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Abstract. Sensors acquire data, and communicate this to an interested
party. The arising coding problem is often split into two parts: First, the
sensors compress their respective acquired signals, potentially applying
the concepts of distributed source coding. Then, they communicate the
compressed version to the interested party, the goal being not to make
any errors. This coding paradigm is inspired by Shannon’s separation
theorem for point-to-point communication, but it leads to suboptimal
performance in general network topologies. The optimal performance for
the general case is not known.

In this paper, we propose an alternative coding paradigm based on joint
source-channel coding. This coding paradigm permits to determine the
optimal performance for a class of sensor networks, and shows how to
achieve it. For sensor networks outside this class, we argue that the
goal of the coding system could be to approach our condition for op-
timal performance as closely as possible. This is supported by examples
for which our coding paradigm significantly outperforms the traditional
separation-based coding paradigm. In particular, for a Gaussian exam-
ple considered in this paper, the distortion of the best coding scheme
according to the separation paradigm decreases like 1/log M, while for
our coding paradigm, it decreases like 1/M, where M is the total number
of sensors.

1 Introduction

In a sensor network, the goal is typically to reconstruct the measured physical
phenomenon to within some prescribed distortion level, and this at the small-
est possible cost on the communication link. What coding strategy should the
sensors use? For the case of a single sensor, i.e., for the ergodic point-to-point
communication scenario, Shannon proved that separate source and channel code
design is an optimal strategy (asymptotically as the delay and the complex-
ity become unconstrained [I2]). This fact, known as the separation principle,
is both conceptually and practically appealing. Therefore, it is also a tempt-
ing coding paradigm in a network context: each sensor compresses its measure-
ments using the best possible distributed coding techniques, see e.g. [TII3I5];

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 162177, 2003.
© Springer-Verlag Berlin Heidelberg 2003


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595.276 841.889 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile (Ø©M)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice
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the resulting source codewords are then transmitted across the channel using
capacity-achieving codes, see e.g. [4, Ch. 14]. It is well known that in spite of
its elegance, this coding paradigm does not lead to optimal performance in net-
works, see e.g. [4] p. 449], [7]. In other words, the concepts of capacity and rate-
distortion do not characterize the best achievable performance. Rather, joint
source-channel coding techniques can significantly outperform the separation-
based coding paradigm in these cases.

In this paper, we propose an alternative coding paradigm based on recent re-
sults on the source-channel communication problem in the point-to-point case [5]
6l[7]. We investigate a particular sensor network topology, which is defined in de-
tail in Section[2 M separate sensors observe each a different noisy version of a
physical phenomenon S. The sensors communicate over a multi-access channel
to a central observer who wishes to produce an estimate S of the physical phe-
nomenon in such a way as to minimize the distortion. The precise shape of the
distortion measure d(s, §) depends on the problem at hand.

In Section B] we evaluate the performance achievable by the separation-based
coding paradigm in our sensor network topology. Results are given in particular
for a Gaussian example, for which we prove that the achievable distortion decays
like 1/log M, where M is the number of sensors.

In Section @ we develop a simple joint source-channel coding strategy for
the same Gaussian example. We establish two key facts for our strategy: First,
we determine that the distortion decays like 1/M, where M is the number of
sensors, thus considerably outperforming the separation-based coding paradigm.
Second, we prove that as M tends to infinity, our strategy achieves the smallest
possible distortion.

Thereafter, we extend our results beyond the Gaussian example, establishing
a general joint source-channel coding paradigm for the considered sensor network
topology, using the arguments of [5l67]. We show that it sometimes leads to
provably optimum performance, but even when it does not, we illustrate that it
can considerably outperform the separation-based coding paradigm.

In Section Bl we outline the extension of our basic sensor network topology
to include communication between the sensors. In particular, we find for a class
of sensor networks that this additional degree of freedom does not enhance the
asymptotic performance (as the number of sensors M tends to infinity).

2 The Considered Sensor Network

Consider the sensor network shown in Figure [} The physical phenomenon is
characterized by the sequence of random vectors

{Snl}nez = {(Siln], S2[n), ..., Sr[nl) nez. (1)

To simplify the notation in the rest of the paper, we denote sequences as

S (S[n]}nez. (2)
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Fig. 1. The sensor network topology considered in this paper.

We use the upper case S to denote the random variable, and the lower case s
to denote its realization. The distribution of S is denoted by Ps(s). To simplify
notation, we will also use the shorthand P(s) when the subscript is just the
capitalized version of the argument in the parentheses. The random vector S[n]
is not directly observed by the sensors. Rather, sensor k observes a sequence
U = {Ug[n]}nez which depends on the physical phenomenon according to a
conditional probability distribution, which we denote by

P(ug|s1,...,8L)- (3)
Based on the observations Ug[n], sensor k transmits a signal
Xy = F (UR) (4)

on the multi-access channel. The transmitted signals satisfy a power, or more
generally, a cost constraint of the form

Ep(X},X3,...,X}y) < T. (5)

This is a generalization of the sum power constraint for all the sensors together.
In some variations of our problem, it is also interesting to consider a family of
simultaneous constraints, with cost functions p;(-) and maximum expected cost
I;. This is a generalization of the individual power constraints for each sensor.

The final destination uses the output of the multi-access channel to construct
estimates

S™ = (ST,5%,...,57). (6)
For a fixed code, composed of the encoders F}, Fy, ..., Fy; at the sensors and
the decoder G, the achieved distortion A is computed as follows:

A=Ed (S", S”) . (7)
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For a particular coding scheme (Fi, Fs,..., Fa,G), the performance is deter-
mined by the required cost I' and the incurred distortion A. The goal of the
analysis is to determine the set of optimal trade-offs (I, A), where optimal is to
be understood in an information-theoretic sense, i.e., irrespective of delay and
complexity.

Ezample 1 (Gaussian case). An important special case of the sensor network
topology of Figure [[] is illustrated in Figure B} In this case, L = 1, and
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Fig. 2. The Gaussian example.

Ug[n] = S[n] + Wi[n], ®)

where {S[n]}, is a sequence of independent and identically distributed (iid)
Gaussian random variables of variance 0%, and {Wj[n]}, is a sequence (in n,
for n =1,2,3,...) of iid Gaussian random variables of mean zero and variance
o%,. Moreover, for the sake of the example, we also assume that Wy and W,
are independent for all k # [. The constraint on the signals transmitted by the
sensors is a sum power constraint, i.e.,

M
> E|Xi]> < MP. (9)
k=1

The final destination receives

M
Yl = > Xuln] + Zlnl, (10)
k=1
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where Z[n] is iid Gaussian noise of variance 0%. The distortion measure in this
example is the mean-squared error, i.e.,

D =Y " E|S[n] - S[n]|*. (11)
j=1

The goal of the analysis is to determine the best power-distortion trade-off.
More precisely, we want to determine the minimum distortion for a fixed power
MP. The performance of a communication scheme employing source-channel
separation is analyzed in two steps: the rate-distortion and the capacity-cost
problem.

3 Separate Source and Channel Coding

In extension of the point-to-point case (summarized in Appendix [A]), a general
coding paradigm for sensor networks can again be formulated as the combination
of source coding and channel coding. In this section, we outline the performance
that can be achieved using a separation-based coding strategy. Then, we provide
an explicit answer for a simple Gaussian sensor network with a topology accord-
ing to Figure [l Note that it is well-known that this coding paradigm does not
lead to optimal network designs in general, see e.g. 4] p. 449].

3.1 Distributed Source Coding

The particular source coding problem corresponding to Figure[Il is known as the
CEO problem, proposed and partially solved in [2]. More precisely, the problem
for sensor k is to encode its observations into a bit stream of Ry bits per sample.
The determination of the set of the smallest (Rq, Ra,...,Ry) that permit the
source decoder to reconstruct Si,...,Sr at a specified fidelity A (as in Equa-
tion (@)) is an open problem in general. We call this the rate-distortion region,
denoted by R(A).

Ezample 2 (Gaussian case). For the Gaussian sensor network of Example[T], the
particular problem of encoding U}, as in Figure [2]into bits and reconstructing S
from these bits, has been studied in the shape of the so-called quadratic Gaussian
CEO problem in the literature [11[14]. The distortion Dcgo depends on the total
rate used by the sensors, Rios = R1 + Ro + ...+ Ry as

o2

2Rtot ’

Dcgo = (12)

when the total rate R;,; is large. More precise results for small R;,; can be found
in [TT].
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3.2 Multi-access with Dependent Messages

For the multi-access problem in Figure [[] the goal is to determine the set of all
achievable rate pairs (R;, Ro) when the channel inputs satisfy the cost constraint
I' (as in Equation (), i.e., the capacity region C(I"). When the messages of the
different users are independent from each other, the capacity region is known, see
e.g. [4]. However, in a sensor network situation, the messages of the sensors may
typically be correlated since the underlying signals are. The capacity region for
the case where the messages are potentially correlated is only partially known [3].

Ezample 8 (Gaussian case). For the Gaussian sensor network of Example[Tl the
goal is to determine the capacity region for the additive white Gaussian multiple-
access channel with inputs X1, Xo,..., X3s and output Y. When the messages
may be dependent, the maximum sum rate R;,; can be upper bounded by

1 M2p
Ryt < slogg ([ 14+ —— - (13)
2 o

This bound follows by allowing arbitrary dependence between the inputs of the
multi-access channel. However, in the Gaussian sensor network of Example [I]
since the encoders are separate, the messages cannot be arbitrarily dependent;
rather, their dependence follows from the source structure. For this reason, the
bound should not be expected to be tight, but rather too optimistic.

3.3 Achievable Cost-Distortion Trade-Offs

For separate source and channel coding, a cost-distortion trade-off (I, A) is
achievable only if

R(A)NC(I) # 0. (14)

This follows immediately from the definition of the rate-distortion and the
capacity-cost regions. In other words, if the two regions do not intersect, it is
not possible to achieve the trade-off (I', A) by a strategy composed of optimal
source compression followed by capacity-approaching channel coding.

Remark 1. Condition () is only achievable if each sensor is allowed to observe
the entire sequence U;' before deciding what X}’ to transmit.

Ezample 4 (Gaussian case). For the Gaussian sensor network of Example[l] the
optimum power-distortion trade-offs that can be achieved by separate source
and channel coding can be determined by combining the results of Examples
and [3 For a fixed total sensor power M P, the smallest achievable distortion is
bounded by inserting the upper bound to the total rate R;,; on the multi-access
channel (from Equation (I3))) in the minimum distortion for the CEO problem
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(Equation (12))). Hence, the distortion achieved by the separation-based scheme
behaves at best like
iy
Y
log, (1 + ]‘i L )
z

when the number of sensors M is large. Here, 0%, is the variance of the obser-
vation noise and also the variance of the noise in the multi-access channel, and
M P is the total sensor transmit power.

Dyep(MP) > (15)

4 Joint Source-Channel Coding

Since it is well-known that the separation-based coding paradigm does not lead
to optimal system designs in general, we now develop an alternative coding
paradigm for our sensor network topology, illustrated in Figure [l This is moti-
vated by a particular feature of the Gaussian example discussed above. Therefore,
we first study an alternative coding scheme for the Gaussian case that outper-
forms separation-based strategies considerably. Thereafter, we extend this insight
into a general coding paradigm, using an approach reminiscent of [SlJ6l7].

4.1 The Gaussian Case

An Achievable Distortion. For the point-to-point transmission of an iid
Gaussian source across an additive white Gaussian channel, it is well-known
that uncoded transmission is optimal [10], see also [BJ6l7]. For the Gaussian
example illustrated in Figure 2] and defined in Example [ it is therefore intu-
itive to study the strategy of uncoded forwarding by the sensors. The following
power-distortion trade-off is achieved by this strategy.

Theorem 1. For the Gaussian sensor network defined in Example [1 with
source variance 0%, observation moise variance O"%V, and total transmit power
at the sensors of M P, the following distortion is achievable:

0'20'2
Dy(MP) = T (16)
M+ (0% [o3) (02 +02,)/P7S +ow

Proof. Suppose the sensors apply uncoded transmission. More precisely, sensor
k scales Ui [n] to meet its power constraint P,

Xy[n] = ,/Ugfggvvk[ny (17)

Recalling that Uy[n] = S[n|+Wy[n], the received signal for the uncoded strategy

P M
Y[l = (MS[n] +van]> + Z[n). (18)
S w k=1
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It remains to specify the decoder. Since the encoding operation is memoryless,
the optimum decoder (or estimator) G is also memoryless: there is no benefit
from considering multiple symbols jointly. The optimum decoder G is then sim-
ply the minimum mean-squared error estimator of S[n|, given by the standard
formula:

BISY] ) _ Tien Mo
E[Y? B (M?0% + Mogy,) + 0%,

S[n] = Y([n]. (19)

a +o’

The resulting distortion is evaluates to
2

o2 +0’ ———M O’S

PJ‘QV(M2 S+M0'W)—|—O'%

Di(MP) =c% —

_ oioly 0
- M?2 2 +02 :
M+ (0% [o2,)(02+02,)/P7S w

O
The main result of Theorem![l follows from the comparison of (I6) with (IH): The
separation-based scheme is clearly suboptimal in our example. More precisely,
the decreasing behavior of the distortion as a function of the number of sensors
M is fundamentally different for the two schemes: The separation-based scheme
achieves at best a decreasing behavior of 1/log M, while Theorem [ establishes
an achievable decreasing behavior of 1/M.

Asymptotic Optimality. In this paragraph, we first derive a lower bound to
the minimum achievable distortion D,,;, (M P) at total sensor power M P. We
then establish that this lower bound coincides with Dy (M P) in the limit as the
number of sensors becomes large. This proves that asymptotically in M, the
strategy of Theorem [I] performs optimally.

The lower bound is found by analyzing the system in which the sensors are
ideally linked to the destination. This system can be interpreted as a point-to-
point multi-antenna system, where the sender has one antenna with output S
and the receiver has M antennas with inputs Uy, Us, ..., Ups. The minimum dis-
tortion achievable in this system cannot be larger than the minimum distortion
achievable in our sensor network. The lower bound can stated as follows:

Theorem 2. For the Gaussian sensor network defined in Example [1 with
source variance 0?9, observation noise variance 0"2;[/, and total transmit power at
the sensors of M P, the minimum achievable distortion satisfies D yin(MP) >
Dlower(MP)7 where

050ty
Dipyer(MP) = —5—"——. 21
! ( ) M o?g + 0‘2,‘, (21)
Proof. The lower bound is found by idealization: The receiver is ideally linked
to the sensors, and we suppose that the physical phenomenon S[n] itself uses
optimal coding.
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The smallest distortion achievable in this idealized system obviously cannot
be larger than the smallest distortion achievable in the original system.

The idealized system is an ergodic point-to-point source-channel communi-
cation system; the separation theorem applies. The capacity of the idealized
channel is simply the capacity of the multi-antenna channel with one transmit
antenna (the source itself) and M receive antennae (the M sensors, now ideally
linked to the destination). The capacity of such a system is well-known:

1 Mo?
C=-log, ([1+ —==2). 22
5ioes (1+ 52 (22)
By the separation theorem, the minimum (mean-squared error) distortion that
can be achieved for a Gaussian source across this channel is

agoiy
Dy (C) = ma (23)

where Dar(+) denotes the distortion-rate function of the iid Gaussian source of
variance o%. This concludes the proof. o

In the limit as M — oo, the upper and lower bounds of this paper coincide,
establishing the following result on the optimal power-distortion trade-off in the
Gaussian sensor network of Example [l

Theorem 3. For the Gaussian sensor network defined in FExample [I with
source variance afg, observation noise variance 0"2,1/, and a total transmit power
at the sensors of M P,

. Dipwer(MP)
lim 20— = 24
M3 Dy (MP) ’ (24)
hence,
02 0'2
Dppin(MP) = —5W 25
in( ) Mo% + o3, (25)

and the minimum is achieved when the sensors use a simple scaling, X[n] =
vkUk[n], and the final destination uses X[n] = vY[n].

Proof. The theorem follows directly by combining Theorems [l and a

Remark 2. In the limiting case as M — oo, the minimum distortion D(M P)
does not depend on P and ¢%. Note however that the result does depend on
the fact that the total available power at the sensor increases linearly with the
number of sensors M. This can be extended to cases where the total sensor
power behaves according to a different law along the lines of the analysis in [8]
9].
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Remark 3 (real-time processing). There is no causality or real-time constraint
on the encoding and decoding functions in the setup of Example[T]; in fact, the
scheme discussed in Section [3]does not satisfy any such constraint. In contrast to
this, Theorem[3 shows that the globally optimum trade-off (in the limit M — o)
can be achieved by a causal and real-time system in the sense that Xj[n] can be
generated without waiting for future source outputs Ug[n + j], j = 1,2,....

The Gaussian example can be extended using concepts similar to [BI6//7]. This
is the issue of the next section.

4.2 Generalization of the Gaussian Case
The Gaussian case discussed above can be summarized by two key insights:

1. Uncoded transmission (at the sensors) considerably outperforms any ap-
proach based on the separation paradigm (even for a relatively small number
of sensors M).

2. In the limit as M — oo, uncoded transmission performs optimally.

In this section, both of these features are extended beyond the Gaussian case.
We first establish a general sufficient condition for a given sensor coding system
(F1, Fa, ..., Fy, G) to perform optimally, thus extending the second feature of
the Gaussian case. Thereafter, we extend the first feature of the Gaussian case by
suggesting a general coding paradigm as an alternative to the separation-based
coding paradigm. We show that for a class of sensor networks that includes the
Gaussian case, our coding paradigm, while not necessarily optimal, considerably
outperforms the separation-based paradigm.

Optimal Performance. We now establish a general sufficient condition for the
optimality of a sensor network with a topology according to Figure[]. It can be
stated as follows.

Theorem 4. If in the sensor network of Figureld, the code (Fy, Fa,...,Fy, G)
satisfies the cost constraint Ep(X1, Xo,..., Xym) < I, and

d(s, 8) = —calogy P(s]8) + do(s) (26)
I(S;U1,Us, ..., Un) = I(S;8), (27)

then it performs optimally.

Proof. The proof works by idealizing the sensor network of Figure [ by a
point-to-point communication system. In particular, we consider the commu-
nication system where the final destination has direct access to the observations
Ui,...,Up. If the code (Fy, Fy, . .., Fiyy, G) achieves optimal performance in this
point-to-point communication system, then it must achieve optimal performance
in the original sensor network of Figure [II
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The conditions for optimality for the idealized point-to-point source-channel
communication system can be stated as follows (see Appendix [A] and [516/7]):
The point-to-point communication system is optimal if

p(S) = ClD(pU17U2,---,UM|S||pU1,U2 ----- UM) =+ po (28)
d(s,§) = —cglogy P(s]8) + do(s) (29)

where D(:||-) denotes the Kullback-Leibler distance, see e.g. [4]. If the sensor
network satisfies these conditions, it must perform optimally. However, in our
problem, there is no cost constraint on the source signal S. In other words,
p(s) can always be chosen appropriately. Hence, the condition on p(s) can be
removed, which completes the proof. a

The conditions of Theorem Ml are sufficient for optimality, but they are only
achievable for a particular class of sensor networks; in the general case of Figure
[ they cannot be met. The goal of the following discussion is to illustrate the
special class for which the conditions of Theorem [ can be satisfied. We first
illustrate these two issues for the Gaussian example studied above.

Ezample 5 (Gaussian case). Let us study conditions (26]) and (21)) for the Gaus-
sian example. Consider first condition (26). Since S[n] and S[n] are jointly Gaus-
sian, we can write S[n] in terms of S[n| as follows:

E {Ss}
E|5]

S[n] = S[n] + W'n], (31)

where W’[n] is additive white Gaussian noise. ASinceAS” is the minimum mean-
squared error estimate of S, we find that E[SS]/E[S?] = 1, and hence S[n] =

S[n] + W'[n]. This immediately reveals that P(s|3) is given by the distribution
of W'[n]. Since it is Gaussian, we find

— log, P(s|3) = di(s — 8)* + do(s), (32)

i.e., mean-squared error distortion. The variance of the noise W'[n] is irrelevant
for this argument; it only influences the constant d;. This means that even for
finite M, condition (26) is satisfied by the Gaussian example.

For condition (27)) in our Gaussian example, equality is only achieved asymp-
totically as the number of sensors tends to infinity. We now analyze this in detail.
From (), S can be rewritten as

—LMo? M 2, 2

P 02402 +o

Sln] = SR MS[n) + > Wiln] + 1/ 22T Z00) |
] P _(M?0% + Mo2,) + o ( nl + - elnl + p 2

2 2
ogtoy,

It follows immediately that

I(S; Uy, Us, ..., Uy) = 1(S;8,Uy, Us, ..., Upy)
M
= I(8;9) + > _I(S;UklS,Ur,...,Us1). (33)
k=1
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The next goal is to determine the first term in the sum, i.e., I(S; U1|85). This
term is easily calculated by first replacing S by a scaled version S =MS [n] +
SV Wiln] + /(02 + 02,)/PZ[n]. Using the shorthand

U%—I—U%Vﬁ (34)
P oy’

8=
we can evaluate
I(S;U,|8) = I(S;U,|8")
(M + B)ogo, (0% + o ) (MP0% + (M + B)ayy,) — (Mo + ofy)?)
(M + 8 = 1)ogoy (M20% + (M + B)ogy)
(M + B)ogopy (M? = M + B)agay, + May,)

1
= §log

1
= 38 T ¥ B = 1)oZol (MP0% + (M + A%,
1o MP0E M8~ 1)03 + ofy) + M((8 = 1)0% + fofy) + ok
MSJs +M2((B = 1)og +ofy) + M(26 — Dogy, + B(8 — 1oy,
and hence, as M — oo,
1(S;U4|8) — 0. (36)

Note that this convergence is very rapid: the coefficients of both M?3 and M? are
the same in the numerator and the denominator. A similar argument establishes
that

I(S; Ukl S, U1, Us, ..., Up—1) = 0, (37)
as M — oo, hence

I(S;U1,Us, ..., Un) — 1(S; ), (38)
hence condition (27) is satisfied in the limit as M — oo.

This short argument immediately reveals a class of extensions of the Gaussian
example for which the conditions of Theorem [ are also achievable, as follows:

Ezample 6 (Simple extension of Gaussian case). Suppose that the source S in
Figure[2 is still Gaussian, that the observation noises Wy, satisfy

M
> Wi~ N(0, Mogy), (39)

k=1

i.e., the sum of the observation noises is Gaussian and its variance grows linearly
in the number of sensors M, and finally that the variance of W (see Figure )
vanishes in comparison to the signal. Then, the same asymptotic behavior is
observed.

Remark 4. This example is particularly interesting because only the sum of the
observation noises has to be Gaussian: by the central limit theorem, this con-
dition is satisfied in many practical cases as the number of sensors becomes
large.
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General Coding Paradigm. In the Gaussian case, the performance of the
scheme of Theorem [I] cannot be argued to be optimal. Nevertheless, it is con-
siderably superior to the performance of separate source and channel coding: In
the latter, the distortion (as a function of the number of sensors) only decays
like 1/log M, while in the former, it decays like 1/M. Hence, even at relatively
small M, the joint source-channel coding approach of Theorem [1] outperforms
the separate source and channel coding.

This behavior can also be observed in terms of the conditions of Theorem @t
For the Gaussian case, condition (28l), i.e.,

—logy P(s3) = di(s — 8)% + do(s), (40)

was shown to be satisfied (for any M), while condition (27)) was evaluated in

BB to be
I(S;U17U2a"'aUM)

A 1 M3c2 + M2 ...
=1(5;5)+ = log Os +

_— 41
2 Mi)’agy—&—M?..Jr (41)

This converges rapidly as M tends to infinity, and condition (27) is asymptoti-
cally satisfied.

These observations propose an alternative coding paradigm for sensor
networks with a topology according to Figure [[ namely to code in such a way
as to approach the conditions of Theorem [4] as closely as possible:

Coding Paradigm. The goal of the coding scheme for sensor mnetworks
with a topology according to Figure[dl is to approach

d(s,8) = —calogy P(s]8) + do(s) (42)
I(S;U1,Us,...,.Un) = I(S;8), (43)

as closely as possible.

Remark 5. Note that neither the above coding paradigm nor the separation-
based coding paradigm can be shown to lead to optimal performance in general
sensor networks with a topology according to Figure[ll Recall that the optimal
performance for the general case of Figure[l is not known to date.

In our coding paradigm, the precise meaning of approaching the formulae
of Theorem [ “as closely as possible” is currently under investigation. For the
Gaussian case studied in this paper, one such approaching behavior is achieved
by the strategy of Theorem [I] as shown in Equation (#I).

5 Communication between the Sensors

In the sensor network topology of Figure[ll, the sensors can only communicate to
the destination; they cannot communicate with each other. An interesting vari-
ation on the consideration of this paper is to allow the sensors to communicate
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with each other. Our arguments can be used to obtain directly the following
statement:

Theorem 5 (communication between the sensors). Consider the sensor
network of Figure [, but allow now for communication between the sensors. If

in this revised sensor network, the code (Fi,Fs, ..., Fy,G) satisfies the cost
constraint Ep(Xq1, Xo,..., Xn) < T, and

d(s,8) = —czlogy P(s]5) + do(s) (44)

I(S;UDUQ?""U]W):I(S;S)7 (45)

then it performs optimally.

Proof. This follows again by the idealization used to prove Theorem M} This
idealization does include communication between the sensors. O

Remark 6. For the general case involving communication between the sensors,
we cannot compare to the separation-based code design: Its performance it un-
known to date. However, it must be expected to perform suboptimally, in line
with the arguments discussed above.

Remark 7. While in general, the possibility of the sensors to communicate with
each other may be expected to enhance the performance, Theorem [H establishes
that for all sensor networks that satisfy Theorem M, communication between
the sensors does not improve the performance. This includes in particular our
Gaussian example (Example [I)). To emphasize the point, suppose that in the
Gaussian example, each sensor is linked to every other sensor by an ideal cable.
Then, not only can the sensors apply a much more efficient compression, but
they can also act like a multiple-antenna transmitter, thus harvesting gains in
capacity. Do we get a better performance than without the ideal cables between
the sensors? Theorem Blestablishes that the answer is negative (asymptotically as
the number of sensors M — 00): The uncoded transmission scheme of Theorem
[[] achieves just the same performance. In other words, in this case, there is no
penalty for the fact that the sensors are distributed, rather than joint.

6 Conclusions

In this paper, we analyzed a particular sensor network topology. We first derived
the performance of a coding scheme designed according to the source-channel
separation principle. For the considered Gaussian example, for instance, it was
shown that the distortion decays like 1/log M, where M is the total number
of sensors. Thereafter, we considered joint source-channel coding. The optimal
performance and coding scheme is not known in general. We proposed an alter-
native coding paradigm and derived a class of sensor networks for which codes
designed according to our paradigm achieve optimal performance. For the con-
sidered Gaussian example, it was shown that the distortion for a code according
to our paradigm decays like 1/M, i.e., considerably better than the separation-
based scheme.
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Review: Point-to-Point Source-Channel
Communication

In this section, we provide a brief review of the information-theoretic results for
the point-to-point source-channel communication system, illustrated in Figure
Bl The source is defined by a source distribution Pg(s) and a distortion measure

d(s,

5). The channel is defined by a conditional distribution Py|x(y|z) and an

input cost function p(x). For the purpose of this brief review, we suppose that
the encoder F' maps a sequence of n source symbols onto a sequence of n chan-

nel

input symbols. We also suppose that the decoder is synchronized with the

encoder, and maps a sequence of n channel output symbols onto a sequence of
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S X Y S
Source F Channel G Destination

Fig. 3. The general point-to-point source-channel communication problem.

n source reconstruction symbols. The goal of the code (F,G) is to produce a
minimum distortion,

A=Ed (S", S”) : (46)
using, simultaneously, a minimum power (or more generally, cost) on the channel,
I'=Ep(X"). (47)

The key problem of source-channel communication is to determine the opti-
mal cost-distortion pairs (I, A). We consider this problem in the information-
theoretic sense, i.e., we are interested in the optimum irrespective of the coding
complexity and delay.

Shannon’s separation theorem determines the optimal trade-off between cost
and distortion by the condition

R(A) = C(D). (48)

For a more detailed treatment, see e.g. [B) Ch. 1]. By the operational meaning
of the rate-distortion and capacity-cost function, this simultaneously furnishes a
coding paradigm, i.e., a way to implement the optimal coding (F, G). Hence, the
communication system is optimal if it satisfies a rate-matching condition: the
minimum rate for the source compression (the rate-distortion function) must be
equal to the maximum rate for the channel code (the capacity-cost function).

Recently, an alternative perspective has been presented [5J6//7]. The optimal
trade-off satisfies

p(x™) = c1D(Pynjgn|[Pyn) + po (49)
d(s",8") = —c2 108y Pgugn + do(s") (50)
I(8™;8™) = I(X™;Y™), (51)

where ¢; > 0,c2 > 0 and po are constants, do(s) is an arbitrary function of
s, and D(+||) denotes the Kullback-Leibler distance, see e.g. [4]. Hence, the
communication system is optimal if it satisfies a measure-matching condition: the
probability measures of the source and the channel and the cost and distortion
measure must be matched in the right way by the coding system.

In this paper, we extend both these perspectives to the case of the con-
sidered sensor network. Previously, we have also applied our measure-matching
perspective to obtain capacity results for relay networks [9)8].
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