidney tumours processed across
10 channels (Table S1). As with the PBMCs, we analysed corrected
and uncorrected data using the Seurat package; Figure 4A shows a
tSNE plot of the uncorrected data. Haemoglobin genes were used
to estimate the contamination fraction in most channels (Figure S5).
This choice of geneset for estimating contamination was motivated
by the ubiquitous presence of red blood cells (with red cell lysis form-
ing part of the tissue treatment protocol) in these samples, together
with the knowledge that HB genes are highly specific to erythrob-
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Figure 2. The properties of the cell free mRNA soup as determined using species mixing datasets. Panel A shows the log10 ratio of the number of UMIs

mapping to human and mouse mRNAs for each droplet in the species mixing dataset (10X). Droplets determined to contain cells by cellranger are marked

in black. Panel B shows the correlation of the counts in the background compared to counts averaged across cells for each gene. Counts have been

sub-sampled so that the total number of counts in the background and averaged cell population is the same. Panel C shows the estimated contamination

fraction as a function of number of UMIs in each droplet in individual cells in the species mixing dataset. Red/blue dots represent cells from the

10X/DropSeq experiments, respectively. The distribution on the left shows the marginal distribution across all cells. Panel D shows the fractional change

in contaminating and genuine express levels after applying SoupX for the two technologies. The distribution across cells is summarised by boxplots,

where the central line is the median, box boundaries are the 1st and 3rd quartiles and the whiskers extend to 1.5 times the interquartile range.

lasts.

Applying SoupX and reanalysing the kidney tumour data re-
vealed that in contrast to the PBMC data, many cells changed clus-
ter and with the same clustering parameters two fewer clusters were
identified in the corrected data (Figure 4B). Furthermore, we found
that the expression ratio of marker genes between the cluster they
mark and all other cells increased systematically after correcting for
background contamination (Figure 4C).

We found that the correction of background contamination
changed distribution of expression of many genes across cells in a
way that would alter the biological interpretation. For example,
while unlikely to be biologically misinterpreted, SoupX completely
removes the expression of haemoglobin genes from all cells except
erythroblasts (Figure 4D).

In other cases, the misattribution of gene expression to cell types

that do not truly express them can lead to false conclusions. An
example of this type is the cluster of T and mononuclear phagocytes
(MNPs) in Figure 4A,E, which express the collagen genes COL1A1,
COL1A2, and COL3A1 before background correction. The expres-
sion of collagen genes might be interpreted as evidence that the
leukocytes are resident in the tissue. However, our method identi-
fies that a high fraction of this expression is due to contamination
(Figure 4E).

As the ambient mRNA expression profile is experiment specific,
we reasoned that background contamination likely contributes a
batch effects. That is, two identical cells captured in different ex-
periments will appear different due to differences in their cell free
RNA composition. We therefore calculated the cross-batch entropy
of the Kidney tumour data before and after background correction
[20]. This analysis shows that the batch mixing entropy is increased
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after background correction, indicating better mixing between sam-
ples (Figure 4F).

Discussion

We have shown that cell free RNA is omnipresent in droplet based
scRNA-seq data and have proposed a method to identify, quantify
and remove its contaminating effect. We find that accounting for
contamination improves the specificity of marker genes, identifies
new markers, and is essential for the correct biological interpretation
of complex experiments.

We have shown potential misinterpretations of kidney tumour
data driven by ambient mRNA contamination, but examples are
sure to abound in other tissues. For instance, in endocrine tissues,
it is crucial to understand which cell types secrete a particular hor-
mone. The miassigned expression of even a single hormone gene can
fundamentally change how investigators think about the cell type.
Such problems will become increasingly common as efforts to com-
pare similar cell types across tissues progress.

The main limitation of our method is the need to specify a set
of genes for which it is safe to assume there is no cell endogenous
expression. That is, the user must specify a set of genes and cells
where it is safe to assume that the only source of expression for
these genes is from background contamination. The expectation is
that biological knowledge of the experiment being performed will
guide this choice.

For example, solid tissue experiments are frequently highly con-
taminated with red blood cells and red cell lysis is used to prepare
the samples [16]. As such, haemoglobin genes are often ubiqui-
tously present in the background. Furthermore, erythroblasts are
the only cells that produce haemoglobin under normal physiolog-
ical conditions, so for the set of haemoglobin genes, it is safe to
assume that there is no cell endogenous expression for cells that are
not erythroblasts. Finally, erythroblasts express haemoglobin genes
in such extreme abundance that they can be trivially identified by
comparing the ratio of observed haemoglobin genes to that present
in the background contamination (Figure S5)). These properties
make haemoglobin genes a sensible choice for most solid tissue ex-
periments.

In general the task of selecting a set of genes and cells will de-
pend on the specifics of an experiment. We provide a number of
heuristics that looks for bimodal expression amongst the genes highly
expressed in the background contamination.

Having identified a useful set of genes, we provide a procedure for
conservatively identifying which cells do not endogenously express
the specified gene set. This procedure aggressively excludes clusters
where there is clear evidence that at least one cell has expression
of the target gene set exceeding what would be possible even in the
extreme case of 100% contamination. This procedure can be made
more or less conservative as needed either by changing the number
of clusters considered, or by changing the cut-offs for the statistical
test for extreme expression.

However, there will likely be cases where such genes cannot be
identified. In such circumstances, SoupX may still be used by manu-
ally setting a global contamination rate, based on the experimenters
best guess and contamination rates of similar experiments. For most
applications the consequences of manually setting an unrealistically
high contamination rate are likely to be minimal. Setting a higher
global contamination rate than is realistic will decrease slightly the
expression levels of genes that are truly specific to a cell, but as the
relative abundance of cell specific genes are by their nature higher
than in the background, true marker expression will never be com-
pletely removed.

SoupX has been designed to prevent the erroneous removal of
genuine expression, however in many applications it may be prefer-
able to over-correct for background contamination and remove a
small amount of genuine signal in order to ensure that all the back-

ground contamination has been removed. Furthermore, we find that
our method is robust to small inaccuracies in the estimation of the
global contamination rate (Figure S3).

To make our method easily applicable, we provide an R package,
SoupX, which can be used to estimate and remove this contami-
nation. The output of this package is a corrected table of counts,
which can be used as input for standard workflows. We envision back-
ground correction forming a standard part of droplet based scRNA-
seq analysis pipelines.
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Supplementary Materials

Notation

We refer to the observed counts in a droplet c for gene g as ngc. Sums
taken over a variable are represented with a ., so n.c =

∑
g ngc; the

sum over all genes for droplet c. mgc represents the cell endogenous
counts present in a droplet c, for gene g. Similarly, ogc represents the
other counts in a droplet, contributed by background contamination.
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We denote the fractional abundance of gene g in the soup or
ambient mRNA background as bg. This is defined such that b. = 1.
ρc represents the background contamination fraction in droplet c,
defined as o.c/n.c.

We define G as the set of all genes that can be detected in a
sequencing experiment.

Choice of count distribution

The most appropriate model for count based data, such as the counts
produced by scRNA-seq is a multinomial distribution. This distri-
bution provides the probability of observing a given partition of N
counts into k genes, given the relative probabilities of each gene pg.

In estimating how many counts to remove, where N tends to be
small, we directly maximise the multinomial likelihood. However,
in other cases we approximate the multinomial distribution as k
Poisson distributions, which is an accurate approximation in the
limit of large N and small p.

These distributions are commonly extended to include over-
dispersion by using a Dirichlet multinomial or negative binomial
distribution. Throughout this paper we ignore the effects of over-
dispersion for computational expediency and because for most esti-
mation procedures used the maximum likelihood estimator does not
depend on the over-dispersion (e.g. estimating the mean).

Detailed description of the SoupX method

As discussed in the manuscript, SoupX aims to remove the contribu-
tion of the cell free mRNA molecules from each cell. The algorithm
consists of the following three steps:

i. Estimate the ambient mRNA expression profile from empty
droplets.
ii. Measure the contamination fraction, the fraction of UMIs orig-
inating from the background, in each cell.
iii. Correct the expression of each cell using the ambient mRNA
expression profile and estimated contamination.

SoupX produces a modified table of counts, which can be used in
place of the original count matrix in any downstream analysis tool.
This supplement provides the details for each of these three parts of
the SoupX method.

Background expression profiles

To calculate the expression profile of cell free mRNAs, we assume
that droplets with a very low UMI count contain only cell free mR-
NAs. As the number of droplets with low UMI counts is very large
compared to the number of cells (∼ 106 droplets versus ∼ 104 cells),
there is typically abundant power to accurately calculate the expres-
sion profile of the cell free background. Let D denote the set of
all droplets with a UMI count αl ≤ n.c ≤ αu. The background
expression fraction for gene g, bg, is estimated as

bg =

∑
c∈D ngc∑

g̃∈G

∑
c∈D ng̃c

(6)

That is, bg is the fraction of counts derived from gene g in the set
of empty droplets D, normalised so that b. = 1. In the species mix-
ing data, we could directly measure the background contamination
in droplets with cells. We used this gold standard to measure the
accuracy of the estimated background as a function of the number of
UMIs in the droplets used to estimate it (Figure S1). Based on this,
we set αl = 2 and αu = 10 in this paper. We ignore droplets with 1
UMI to prevent errors in the droplet barcodes from contaminating
our estimate of the background (although we find no evidence this is
a problem for chromium 10X data). Different cut-offs may be more

appropriate for different technologies, but we find good correlation
between the expression profile of all droplets with less than ∼ 100

counts.

Calculating the contamination fraction

SoupX needs an estimate of the global contamination fraction
present in a channel. This is generally not known in advance and
must be estimated from the data or provided by the user. Our
method approaches this problem by trying to identify a set of
gene/cell pairs for which the cell endogenous expression can be as-
sumed to be zero. That is, the task is to identify

Ω = {c, g|mgc = 0} (7)

For genes and cells in Ω we see from equation 2 that ngc =
ogc. That is, the observed counts are purely due to background
contamination.

In certain circumstances (e.g., a well annotated dataset with very
specific marker genes) the set Ω may be able to be specified directly
by the user. Where this is not the case, we construct Ω in a two-step
procedure.

Firstly, a set of genes that are known to be very specific to a
particular cell type and highly expressed in that cell type are iden-
tified. Typical examples of this are erythroblasts and haemoglobin
genes or immunoglobulin genes and B cells. However, this set will
depend on the experiment being performed, for example INS the
insulin gene and pancreatic beta cells will work well in the pancreas
and be useless elsewhere.

In cases where the choice of gene set is not obvious, we provide
a heuristic plot that attempts to find genes highly expressed in the
background with a bimodal expression profile across all cells. We
focus on genes highly expressed in the background as in order to be
useful, Ω must also have the property that

∑
g,c∈Ω
ngc > 0. Put

another way, the genes in Ω must be expressed at a reasonable level
in the background so that we have sufficient counts to estimate the
contamination fraction. Our heuristic therefore identifies the most
useful genes as being highly expressed in the background, with a
bimodal expression distribution across cells. This is motivated by
the observation that the most useful genes are highly expressed in
the cells they are specific to and have a low level of (contamination
driven) expression elsewhere. This heuristic is intended only as a way
to assist the development of a biologically motivated selection of an
appropriate gene set. It is not suitable as a means for automating
the SoupX method. Where automation is essential, it is better to
manually specify a high global contamination (e.g. ρ = 0.15).

Having identified a set of genes suitable for estimating the con-
tamination fraction, we next identify which cells definitively do not
express these genes. Again, the ideal way to do this is to have a well
annotated data set where this decision can be specified in a biologi-
cally motivated way. For example, when using haemoglobin genes to
estimate the contamination fraction, cells annotated as erythroblasts
can be excluded from Ω and other cell types included.

Where this is not possible we proceed by identifying all cells for
which cell endogenous expression must be non-zero. These are the
cells which are significant using a Poisson p-value under the null
hypothesis that the n.c counts are distributed in the same way as
in the background distribution. That is, we identify all cells where
pc < 0.05 and

pc =
∞∑

k=ngc

λke–λ

k!
(8)

where λ = ρmaxbgn.c and ρmax is the largest plausible contamination
fraction (which is set to 1.0 by default). Put another way, this
identifies all cells for which the fraction of counts derived from the
genes of interest in the cell exceeds the fraction of counts for those
genes in the background contamination.
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We then cluster the data and exclude any cluster that contains
a cell for which pc < 0.05. This conservative approach helps ensure
that the cells used to estimate the contamination are those cells with
zero endogenous expression of the target genes. This approach can
be made more or less conservative by adjusting the p-value threshold
or clustering more or less finely.

Having constructed Ω, the set of gene/cell pairs with which to
calculate the contamination fraction, we calculate the global contam-
ination fraction for an experiment as

ρ =

∑
g,c∈Ω
ngc

∑
g,c∈Ω
n.cbg

(9)

In most cases a global estimate of ρ is sufficient and we find
little evidence of large cell to cell variability in ρ. Furthermore, in
most cases the counts available to estimate the contamination within
each cell,

∑
g∈Ω|c ngc, is too low to provide an accurate cell level

estimate.

For cases where there is a need to estimate cell specific contami-
nation, we share information between cells using a Heirarcichal bayes
model. Under the model:

µ ∼ Normal(0, 0.5) (10)

σ ∼ Normal(0, 1) (11)

ρ ∼ Normal(–4, 1) (12)

ρc ∼ Normal(µ,σ) (13)

ngc ∼ Poisson(n.cbg(ρ + ρc))∀g, c ∈ Ω (14)

That is, the data is assumed to follow a Poisson distribution, with
mean given by the expected background counts times a cell-specific
contamination fraction. The cell specific contamination fraction is
modelled as a global contamination, plus some perturbation whose
prior distribution is normally distributed, the parameters of which
are determined from the data.

Correcting cell expression profiles

Having calculated the expression profile for the background bg and
the contamination fraction ρ, we use this information to modify the
table of counts and remove contaminating mRNAs, mgc. The obvi-
ous way to do this is by simply subtracting the contribution due to
soup and setting mgc = ngc – ρn.cbg (or mgc = 0 if ngc < ρn.cbg).
Indeed, this is the maximum likelihood estimator of mgc for Poisson
distributed counts with mean given by equations 2 and 3.

However, following this approach will systematically under-
correct the data as the only counts for which the data will be modi-
fied is those for which ngc ≥ ρn.cbg. To correct for this, more than
ρn.cbg must be subtracted from those counts for which ngc > ρn.cbg.
The reason for this is that the data must be modelled by a distribu-
tion that takes into account the competitive nature of sequencing,
such as the multinomial distribution. That is, we need a statistical
model that will find not just the most likely amount of contamina-
tion in each gene separately, but will require that the total number
of counts removed from each cell must equal ρn.c. The usual ap-
proach of modelling the counts for each gene/cell pair with a Pois-
son distribution approximates a multinomial distribution (similarly
the often used negative-binomial distribution is an approximation
of a Dirichlet-multinomial distribution). Therefore, the true prob-
lem we want to solve is to maximise the multinomial likelihood of
ogc (the contaminating counts for gene g in cell c) with multinamial
n = o.c = ρn.c, and probabilities given by bg, subject to the con-
straint that 0 ≤ ogc ≤ ngc∀g, c (i.e., we cannot remove more counts
than we observe).

We solve this problem by iteratively constructing ogc by for each
cell c as follows:

i. Initialise ogc = min(ngc, ρn.cbg)∀g ∈ G

ii. Calculate the "unallocated counts" F = n.c – o.c

iii. Check if F < ǫ, if so stop.
iv. Set ogc = min(ngc, ogc + ρFbg)

v. Return to step ii.

where ǫ is a tolerance factor set to something small (such as 0.01).

This procedure is followed independently for each cell to produce
modified counts. Where integer counts are required for downstream
analysis, we round the corrected counts up to the nearest integer
with probability given by the mgc –

⌈

mgc
⌉

.

Improving count removal using clustering

Where clustering of cells is provided, the above procedure can be
improved by applying the correction procedure to counts aggregated
within clusters. Doing this greatly increases the statistical power to
distinguish between contamination and true expression. The value
of ρ used for cluster P is calculated as

ρP =

∑
c∈P n.cρc∑
c∈P n.c

(15)

and the number of contaminating counts for each gene is calculated
as above.

To redistribute the calculated contaminating counts to the single
cell level, counts for gene g are distributed to each cell with weights
given by n.cρc. This redistribution is done using the same iterative
algorithm to ensure that a cell cannot be assigned more contamina-
tion for a gene than has actually been observed.

Cells that have a higher true contamination rate than the global
average will have more non-zero counts in genes with high contami-
nation than cells with a lower contamination rate than average. Be-
cause of this, the redistribution procedure described above will assign
more contaminating counts to high contamination cells and fewer to
low contaminating cells, even without this information being explic-
itly provided. This can be seen in Figure S3, where the effective cell
level contamination rate implied by correcting at the cluster level
and redistributing counts is highly correlated with the true cell level
contamination rate.

Processing of data sets

The DropSeq Species Mixing experiment was downloaded from the
short read archive (SRR1748411) and quantified using Alevin [21]
with a mixed human/mouse reference and the ‘forceCells’ flag set to
1 to include all barcodes.

For all 10X data sets, we used all droplets identified by cellranger
as containing cells. In the species mix data, we removed any droplet
with at least 1000 UMIs from both human and mouse genes, as these
are likely doublets. For the DropSeq species mix experiment we set
this threshold to 5000.

We used the Seurat package (http://satijalab.org/seurat/)
to parse distinct cell types and marker genes from these pre-
processed sequencing data. Raw counts of UMIs per gene in each
cell were normalised using the Seurat::NormalizeData function, to
implement the transformation

xgc = log(1 + 104^fgc) (16)

where ^fgc is the observed proportion of UMIs in droplet c from
gene g; xgc is the library-size normalised expression of gene g in
droplet c.

Variable genes were identified using the Seu-
rat::FindVariableGenes function with default parameters. Within
Seurat, we subset the library-size normalized gene expression
matrix on the variable genes, and we standardized the matrix so
that the variable genes have mean 0 and standard deviation 1. We
calculated the first 30 principle components of the standardized
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matrix, and the graph-based clustering algorithm implemented in
Seurat::FindClusters evaluated the distance between cells in this
30-dimensional PCA volume. The t-SNE embedding was calculated
using a perplexity of 30, and clusters were identified with the
Seurat::FindClusters resolution parameter set to 1.

To identify genes specific to each cluster, we used the Seurat
‘FindMarkers’ function with default parameters.

These markers were then manually inspected and each cluster
was assigned a cell type based on the comparison of these markers
to the literature (particularly [22, 23, 24, 16]).
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Figure 3. The PBMC dataset and how it changes when background correction is applied. Panel A shows a tSNE representation of the data, with cluster

boundaries shown by density contours and shaded according to the cell type they represent. Panel B uses the same tSNE representation, but cells

are now coloured by their rate of expression of IG genes compared to the rate at which IG is expressed in the background on a log10 scale. Positive

values correspond to higher IG expression in a cell than in the background with values above significantly above 0 only possible if the cell endogenously

expresses IG. The density contours of the clusters with no cell that endogenously expresses IG (as determined by a Poisson test) are marked in bold

and used to estimate the global contamination ratio. Panel C shows the fraction of cells shared between clusters determined with the same parameters

before and after application of SoupX. Panel D shows the improvement in marker specificity following application of SoupX. All genes that are markers

of a cluster either before or after correction are identified and their expression log fold change relative to the clusters they do not mark is calculated

before and after correction. The y-axis of this plot shows the fractional change in logFC for after applying SoupX for all genes. Genes are grouped into

bins for ease of representation, with the number of genes in each bin given by the colour scale. The marginal distribution across all genes is shown on

the right and the dotted line corresponds to no change in marker specificity after correction. Panel E illustrates the improvement in marker sensitivity

for the gene LYZ, which is a marker for MNP cells. The corrected and uncorrected expression levels are shown split by cells labeled as MNPs and all

others. Panel F shows this same change in expression on the tSNE map, where the colour scale represents the fraction of LYZ expression that has been

removed by SoupX.
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Figure 4. The application of SoupX to a complex, multi-channel dataset (the kidney tumour dataset). Panel A shows a tSNE representation of the data,

with cluster boundaries shown by density contours and shaded according to the cell type they represent. Panel B shows the fraction of cells shared

between clusters determined with the same parameters before and after application of SoupX. Panel C shows the improvement in marker specificity

following application of SoupX. Note the different scale of the y-axis compared to Figure 3. All genes that are markers of a cluster either before or after

correction are identified and their expression log fold change relative to the clusters they do not mark is calculated before and after correction. The

y-axis of this plot shows the fractional change in logFC for after applying SoupX for all genes. Genes are grouped into bins for ease of representation,

with the number of genes in each bin given by the colour scale. The marginal distribution across all genes is shown on the right and the dotted line

corresponds to no change in marker specificity after correction. Panel D illustrates the improvement in marker sensitivity for the gene HBB, which is a

marker for erythroblasts. The colour scale represents the fraction of HBB expression that has been removed by SoupX. Panel E the same as D but for

COL1A1. Panel F shows the cross batch entropy before and after SoupX has been applied. The entropy measures the level of local mixing (100 nearest

neighbours) for 100 cells selected from each cluster [20]
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Figure S1. The correlation between “true background”, which is defined by aggregating across mouse transcripts in human cells and visa versa, with the

background expression profile derived using only droplets with the total number of UMIs given on the x-axis.

Dataset Name Platform Num Channels Sample type Source

SpeciesMix 10X 10X 1 Human and Mouse cell lines [2]

SpeciesMix DropSeq DropSeq 1 Human and Mouse cell lines [15]

PBMC PBMC 10X 1 Peripheral blood mononuclear cells [2]

KidneyTumour Wilms1 10X 6 Wilms’ tumour [16]

KidneyTumour Wilms2 10X 3 Wilms’ tumour [16]

KidneyTumour Wilms3 10X 3 Wilms’ tumour [16]

KidneyTumour PapRCC 10X 2 Papillary cell renal cell carcinoma [16]

KidneyTumour RCC1 10X 4 Clear cell renal cell carcinoma [16]

KidneyTumour RCC2 10X 4 Clear cell renal cell carcinoma [16]

KidneyTumour VHL_RCC 10X 2 Clear cell renal cell carcinoma [16]

Table S1. Sample information for the different datasets used in this paper.
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Figure S2. The ratio of human to mouse transcripts on a log10 scale (y-axis) for all droplets in the dropseq species mixing experiment. Droplets containing

cells are marked in black. The x-axis gives the average number of UMIs between human and mouse for each cell.
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Figure S3. The x-axis gives the true contamination rate measured using the cross-species transcripts in each cell. The y-axis gives the effective contami-

nation rate obtained by applying SoupX at the cluster level using a constant global contamination rate, calculated as the fraction of removed counts by

the application of SoupX. The line shows perfect correlation and red/blue dots represent the 10X/DropSeq speciesmix experiments respectively.
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Figure S4. Distribution of expression relative to background for genes in the PBMC data. The red line indicates the global estimate of the contamination

fraction that would be obtained if just that gene were used to estimate contamination. Genes which are most useful for contamination estimation have a

bimodal distribution, with cells genuinely expressing the gene yielding a value on the y-axis greater than 0 and cells that do not express the gene having

a value clustered around the true contamination rate.
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Figure S5. The fractional expression of haemoglobin genes in each cell, relative to the rate of expression in the background in one of the kidney tumour

channels. This fraction is given by the colour of each point on a log scale. Points that have been determined to not endogenously express haemoglobin

genes are marked with a green outline. The x and y axis are the tSNE coordinates supplied by cellranger for this channel.
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Dataset Sample Correlation

SpeciesMix 10X 0.94

SpeciesMix DropSeq 0.92

PBMC PBMC 0.96

KidneyTumour Wilms3_Kid_T_ldc_1_1 0.92

KidneyTumour Wilms3_Kid_T_ldc_1_2 0.93

KidneyTumour Wilms3_Kid_T_ldc_1_3 0.93

KidneyTumour Wilms2_Kid_T_ldc_1_1 0.73

KidneyTumour Wilms2_Kid_T_ldc_1_2 0.73

KidneyTumour Wilms2_Kid_T_ldc_1_3 0.77

KidneyTumour Wilms1_Kid_R_ldc_1_1 0.75

KidneyTumour Wilms1_Kid_R_ldc_1_2 0.74

KidneyTumour Wilms1_Kid_R_ldc_1_3 0.85

KidneyTumour Wilms1_Kid_T_ldc_1_1 0.84

KidneyTumour Wilms1_Kid_T_ldc_1_2 0.86

KidneyTumour Wilms1_Kid_T_ldc_1_3 0.84

KidneyTumour VHL_Kid_T_ldc_1_1 0.82

KidneyTumour VHL_Kid_T_ldc_1_2 0.81

KidneyTumour RCC2_Kid_T_ldc_1_1 0.81

KidneyTumour RCC2_Kid_T_ldc_1_2 0.84

KidneyTumour RCC2_Kid_T_ldc_2_1 0.89

KidneyTumour RCC2_Kid_T_ldc_2_2 0.89

KidneyTumour RCC1_Kid_T_ldc_1_1 0.86

KidneyTumour RCC1_Kid_T_ldc_1_2 0.84

KidneyTumour RCC1_Kid_T_ldc_2_1 0.87

KidneyTumour RCC1_Kid_T_ldc_2_2 0.87

KidneyTumour pRCC_Kid_T_ldc_1_1 0.94

KidneyTumour pRCC_Kid_T_ldc_1_2 0.94

Table S2. Pearson correlation coefficient between the background contamination profile and all cells in a channel averaged, after removing the

genes above the 99th expression quantile.
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