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Source-Channel Rate Allocation for
Progressive Transmission of Images

Aria Nosratinia, Member, IEEE, Jin Lu, Member, IEEE, and Behnaam Aazhang, Fellow, IEEE

Abstract—Progressive image transmission is difficult in the
presence of a noisy channel, mainly due to the propagation of
errors during the decoding of a progressive bitstream. Excellent
results for this problem are made possible through combined
source-channel coding, a method that matches the channel code
to the source operational rate distortion as well as channel
conditions. This paper focuses on the key component of combined
source-channel coding: rate allocation. We develop a parametric
methodology for rate allocation in progressive source-channel
coding. The key to this technique is an empirical model of decoded
bit-error rate as a function of the channel code rate. We inves-
tigate several scenarios. In the case of the memoryless channel,
we present closed-form expressions. For the fading channel and
channels with feedback, where closed-form results are elusive, our
analysis leads to low-complexity algorithms. The results presented
in this paper are applicable to any progressive source code, and
any family of channel codes.

Index Terms—Embedded coding, image compression, joint
source-channel coding, progressive transmission, rate allocation.

NOMENCLATURE

EEP Equal error protection.
UEP Unequal error protection.

Number of source bits in each packet.
Packet header length.

.
Channel code rate for packetunder UEP.
Length of channel packet, equal to .
Block error probability for packet .

, Code rate and packet length under EEP.
Block error probability under EEP.
Overall bit budget.
Total number of channel packets transmitted.
Crossover probability of binary symmetric channels
(BSC).
Residual distortion after packet.
Distortion.
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Source and channel model parameters.

Interarrival of successful packet receptions.
Arrival process of successful packets.
Channel state after state transitions.
Number of bits transmitted during state .

I. INTRODUCTION

A PROGRESSIVE bitstream can be decoded as it arrives,
providing a continually improving approximation to the

decoded signal. Progressive modes have been included, to var-
ious extents, in several image and video standards such as JPEG,
JPEG-2000, MPEG-2, and MPEG-4. However, progressive bit-
streams suffer from high sensitivity to channel errors due to
error propagation at the receiver. This sensitivity arises from
predictive coding and adaptive forms of variable-length coding,
where the meaning of subsequent bits depend on the decoding of
previous bits. Thus, a single bit error may render the remainder
of the bitstream useless.

Combined source-channel coding has emerged as an effec-
tive way to address this problem. In this method, the channel
code rate is carefully chosen to match the properties of source
coder as well as the conditions of the channel. Sherwood and
Zeger [1], [2] demonstrated a successful application of this prin-
ciple to progressive image transmission. They used the set par-
titioning in hierarchical trees (SPIHT) compression algorithm
of Said and Pearlman [3], combined with cyclic redundancy
check (CRC) codes to limit error propagation and rate-compat-
ible punctured convolutional (RCPC) codes [4] for error correc-
tion. Even though Sherwood and Zeger used pre-existing coding
methodologies, their careful construction improved on previ-
ously reported results by a large margin (see [1] for list of pre-
vious works).

Rate allocation is a pivotal component of combined source-
channel coding. To demonstrate, we use an experiment with a
system similar to [1] (Fig. 1). In this experiment, we fix the
channel bandwidth, thus the bit budget must be divided be-
tween the source bits and error protection. It is easy to see that
achieving the right balance is critical. Too many parity bits (to
the left of the peak) will leave insufficient bitrate to describe
the source, while too few parity bits (to the right of the peak)
will cause a catastrophic breakdown of decoding, due to uncor-
rected channel errors. The results reported in [1] correspond to
the peak in Fig. 1, but the calculation of rate allocation (location
of the peak) was left open for subsequent research.

Rate allocation for the source-channel problem has been ad-
dressed in several contexts. Qianet al. [5] proposed a gradient-
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Fig. 1. Source-channel rate allocation and end-to-end peak signal-to-noise
ratio (PSNR). Experiment on 512� 512 Lenna.

based optimization technique for bit allocation in wireless video
transmission. Chande and Farvardin [6] used dynamic program-
ming for progressive image transmission over noisy channels.
The dynamic programming approach was extended in [7] to
jointly optimize block length and channel code rate.

In this paper, we develop a parametric approach for the
progressive source-channel rate allocation problem. The key to
this work is an accurate empirical model of decoded bit-error
rate (BER) in terms of the channel code rate. This model-based
approach allows simplified expressions for the relationship of
the overall bitrate and distortion. Our parametric bit allocation
is generally less complex than comparable nonparametric
methods; thus, we believe one of the contributions of this
paper is to enable the practical implementation of progressive
source-channel coding. Our formulation of the problem is
applicable to any progressive source code and any family of
channel codes. For example, unlike [6], the use of punctured
codes is not strictly required in our approach, although it is
certainly possible (in fact, our examples use rate-compatible
punctured codes).

We consider four different classes of BSC: channels with and
without feedback, and with and without fading.

In the case of memoryless BSC without feedback, we use a
Lagrangian analysis to arrive at closed-form expressions for rate
allocation.

In the case of fading channels without feedback, the channel
state is unknown at the encoder, and progressive transmission
precludes the use of an interleaver. Under these restrictions, we
consider the pragmatic approach of allocating rate according
to the worst-case conditions in the channel. This may seem an
unglamorous solution, but interestingly, our simulations show
that this minimax approach is also near-optimal in terms ofav-
eragedistortion.

In the case of memoryless BSC with feedback, we find a
rate allocation defined by the minimum of a one-dimensional
(1-D) integral of a scalar variable. Although this in itself is not
a closed-form solution, its calculation via 1-D optimization is
much simpler than a nonparametric solution.

Finally, we consider the case of fading channels with feed-
back. In fading channels, automatic repeat request (ARQ) feed-

back is doubly useful: not only does it enable retransmission of
corrupted data, it also provides (partial) channel state informa-
tion for the encoder. We show that, through an approximation,
rate allocation in fading/ARQ channels can be solved via a sim-
plified set of 1-D optimizations over fading states.

In general, the presence of feedback changes the optimal rate
allocation, resulting in higher code rates for error-correcting
codes and smaller overall distortion. Simulations on memory-
less and fading channels show that in our framework, feedback
provides up to 1-dB improvement in PSNR.

A. Preliminaries

A typical setup for our problem is shown in Fig. 2. The pro-
gressive bitstream is characterized by its operational rate-distor-
tion curve. This curve is available at the encoder for each trans-
mitted image. The channel encoder is assumed to be capable
of generating a family of error-correcting codes with varying
rates. We do not assume that this family is rate compatible (em-
bedded). Given the source rate-distortion curve and the statis-
tical properties of the channel, we aim to determine the channel
coding rate that will give the best end-to-end image quality, ac-
cording to a distortion criterion.

In our examples throughout this paper, we use a popular
wavelet image compression algorithm known as SPIHT [3],
RCPC codes [4] for error correction, CRC error detection, and
list Viterbi decoding [9]. Note, however, that these codes serve
only as examples. The methodology of the paper is general and
applicable to any progressive source, and any family of channel
error-correcting codes.

As mentioned earlier, the progressive bitstream ceases to be
useful past the first unrecoverable error. In fact, the decoded
image quality will likelydecreaseafter a bit error, since the de-
coder will interpret the post-error bitstream incorrectly. There-
fore, roughly speaking, the task of a progressive transmission
system over a noisy channel is two-fold: to push back the lo-
cation of the first unrecoverable error as far as possible;1 and
ensure that this error is discovered at the decoder, so that the
decoding is stopped at that point. Rate allocation addresses the
former task. To achieve the latter, the source bitstream is divided
into packets, and each packet is equipped with error detection.

We consider the case of time-invariant as well as time-varying
rate allocation. Time-invariant allocation has the advantage of
simplicity, while time-varying rate allocation has better perfor-
mance. To ensure accurate decoding in the case of time-varying
rate allocation, the instantaneous rates must be transmitted to
the decoder as side information. The rate required for this over-
head is small; related details are discussed in Section II-B.

Strictly speaking, the motivation to push back the location
of the first error applies only to channels without feedback. In
a channel with feedback, error detection does not stop the de-
coding, but triggers a retransmission. This continues as long as
the bit budget is not exhausted and the delay is within a toler-
ance limit. We will address the case of channels with feedback
in Section III.

1To be precise, maximizing the average number of bits up to the first error
produces a near-optimal (but not optimal) value for distortion. This is due to the
curvature ofD(R).
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Fig. 2. Progressive source-channel coding system.

Fig. 3. Source and channel data packet structure.

II. CHANNELS WITHOUT FEEDBACK

A. Memoryless BSC

The packetization scheme is as follows. The progressive
source bitstream is divided into blocks of length, and each
source block is supplemented before channel coding (see
Fig. 3). The bits denoted “CRC” are error-detection parity
bits. Also, whenever convolutional codes are used, the en-
coder/decoder memory must be flushed at the end of each
block, requiring a number of zeros to be inserted. The total
number of bits spent for CRC and zero padding is denoted.
The total length of the block before error-correction coding is

.
The channel code rate for theth block is denoted by . The

channel code maps each source block of lengthto a channel
packet of length , so that the th channel packet length is

.
In a memoryless BSC, we denote the crossover probability

(channel BER) by and the block-error rate by . As is cus-
tomary, is defined as the probability of at least one bit error in
the th block after decoding. Given that is fixed, the channel
code rate is inversely proportional to the . Thus, the block-
error rate is determined by and . We assume a log-affine
model for the relationship of the probability of block errors and
the length of the channel packets, depending on the value of,
i.e.,

(1)

where and are parameters acquired through offline simu-
lations and stored in a lookup table at the encoder. Thus, the
calculation of , has no bearing on the computational com-
plexity of the encoder. Fig. 4 illustrates the match between the

Fig. 4. Accuracy of logarithmic model for block-error rates. Error rates shown
in log scale.

actual and model-based values for the RCPC codes used in our
experiments.

After successfully decoding all blocks up to (and including)
block , the decoded signal will have a remaining distortion
that is denoted by . The average distortion can be written
in terms of the probability of error-free decoding of exactly
blocks (first decoding failure at block ). This probability is
equal to . Keeping in mind that the first and
last block need special treatment, the total expected distortion
for a memoryless channel is

(2)

where is the total number of channel blocks in the transmitted
stream. We need to minimize the distortion, subject to a con-
straint on the total bitrate, namely

s.t. (3)

where { } are obtained from the operational rate-distortion
curve of the source coder. These curves are easily available
when the images are encoded. Assumebits are available
for transmission of the image. This total bandwidth must
be divided between the source coder and the channel coder,
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Fig. 5. Structure of the header and data packets. Header indicates the transition points in channel rate.

leading to an optimization over { } and . We have assumed
that the number of source bits per packetis fixed, therefore

determines the overall tradeoff between source coding bits
and channel protection bits, and { } determines how the total
available channel protection is spread over different blocks. For
fixed , the solution lies at the equilibrium of the Lagrangian,
which yields the recursive expression

(4)

A proof is provided in the Appendix . The analysis presented
for memoryless channels is completely general, and can be
applied with any progressive source code and any family of
channel codes.

To summarize, the rate allocation algorithm for the memory-
less BSC is as follows:

1) Initialize , .
2) Initialize by allocating equally
across all packets.
3) Use (4) to compute new rate allocation:
update and get , where is the

iteration index, until .
4) Increment , go to Step 2, repeat
until in (2) no longer decreases.

B. Rate Overhead

In general, the solution for from the preceding analysis
is not constant over, i.e., different codes may be used for dif-
ferent packets.2 Therefore, the decoder must know the code used
for each packet. This requires the transmission of some over-
head information to the decoder. To limit the impact of this over-
head, we take advantage of the following facts: a) there are a fi-

2It is possible to restrict the analysis to a special case of equal error protection
and avoid the complication of the overhead. In that case, all preceding develop-
ments will repeat, except for replacingK withK.

nite number of channel codes; b) there are, at most,different
rates, one per each packet; and c) the channel error protection
is monotonically nonincreasing, so we only need to convey the
position of rate changes in the packet stream.

The header string starts with the number of blocks, followed
by the index of the first code rate, and the location of transitions
to higher rates (see Fig. 5). Transition’s are represented by
their distance from the end of the stream, motivated by the fact
that transitions are more dense at the end of the stream. Since

, the number of bits needed to specifyis no more
than . This overhead is protected strongly,
with error probability better than 10 . The header is relatively
small; even though it is strongly protected, its impact on overall
bit rate is negligible.

C. Numerical Results

In the following simulations, the system specified in Sec-
tion I-A is used. The “Lenna” image is transmitted through a
memoryless BSC with . We obtained block-error
rate probabilities and calculated the parametersand in (1).
This enables us to solve (3) using the iterative algorithm given
in Section II-A.

Fig. 6 shows the optimal error protection profile at
and transmission rate 0.2 bits per pixel (bpp).

Because channel codes are not available at arbitrary rates, the
optimal values for the rate must be quantized. The two staircase
characteristics represent rounding to the nearest rate and the
nearest lower rate. For performance comparison, we also
present the fixed-code rate solution (equal error protection).
The final end-to-end distortion of the system is tested through
Monte Carlo simulations, and presented in Table I. The impact
of overhead on bit rate is approximately 0.001 bpp (262 bits
for a 512 512 image).

Our experiments indicate up to 0.3-dB gain for a variable-rate
strategy, compared to fixed rate (see Table I). Most of this gain is
at lower transmission rates. Loosely speaking, the variable-rate
strategy will save some bitrate while maintaining the overall
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Fig. 6. Optimal code rate profile. Memoryless channel,e = 0:1,
B = 0:2 bpp. The two staircase curves represent rounding to the nearest rate
and the nearest lower rate.

TABLE I
AVERAGE PSNR OVER MEMORYLESSBSC WITH BER 0.1

Fig. 7. Gilbert–Elliott model.

level of error protection. The saved bits are then used for a better
description of the source. This effect is important primarily at
lower source bitrates, where the rate-distortion curve is steep,
so that additional bits make a big difference.

D. Fading Channels Without Feedback

In the case where no feedback is available, the encoder
cannot have any information about the instantaneous state of
the channel. At best, it can know about the statistics of the
states of the channel. These statistics, at the bit level, are often
characterized through the Gilbert–Elliott model [10]–[12]
(Fig. 7).

In this model, the channel alternates between two states
known as the “good” and “bad” states. It is assumed that we
know the BER of the channel in each state, as well as the
transition probabilities of the Markov model, but the encoder
does not know the actual time-varying state of the channel.
The prudent engineering choice in this situation is to design
for the worst case of the channel. We demonstrate that this
minimax approach is also near-optimal in theaveragesense for
cellular wireless channels where “good” and “bad” states are
very different.

Because the instantaneous variable BER is not known at the
encoder, we devise a parameter called the “design BER”. We

Fig. 8. Average PSNR (top) and variance of PSNR (bottom) for fading
channels under different design BER. Solid line is for Channel 1, where the
“bad” state dominates, dashed line for Channel 2, where the “good” state
dominates.

TABLE II
BER AND MARKOV PARAMETERS FORFADING CHANNEL

find the value for this that maximizes the performance of the
system. A detailed set of simulations for the fading channel are
presented in [13], where a variety of cases are considered. Here,
we present a summary of these simulation results in Fig. 8. The
channel conditions for these experiments are given in Table II.
We simulated two channels, both of which have 10
for the “good” state, and for the “bad” state. In
Channel 1, the “bad” state dominates, whereas in Channel 2,
the “good” state is dominant. Fig. 8 shows that in both cases,
the average distortion is optimal or near-optimal when the de-
sign BER is selected to be . Furthermore, the standard
deviation of the end-to-end PSNR, a measure of the reliability
of the individual transmission, is best when .

III. CHANNELS WITH FEEDBACK

The existence of feedback is helpful in two ways. First, the
feedback information can be used to retransmit a subset of the
erroneously received information, therefore, one can relax the
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forward error protection. This releases some portion of the bi-
trate, which can then be used to transmit more source symbols.
Second, the feedback information can be used to estimate the
state of the time-varying channel. Matching the channel code to
the current channel condition provides another way to improve
performance.

We saw earlier that rate allocation is critically important in
channels without feedback; the same is true for channels with
feedback. Prior work on the computation of rate for source and
channel coding includes empirical studies, e.g., [14]–[16], as
well as the more systematic works of [17]–[19]. The latter al-
gorithms use only the channel BER, and have no need for the
source parameters (aside from assuming embeddedness).

A. Memoryless Channels With Feedback

Our study of rate allocation in channels with feedback uses an
extension of our technique for channels without feedback. The
packetization for this case is similar to the feed-forward case.
The progressive source stream is divided into blocks of length,
there are header bits per packet, and after error protection, the
length of the channel packets is, which we assume to be fixed
(equal error protection for all packets). The goal is to minimize
the end-to-end distortion subject to a given overall bit budget.
At this point, we do not consider transmission delay.

In the binary symmetric channel, we denoteas the crossover
probability and as the channel code rate. Therefore,

. The channel block-error rate, , is a function of and
. Similar to (1), for a given crossover probability, the relation

between block-error rate and inverse of code rate has a log-affine
characteristic

(5)

where and are channel parameters that depend on.
In a feedback scheme, some of the packets going over the

channel are retransmissions due to channel errors. After
packets have been sent over the channel, the number of success-
fully received (unique) packets will be , whose distribution
depends on and . Because of independent channel errors,
the interarrival process of two successfully received packets
is independent and identically distributed (i.i.d.) with finite
variance, and the number of successfully received packets
is a counting process. Therefore, as , converges to
a Gaussian random variable [20]. Asymptotically, this process
has mean and variance ,
where is the error rate of channel packets andis the number
of transmitted packets, as demonstrated in the Appendix.

Now consider the case , where is the total number
of packets transmitted for one image over the channel. In the fol-
lowing, we use the notation for simplicity. We model
the operational distortion-rate characteristics of the source en-
coder with an exponential function

(6)

where and are constants, and . This approximation
is reasonable because we generally only need to match part of
the distortion-rate curve of an image. Experiments show that a
very good match can be achieved for a wide variety of images.

In adopting this approximation, it is also reassuring to know that
asymptotically, the distortion3 of a wide class of sources decays
exponentially with rate [21], [22].

Under this model, has a log-normal distribution, i.e.,

(7)

It is not difficult then to calculate the average end-to-end dis-
tortion

(8)

Therefore, under a given transmission rate and channel BER,
the optimal bit allocation problem for a BSC can be formulated
as

(9)

Note that in (8), and are related to through
(5), (20), and (21). Problem (9) can be solved numerically to
yield the optimal , the rate of the channel error-correction code.

The problem (9) does not admit a closed-form solution,
however, the cost function is merely a 1-D integral of a scalar
variable, whose minimization is much easier than the multidi-
mensional optimization problems arising from a nonparametric
treatment of the rate allocation problem.

B. Fading Channels With Feedback

We characterize the fading channel with the Gilbert–Elliott
model (Fig. 7). In each state, the channel is modeled as a BSC
with a fixed BER . For each state, the encoder can use a
(potentially) different code rate . In general, solving for
requires an optimization whose complexity grows as ,
where and are, respectively, the number of distinct channel
codes and distinct channel states. This optimization is prohibi-
tively expensive.

To perform the optimization, we make an approximation. We
assume that maximizing the number of successfully decoded
source bits (equivalently, throughput of the ARQ system) is ap-
proximately the same as minimizing the distortion. Because the
source bitstream is progressive, the more the decoded bits, the
smaller the distortion

(10)

This is equivalent to a local first-order (linear) Taylor approxi-
mation to .

Assuming is the interarrival process of packets (the
number of transmissions until the next successful packet recep-
tion), and is the average number of transmissions
per successful reception, we define a new parameter, ,
which we call the average effective transmission number. Con-
ditioned on the state of the channel, maximizing the number of
successfully received packets is equivalent to minimizing the
average transmission number. This result is demonstrated in
the Appendix.

3For distortion measures expressible as a power of Euclidean distance.
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Now it is possible to show the following decoupling result:
Suppose a code rate is designated for each channel state
in a fading channel, . Under slow fading,
the -dimensional joint optimization problem

is reduced to 1-D problems, each corresponding to one
channel state.A proof is given in the Appendix.

Our confidence in channel state estimation, and thus, the va-
lidity of decoupled optimization, is justified in the following.
When a channel packet is successfully decoded, the channel
state is estimated by computing the average BER within that
packet. Since the typical BER of the bad state in our examples
is around 0.1 or better, and the channel packet length is around
500–700, the channel state classification through BER sample
mean is sufficiently accurate. Simulations show that the prob-
ability of incorrect state classification via this method is below
0.02%. After classification, the computed code rate can be sent
back to the transmitter via the feedback channel.

If the receiver experiences an unrecoverable error in a packet,
the encoder and decoder assume a bad channel state for the next
transmission, regardless of the code used in the last transmis-
sion. This strategy is reasonable, since the probability of unsuc-
cessful reception in the good state is very small with either of
the two designated codes.

C. Feedback Scheme and Retransmission Delay

The effects of delay depend largely on the feedback strategy.
Two widely used schemes are stop-and-wait and selective repeat
[8]. The stop-and-wait scheme is easy to implement, however, it
has longer average delay before any one packet is successfully
decoded. Selective repeat is more efficient in terms of overall
delay when the transmission/propagation delay of packets is
dominant and there is no strict delay jitter constraint. However,
that is not true in progressive image transmissions.

In fact, in a progressive image transmission system with rel-
atively high channel BER, the stop-and-wait scheme is more
appropriate. Suppose that the encoding/decoding of one packet
takes much longer than the transmission and propagation of that
packet. This is a practical assumption. In the wireless channel
with feedback, for example, the decoding time easily dominates
the transmission time for each packet. Further assume that en-
coding is times faster than decoding. This is another prac-
tical assumption which is true when advanced error-protection
decoding, such as list decoding or turbo decoding, is in place.
At each unsuccessful reception, the decoder sends back a re-
peat-request signal (NAK). When selective repeat is used, the
th retransmission packet arrives packets after the corre-

sponding NAK was sent, where and
. Therefore, is on the order of .

Due to the progressive nature of the source code, each packet
needs to be decoded successfully before the decoder can start
working on subsequent packets, so the number of retransmis-
sions during each failure cannot be very large. In this case, the
characteristics of selective repeat strategy clearly do not fit our
purposes. Therefore, we use the stop-and-wait scheme in our

proposed system and evaluate the retransmission delay accord-
ingly.

If a channel realization incurs no unrecoverable packet error,
there will be no repeat requests and the overall delay is iden-
tical to that of a system without feedback. Since the existence
of feedback allows higher channel code rates, the encoding/de-
coding is actually faster than in a system without feedback, even
in the presence of occasional retransmission.

To verify this comment, we simulated the system specified
in Section I-A on a BSC with . The optimal code
rate for that system is 8/19, at which the block-error rate is

. Therefore, the probability of retransmission is
approximately 0.1, and the average number of transmissions for
successfully transmitting one channel packet is 1.1.

Although on average it takes 1.1 transmissions to success-
fully transmit one packet in feedback channels, the transmission
time is, in fact, less than that used in systems without feedback.
In wireless communication systems, where a mobile station is
usually within several miles of a base station, the encoding/de-
coding time is dominant, so the delay in transmission and propa-
gation can be ignored. In the previous example, the optimal code
rate for a ARQ system is 8/19. The average decoding time for
one packet is 0.8 of the time for decoding in a system without
feedback, whose optimal code rate is 8/28. Considering the av-
erage number of transmissions for each packet is 1.1, theoreti-
cally, the ARQ system will have smaller average delay than the
system without feedback.

Using list decoding [9] in fading channels further compli-
cates the delay analysis, because searching down into the trellis
path generates an unpredictable decoding delay. An exact delay
analysis in this case is difficult; instead, we present a compara-
tive study based on simulations. Assume we desire a feedback
system with average delays comparable to the optimal system
without feedback. Because the channel state estimation selects
the correct channel code with high probability, and the selected
trellis path is often the first one in the list, allowing a maximum
of 3–4 retransmissions per failure seems reasonable.

Thus, to maintain an average delay comparable to the scheme
without feedback, one can allow a certain number of retransmis-
sions, after which the connection is aborted. To see how restric-
tive such a termination policy will be, we compute the prob-
ability of repeated retransmissions. Simulations are performed
in two different channels (see Table III). The typical number of
retransmissions is zero, and each failure requires two retrans-
missions or less with probability better than 0.99. Therefore, if
the number of retransmissions is limited to two or less, the re-
sulting impact on the average end-to-end distortion is negligible.

D. Numerical Results

In all experiments, the system specified in Section I-A is used.
The source packet length, including CRC and zero padding, is

. The forward channel is either memoryless or fading,
and the feedback channel is assumed error free. The transmis-
sion system uses the stop-and-wait feedback scheme.

The first simulation is on a feedback memoryless BSC with
. The optimal channel code rate as a result of (9) is
. The PSNR of the received image is listed in Table IV.

In the same table, we also list the results of the system given in
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TABLE III
PROBABILITY OF RETRANSMISSION. e = 0:1, AND THE CHANNEL DENOTED

“FC” IS GIVEN UNDER “CHANNEL 1”

TABLE IV
MEMORYLESSCHANNEL: FEEDBACK GIVES UP TOONE DECIBEL IMPROVEMENT

TABLE V
PSNRIN FADING CHANNELS WITH AND WITHOUT FEEDBACK

Section II-C. The coding system performance in Table IV con-
firms our analysis and indicates a 0.7–1.0 dB PSNR improve-
ment.

The second simulation is performed on two feedback fading
channels. The Gilbert–Elliott model is used for the simulation
(see Fig. 7). The channel parameters are listed in Table II, where
Channel 2 is a slow fading channel compared to Channel 1. The
optimal code rate in this case is 8/9 for the good state and 8/22
for the bad state. The PSNR results are listed in Table V. Again,
for comparison, we also list the results of a comparable scheme
without feedback [13] in the same table. Results in Table V show
about 1-dB PSNR gain. Understandably, there is more gain in
the slow fading channel (Channel 2).

IV. DISCUSSION

This paper concentrates on the transmission of images over
noisy channels, but our methodology is not limited to images.
The identical approach may be used for progressive transmis-
sion of any source over a noisy channel, under an end-to-end
distortion criterion.

The success of the proposed algorithms depends critically on
a reliable knowledge of channel BERs. It is possible to increase
robustness to channel estimation via robust packetization [23],
[24], pseudo fixed-length entropy coding [25], or regrouping of
the source bits according to sensitivity to errors [26], as well
as a number of other approaches. In general, however, robust-
ness comes with a price; sometimes with the loss of progressive
transmission, and often with lower performance at the ideal op-
erating point. The desirability of this tradeoff depends largely on
the application. Finding suitable measures and tradeoffs for per-
formance versus robustness remains an important open problem
in joint source-channel coding.

V. CONCLUSION

This paper develops bitrate allocation algorithms for pro-
gressive joint source-channel coding of images. Our results
are applicable to any progressive source code, and any family
of channel codes. It is noteworthy that we do not require rate
compatibility of the channel codes. Our parametric approach is
constructed using a log-affine empirical model for the decoded
block-error rate probability of the channel codes. We used this
method to study image transmission in BSCs with and without
feedback, under both memoryless and fading conditions.

APPENDIX

A. Recursive Equation for

To solve (3), we need to write in terms of . Using (1),
we rewrite the constraint

(11)

Therefore, the Lagrangian of (3) is as shown in the equation at
the bottom of the page. Taking the derivative ofwith respect
to , we have
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Setting the derivative to zero yields (12), as shown at the bottom
of the page. Dividing both side of (12) by ( ) we will have
(13), as shown at the bottom of the page. Similarly, we get (14),
as shown at the bottom of the page. Inverting and subtracting
(13) from (14), we get

Hence

(15)

Notice that when , (12) becomes

which gives because and , .
Substituting this back into (15), it easily follows that

i.e., the optimal end-to-end block errors are nondecreasing, as
one would expect.

B. Mean and Variance of Arrival Process

Assuming a total of packets have been transmitted, and
denoting the mean and variance of interarrival intervalof two

successfully decoded channel packets asand , from [20]

(16)

(17)

Notice that

then it is easy to compute the mean as

(18)

Similarly, we can show that the second moment is

Hence

(19)

(12)

(13)

(14)
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Substituting (18) and (19) into (16) and (17) yields

(20)

(21)

C. Maximizing the Effective Transmission Number

We intend to show that maximizing the effective transmis-
sion number is equivalent to maximizing the information bits
successfully received. From the previous result, we know that if
a total of packets have been transmitted, the average number
of successfully transmitted channel packets is

Notice that

where is the source packet length (constant) andis the
channel code rate. Therefore

Since and are constants

(22)

We define as theeffective transmission numberof a suc-
cessfully transmitted channel packet.

D. Decoupling the Optimization for Fading Channels With
Feedback

Denote by the time index of the underlying (hidden)
Markov process of the Gilbert–Elliott model, and assume that
fading state lasts for a length
of channel bits. In each state, the channel maintains a
constant BER . We assume that the number of bits transmitted
in each state is much longer than the packet length, and
ignore the effects of a state change in the middle of a packet.
The total number of successfully received packets is. Using
a first-order approximation of

The number of packets successfully received during theth
fading period is denoted . Then

At the th fading interval, the fading state is with
. Assuming reliable channel estimation, this state will be

known at the receiver. The receiver will then choose a code rate
. From (22)

where is the state of the channel during fading period,
and the expected value is taken with respect to the randomness
of the channel, conditioned on the state of the channel.

(23)

where in (23) the first summation is over allsuch that
, and so on. The cost function consists of a number of non-

negative terms, each of which depend only on one optimization
variable. This becomes apparent by noting that the expressions

depend on channel realization but are not affected
by our choice of code rate. As a result, the optimization can be
decoupled.

REFERENCES

[1] P. G. Sherwood and K. Zeger, “Progressive image coding on noisy chan-
nels,” inProc. Data Compression Conf., Snowbird, UT, 1997, pp. 72–81.

[2] , “Progressive image coding for noisy channels,”IEEE Signal Pro-
cessing Lett., vol. 4, pp. 189–191, July 1997.

[3] A. Said and W. A. Pearlman, “A new, fast and efficient image codec
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst. Video Technol., vol. 6, pp. 243–250, June 1996.



196 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 2, FEBRUARY 2003

[4] J. Hagenauer, “Rate compatible punctured convolutional codes (RCPC)
and their applications,”IEEE Trans. Commun., vol. 36, pp. 389–400,
Apr. 1988.

[5] L. Qian, D. L. Jones, K. Ramchandran, and S. Appadwedula, “A general
joint source-channel matching method for wireless video transmission,”
in Proc. Data Compression Conf., Snowbird, UT, 1999, pp. 414–423.

[6] V. Chande and N. Farvardin, “Progressive transmission of images over
memoryless noisy channels,”IEEE J. Select. Areas Commun., vol. 18,
pp. 850–860, June 2000.

[7] P. G. Sherwood, X. Tian, and K. Zeger, “Channel code block length and
rate optimization for progressive image transmission,” inProc. Wireless
Communications and Networking Conf., New Orleans, LA, 1999, pp.
978–982.

[8] S. B. Wicker,Error Control Systems. Englewood Cliffs, NJ: Prentice-
Hall, 1995.

[9] N. Seshadri and C.-E. W. Sundberg, “List Viterbi decoding algorithms
with applications,” IEEE Trans. Commun., vol. 42, pp. 313–323,
Feb.–Apr. 1994.

[10] E. N. Gilbert, “Capacity of a burst-noise channel,”Bell Syst. Tech. J.,
vol. 39, pp. 1253–1265, Sept. 1960.

[11] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, pp. 1977–1997, Sept. 1963.

[12] H. Wang and N. Moayeri, “Finite-state Markov channel—A useful
model for radio communication channels,”IEEE Trans. Veh. Technol.,
vol. 44, pp. 163–171, Feb. 1995.

[13] J. Lu, A. Nosratinia, and B. Aazhang, “Progressive source-channel
coding of images over bursty error channels,” inProc. IEEE ICIP,
Chicago, IL, Oct. 1998, pp. 127–131.

[14] N. Matoba, Y. Kondo, and T. Tanaka, “Still image transmission using
ARQ over Rayleigh fading channels,”Electron. Lett., vol. 32, pp.
803–804, Apr. 1996.

[15] J.-C. Guey and A. S. Khayrallah, “A source-channel coding study of
ARQ for the transmission of images,” inProc. IEEE ISIT, Ulm, Ger-
many, 1997, p. 448.

[16] V. Kafedziski, “Joint source channel coding of images over frequency se-
lective fading channels with feedback using DCT and multicarrier block
pulse amplitude modulation,” inProc. Asilomar Conf. Signals, Systems
and Computers, 1988, pp. 37–41.

[17] V. Chande, H. Jafarkhani, and N. Farvardin, “Joint source-channel
coding of images for channels with feedback,” inProc. Information
Theory Workshop, San Diego, CA, Feb. 1998, pp. 50–51.

[18] V. Chande and N. Farvardin, “A dynamic programming approach to con-
strained feedback hybrid ARQ design,” inProc. IEEE ISIT, Cambridge,
MA, 1998, pp. 286–286.

[19] V. Chande, N. Farvardin, and H. Jafarkhani, “Image communication over
noisy channels with feedback,” inProc. IEEE ICIP, vol. 2, Kobe, Japan,
1999, pp. 540–544.

[20] R. G. Gallager,Discrete Stochastic Process. Boston, MA: Kluwer,
1995.

[21] P. Zador, “Asymptotic quantization error of continuous signals and the
quantization dimension,”IEEE Trans. Inform. Theory, vol. IT-28, pp.
139–149, Mar. 1982.

[22] K. Zegerand and A. Gersho, “Pseudo-gray coding,”IEEE Trans.
Commun., vol. 38, pp. 2147–2158, Dec. 1990.

[23] J. K. Rogers and P. C. Cosman, “Robust wavelet zerotree image com-
pression with fixed-length packetization,” inProc. Data Compression
Conf., Snowbird, UT, 1998, pp. 418–427.

[24] P. C. Cosman, J. K. Rogers, P. G. Sherwood, and K. Zeger, “Combined
forward error control and packetized zerotree wavelet encoding for
transmission of images over varying channels,”IEEE Trans. Image
Processing, vol. 9, pp. 982–993, June 2000.

[25] D. W. Redmill and N. G. Kingsbury, “The EREC: An error-resilient tech-
nique for coding variable length blocks of data,”IEEE Trans. Image Pro-
cessing, vol. 5, pp. 565–574, Apr. 1996.

[26] A. A. Alatan, M. Zhao, and A. N. Akansu, “Unequal error protection
of SPIHT-encoded image bit streams,”IEEE J. Select. Areas Commun.,
vol. 18, pp. 814–818, June 2000.

Aria Nosratinia (S’88–M’88) received the B.S.
degree from the University of Tehran, Tehran, Iran,
in 1988, the M.S. degree from the University of
Windsor, Windsor, ON, Canada, in 1991, both
in electrical engineering, and the Ph.D. degree
in electrical and computer engineering from the
University of Illinois at Urbana-Champaign, in 1996.

During the academic year 1995–1996, he was with
Princeton University, Princeton, NJ. From 1996 to
1999, he was a Visiting Professor and Faculty Fellow
at Rice University, Houston, TX. Since July 1999, he

has been on the faculty of the University of Texas at Dallas, where he is currently
an Associate Professor of Electrical Engineering. His research interests are in
the broad area of communication and information theory, particularly coding
and signal processing for the communication of multimedia signals.

Dr. Nosratinia was the recipient of the National Science Foundation Career
Award in 2000, and has twice received chapter awards for outstanding service to
the IEEE Signal Processing Society. He is currently Associate Editor for IEEE
TRANSACTIONS ONIMAGE PROCESSING.

Jin Lu (M’99) received the B.S. and M.S. degrees in
control engineering from Tsinghua University, Bei-
jing, China, in 1991 and 1995, respectively, and the
Ph.D. degree in electrical and computer engineering
from Rice University, Houston, TX, in 1999.

From 1999 to 2001, he was a Lead DSP Engineer
at Improv Systems Inc., Beverly, MA. In 2001, he
joined Sony Electronics Inc., San Jose, CA. His re-
search interests include communication theory, infor-
mation theory, digital signal processing architectures,
and rapid prototyping of advanced DSP algorithms.

Behnaam Aazhang (S’82–M’82–SM’91–F’99)
received the B.S. (with highest honors), M.S., and
Ph.D. degrees in electrical and computer engineering
from the University of Illinois at Urbana-Champaign
in 1981, 1983, and 1986, respectively.

From 1981 to 1985, he was a Research Assistant
in the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign. In August 1985, he
joined the faculty of Rice University, Houston, TX,
where he is now the J. S. Abercrombie Professor
in the Department of Electrical and Computer

Engineering, and the Director of the Center for Multimedia Communications.
He has been a Visiting Professor at IBM Federal Systems Company, Houston,
TX, the Laboratory for Communication Technology, Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland, the Telecommunications Laboratory,
University of Oulu, Oulu, Finland, and at the U.S. Air Force Phillips Laboratory,
Albuquerque, NM. His research interests are in the areas of communication
theory, information theory, and their applications with emphasis on multiple
access communications, cellular mobile radio communications, and optical
communication networks.

Dr. Aazhang is a member of Tau Beta Pi and Eta Kappa Nu, and is a recip-
ient of the Alcoa Foundation Award in 1993, the National Science Foundation
Engineering Initiation Award 1987–1989, and the IBM Graduate Fellowship
1984–1985. He is currently serving on the Houston, TX, Mayor’s Commission
on Cellular Towers. He has served as the Editor for Spread Spectrum Networks
of the IEEE TRANSACTIONS ONCOMMUNICATIONS 1993–1998, as the Treasurer
of IEEE Information Theory Society 1995–1998, the Technical Area Chair of
the 1997 Asilomar Conference, Monterey, CA, the Secretary of the Informa-
tion Theory Society 1990–1993, the Publications Chairman of the 1993 IEEE
International Symposium on Information Theory, San Antonio, TX, and as the
Co-Chair of the Technical Program Committee of the 2001 Multidimensional
and Mobile Communication (MDMC) Conference, Pori, Finland.


