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Abstract 14 

Exposure to poly and perfluoroalkyl substances (PFASs) has been associated with adverse health 15 

effects in humans and wildlife. Understanding pollution sources is essential for environmental 16 

regulation but source attribution for PFASs has been confounded by limited information on 17 

industrial releases and rapid changes in chemical production. Here we use principal component 18 

analysis (PCA), hierarchical clustering, and geospatial analysis to understand source 19 

contributions to 14 PFASs measured across 37 sites in the Northeastern United States in 2014. 20 

PFASs are significantly elevated in urban areas compared to rural sites except for 21 

perfluorobutane sulfonate (PFBS), N-methyl perfluorooctanesulfonamidoacetic acid (N-22 

MeFOSAA), perfluoroundecanate (PFUnDA) and perfluorododecanate (PFDoDA). The highest 23 

PFAS concentrations across sites were for perfluorooctanate (PFOA, 56 ng L-1) and 24 

perfluorohexane sulfonate (PFHxS, 43 ng L-1) and perfluorooctanesulfonate (PFOS) levels are 25 

lower than earlier measurements of U.S. surface waters.  PCA and cluster analysis indicates three 26 

main statistical groupings of PFASs. Geospatial analysis of watersheds reveals the first 27 

component/cluster originates from a mixture of contemporary point sources such as airports and 28 

textile mills. Atmospheric sources from the waste sector are consistent with the second 29 

component, and the metal smelting industry plausibly explains the third component. We find this 30 

source-attribution technique is effective for better understanding PFAS sources in urban areas.  31 
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Introduction 32 

Exposure to poly- and perfluoroalkyl substances (PFASs) has been associated with many 33 

negative health outcomes including compromised immune function, metabolic disruption, 34 

obesity, and altered liver function.1 PFASs in surface waters are an emerging concern for U.S. 35 

public water supplies and long-chain compounds bioaccumulate in aquatic food webs, posing 36 

health risks to seafood consumers.2-6 Production of PFASs and their precursors has shifted 37 

dramatically over the last two decades toward shorter-chain and polyfluorinated species.7 38 

Diverse point sources and atmospheric deposition of some PFASs confounds understanding of 39 

the dominant contributors to contamination in the aquatic environment.  Regulatory databases 40 

such as the U.S. EPA’s Facility Registry Survey (FRS)8 and the Toxic Release Inventory9 41 

presently contain limited to no information on magnitudes of PFASs released to the environment.  42 

Multivariate statistical analyses based on chemical composition profiles can be a 43 

powerful tool for diagnosing contamination sources, as illustrated for many other organic 44 

contaminants.10 Principal components analysis (PCA) provides information on 45 

interrelationships among various chemicals and is useful for deriving common source 46 

profiles. Two-way hierarchical clustering can be used as a confirmatory analysis of PCA by 47 

generating a flexible number of subgroups of similar sites (those affected by a common 48 

source type) without dictating the number of clusters a priori. Clustering of compounds 49 

identifies chemicals that co-occur to form a unique signature. These techniques have not 50 

been routinely applied to interpret PFAS contamination and show potential for interpreting 51 

sources in surface water and seawater.4,11  52 

Here we combine PCA and hierarchical clustering of PFAS profiles measured in surface 53 

waters from 37 rivers, streams and estuaries in the Northeastern United States with geospatial 54 
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analysis of potential sources. Few measurements are available for PFASs in U.S. surface waters 55 

over the past five years and the importance of different sources is poorly understood. Source 56 

regions for air pollution are commonly identified using back trajectories.12,13 We apply an 57 

analogous approach for identifying sources of aquatic pollution based on hydrological 58 

distances within a watershed. The main objective of this study is to identify major sources of 59 

surface water PFAS contamination in diverse watersheds using information on chemical 60 

composition and geospatial analytical tools that consider surface hydrology.  61 

Methods 62 

Sample collection and analysis 63 

We collected surface water samples from rivers/creeks and estuaries at approximately 1 64 

m depth at 28 sites in the state of Rhode Island (RI) in June, 2014 and 9 sites the New York 65 

Metropolitan Area (NY/NJ) in October, 2014 (Figure 1). A complete description of sampling 66 

sites is provided in the Supporting Information (SI Table S1). Precipitation and flow rates in 67 

rivers tend to be higher in June, potentially resulting in enhanced dilution and a low bias for 68 

some PFASs measured in RI rivers compared to NY/NJ.  69 

Samples were stored in one-liter pre-rinsed polypropylene bottles at -20 °C and thawed to 70 

room temperature.  Each sample was homogenized by shaking vigorously before subsampling 71 

500 ml for the analysis of 21 PFASs. Each unfiltered sample was spiked with 20 μL of a 0.1 ng 72 

μL-1 mass labeled PFAS mixture (Wellington; Guelph, Canada; individual compounds are listed 73 

in Table S2) as internal standards for quantification. PFASs were extracted using an Oasis Wax 74 

solid phase extraction (SPE) cartridge (6 mL, 150 mg sorbent) following the method of Taniyasu 75 

et. al.14 (see SI Section S1 for details). A nitrogen evaporator (ZIPVAP) was used to concentrate 76 

the extract to 1 mL (methanol: water; v:v = 1:1).   77 
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Sample detection for 21 native PFASs (Tables S2, S3) was performed using an Agilent 78 

6460 LC-MS/MS equipped with an online-SPE system (Agilent 1290 Infinity Flex Cube) in 79 

dynamic multiple reaction mode (sample chromatogram in Figure S1). At least one negative 80 

control (field or procedural blank) and one positive control (spiked with 2 ng of the 21 PFASs in 81 

500 ml water) were included in every extraction batch. Whole method recovery tested using the 82 

positive controls was 70-120% for all but 4 PFASs that ranged from 60-70%, which is 83 

comparable to recoveries reported by previous studies.3,14,15. The 4 PFASs are perfluoropentanate 84 

(PFPeA), perfluoroheptanate (PFHpA), N-methyl perfluorooctanesulfonamidoacetic acid 85 

(MeFOSAA) and N-ethyl perfluorooctanesulfon-amidoacetic acid (EtFOSAA). Potential analyte 86 

loss during sample preparation was corrected using internal standards spiked prior to sample 87 

extraction. The limit of detection (LOD, Figure S2) was defined as equivalent to the blank plus 88 

the concentration corresponding to a signal-to-noise ratio of three. Variability between duplicates 89 

obtained at two sites was <20%. Concentrations of PFASs in five field blanks (HPLC grade 90 

water) prepared following the sample preparation procedure were all below the LOD. 91 

We quantified branched isomers for perfluorooctanate (PFOA), perfluorohexane 92 

sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), N-MeFOSAA and N-EtFOSAA using 93 

calibration standards for the linear isomers, assuming the same instrumental response factor 94 

(Table S3). Seven compounds namely perfluorododecane sulfonate (PFDS), 8:2 fluorotelomer 95 

sulfonate (8:2 FTS), perfluorooctane sulfonamide (FOSA), and perfluorocarboxylates with more 96 

than 12 carbon atoms) were detected in less than half of samples and were excluded from 97 

additional statistical analysis (see Table S2 for details). For the 14 PFASs that had detection 98 

frequencies of greater than 60% (Table S2), we used the Robust Regression on Order Statistics 99 
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approach for censored log-normally distributed environmental data described by Helsel16 to 100 

assign values to samples with concentrations below the LOD. 101 

Statistical and spatial analysis 102 

We used principal components analysis (PCA) and hierarchical clustering to group sites 103 

with statistically distinct PFAS composition profiles. PCA was performed using MATLAB’s 104 

Statistics Toolbox (MathWorks, Inc.) on normalized (z-score to remove the effect of 105 

concentration difference at different sites) PFAS concentration data. The inverse of variances of 106 

the data were used as variable weights and varimax rotation was applied to interpret the meaning 107 

of extracted principal components. Hierarchical Cluster analysis was conducted using the hclust 108 

function in the R statistical computing package (version 3.1.3).  109 

We characterized the watershed for each freshwater sampling site using the U.S. 110 

Geological Survey’s (USGS) National Elevation Dataset (3 arc-second for site 15 and 16 and 1 111 

arc-second for others) and the Hydrologic Tool in ArcGIS Pro 1.2 and ArcGIS online. Estuarine 112 

sampling sites were excluded from the geospatial analysis due to the confounding influence of 113 

tidal waters on potential source profiles. Population within each watershed was based on ESRI’s 114 

U.S. Demographic Database.17 We used the USGS’s StreamStats database (version 4)18  to 115 

characterize water flow rates for each location and to compute mass flow (kg/yr) of PFASs at 116 

each site and per-capita mass flows (kg/person/yr).  117 

For all inland sites (non-estuarine), we acquired a list and geospatial data for plausible 118 

PFAS sources from the US EPA Facility Registry Service (FRS) database on facilities and sites 119 

subject to environmental regulation (see SI for the search criteria).8 These include airports, 120 

facilities for metal plating/coating, printing, sewage treatment, waste management (including 121 

landfills), and manufacturers of semiconductor, textile, paint/coating/adhesive, ink, paper, and 122 
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petroleum products. A caveat of this analysis is that not all facilities included in the FRS 123 

database necessarily release PFASs and the database may not comprehensively include all 124 

possible sources.  125 

Hydrological distances of point sources from each sampling site were computed using the 126 

ArcGIS Trace Downstream tool. Within each watershed, we defined an indicator for the impact 127 

of potential point sources as a function of distance from sampling locations by assuming 128 

exponential decay in the source signature19 (i.e., impact = 1/ed, where d = hydrological distance, 129 

km). This approach provides additional information on plausible sources that complements 130 

multivariate statistical analysis but cannot be considered a quantitative estimate of contributions 131 

to sampling locations since magnitudes of PFAS discharges are not available. 132 

Results and Discussion 133 

Concentrations and spatial patterns  134 

 Figure 1 shows the compound specific composition and concentrations of PFASs 135 

measured in surface water samples as part of this work. Sampling sites in NY/NJ had much 136 

greater population density in upstream watersheds (10 to 43-fold) compared to RI but the highest 137 

concentrations of most PFASs were measured near the city of Providence, RI (Figure 1, Figure 138 

S2). The range of measured PFAS concentrations reported here are similar or lower than U.S. 139 

surface waters from other regions collected between 2000-2009 (Table S4).2,20-24  140 

All sites had detectable PFOA and PFNA and over 90% contained detectable PFHxS, 141 

PFOS, PFDA, and 6:2 FtS (Table S2, S3, Figure S2).  The highest individual PFAS 142 

concentration across sites was PFOA (56 ng L-1) at Site 31 (Passaic River, NJ).  The highest 143 

concentrations of PFHxS (43 ng L-1) and PFNA (14 ng L-1) were measured at Site 5 (Mill Cove, 144 

RI). The maximum PFOS concentration (27 ng L-1) was measured at Site 2 (Woonasquatucket 145 
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River, RI) within the City of Providence, RI. This is much lower than maximum levels reported 146 

in earlier studies of US surface waters that range between 43-244 ng L-1 (Table S4) and reflects 147 

the continued decline in environmental PFOS burdens in North America following elimination of 148 

production in 2002.25,26 149 

 150 

Measured PFAS concentrations in urban regions were significantly higher (Wilcoxin rank 151 

sum test, p<0.017) than rural sites for all compounds except PFBS, N-MeFOSAA, PFUnDA and 152 

PFDoDA (Figure S3). Sites 1-11 in RI and Sites 29-37 in NY/NJ are all urban areas, defined by 153 

population densities of greater than 1000 individuals per square mile (2590 km2), and population 154 

densities of greater than 500 individuals per square mile in surrounding census blocks.27 We did 155 

not find a statistically significant correlation between total population in each upstream 156 

watershed and PFAS concentrations measured at each sampling site (p=0.12 to 0.95 across 157 

compounds). We derived per-capita discharges (Figure S4) using a similar approach as Pistocchi 158 

and Loos.28 Highest median per-capita discharges (g person-1 day-1) across compounds, in 159 

decreasing order, were for PFOA (27), PFHxA (14), PFHpA (10), PFOS (9), PFHxS (7), and 160 

PFNA (5) (Figure S4). These are lower than previously reported in Europe ca. 2007 (e.g., PFOA: 161 

82 g person-1 day-1, PFOS: 57 g person-1 day-1).28 162 

Source identification 163 

 Both hierarchical clustering and PCA identified three distinct groupings of PFASs 164 

(Figure 2a, b). The first component/cluster explains 46% of variability in the PCA and includes 165 

two major end products of the fluorochemical manufacturing industry (PFOA, PFNA), and a mix 166 

of other compounds: PFBS, PFHxS, PFHxA, PFDA.  Site 5 (Mill Cove, RI) contains the highest 167 

summed PFASs across all sites and is dominated by this mixture of PFASs.  PCA results suggest 168 

Site 5 is statistically similar to the Pawcatuck River, RI sampling locations (Sites 20, 19) and the 169 
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Passaic River, NJ (Site 31). However, these sites are grouped separately in the hierarchical 170 

clustering analysis (Figure 2b), suggesting some differences in source contributions.   171 

Geospatial analysis of the watersheds for Sites 5, 19, 20 and 31 reveals a mixture of 172 

potential sources (Figure S5). For Site 5, the greatest source impact as a function of distance 173 

within the watershed is from T.F. Green Airport, the largest public airport in Rhode Island. Prior 174 

work indicates uses of AFFF at modern airports release diverse PFASs to downstream aquatic 175 

environments, including the compounds identified as part of the first PCA/cluster.4,29-31 For Sites 176 

19 and 20, textile mills in the upstream watersheds have the highest impact as a function of 177 

distance (Table S5). PFASs are used for water resistant coating in textiles and washing and 178 

disposal of wastewater at textile mills provides a vector for their entry to the aquatic 179 

environment. For Site 31, PCA scores suggest a mix of components 1-3 (Figure 2 c, d).  This site 180 

also clusters differently than Sites 19 and 20 (Figure 2b). The FRS database indicates the 181 

watershed of Site 31 (Figure S5) contains diverse industrial sources that must account for this 182 

profile including metal plating, printing, a landfill, petroleum and coal products manufacturing.  183 

Overall, we conclude that the first PCA component and cluster of PFASs (PFOA, PFNA PFBS, 184 

PFHxS, PFHxA, PFDA) represents a mixture of contemporary sources including airports and 185 

textile mills.  186 

The second component/cluster explains 19% of the variability in PFASs and includes two 187 

long-chain PFASs (PFUnDA and PFDoDA) and two precursors to PFOS (N-MeFOSAA and N-188 

EtFOSAA) (Figure 2).  PFUnDA and PFDoDA mainly originate from fluorotelomer alcohols or 189 

other fluototelomer based products.32 Both N-MeFOSAA and N-EtFOSAA are intermediate 190 

degradation products from the volatile parent compound N-alkyl 191 

perfluorooctansulfonamidoethanol (FOSE) with PFOS as the final degradation product. This 192 
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profile is most pronounced at Site 3 along the Woonasquatucket River in RI and is also evident 193 

at Site 1 (Slack’s Tributary, RI) and Site 6 (Buckeye Brook, RI). For Site 3, the largest source 194 

impact based on distance is from a wastewater treatment plant 1 km upstream. No industrial 195 

facilities exist upstream of Sites 1 and 6.  Landfill/waste management facilities are located within 196 

2 km of all three sites but are not hydrologically connected to the sampling locations (Figure S5). 197 

Both landfills and wastewater treatment plants are known atmospheric sources of fluorotelomer 198 

alcohols and FOSE.33 Concentrations of N-MeFOSAA, PFUnDA and PFDoDA were not 199 

spatially variable at most sites and only slightly elevated at Site 3, consistent with an atmospheric 200 

input pathway. We thus infer that this component is most likely attributable to sources from the 201 

waste sector.  202 

The third component explains 15% of the variability in PFASs and includes PFPeA, 203 

PFOS, and 6:2 FTS.  This component is most pronounced at Site 2 along the Woonasquatucket 204 

River, within the City of Providence, RI.  GIS analysis of the watershed at this site reveals the 205 

presence of 14 metal coating/plating industries upstream (Figure 2d, Table S5, Figure S5). PFOS 206 

was historically used as a mist/fume control agent in metal plating, in surface coatings and as the 207 

major component in AFFFs for fighting petroleum related fire.25,26,34 Some PFOS applications 208 

such as metal plating have been replaced by less stable fluorotelomer based chemicals such as 209 

6:2 FtS,35 which will eventually degrade into PFPeA and PFHxA (yields of 1.1% and 1.5% in 210 

activated sludge).36 It is likely that PFHxA is not included in the cluster because other direct 211 

sources can contribute one order of magnitude more PFHxA than PFPeA.37,38 We conclude that 212 

the distinct PFAS profile at Site 2 is can be explained by the metal plating industry. 213 

Implications 214 
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Multivariate statistical tools such as PCA and hierarchical clustering of PFAS profiles 215 

combined with data on hydrological proximity of potential sources are useful for identifying 216 

sources of surface water contamination. We find aquatic transport pathways (hydrological 217 

distance and river flow directions) are critical for source identification. This contrasts many other 218 

persistent organic pollutants that are primarily transported atmospherically, allowing sources 219 

within a radius surrounding the sampling sites to be linked to concentrations.39 We conclude that 220 

the approach demonstrated here for RI and NY/NJ has potential for diagnosing PFAS source 221 

contributions in urbanized regions with elevated concentrations and lacking specific information 222 

on the magnitude of PFAS discharges from diverse industries. Background PFAS concentrations 223 

at most rural sites in this study contain a mix of diverse source signatures that are not statistically 224 

distinguishable using these methods.  This analysis could be refined in future applications by 225 

analyzing additional emerging short-chain PFASs and precursors to develop more unique 226 

chemical signatures for specific industries (i.e., those contributing to the first component/cluster). 227 

Supporting Information 228 

Supporting Information Available: Details on analytical methods, data analyses, supporting 229 

figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org. 230 
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Figure Captions 362 

Figure 1. Concentrations of PFASs measured in surface waters from Rhode Island and the New 363 

York Metropolitan Area. Full names of individual compounds are listed in Table S2. N-364 

MeFOSAA and N-EtFOSAA are not shown but were detected in ~70% of the samples at 365 

concentrations <1 ng/L. 366 

 367 

Figure 2.  Multivariate statistical analysis of surface water data.  Panel (A) shows loadings of 368 

principal components analysis (PCA) and Panels (C) and (D) show score plots for three 369 

components across sampling sites. Panel (B) compares PCA results to hierarchical clustering of 370 

compounds and sites.  Sites with statistically distinct PFAS profiles are indicated on plots (C) 371 

and (D) and highlighted on the hierarchical clustering diagram. The three principal components 372 

together explain 80% of the variance in PFAS composition.   373 
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Figure 1 374 
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Figure 2 376 
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