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Abstract 10 

Road dust is one of the biggest contributors to airborne particulate matter (PM) in many urban 11 

regions. Due to the inherent heterogeneity of road dust, it is important that its sources are identified 12 

and mitigated. Multivariate receptor models are used for source apportionment of PM in many 13 

cities. In recent years, these receptor models are finding more applications outside the scope of 14 

PM source apportionment. In this study, four multivariate receptor models (Unmix, Positive 15 

Matrix Factorization, Principal Component Analysis and Multiple Curve Regression) are used for 16 

source apportionment of road dust at Vellore City, India. The elemental composition of road dust 17 

samples from 18 locations and for three seasons (summer, winter, and monsoon) are measured 18 

using acid digestion followed by Inductively Coupled Plasma - Optical Emission Spectroscopy. 19 

Irrespective of models, results showed that crustal material (100% - 68%) and resuspended road 20 

dust (82% - 15%) are the biggest contributor to road dust in the study region.  Brake wear, tire 21 

wear, biomass combustion, vehicular emission and industrial sources are some of the other sources 22 

identified by the receptor models. Receptor modeling performance of MCR and PCA models are 23 

unsatisfactory. PMF and Unmix models gave acceptable results. From comparing the performance 24 

characteristics, Unmix is found to be the ideal receptor model for this dataset. This research 25 

clarifies the constraints of different receptor models and the source apportionment information 26 

obtained is critical for development of future policy and regulation. 27 

Keywords: Road dust; Receptor model; Source apportionment; Resuspended dust; Elemental 28 

composition.  29 
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1. Introduction 30 

Chemometric methods of data analysis is a cornerstone for air pollution control in urban 31 

environments (Azid et al. 2015). Isolating and quantifying the contribution of various sources to 32 

pollution at a location is one of the most common applications of chemometrics in environmental 33 

data. This is commonly referred to as receptor modeling (Devi and Yadav 2018). Receptor 34 

modeling started gaining popularity during the mid-2000s and continues to be a major player in 35 

urban air quality management (Zhang et al. 2017). These models reconstruct the contribution of 36 

individual sources to pollution in a region using the ambient pollutant concentration information 37 

(Henry et. al., 1984) and are frequently used for source apportionment of particulate matter (PM) 38 

emissions (Heo et al. 2009).  39 

Road dust is consistently seen in source apportionment studies irrespective of study location 40 

(Belis et al. 2014). Road dust is the loose, mostly crustal material settled in road surfaces that is 41 

resuspended by the action of wind or wake from vehicular movement (Abu-Allaban et al. 2003; 42 

Amato et al. 2009). Combustion and non-combustion vehicular emissions such as exhaust 43 

emissions, tire wear, brake wear and engine wear are the common source of road dust in urban 44 

environment (Denby et al. 2018). Non-vehicular sources of road dust include crustal material 45 

transported by wind (Mao et al. 2013), construction and demolition activities (Marín et al. 2011) 46 

and street sweeping (Amato et al. 2010). The heterogenous nature of road dust impacts human 47 

health necessitating effective qualitative and quantitative apportionment of the sources. This 48 

information is needed to develop effective control and mitigation strategies to reduce morbidity 49 

from exposure to road dust (Bartkowiak et al. 2017). 50 

Toxicological studies have noted that these sources of road dust can release dangerously high 51 

amounts of potentially toxic elements (PTEs) (Arslan 2001) and polycyclic aromatic hydrocarbons 52 
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(PAH) (Khpalwak et al. 2019). Many of these chemicals are also classified as “probably 53 

carcinogenic to humans” by the International Agency for Research on Cancer (IARC 2020). 54 

Studies show that children are at a greater risk of being exposed to high concentration of PTEs and 55 

PAH since they spend a greater portion of their day outdoors (Zeng et al. 2019). Developmental 56 

disorders like impaired mental development (Isaac et al. 2012) and stunted growth (Zeng et al. 57 

2019) are common in children exposed to elevated concentrations of PTEs.  58 

Source apportionment of PM is studied extensively in research from around the world 59 

(Banerjee et al. 2015). However, application of these receptor models in source apportionment of 60 

road dust have garnered considerably less attention. Cities in developing countries tend to see even 61 

fewer studies. This is alarming because many of the world’s most polluted cities are in developing 62 

countries, especially in South Asia. Vellore is a small tier - 2 city (MHRD 2015) in the South 63 

Indian state of Tamil Nadu. The city is spread over a land area of 87.92 km2 and has a population 64 

of 177,230 (as per 2011 Census). For a semi-arid land locked city like Vellore, road dust is a major 65 

cause of concern. In this study, the results from four receptor models are compared viz., Unmix, 66 

Positive Matrix Factorization (PMF), Principal Component Analysis – Multiple Liner Regression 67 

Analysis (PCA-MLRA), and Multiple Curve Regression – Alternating Least Squares (MCR-ALS). 68 

The major objectives of this study are, (1) Identifying and apportioning the sources of road dust in 69 

the city, thereby helping future endeavors in regulation and policy, (2) Recognizing the constraints 70 

of different receptor models used in this study, and (3) Most importantly, this research could prove 71 

to be instrumental in reinvigorating receptor modeling studies on road dust. 72 

2. Methodology 73 

2.1. Sample Collection and Analysis 74 
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Figure 1 shows the sampling region and sampling locations. Deposited dust samples from the road 75 

surface are collected from 18 locations within Vellore City. Table 1 shows the various sampling 76 

locations. More information on the sampling region is explained in Jose and Srimuruganandam 77 

(2020). Road dust samples are collected from 27th and 28th of January 7th and 8th April and 22nd 78 

and 23rd May of 2018 corresponding to Winter, Summer and Monsoon Seasons. Vellore city does 79 

receive summer rains towards the end of May and early June. The samples for monsoon season 80 

are collected towards the end of May a proxy for monsoon season since rains are unceasing during 81 

monsoon season, which makes it nearly impossible to collect samples. The samples for monsoon 82 

season were collected after two weeks of sporadic rains. Approximate weights of the samples were 83 

taken in situ using a generic weighing balance. The weighed samples are then sieved manually as 84 

per ASTM C136 (ASTM 2001). The portion of the sample that passed through 75μm sieve is 85 

subjected to microwave digestion using a mixture of HCl and HNO3 as per U.S.EPA 3050b 86 

procedure (U.S. EPA 1996) for direct energy coupling devices. The digested samples are analyzed 87 

for 25 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, 88 

Rb, Se, Sr, Tl, Zn) by Inductively Coupled Plasma - Optical Emission Spectroscopy (Perkin Elmer, 89 

Avio - 200). Detailed information on sample collection, sample analysis and quality control can 90 

be found in Jose and Srimuruganandam (2020). 91 

[INSERT FIGURE 1] 92 

[INSERT TABLE 1] 93 

2.2. Multivariate Analysis 94 

In this study, the efficacy of four different multivariate receptor models for source apportionment 95 

of road dust are examined viz., PCA-MLRA, Unmix, MCR-ALS, and PMF.  96 
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PMF model is performed using pre-compiled binary available for Microsoft® Windows 97 

operating system from U.S. EPA. EPA-PMF v.5.0 is used for this study. The software is run atop 98 

Microsoft® Windows 10 (OS build 18363.836).    99 

Pre-compiled binary for Unmix is available for Microsoft® Windows operating system from 100 

U.S.EPA. EPA-Unmix v.6.0 is used for this study. Since this binary is incompatible with modern 101 

operating systems, it is run in an Oracle VirtualBox virtual machine instance (1 logical processor 102 

and 1 GB RAM) on Microsoft® Windows XP (SP3).  103 

MCR-ALS is performed using R, an open-source statistical modeling package (v.3.6.2) 104 

coupled with RStudio (v. 1.2.5) interactive development environment (IDE). ALS library available 105 

from the Comprehensive R Archive Network (CRAN) repository is used in this model.  106 

Like MCR-ALS method, PCA-MLRA is done using R, (v.3.6.2) coupled with RStudio (v. 107 

1.2.5) IDE. PCA and MLRA are done using functions available by default in R (prcomp and lm).  108 

All receptor modelling processes in this study are performed on a ThinkPad T430 Personal 109 

Computer (Intel Core i5- 3320M 2.60GHz, 8GB RAM). A brief explanation on various 110 

multivariate receptor models used in this study is given below. 111 

3. Theory of Receptor Modeling 112 

Receptor models are mathematical model that are used to identify and quantify the contribution of 113 

different sources of a pollutant at a receptor location. These models use the chemical composition 114 

of a pollutant at a receptor location to identify its sources. This is in stark contrast to source-115 

oriented models where the concentration at a receptor location is estimated if the properties of the 116 

source and meteorological conditions are known. The major advantage of using receptor model is 117 

that they use real measured ambient pollutant concentrations.  118 
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Most receptor models work by factoring a large concentration data matrix into two lower rank 119 

matrices. Since the number of samples are always greater than the number of variables, these 120 

equations cannot be solved uniquely. Receptor models are used to obtain the best possible solution. 121 

The difference between receptor models depends largely on the various approaches and constraints 122 

employed by these models to get a valid solution (Henry 1991). Since the value of concentration 123 

cannot be negative, non-negativity of mass concentration is a constraint used consistently in 124 

receptor models (Belis et al., 2014). However, non-negativity alone is seldom enough for a 125 

complete solution. Many other constraints are considered in modern receptor models like; 126 

measurement uncertainty, factor rotation and multi-dimensional edge detection (Pant and Harrison 127 

2012). In this study, source apportionment of road dust collected from Vellore city of South India 128 

is studied by using different multivariate receptor models.   129 

Meta-analysis of source apportionment conducted all over Europe show that the number of 130 

receptor modelling studies is more than all other source apportionments methods combined (Belis 131 

et al. 2014). Compared to other source apportionment methods, the location-first approach of 132 

receptor modeling makes them ideal to assess the compliance of a receptor location to air quality 133 

limits. Receptor-oriented models do not consider complex chemical and meteorological processes. 134 

These models therefore have very modest computational requirements compared to source-135 

oriented models. Multivariate receptor models also negate the need for emission inventories thus 136 

reducing uncertainties related to it (Hopke 2016). The inability of model reactive species limits the 137 

use of receptor models to regional or urban scale. Application of receptor models necessitates the 138 

availability of quantitative data at the receptor and demands good knowledge of the atmospheric 139 

conditions and chemical nature of sources from the researcher.  140 
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It is hard to establish a minimum number of samples in advance, since that number would 141 

be dependent on the amount of information within the data set (Belis et al. 2014). Studies show 142 

that at least 50 chemically characterized samples are needed to run multivariate analysis. (Johnson 143 

et al., 2011). Other studies also mention that the number of samples should be approximately three 144 

times the number of variables (Thurston & Spengler, 1985). Also, small datasets from multiple 145 

sites in a region are used in previous source apportionment studies (Xie et al., 2012). All 146 

multivariate factor analysis works on the principle of matrix factorization (Hopke 2016). This can 147 

be expressed mathematically by the expression.  148 

𝐶(𝑚×𝑛) = 𝐺(𝑚×𝑝) × 𝐹(𝑛×𝑝)𝑇 + 𝐸(𝑚×𝑛)       (1) 149 

where, the matrix C is the concentration of n elements collected at m locations, F is the factor 150 

matrix with n elements and p factors, G is the mass concentration matrix with m observations and 151 

p factors. The matrix E has information on the residuals from the model caused due to experimental 152 

and measurement errors. Different receptor models apply different constraints to F and G matrices 153 

to minimize the residuals in the E matrix.  154 

3.1. Unmix 155 

The Unmix method is a multivariate model with built-in non-negative constraints. It begins with 156 

singular variable decomposition (SVD) of the concentration matrix C and is represented by the 157 

equation below (Henry 2003).  158 

𝐶𝑖𝑗 = ∑ ∑ 𝑈𝑖𝑘𝑝𝑘=1𝑝𝑖=1 𝐷𝑘𝑙𝑉𝑙𝑗 + 𝐸𝑖𝑗        (2) 159 

where Cij is the input data, U and V are orthogonal n × n and m × m matrices. D is an n × m 160 

diagonal matrix. The Unmix model uses SVD to find the edges in an m-dimensional data space 161 

and reduce the dimensionality of data from m to N, where n is the number of sources identified. 162 
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Equation 2 is like the general receptor model equation (Equation 1). The exception is that in normal 163 

chemical mass balance approach, source composition is already known. 164 

One of the major advantages of using Unmix model is that it has the non-negativity criteria 165 

build into model. This negates problems arising from negative mass concentrations. Also, since 166 

this model extracts all required constrains to solve the chemical mass balance equation from the 167 

data itself, measurement uncertainties are not required to run this model. However, since the model 168 

uses eigen vector analysis, it is not well suited for heteroskedastic data commonly seen in 169 

atmospheric modeling. 170 

3.2. PCA 171 

PCA is an eigen vector method of matrix factorization that is used to reduce many possibly 172 

correlated variables into a smaller number of uncorrelated principal components. In PCA method, 173 

the total concentration of each element i is assumed to be a sum of the elemental contribution from 174 

the different elemental sources j. Thus, a normalized concentration matrix can be written as, 175 

𝑍𝑖𝑘 = ∑ 𝑊𝑖𝑗𝑃𝑗𝑝𝑗=1𝑝           (3) 176 

Equation 2 can be rewritten in matrix terms as an analogue to equation 1 as, 177 

[𝑃]𝑗×𝜆 = [𝐵]𝑗×𝑖[𝑍]𝑖×𝜆         (4) 178 

This equation (3) is now equivalent to equation (1). The matrix [P]j✕ i is factorized based on 179 

eigen value decomposition. Absolute Principal Component Scores are calculated by subtracting 180 

an absolute zero principal component matrix from [P]j✕i matrix as shown in equation (4) (Thurston 181 

and Spengler 1985). 182 

[𝐴𝑃𝐶𝑆]𝑝×𝑗∗ = [𝑃]𝑝×𝑗∗ − [𝑃𝑜]𝑝×𝑗∗         (5) 183 
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Later, mass distribution for each day is calculated by multiple linear regression analysis of 184 

the APCS to total mass for each day as shown in equation (5). 185 

𝑀𝑘 = 𝜁0 + ∑ 𝜁𝑗𝐴𝑃𝐶𝑆𝑗𝑘∗𝑝𝑗=1          (6) 186 

Like Unmix, PCA model extracts all required constrains to solve the chemical mass balance 187 

equation from the data itself, measurement uncertainties are hence not used in this model. Also, 188 

PCA method does not require any specialized software. Many commercially available and open-189 

source statistical packages have PCA model build into them. PCA is also an eigen vector 190 

decomposition method. Hence, the problems with heteroskedastic data haunts PCA. Unlike 191 

Unmix, PCA has no build in non-negativity constraints. This omission can lead to presence of 192 

negative mass concentration in source apportionment results. Although, PCA is generally not 193 

recommended for quantitative source apportionment, they can be used effectively for exploratory 194 

analysis. 195 

3.3. MCR 196 

MCR-ALS is a method used to recover pure response profiles of chemical components from an 197 

unresolved mixture without prior knowledge of its composition. This method is initially developed 198 

for gas chromatographs. However, this source apportionment is also a matrix factorization 199 

problem, MCR-ALS algorithm can be used. In the MCR-ALS model, the matrices G and F in 200 

equation (1) is calculated by minimizing the sum of squared residuals SSR (Tauler et al. 2009).  201 

𝑆𝑆𝑅 = ∑ ∑ (𝑥𝑖𝑗 − 𝑥̄𝑖𝑗)2𝑛𝑗=1𝑚𝑖=1          (7) 202 

In equation (6), xij is the measurement of jth element in the ith sample. Although this algorithm 203 

can work when both matrices are unknown, the problem can be further simplified by finding an 204 
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initial solution using a simpler algorithm like simple-to-use interactive self-modeling analysis 205 

(SIMPLISMA). Once matrix F is initialized, matrix G is calculated using:  206 

𝐺 = 𝑋𝐹(𝐹𝑇𝐹)−1          (8) 207 

Non negativity in G is obtained by minimizing the sum of residuals in matrix X such that all 208 

elements in matrix G is greater than zero. This G is then used to recalculate F using: 209 

𝐹𝑇 = (𝐺𝑇𝐺)−1𝐺𝑇𝑋          (9) 210 

This iterative procedure continues until SSR value from two consecutive iterations fall below 211 

a preset value.  212 

Unlike PCA and Unmix model, MCR model use alternating least squares for solving the 213 

chemical mass balance equation. Hence, this model is well suited for use in applications where 214 

heteroskedastic data is analyzed. This model also has the advantage that non-negativity criteria is 215 

built into it. All these advantages come at the cost of slightly higher computational requirements. 216 

3.4. PMF 217 

PMF is a purpose made receptor model that is developed by U.S. EPA for source apportionment 218 

applications. The general working of PMF model is like MCR-ALS model with the exception that 219 

the sum of squares of residuals SSR is minimized using the equation (Paatero and Tapper 1994): 220 

𝑆𝑆𝑅 = ∑ ∑ [𝑋𝑖𝑗−∑ 𝐺𝑖𝑘.𝐹𝑘𝑗𝑝𝑘=1𝑢𝑖𝑗 ]2𝑚𝑗=1𝑛𝑖=1         (10) 221 

 Like MCR-ALS model, PMF model is more suited for heteroskedastic data since it allows 222 

individual weighing of data points. Usually, this model tends to resolve more sources than the 223 
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other models tested here. The downside of this model is that it requires considerably higher 224 

computational requirements compared to the other models.  225 

4. Results and Discussion 226 

Source apportionment is performed using the chemical composition of the collected silt samples 227 

(fraction of road dust with size <75µm). Silt component of road dust is highest during the summer 228 

season with 160g for 1kg of sample tested. This is followed by winter (152.2g) and monsoon 229 

season (108.4g). The highest fraction of silt in road dust sample is at location 7, near Vellore 230 

district administrative office (264g). Being an administrative center, this location experiences 231 

considerable vehicular traffic. The sampling location is also located below an overpass thus 232 

impeding air movement. Lowest silt fraction is at location 1 (88.37g) since this road has paved 233 

sidewalks and is cleaned regularly. More information on chemical composition of analyzed road 234 

dust and its seasonal variations is explained in Jose and Srimuruganandam (2020). 235 

A total of six sources are identified by the four receptor models, viz., crustal material, 236 

resuspended dust, tire and brake wear, biomass combustion, industrial sources, and vehicular 237 

emission. Source apportionment by the individual receptor models is explained in more detail 238 

below. It is to be noted that the sources are numbered for identification only and are not ranked in 239 

by any means.  240 

4.1. Unmix 241 

For the Unmix model, 51 of the 52 observations are taken for consideration. One observation is 242 

ignored (location 14 during winter season) to improve signal to noise ratio of the data. 100 feasible 243 

solutions for unmix model are obtained from 218 runs. Run number 15 is chosen as the global 244 

minima. The model identified five sources with a minimum R2 value of 0.93 and a minimum signal 245 
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to noise ratio of 1.91. Source contribution of the five sources to different elements is shown in and 246 

their contribution to different sources with different sampling locations is shown in Figure 2. The 247 

scaled residuals are found to be between -3 and +3. 248 

[INSERT FIGURE 2] 249 

4.1.1. Source 1: Resuspended Dust 250 

The first source accounts for all the Pb present in road dust of Vellore city. It also shows significant 251 

contributions to nearly all elements. It contributes least to K (5%), Mg (5%), Mn (8%), and Sr 252 

(8%). Low contribution to K would rule out biomass combustion as this source. High contribution 253 

to Pb (100%), Rb (22%) and Li (21%) suggests that this source could be resuspended road dust. 254 

The probable source of Pb in this fraction could be from automobile exhaust prior to the year 2000; 255 

when leaded fuel was banned in the country (Miguel et al. 1999; Das et al. 2018). Since lead halide 256 

salts from vehicle exhausts are largely insoluble, they tend to remain in the environment for a long 257 

time (Habibi 1970). From Figure 2, it is visible that the contribution of this source to pollution is 258 

considerably high during the summer season. The semi-arid summers in the region are the reason 259 

for increased resuspension of road dust. Winter season shows a relatively consistent contribution 260 

of this source throughout the study region. However, there are clearly defined hotspots during 261 

summer and monsoon. Highways are the most obvious hotspots of this source as evident from 262 

locations 6, 8, 9 and 10. However the presence of Pb in location 14 can have other sources since 263 

lead-acid battery refurbishment shops operate regularly in this region (Jose and Srimuruganandam 264 

2020). 265 

4.1.2. Source 2: Crustal Material 266 
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Second source of road dust identified by Unmix shows significant contributions to almost all 267 

elements in the study region. With high contributions going to Al (50%), Ba (82%), Zn (71%), Mg 268 

(71%), Sr (74%) and Co (55%). This source is expected to be a combination of both tire wear and 269 

biomass combustion. High contribution to K and Mg show that biomass combustion could be a 270 

contributor to this source (Pio et al. 2008). All other elements with high contribution from this 271 

source suggest that tire wear is also a contribution to this source. Zn is a common tracer that is 272 

used for identifying contamination from tire wear (Kupiainen et al. 2005). Studies have shown that 273 

up to 1% of the tire tread material can be Zn (Councell et al. 2004). Co is added to the rubber 274 

matrix to promote its adhesive characteristics (Fulton 2005), thereby improving the strength of tire 275 

compound (Ooij 1984). Fluoride salts of Sr are used in some tire formulations for improving the 276 

stability of resins (Yasuda et al. 1990). Magnesium alloys and forged aluminum are both used in 277 

manufacture of engine blocks and pistons implying presence of engine wear in this source 278 

(Lakshminarayanan and Nayak 2011). 279 

This source is found to contribute heavily to road dust in locations 3, 17 and 18. This is 280 

essentially a long stretch of road and thus tire wear can be a significant source of pollution in these 281 

locations. Locations 3 and 18 are adjacent to gas stations. Barium from diesel fuel additives and 282 

engine oil additives can also be contributing to the high levels of this source in these locations 283 

(Monaci and Bargagli 1997). There is a considerable seasonal variation of this source. Winter 284 

season shows the highest contribution whereas the monsoon season shows the lowest contribution.  285 

4.1.3. Source 3: Break Wear 286 

The third source shows high contribution to Fe (27%) along with a significant contribution to Al 287 

(7%), Li (14%) and Cu (8%) suggests that break wear can be a contributor to this source (Gramstat 288 

2018). High contribution to Fe can be attributed to wear from brake disks and drums used in 289 
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automotive braking systems (Garg et al. 2000; Kukutschová and Filip 2018). This source shows 290 

high contribution throughout all three seasons. The highest contribution is noted during the 291 

summer season. Winter season also shows a similar distribution for this source. Lowest 292 

contribution for this source is noted during monsoon season since the brake dust could be washed 293 

off during monsoons. Considerable spatial variation is not exhibited by this source. 294 

4.1.4. Source 4: Vehicular Emissions 295 

Fourth source shows significant contribution to Cr (66%), Ni (58%), Mn (47%), Ga (45%) and Cu 296 

(48%). This suggests that the fourth source of road dust is possibly from vehicular emissions. 297 

Source apportionment studies generally consider Ni as an indicator for oil combustion (Thomaidis 298 

et al. 2003; Peltier et al. 2009). Studies show that heavy duty diesel engines can release significant 299 

quantities of Mn (Hilden and Bergin 1986) and Cu (Konstandopoulos et al. 1988) since they are 300 

used as fuel additives. Cr coating is used in high power diesel engine piston rings to prevent wear 301 

(Rastegar and Craft 1993). Traces of these elements are also usually present in engine oils used by 302 

diesel engines. From Figure 2 contribution of this source to road dust is maximum during the 303 

summer season. Winter and monsoon show nearly equal distribution throughout the study region.  304 

4.1.5. Source 5: Crustal Material 305 

Fifth source shows high contribution only to Fe (19%). Since Fe is one of the most abundant 306 

elements on earth’s crust (Turekian and Wedepohl 1961; Taylor 1964), it can be assumed that the 307 

fifth source of road dust is crustal material. From Figure 2, contribution of crustal material to road 308 

dust is minimal during the summer since vehicular emission and tire wear take a more prominent 309 

place during this season. This source contributes high during the monsoon season. Rains during 310 

monsoon season are expected to wash away pollutants from other sources. 311 
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4.2. PMF 312 

Microsoft Windows binary for EPA PMF 5.0 provided by U.S.EPA is used for the PMF model. 313 

Of the 52 samples, 14 samples are discarded to improve the signal to noise ratio of the model 314 

(shown as empty circles in Figure 3). The number of bootstrap runs is kept 100 with a minimum 315 

r2 of 0.6. The Q-robust of the model is found to be close to Q-true, suggesting that results are 316 

acceptable. Scaled residuals for this model is between -7 and 7. 317 

[INSERT FIGURE 3] 318 

4.2.1. Source 1: Vehicular Emission 319 

First source shows high loading only for Ba (57%). It is also seen to contribute moderately to Co, 320 

Sr, Mg and Zn. The high loading of Ba indicates that this source could be vehicular emission. 321 

Studies have shown that Ba is an effective indicator for vehicular emission (Monaci and Bargagli 322 

1997; Monaci et al. 2000). Barium fuel additives are used extensively in diesel engines to reduce 323 

smoke from combustion (Glover 1966; Truex et al. 1980). Barium fluoride is also used in some 324 

engine oils to improve its load carrying capacity (Hermant et al. 1986). Monsoon season shows 325 

the highest contribution from this source (Figure 3) since other sources of road dust could have 326 

been washed away. Location 17 shows extremely high contribution during winter season. 327 

Similarly, high contribution was also identified by Unmix model (Figure 2). This could be an 328 

isolated incident like an oil spill. 329 

4.2.2. Source 2: Biomass Combustion 330 

Second source shows a high contribution towards K. This is indicative that this source could be 331 

from biomass combustion. Potassium (Andreae 1983) and Levoglucosan (Achad et al. 2018) are 332 

the two most common indicators for biomass combustion. This source shows higher contribution 333 
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to road dust during the summer season due to the increased biomass load present in the road 334 

surfaces. As expected, contribution from this source is found to be higher during summer season 335 

and least during monsoon season (Figure 3). Contribution from this source is negligible during 336 

monsoon season since damp vegetation inhibits combustion.  337 

4.2.3. Source 3: Resuspended Road Dust 338 

The third source shows considerable contribution to Pb (71%), Ni (24%) and Cr (25%). It also 339 

contributes to most other elements that are analyzed. High contribution to Pb would suggest that 340 

this source is re-suspended road dust (Al-Chalabi and Hawker 1997; Wang et al. 2005). As stated 341 

before, Pb based antiknock agents have been phased out of the country since 2000 (Sharma and 342 

Pervez 2003). So, the contribution to Pb by this source can only be attributed to previously 343 

deposited Pb two decades ago. As noted in the unmix model, the contribution of this source to road 344 

dust in the region is greater during summer season due to the semi-arid conditions that are prevalent 345 

in the city during summer.  346 

4.3.4. Source 4: Tire and Brake Wear 347 

Fourth source shows high concentration to Cu (54%), Zn (29%), Cr (44%), and Ni (50%). Zinc is 348 

an indicator for tire wear (Wang et al. 2005) and copper is seen more in brake wear particles 349 

(Thorpe and Harrison 2008). As mentioned in previous models, Ni is an indicator for oil 350 

combustion (Galbreath et al. 2000) and Cr can be linked to vehicular exhaust (Testa 2004). This 351 

source can hence be concluded to be vehicular emission. From Figure 3 the contribution of this 352 

source to the road dust in this region is greater towards the city center compared to the outskirts. 353 

The increased traffic at this location can be the reason for this observation. Mean contribution from 354 

this source is found to be greater during the winter season. Although tire wear generally increases 355 
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during the summer season due to higher road temperature, the higher emissions from vehicle 356 

exhausts and brake wear could have offset this.  357 

4.2.5. Source 5: Crustal Material 358 

The final source of road dust identified by PMF shows high contribution to Al (39%), Ca (42%), 359 

Fe (44%), Mg (38%), Sr (44%) and Co (53%). Fe, Ca, and Al are the most abundant elements in 360 

the earth’s crust (Yaroshevsky 2006) suggesting that the fifth source is crustal material. This source 361 

is found to contribute more to road dust during the winter season. The lowest concentration of road 362 

dust is identified at the bridge across river Palar (Location no. 4). Higher contribution of sources 363 

like tire and brake wear during summer season decreases the percentage contribution of crustal 364 

material during summer season. Lower road temperatures during monsoon season coupled with 365 

rains washing off smaller dust particles could be reason for high contribution of crustal material 366 

(Figure 3).  367 

4.3. PCA-MLRA 368 

PCA model is run using a custom R script. All 52 samples are used in this model. Kaiser-Meyer-369 

Olkin (KMO) measure of sampling adequacy is 0.56 for the collected data. This suggests a factor 370 

analysis can be performed with the data. Bartlett’s test gave a significance level considerably lower 371 

than 0.05 suggesting that the variables are related, and factor analysis can provide useful 372 

information. Both the tests were performed using KMO and Bartlett test functions in ‘psych’ 373 

library available at CRAN. With a cut off eigen value of 1, PCA can extract 5 principal components 374 

(Table 2). The five principal components extracted accounted to 85% of the total variance.  375 

[INSERT FIGURE 4] 376 

4.3.1. Source 1: Crustal Material 377 
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The first principal component accounts for 25% of the total variance explained by PCA. This 378 

component shows high loading for Al, Sr, Mg, Cr, Fe and Mn. The major source of these elements 379 

in road dust is from crustal matter. Al and Fe are two of the most abundant elements present on 380 

earth's crust (Rudnick et al. 2019). This source is found to contribute significantly to road dust in 381 

the region throughout the year especially during the summer season (Figure 4). The dry summers 382 

in the study region can be contributing to this. Major hot spots for this source are along roads that 383 

lack a paved sidewalk or hard shoulders.  384 

4.3.2. Source 2: Biomass Combustion 385 

Second principal component accounts for 18% of the total variance and shows high loading for K 386 

and Li. High loading for K indicates presence of biomass (Yu et al. 2018). Hot spots for this source, 387 

largely concentrated along Gandhinagar main road (locations 2, 3, 17 and 18) show that biomass 388 

combustion has a higher contribution during monsoon season. This anomaly could be because 389 

other sources could also be included in this principal component. Previous studies have noted the 390 

presence of an unidentified source of Li in this region (Jose and Srimuruganandam 2020).  391 

Locations towards the south of the city show contribution from this source during monsoon season, 392 

which is in stark contrast to PMF model, where contribution from biomass combustion is largely 393 

absent during this season.  394 

4.3.3. Source 3: Resuspended Dust 395 

Third component shows high loading for Mg, Sr, Cr, Cu, Ni and Pb. This source accounts for 16% 396 

of total variance and contribute more during the winter season. High loading for Pb suggests that 397 

the third source is from re-suspended road dust. Two of the biggest hot spots of re-suspended road 398 
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dust according to PCA-MLRA are Palar river bridge (location 4) and highway underpass (location 399 

15). 400 

4.3.4. Source 4: Crustal Material 401 

Fourth principal component also shows high loading for Ca and Fe. Suggesting that this source is 402 

also crustal in origin. This source contributes more to road dust during the winter season, with 403 

contributions greater towards the south of city, suggesting that contribution from resuspended dust 404 

might also be accounted in this source (Figure 2). This source has negligible contribution to road 405 

dust during summer and monsoon seasons.  406 

4.3.5. Source 5: Tire Wear 407 

Fifth principal component accounts for 8% of the total variance. This component shows high 408 

loading for Ba, Cu and Zn. High loading for Zn and Cu suggests that the source is likely from tire 409 

wear (Kupiainen et al. 2005). Ba is usually present in vehicular emissions. The presence of Ba in 410 

suggests that this source could be a combination of both tire wear and vehicular emissions. This 411 

source has exceptionally low spatial variation and is distributed equally throughout the study 412 

region. As seen in Unmix and PCA models, contribution is higher during summer season and least 413 

during monsoon season (Figure 4). High vehicular traffic combined with impeded ventilation 414 

could be the reason for higher contribution of this source in location 7 (Figure 4).  415 

4.4. MCR-ALS 416 

The MCR-ALS model is run using the ‘ALS’ library provided by CRAN. For running the MCR 417 

model, an initial solution is necessary. This solution will help in reducing the number of iterations 418 

necessary before reaching a satisfactory solution. Since the SIMPLISMA model did not have an 419 

equivalent under CRAN, the results from the PCA model are used as an initial solution for the 420 
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MCR-ALS model. The model converged in 14 iterations with non-negativity criteria for both 421 

matrices. This model could extract only three sources from the receptor concentration data. The 422 

deviation of data from ideal bilinear behavior can be the reason for poor source apportionment 423 

results. The initial differential residual (RD) is 0.85. After 14 iterations alternating between 424 

optimizing S and C matrices, the RD value dropped below the default threshold of 0.001. The 425 

scaled residual in this model lies below ±3. 426 

[INSERT FIGURE 5] 427 

4.4.1. Source 1: Industrial Source 428 

The first source shows contribution to Al and Mg. Presence of this source close to location 17 429 

suggests that this source could be of industrial origin. There is an industrial estate towards east of 430 

location 17 which can contribute to pollutants in this location. This source has a higher contribution 431 

during summer and least contribution during monsoon season (Figure 5). Summer season shows 432 

high contribution of this source in locations 1, 2, 4, 5 and 7.  Winter contribution is greater at 433 

locations 2, 7 and 17. Contribution from this source must be studied further by dispersion modeling 434 

methods.  435 

4.4.2. Source 2: Crustal Material 436 

Second source contributes to the entirety of Fe, Li and K. It also shows significant contribution to 437 

Ca, Ga, Ni, Na and Sr. Presence of high contributions to Ca and Fe would suggest that this source 438 

is of crustal origin. As discussed in previous models, the mean contribution of this source to road 439 

dust is greater during monsoon season due to wash off soil from sidewalks. Other sources like 440 

brake wear and tire wear are washed away by rains during the summer where re-suspended dust is 441 
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found to contribute more. Contribution from this source is least during summer season due to 442 

contribution from resuspended dust and tire and brake wear as seen in Figure 5.  443 

4.3.3. Source 3: Resuspended Dust 444 

This source is found to contribute more to Pb, Rb, Zn, Cr, Co, and Al. Presence of these elements 445 

suggests that this source is largely from re-suspended road dust. Like other models in this study, 446 

contribution from this source is greater during summer season. MCR model shows no contribution 447 

from this source during winter season. Contribution from this source is found to be greater at 448 

locations that lack a paved sidewalk (Figure 5).  449 

4.5. Seasonal Variation of Sources 450 

Unmix, PMF and MCR-ALS models show that contribution of crustal materials to road dust is 451 

found to be greater during monsoon season. Only PCA-MLRA model shows higher contribution 452 

during summer season. Considering that PCA-MLRA model overestimates the contribution of this 453 

single source considerably, the results obtained from it can be erroneous. The other three models 454 

attribute lowest contribution to summer season. As mentioned in previous sections, this can be 455 

attributed to increased tire and brake wear during summer season.  456 

High contribution of resuspended road dust during summer season is identified by all four 457 

models. Drier road conditions during summer season can lead to increased resuspension of road 458 

dust particles. Likewise, all four models identified that the contribution of resuspended road dust 459 

is least during monsoon season owing to the wet deposition of resuspended dust when in contact 460 

with rains. 461 

Contribution of tire and brake wear is found to be nearly equal during summer and winter 462 

seasons and lowest during monsoon seasons. Summer contribution is slightly higher due to 463 
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increase in tire wear resulting from the higher road temperatures. Winter contributions are equally 464 

high due to stable atmospheric conditions that are observed during winter months. Tire and brake 465 

wear particles tend to be very small and hence can be easily washed away. This would explain the 466 

low concentration during monsoon season.  467 

Unmix is the only model that could identify contribution from vehicular emissions. This 468 

source shows high contribution during summer season. Winter and monsoon concentrations are 469 

nearly equal. Biomass combustion on the other hand have contradicting results from two models. 470 

PMF model shows high contribution of biomass burning during summer season. This is the 471 

expected result since biomass combustion is highly unlikely during monsoon season. However, 472 

this anomaly is observed in PCA-MLRA. Presence of elements like Li and In in this source 473 

suggests that the specific principal component is a combination of sources. 474 

4.6. Spatial Distribution of Sources 475 

The models identified six sources in total: crustal matter, re-suspended road dust, biomass combustion, tire 476 

and brake wear, vehicular emission and industrial. Of these sources, crustal matter and re-suspended road 477 

dust is identified by all the models. Tire wear, brake wear or a combination of both is identified by three 478 

models (Unmix, PCA and PMF). Two models (PCA and PMF) identified biomass as a source of pollution 479 

in the region. Industrial source is identified by MCR-ALS model and vehicular emission is identified by 480 

Unmix model. The spatial distribution of various sources quantified by the source apportionment models 481 

are shown in Figure 6.  482 

[INSERT FIGURE 6] 483 

Crustal source is identified by all four receptor models. The PCA model placed the highest 484 

contribution on crustal source. Lowest contribution is apportioned by the PMF model. The PCA model 485 

shows exceptionally low spatial variance in this source. The contribution of this source is found to vary 486 
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from 84% to 94%. Unmix model shows slightly higher spatial variance in source contribution from crustal 487 

matter (37% to 62%). Hot spots identified are along the main road (locations 15 and 16). The PMF model 488 

also shows similar hot spots. The contribution of crustal material according to the PMF model is 489 

considerably low compared to other models. MCR model showed the highest variance in contribution from 490 

this source (between 65% and 100%). From Figure 3 and Figure 4, both PMF and Unmix models show 491 

high contribution from crustal material during monsoon season. Higher contribution is noted in roads that 492 

lack a paved sidewalk (locations 9, 10 and 13).  493 

Re-suspended road dust is another source identified by all four receptor models. The contribution of 494 

resuspended road dust is estimated to be between 1% and 16%. Highest contribution to the source is 495 

estimated by the PMF model. As per the PMF model, the contributions varied from 2% to 23%. The highest 496 

contributions are noted at highways (locations 6 and 8). Lowest contribution is noted at Gandhinagar main 497 

road (location 17). Unmix model also identified location 8 as a hotspot for this source. Lowest mean 498 

contribution is obtained from the PCA model. Three of the four models show highest contribution from 499 

resuspended road dust during summer and lowest contribution during winter (Figures 2, 3 and 5). PCA 500 

apportioned the least contribution from resuspended dust during summer season. Figure 4 shows that PCA 501 

overestimated the contribution from crustal material in all three seasons. 502 

Unmix model shows relatively high contribution for tire and brake wear (17% to 44%). Lowest 503 

contribution to this source is noted by the PCA model. Unmix and PMF models show high contribution of 504 

tire and brake wear during summer season and lowest during monsoon season (Figure 2 and 3). Biomass 505 

combustion is identified by both PCA and PMF models. PMF model shows higher contribution for this 506 

source during summer season. PMF model apportioned negligible contribution form this source during 507 

monsoon season while PCA model apportioned highest contribution for this source during monsoon season. 508 

The principal component representing contribution from biomass could be a composite of multiple sources.  509 

Lowest biomass concentration is noted at lorry owner’s association petrol pump (location 18). Vehicular 510 

emission is identified in the Unmix model and Industrial source by MCR-ALS model. The industrial source 511 
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is found to contribute higher towards the north of the city and vehicular emission towards the south of the 512 

city. Summer season experiences highest contribution from this source and monsoon season the least.  513 

Three receptor models (PMF, Unmix and PCA) identified five sources each, while MCR-514 

ALS can only identify three sources (Figure 5). The implementation of MCR-ALS model available 515 

in CRAN is designed specifically for spectral analysis, which limits its use in cases where deviation 516 

from ideal bilinear behavior is possible. The results from PCA model are unsatisfactory and 517 

pollution from most of the sources are attributed to a single source (Crustal) for all three seasons 518 

(Figure 4). A KMO sample adequacy of 0.56 is classified as miserable by Henry Kaiser. This 519 

would suggest that although some information can be extracted by PCA, the model is ill suited for 520 

the data at hand. PMF model did an admirable job in source apportionment of road dust with the 521 

detriment that many locations during all three seasons had to be ignored due to them being outliers. 522 

Though its performance characteristics are acceptable, the residuals for many species in PMF are 523 

considerably greater than all other models in this study. Samples collected from different locations 524 

can add uncertainty that is not addressed by PMF model. Of the four models tested, Unmix model 525 

is found to give the best source apportionment result, with excellent performance characteristics 526 

and lowest scaled residuals of the bunch.  527 

5. Conclusion 528 

Road dust is a significant source of PM in an urban environment. Source apportionment of road dust is thus 529 

essential for effectively controlling urban air quality. Receptor models are some of the most robust 530 

frameworks available for source apportionment. In this study, the source apportionment performance of 531 

four receptor models viz. Unmix, PMF, PCA and MCR-ALS methods are studied and compared. Road dust 532 

samples are collected form 18 sampling locations within the study region and analyzed using ICP-OES. 533 

The resulting elemental composition data is then used for receptor modeling studies. 534 
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Unmix model extracted five sources (resuspended dust, tire wear, brake wear, vehicular emission, 535 

and crustal material). The PMF model also managed to extract five sources for road dust in the region 536 

(vehicular emission, biomass combustion, resuspended dust, and crustal material). Although the PCA 537 

method extracted five sources, two sources are found to be of the same composition. The four sources 538 

classified by PCA model are crustal material, biomass burning, resuspended dust and vehicular emissions. 539 

The MCR-ALS model identified an industrial source, crustal source, and resuspended dust. All four models 540 

identified crustal material as the predominant source of road dust in the region. Of the four models tested, 541 

UNMIX model is found to give the best results for this dataset.  542 

Source apportionment results are expected to be helpful for setting future policy and regulation. This 543 

study also brought forth the limitations of different receptor models when applied to road dust. Multivariate 544 

receptor models can be immensely powerful tools for controlling and mitigating health effects from urban 545 

road dust. More studies comparing the source apportionment performance of receptor models are thus 546 

necessary.  547 
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