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 
Abstract— Sensor pattern noises (SPNs), extracted from 

digital images to serve as the fingerprints of imaging devices, 

have been proved as an effective way for digital device 

identification. However, as we demonstrate in this work, the 

limitation of the current method of extracting the sensor pattern 

noise is that the SPNs extracted from images can be severely 

contaminated by the details from scenes, and as a result, the 

identification rate is unsatisfactory unless images of a large size 

are used. In this work, we propose a novel approach for 

attenuating the influence of the details from scenes on sensor 

pattern noises so as to improve the device identification rate of 

the identifier. The hypothesis underlying our SPN enhancement 

method is that the stronger a signal component in a SPN is, the 

less trustworthy the component should be, and thus should be 

attenuated. This hypothesis suggests that an enhanced SPN can 

be obtained by assigning weighting factors inversely 

proportional to the magnitude of the SPN components. 

 

Index Terms— Source device identification, multimedia 

forensics, digital forensics, digital investigation, sensor pattern 

noise 

 

I. INTRODUCTION 

S the cost of digital imaging devices, such as 

camcorders, digital cameras, scanners and cameras 

embedded in mobile phones, falls and the functionalities of 

these devices increase, digital imaging become increasingly 

cheaper in our every-day life. While digital imaging devices 

bring ever-increasing convenience of image acquisition, 

powerful, yet easy-to-use digital image processing tools also 

provide effective means for manipulating images that can 

serve good and malicious purposes.  As a result, the use of 

digital images in forensic investigations becomes more 

frequent and important. Typical image forensics includes 

source device identification, source device linking, 

classification of images taken by unknown cameras, integrity 

verification, authentication, etc.  

Usually the process of acquiring a photo with an ordinary 

digital camera is similar to the diagram illustrated in Figure 
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1. The light from the scene enters a set of lenses and passes 

through an anti-aliasing filter before reaching a colour filter 

array (CFA) that is intended to admit one of the red (R), 

green (G) and blue (B) components of the light per pixel for 

the following semi-conductor sensor to convert the signal into 

electronic form. A de-mosaicing process is subsequently 

carried out to get the intensities of the other two colours for 

each pixel by interpolating the colour information within a 

neighbourhood. A sequence of image processing operations, 

such as colour correction, white balancing, Gamma 

correction, enhancing, JPEG compression, etc. then take 

place before the photo is saved in the storage medium.  The 

hardware or software used in each stage in the image 

acquisition pipeline as illustrated in Figure 1 may leave 

unique traces in images, which can lead to the identification 

of the imaging device. As such, to help with forensic 

investigations, researchers have proposed ways of identifying 

and linking source devices, classifying images and verifying 

the integrity of images based on the detection of existence or 

local inconsistencies of device attributes or data processing 

related characteristics, such as sensor pattern noise (SPN) [1-

8], camera response function [9], re-sampling artefacts [10], 

colour filter array (CFA) interpolation artefacts [11, 12], 

JPEG compression [13, 14], lens aberration [15, 16], etc. 

Other device and image attributes such as binary similarity 

measures, image quality measures and higher order wavelet 

statistics have also been exploited to identify and classify 

source devices [17 - 19].   

  While many methods [9-12] require that specific 

assumptions be satisfied, methods based on sensor pattern 

noise [1-8, 20-22] have drawn much attention due to the 

relaxation of the similar assumptions. Another advantage of 

sensor pattern noise is that it can identify not only camera 

models of the same make, but also individual cameras of the 

same model [1, 6]. The deterministic component of sensor 

pattern noise (SPN) is mainly caused by imperfections during 

the sensor manufacturing process and different sensitivity of 

pixels to light due to the inhomogeneity of silicon wafers [23, 

24]. It is because of the inconsistency and the uniqueness of 

manufacturing imperfections and the variable sensitivity of 

each pixel to light that even sensors made from the same 

silicon wafer would possess uncorrelated pattern noise, which 

can be extracted from the images produced by the devices. 

This property makes sensor pattern noise a robust fingerprint 
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for identifying and linking source devices and verifying the 

integrity of images. The reader is referred to [23] and [24] for 

more details in relation to sensor pattern noise.  

 

II. LIMITATION OF EXISTING SPN EXTRACTION MODEL 

Because sensor pattern noise appears as high-frequency signal 

in images, most image forensic methods based on sensor 

pattern noise [2-8] adopt the model proposed in [1] or its 

variant [25] for extracting the SPN, n, from an image I.  The 

model is formulated as 

 

n = DWT(I) – F(DWT(I))                                (1) 

 

where DWT is the Discrete Wavelet Transform and F is a 

denoising function, which filters out the sensor pattern noise 

in the DWT domain. Although various denoising filters can 

be used as F, the wavelet-based denoising filter described in 

Appendix A of [1] has been reported as effective in producing 

good results. We can see from Eq. (1) that the SPN, n, 

literally covers the high-frequency components of I.  

 The key limitation of Eq. (1) is that the SPN, n, can be 

severely contaminated by details from the scene because scene 

details account for the high-frequency components of I and 

their magnitude is far greater than that of sensor pattern 

noise. For example Figure 2(a), (b) and (c) show a reference 

SPN of a camera, which is the average SPN of 50 images of 

blue sky taken by a digital camera,  the image of a natural 

scene taken by the same camera, and the SPN extracted from 

the image of Figure 2(b), respectively. Figure 2(a) is what a 

“clean” SPN should look like. However, from Figure 2(c) we 
can see that the SPN contains strong details from the scene, 

which dominates the real SPN. Note the intensity of Figure 

2(a) and (c) has been up scaled 9 and 3 times for visualisation 

purpose. 

   In the scenario of SPN-based source device identification, 

the investigator usually has a collection of devices or a 

database of reference sensor pattern noises, each representing 

one device, in his/her possession. The reason of creating such 

a clean reference SPN – the average of a number (say 20 to 

50) of SPNs extracted from natural images, as illustrated in 

Figure 2(a) - is that it can better represent the imaging 

camera. However, source camera linking, which is about 

establishing whether or not the images under investigation 

are taken by the same camera without the camera and its 

reference SPN in the investigator’s possession, is a more 
challenging problem than source camera identification. The 

investigation can only be carried out based on one SPN from 

each image and if one or more SPNs are severely 

contaminated by the details of the scenes, the chance of 

reaching a correct conclusion cannot be expected to high. An 

even more challenging application is blind / unsupervised 

image classification aiming at classifying a large set of 

images in the absence of the imaging cameras and reference 

SPNs. Given a large number of images, classification based 

on the SPNs extracted from images of their original size (e.g., 

3 or 4 mega pixels) is computationally prohibitive. This 

entails the need for carrying out the classification task based 

on the SPNs from smaller blocks cropped from the original 

images. However, cropping reduces the number of SPN 

components, consequently increasing the intra-class variation 

of SPNs. To address these issues, the contaminated SPN 

needs to be cleaned or enhanced in some way. Although 

enhancing the SPN extracted with Eq. (1) has been attempted 

by Chen et al. [25], their objective is to attenuate the artefacts 

due to colour interpolation, row-wise and column-wise 

operation and JPEG compression, rather than to deal with 

scene interference. To our best knowledge, SPN enhancing 

methodology aiming at attenuating the interference from 

scene details is currently lacking. It is therefore our intention 

to propose a method for effectively enhancing sensor pattern 

noise in Section III and to report in Section IV a sequence of 

experiments carried out to test the proposed SPN enhancers. 

 

III. PROPOSED SENSOR PATTERN NOISE ENHANCER  

   Given the fact that the magnitude of scene details tend to be 

far greater than that of the sensor pattern noise, , as 

demonstrated in Figure 2(c), the hypothesis underlying our 

SPN enhancer is that  
The stronger a signal component in n 

is, the more likely that it is 

associated with strong scene details, 

and thus the less trustworthy the 

component should be.  

This hypothesis suggests that an enhanced fingerprint ne can 

be obtained by assigning less significant weighting factors to 

strong components of n in the Digital Wavelet Transform 

(DWT) domain in order to attenuate the interference of scene 

details. There are various mathematical models for realising 

the afore-mentioned hypothesis. In this work, we propose five 

models, as formulated in Eq. (2) to (6) to be applied to the 

unenhanced SPN extracted with Eq. (1) in conjunction with 

the wavelet-based denoising filter described in Appendix A of 

[1]. 
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Model 3:   
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Model 4:     
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where n(i, j) and ne(i, j) are the (i, j)th component of n and ne, 

respectively. These five models can also be better presented 

graphically as demonstrated in Figure 3(a) to (e). Eq. (2) – 

(4) allow the magnitude of ne to grow monotonically in 

accordance with the magnitude of n if |n| ≤ α (a threshold to 

be decided by the user) and to decrease monotonically and 

rapidly with respect to |n| if |n| > α while Eq. (5) and (6) allow 

the magnitude of ne, (i.e., |ne|) to decrease monotonically with 

respect to the magnitude of n. We can see that α of Eq. (2) to 

(6) determines the performance of each model. These five 

models are not picked at random, but are motivated by the 

following considerations. 

 Stronger SPN components (|n| > α) should be attenuated 

monotonically and rapidly with respect to |n| to suppress 

the influence from scene details. This conforms to the 

falling tails in all five models, starting from the points 

where |n| becomes greater than α, although the falling 

rates are different for different models. 

 For weaker SPN components (i.e., |n| ≤ α), different 

considerations as discussed later are reflected in the five 

models. 

- Linear transformation (Models 1 and 2), as Eq. (2) to (3) 

and Figure 3(a) to (b) suggest: This is to give those weak 

components the same weight (1/ α) and is the most 

conservative transformation. However, since how scene 

details can be theoretically modelled is unclear, 

empirical tuning of the significance of the weaker (more 

trustworthy) components in some way other than linear 

transformation should also be studied. As such, the 

following two types of transformation are also 

considered. 

- Non-linear exponential transformation (Model 3), as 

formulated in Eq. (4) and illustrated in Figure 3(c):  

Like the linear transformation, this non-linear 

exponential transformation is also a moderate operation 

because the orders of the transformed components 

remain unchanged. However, by the gradients at various 

points of the transformation curves, we can see that the 

model gives greater significance to the SPN components 

on the lower ends and less significance to those closer to 

± α, while Models 1 and 2 indiscriminatively give equal 

weight to every n in the range [-α, α]. It is worth noting 

that not any non-linear exponential model with a 

monotonically increasing (decreasing) transformation 

curve in the range 0 < n < α (0 > n > α) can produce 

effective SPN enhancement. For example, a non-linear 

exponential transformation (Model 6), as formulated in 

Eq. (7) and shown in Figure 3(f), does not make 

physical sense and should be avoided because, by the 

gradients at various points of the curves, we can see the 

model is giving less significance to the weaker but more 

trustworthy components than the stronger but less 

trustworthy ones. We will discuss this in Part A of 

Section IV. 
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- Inversely proportional transformation (Models 4 and 5), 

as formulated in Eq. (5) and (6), and illustrated in 

Figure 3(d) and 3(e): These are the most radical 

transformations among all models because they reverse 

the order of the magnitude (e.g., 0 in the unenhanced n 

is mapped to the maximum value of 1 in enhanced ne). 

This is intended to lay even more trust on the 

components with low magnitude. Therefore, they are 

still in consistence with our hypothesis because, 

throughout the entire spectrum, the weaker components 

are given greater significance than the stronger ones. 

 

IV. EXPERIMENTS 

In the following experiments, we use 1200 photos of 1536 × 

2048 pixels taken in JPEG format (with JPEG quality factor 

approximately ranging from 93 to 97) by six cameras, each 

responsible for 200. The six cameras are Canon IXUS 850IS, 

Canon PowerShot A400, Canon IXY Digital 500, FujiFilm 

A602, FujiFilm FinePix A902 and Olympus FE210. The 

photos contain a wide variety of natural indoor and outdoor 

scenes taken during holidays, around campus and cities, in 

offices and laboratories, etc. To enhance a SPN, we first 

perform Discrete Wavelet Transform (DWT), conduct low-

pass filtering in the DWT domain, extract the SPN n using 

Eq. (1) in DWT domain, and finally apply an enhancement 

model to the unenhanced SNP directly in the DWT domain to 

get the enhanced version ne. 

      Each reference SPN, which represents each of the six 

cameras, is generated by calculating the average of the SPNs 

extracted from 50 photos of blue sky taken by the digital 

camera. Note because the photos of the blue sky do not 

contain significant high-frequency details and 50 SPNs are 

averaged to generate the reference SPN, therefore we did not 

apply any enhancing model to enhance those photos of blue 

sky. The 50 photos for creating the reference SPN are not 

included in the test set in the following experiments.  

Source device identification requires similarity comparisons 

among SPNs, therefore the feasibility of the chosen similarity 

metrics is important. As proposed in [22], Fridrich suggested 

the use of the Peak to Correlation Energy (PCE) measure, 

which has proved to be a more stable detection statistics than 

normalised cross-correlation when applied to the scenarios in 

which the images of interest may have undergone geometrical 
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manipulations, such as rotation or scaling. The purpose of 

this work is to demonstrate the capability of the proposed 

SPN enhancers in dealing with the interference of details 

from the scene, geometrical transformations will not be 

applied in order to prevent biased evaluation from happening.  

Therefore, in the following experiments, normalised cross-

correlation will be used to measure the similarity between 

SPNs. The normalised cross-correlation between signal ni and 

nj is defined as 
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where in and jn are the means of ni and nj, respectively.  

 

A. Selection of Enhancing Model and Parameter 

      The main theme of this work is the conception of the 

hypothesis that the stronger a signal component 

in n is, the more likely that it is 

associated with strong scene details, and 

thus the less trustworthy the component 

should be, while the five models (Eq. (2) to (6)) are just 

to validate the hypothesis. There is no theoretical backing for 

choosing the optimal model from Eq. (2) to (6) because the 

theory for modelling sensor pattern noise and scene details is 

not in existence at present. Feasible models other than these 

five can certainly be adopted in the future if found. 

We have carried out a sequence of source camera 

identification experiments, based on  1200 image blocks of 

128 × 128 pixels cropped from the centre of the afore-

mentioned 1200 photos, to evaluate various combinations of 

the five models (i.e., Eq. (2) – (6)) and 30 different values of 

α in order to validate our hypothesis.  As we will demonstrate 

in Part B of Section IV and Table 2, the reason of using 

image blocks of this size is that the performance of the 

models are not close to 100% when image blocks of this size 

is used, which leaves room for revealing the real performance 

of each model. To identify the source camera of an image, the 

SPN is extracted from the image and the similarity between 

the SPN and each of the six reference SPNs is calculated 

using Eq. (8). The image is deemed as taken by the camera 

corresponding to the maximum of the six similarity values. 

The results are listed in Table 1 and plotted in Figure 4. The 

following observations can be made:  

 Models 1 and 2, formulated in Eq. (2) and (3), perform 

reasonably well with the value of α  in the relatively 

smaller ranges of [3, 4] and [4, 6], respectively, when 

compared to the performance of the other three models. 

However, as can be seen in Figure 4, their performance 

curves drop rapidly as the value of α grows. This indicates 

that SPN enhancement through linear transformation when 

|n| < α is more sensitive to changes of α. Moreover, the 

only difference between Models 1 and 2 is that the 

attenuation rate of Model 2 is greater than Model 1 when 

|n| > α (See Figure 3(a) and (b)). This factor accounts for 

the more moderate declining rate of performance of Model 

2 than that of Model 1 after their respective performance 

peaks, as shown in Figure 4 and Table 1, and indicates that 

a greater attenuation rate is preferable for strong SPN 

components. 

 Model 3 applies non-linear exponential transformation to 

SPN components when |n| < α.  Figure 4 indicates that it 

performs stably well in a wider range [4, 11] of α, with a 

peak identification rate of 1039 out 1200 images at α = 5, 6 

and 9 (see Table 1). Moreover, its performance curve drops 

more gracefully than Model 1 and 2 as α grows. It is worth 

noting that, according to Eq. (3) and (4), the 

transformation employed in Model 2 for |n| > α is basically 

the same as that employed in Model 3, except that the 

latter has a factor of ±(1 – e-α) which is ≈ ±1. So we can 
conclude that the performance difference between the two 

models is due to the non-linear transformation effect when 

|n| < α, as discussed at the end of Section III. The 

explanation for this effect is that, as shown in Figure 3(b)  

and (c), when |n| < α, the gradients at various points of the 

transformation curve of Model 2 remains constant while 

the gradients of Model 3 decreases monotonically with 

respect to |n|. This means Model 2 indiscriminatively 

assigns an equal weight to every component when |n| < α 

while Model 3 adaptively decreases the weight as |n| grows 

(i.e., as the influence of scene details gets stronger). 

 Model 4 and 5 apply inversely proportional transformation 

to the SPN components when |n| < α. Both models have 

equivalent peak identification rate of 1039 and 1040 out of 

1200 images, respectively. Model 4 performs at peak level 

when α = 18, which is far greater then the value of α (α = 

7) at which Model 5’s performance peaks. This is because 
when α is lower the slope of the straight transformation 

line of Model 4 is greater, and as a result, the small and 

trustworthy components get over-attenuated. However, as 

shown in Figure 4, Model 4’s performance appears to be 
marginally more stable than Model 5’s after its 
performance peaks. This is because Model 4 sets n to 0 

when |n| > α.  

 Although Model 6’s peak performance level (1014/1200 
when α = 3) is only 2.17% lower than the global peak 

(1040/1200 of Model 5 when α = 7), this model is not only 

counter-intuitive but also inconsistent with our hypothesis. 

The main difference between Model 3 and Model 6 is that 

when |n| < α, their transformation curves go up towards ± α 

with decreasing and increasing gradients, respectively. 

This indicates that, within this range, while Model 3 gives 

greater weight to the small and trustworthy components, 

Model 6 does the opposite. Consequently, as its 

corresponding plot in Figure 4 shows, its performance is 

highly sensitive to the value of α. 

    From the above discussions, we can conclude that Model 1 

to 5 are all feasible models for enhancing SPNs, with Models 

3, 4 and 5 being more preferable because they  perform  more 

stable within wider ranges of values of α. Stability is 

important because it gives the user high confidence in their 
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choices.  We also observed that the highest performance level 

(1040/1200) is reached by Model 5 with α = 7. However, this 

does not mean that this is the optimal combination because 

theoretical approaches for finding the optimal model and its 

parameters are currently lacking and it is in no way possible 

to exhaust the infinite numbers of models and parameters to 

identify the optimal combination. 
  

B. Source Camera Identification 

      To validate our hypothesis, we have carried out camera 

identification tests on the 1200 photos using Model 5 with α 

= 7. Instead of testing the enhancer on the full-sized images 

of 1536 × 2048 pixels only, we also test it on image blocks of 

8 different sizes cropped from the centre of the full-sized 

images. Moreover, in real applications, identification should 

be based on whether the similarity is greater than a feasible 

threshold. Table 2 shows the true positive rate with and 

without applying Model 5 to the sensor pattern noises 

extracted with Eq. (1) when a correlation threshold of t = 

0.01 is applied. Note that in this experiment the SPN of each 

image is only compared to the reference SPN of the camera 

that actually took the image in question, i.e., the source 

camera. The image is deemed as taken by the source camera 

if the similarity value is greater than t. It is clear from Table 2 

that the larger the image blocks are, the greater the 

performance becomes. We can also see that, in all cases, 

enhancing the SPNs always yields greater performance and 

the performance differences become more significant as the 

image blocks get bigger.  

       Another useful measure for demonstrating the 

performance of the methods is false positive. Table 3 shows 

the false positive rates when a correlation threshold of 0.01 is 

applied. Note that, in this experiment, the SPN of each image 

is compared to the 5 reference SPNs of the cameras that are 

not the source camera of the image in question. The image is 

deemed as taken by the cameras that are not the source 

camera if their similarity values are greater than a threshold 

0.01. From Table 3, the performance differences are even 

more prominent when the image block sizes are small. An 

interesting phenomenon, which can be observed from Table 

3, is that for both methods, when scanning from the right 

hand side of the table, the false positive rates decrease slightly 

and reach the minimum when the image block size is 1024 × 

1024 pixels. The false rates then increase significantly 

afterwards. This is particularly clear for the case without 

enhancement. After applying other threshold values of 0.005, 

0.015, 0.02, 0.025 and 0.03, we observed the same 

phenomenon. We have no explanation for this at present, but 

it is interesting to look into the reasons in the future.  

     Table 2 and 3 have validated the hypothesis and 

demonstrated the superiority of the proposed SPN enhancing 

model. Figure 2(d) shows the enhanced version of Figure 2(c) 

after Model 5, with α = 7, is applied. We can see that the 

influential details from the scene, that are prominent in 

Figure 2(c), have been significantly removed from Figure 

2(d).   

C.  Impact of Colour Saturation 

      In many photos, the upper-left or upper-right corners are 

homogeneous background, such as the sky or a wall of plain 

colour, where the sensor pattern noise is less contaiminated 

by details from the scenes than other areas. Therefore, if only 

a block is to be taken from a photo for forensic analysis, 

either one of these two corners are good candidates because 

the probability of getting a low-variation block from these two 

corners are greater than from other areas. Based on this 

rationale, we have also carried out the same camera 

identification experiment on image blocks of 128 × 128 pixels 

cropped from theses two corners and the centre of the 1200 

photos. The results are listed in Table 4. Each number in the 

“No. saturated blocks” row is the number of saturated blocks 

out of 1200 blocks cropped from different areas of interest. In 

our experiement, if over 50% of the pixels of a block have the 

intensities of all three colour channels equal to 255, the block 

is deemed as saturated. The “No. saturated blocks” row 
conforms to our expectation that the two corners at the top of 

photos are more likely to be saturated than the central area. 

The “Identification rate (%): Saturation included” row of 

Table 4 shows that when the saturated blocks are included in 

the identification experiment, the identification rates based on 

the blocks cropped from different areas of interest are almost 

the same. Note that conclusion could not be drawn from this 

row alone, because these three statistics may vary when 

different dataset is used. However, this row is helpful in 

demonstrating the impact of colour saturation when 

comparing the statistics in the “Identification rate (%): 
Saturation excluded” row. This later row indicates that, when 

those saturated blocks are excluded, the identification rates 

based on the blocks cropped from the two corners are 

significantly higher than that based on the blocks cropped 

from the centre of images. This is not a suprising observation 

because usually the main objects appear in the centre of 

photos, where normal imaging and illumination conditions 

are met, while the two corners at the top of photos are more 

likely to be saturated due to imaging and illumination 

conditions, thus giving rise to the loss of sensor pattern noise. 

So we suggest that blocks be taken from the centre of photos 

if the SPNs of small image blocks cropped automatically by 

the system are to be used for forensic applications, such as 

unsupervised image classification.   

 

V. CONCLUSION 

      In this work we have pointed out that sensor pattern 

noise, as the fingerprint for identifying source imaging 

devices, extracted with the commonly used model of Eq. (1) 

proposed in [6] can be severely contaminated by the details 

from the scene. To circumvent this limitation we envisaged 

the hypothesis that the stronger a component of the sensor 

pattern noise is, the less trustworthy the component should be 

and proposed 5 enhancing models (Model 1 to 5) for realising 

the hypothesis, with Model 3, 4 and 5 being more preferable. 

The hypothesis is tested by assigning greater weighting to the 
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smaller SPN components. Experiments on source device 

identification have confirmed the soundness of our 

hypothesis.  

 Another related digital forensics application is that there 

are circumstances where a forensic investigator has a large set 

of images taken by an unknown number of unknown digital 

cameras and wishes to cluster those images into a number of 

classes, each including the images acquired by the same 

camera. The main challenges in this scenario are:  

 The forensic investigator does not have the cameras that 

have taken the images to generate reference SNPs for 

comparison. 

 No prior knowledge about the number and types of the 

imaging devices are available. 

 With a large dataset, exhaustive and iterative pair-wise 

SPN comparison is computationally prohibitive. 

 Given the shear number of images, analysing each image 

in its full size is computationally infeasible.   

In the near future, we intend to devise an unsupervised image 

classifier based on the enhanced sensor pattern noise using 

our SPN enhancers to address the afore-mentioned issues.  
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Figure 1. The image acquisition process of an ordinary digital camera. 

 

 

          
                                                         (a)                                                                         (b) 

     

         
                                                         (c)                                                                         (d) 

 

Figure 2. (a) A clean reference SPN taken from blue sky images, (b) An image of natural scene, (c) The SPN extracted from 

Figure 2(b) that is contaminated by the details from the scene. (d) The enhanced version of Figure 2(c) using Model 5 (i.e., Eq. 

(6)) with α = 7. Note the intensity of Figure 2(a) and (c) has been up scaled 9 and 3 times, respectively, for visualisation 

purpose. 
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(a)                                                                              (b) 

 

           
(c)                                                                           (d) 

 

           
(e)                                                                           (f) 

    
Figure 3. Six models for digital fingerprint enhancement. (a) –(f) correspond to Eq. (2) – (7), respectively. 
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Figure 4. Performance, in terms of number of correct source camera identifications out of 1200 images, of various SPN 

enhancing models when applied in conjunction with different values of α. 

 

 

 

 

Table 1.  Performance, in terms of number of correct source camera identifications out of 1200 images, of various SPN 

enhancing models when applied in conjunction with different values of α. 

Model 
α 

1 2 3 4 5 6 7 8 9 10 11 1 13 14 15 

1 934 1020 1033 1029 1010 971 947 916 883 859 837 811 794 776 762 

2 940 986 1017 1029 1032 1029 1018 999 987 966 954 932 914 899 880 

3 936 976 1008 1021 1039 1039 1036 1038 1039 1032 1024 1021 1020 1019 1016 

4 582 783 890 940 964 985 998 1012 1020 1027 1031 1033 1037 1034 1033 

5 823 960 1003 1021 1039 1035 1040 1036 1036 1031 1030 1024 1019 1020 1017 

6 931 987 1014 1006 970 904 853 795 741 678 637 619 573 514 473 

 

Model 
α 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
1 747 730 716 707 697 679 665 657 645 638 627 619 606 599 590 

2 872 856 836 827 816 790 787 773 767 759 746 731 730 717 705 

3 1010 1000 996 987 981 982 983 979 967 966 967 963 961 959 956 

4 1031 1036 1039 1038 1038 1034 1034 1034 1033 1029 1025 1024 1023 1023 1021 

5 1015 1007 1006 1003 1004 999 998 994 992 992 991 989 989 981 978 

6 458 428 409 395 388 357 357 337 336 318 320 332 317 302 305 
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Table 2. True positive rates with and without applying Model 5 to the sensor pattern noises with α = 7. Note that in this 

experiment the image is deemed as taken by the source camera if the similarity value is greater than a threshold 0.01. 

 

True positive rate (%) at different photo sizes 

128 

×128 

128 × 

256 

256 × 

256 

256 × 

512 

512 × 

512 

512 

×1024 

1024 

×1024 

1024 

×2048 

1536 

×2048 

without 

enhancement 
61.68 67.5 71.42 77.92 82.33 87.12 93.25 96.75 97.42 

with 

enhancement 
79.75 85.58 91.00 93.17 94.75 96.33 97.95 98.25 98.25 

 

 

Table 3. False positive rates with and without applying Model 5 to the sensor pattern noises with α = 7. Note that in this 

experiment the image is deemed as taken by the cameras that are not the source camera if their similarity values are greater 

than a threshold 0.01. 

 

False positive rate (%) at different photo sizes 

128 

×128 

128 × 

256 

256 × 

256 

256 × 

512 

512 × 

512 

512 

×1024 

1024 

×1024 

1024 

×2048 

1536 

×2048 

without 

enhancement 
41.68 38.68 32.60 25.71 16.28 6.75 1.90 2.40 12.03 

with 

enhancement 
8.33 3.22 0.95 0.15 0.03 0 0 0.03 0.4 

 

 

 

 

 

Table 4. Identification rates with colour saturation taken into account. 

 Area of interest 

upper-left 

corner 
centre 

upper-right 

corner 

No. saturated blocks   113  7  110 

Identification rate (%): 

Saturation included 
86.83 86.67 85.25 

Identification rate (%): 

Saturation excluded 
92.27 86.83 90.65 

 

 

 


