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Source-Channel Rate Allocation for
Progressive Transmission of Images
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Abstract—Progressive image transmission is difficult in the «, (3, Source and channel model parameters.
presence of a noisy channel, mainly due to the propagation of v, 6
errors during the decoding of a progressive bitstream. Excellent Interarrival of successful packet receptions

results for this problem are made possible through combined val f ful K

source-channel coding, a method that matches the channel codeMZ Avrrival process of successtul pac ?_ts'

to the source operational rate distortion as well as channel S® Channel state after — 1 state transitions.

conditions. This paper focuses on the key component of combined B(*) Number of bits transmitted during sta$é*).

source-channel coding: rate allocation. We develop a parametric

methodology for rate allocation in progressive source-channel

coding. The key to this technique is an empirical model of decoded . INTRODUCTION

bit-error rate as a function of the channel code rate. We inves- ; . .

tigate several scenarios. In the case of the memoryless channeI,A PRO.G.RESSIVE. bItStream Ca’? be deCOd.ed QS It arrives,

we present closed-form expressions. For the fading channel and providing a continually improving approximation to the

channels with feedback, where closed-form results are elusive, our decoded signal. Progressive modes have been included, to var-

analysis leads to low-complexity algorithms. The results presented ious extents, in severalimage and video standards such as JPEG,

in this paper are applicable to any progressive source code, and JPEG-2000, MPEG-2, and MPEG-4. However, progressive bit-

any family of channel codes. streams suffer from high sensitivity to channel errors due to
Index Terms—Embedded coding, image compression, joint error propagation at the receiver. This sensitivity arises from

source-channel coding, progressive transmission, rate allocation. predictive coding and adaptive forms of variable-length coding,

where the meaning of subsequent bits depend on the decoding of

NOMENCLATURE previous bits. Thus, a single bit error may render the remainder
) of the bitstream useless.

EEP Equal error protectlon. Combined source-channel coding has emerged as an effec-
UEP Unequal error protection. tive way to address this problem. In this method, the channel
L Number of source bits in each packet. code rate is carefully chosen to match the properties of source
}LL’ Eacket header length. coder as well as the conditions of the channel. Sherwood and

+ h. Zeger [1], [2] demonstrated a successful application of this prin-
'n Channel code rate for packetunder l,JEP' ciple to progressive image transmission. They used the set par-
K Length of channel _p_ackezt, equal toL’ /.. titioning in hierarchical trees (SPIHT) compression algorithm
Pa Block error probability for packet. of Said and Pearlman [3], combined with cyclic redundancy
n K Code rate and packet length under EEP. check (CRC) codes to limit error propagation and rate-compat-
By Block error probability under EEP. ible punctured convolutional (RCPC) codes [4] for error correc-
B Overall bit budget. _ tion. Even though Sherwood and Zeger used pre-existing coding
N Total number of channel packets transmitted. methodologies, their careful construction improved on previ-
e

Crossover probability of binary symmetric channelg gy reported results by a large margin (see [1] for list of pre-

(BS.C)' . . vious works).
dn R,es'd“,a' distortion after packet Rate allocation is a pivotal component of combined source-
D Distortion. channel coding. To demonstrate, we use an experiment with a

system similar to [1] (Fig. 1). In this experiment, we fix the
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back is doubly useful: not only does it enable retransmission of
corrupted data, it also provides (partial) channel state informa-
tion for the encoder. We show that, through an approximation,
rate allocation in fading/ARQ channels can be solved via a sim-
plified set of 1-D optimizations over fading states.

In general, the presence of feedback changes the optimal rate
allocation, resulting in higher code rates for error-correcting
codes and smaller overall distortion. Simulations on memory-
less and fading channels show that in our framework, feedback
provides up to 1-dB improvement in PSNR.
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A. Preliminaries

% om0 esngrae T 018 08 A typical setup for our problem is shown in Fig. 2. The pro-
gressive bitstream is characterized by its operational rate-distor-
Fig. 1. Source-channel rate allocation and end-to-end peak signal-to-ndié¥ curve. This curve is available at the encoder for each trans-
ratio (PSNR). Experiment on 532512 Lenna. mitted image. The channel encoder is assumed to be capable
of generating a family of error-correcting codes with varying

based optimization technique for bit allocation in wireless vidd§t€S- We do not assume that this family is rate compatible (em-
transmission. Chande and Farvardin [6] used dynamic progra?ﬁ-dded)- Glyen the source rate—dls.tortlon curve and the statis-
ming for progressive image transmission over noisy channéi§@! properties of the channel, we aim to determine the channel
The dynamic programming approach was extended in [7] g&dlng rate th_at WI|! give _the_bestend-to-end image quality, ac-
jointly optimize block length and channel code rate. cording to a distortion criterion.

In this paper, we develop a parametric approach for the!" OUr €xamples throughout this paper, we use a popular

progressive source-channel rate allocation problem. The keyfg/€let image compression algorithm known as SPIHT [3],
5&CPC codes [4] for error correction, CRC error detection, and

this work is an accurate empirical model of decoded bit-err
P Viterbi decoding [9]. Note, however, that these codes serve

rate (BER) in terms of the channel code rate. This model-ba : h hadol fth i | and
approach allows simplified expressions for the relationship 8f'Y s examples. The methodology of the paper is general an

the overall bitrate and distortion. Our parametric bit alIoca\tioz?ﬂ[)pI'Cable to_any progressive source, and any family of channel
grror-correcting codes.

is generally less complex than comparable nonparamet ) i . )
As mentioned earlier, the progressive bitstream ceases to be

methods; thus, we believe one of the contributions of this ful he fi bl n f he decoded
paper is to enable the practical implementation of progressfx}@e ul past the first unrecoverable error. In 1act, the decode

source-channel coding. Our formulation of the problem {§129€ guality will likelydecreasefter a bit error, since the de-
applicable to any progressive source code and any family Qﬁder will interpret t.he post-error bitstream mcprrectly. Therg-
channel codes. For example, unlike [6], the use of puncturgbre’ roughly speaking, the task of a progressive transmission

codes is not strictly required in our approach, although it fystem over a noisy channel is two-fold: to push back the lo-

certainly possible (in fact, our examples use rate—compatikﬁ@t'on of the f|_rst unre_covm_erable error as far as possitier
punctured codes). ensure that this error is discovered at the decoder, so that the

W consider fourdiferentclasses of BSC: channels with aff T 2 SORE C e e e e e avided
without feedback, and with and without fading. ) '

. into packets, and each packet is equipped with error detection.
In the case of memoryless BSC without feedback, we use e consider the case of time-invariant as well as time-varying

Lagrangian analysis to arrive at closed-form expressions for rat . o . :
allc?catign Y P rate allocation. Time-invariant allocation has the advantage of

) ) simplicity, while time-varying rate allocation has better perfor-
In the case of fading channels without feedback, the Chamllﬁrnce. To ensure accurate decoding in the case of time-varying

statel '3 unl;nown atfthe.enc?der, arlle grog;\esswe trgn§m|s§1gtré allocation, the instantaneous rates must be transmitted to
preciudes the use of an interieaver. Under these restrictions, Y& e coder as side information. The rate required for this over-
consider the pragmatp _apprpach of aIIocatmg_ rate accordlﬂgad is small; related details are discussed in Section II-B.
to the worst-case qondltlon§ In the.channel. T.h's may seem arétrictly speaking, the motivation to push back the location
unglamorqu§ solution, but mterestmgly, our 5|m.ulat|ons Sho?ﬂ\f the first error applies only to channels without feedback. In
that th; minimax approach is also near-optimal in terma\ef 5 cnanne| with feedback, error detection does not stop the de-
eragedistortion. . ~coding, but triggers a retransmission. This continues as long as
In the case of memoryless BSC with feedback, we find@e pit hudget is not exhausted and the delay is within a toler-

rate allocation defined by the minimum of a one-dimensiongh ;e |imit. We will address the case of channels with feedback
(1-D) integral of a scalar variable. Although this in itself is nof, section I11.

a closed-form solution, its calculation via 1-D optimization is

much simpler than a nonparametric solution. _ o , ,
Finall ider th f fadi h | ith f 1To be precise, maximizing the average number of bits up to the first error
inally, we consider the case of fading channels with feegz,y,ces a near-optimal (but not optimal) value for distortion. This is due to the

back. In fading channels, automatic repeat request (ARQ) fe@dwature ofD(R).
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Fig. 2. Progressive source-channel coding system.
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Fig. 3. Source and channel data packet structure.

—4'3.5 2;6 217 218 2f9 1:‘3 3:1 3?2 3f3 3.4 35
r
Il. CHANNELS WITHOUT FEEDBACK

A. Memoryless BSC

The packetization scheme is as follows. The progressive
source hitstream is divided into blocks of length and each actual and model-based values for the RCPC codes used in our
source block is supplemented before channel coding (sexperiments.

Fig. 3). The bits denoted “CRC”" are error-detection parity After successfully decoding all blocks up to (and including)
bits. Also, whenever convolutional codes are used, the dmeck n, the decoded signal will have a remaining distortion
coder/decoder memory must be flushed at the end of edbht is denoted by,,. The average distortio® can be written
block, requiring a number of zeros to be inserted. The totial terms of the probability of error-free decoding of exaatly
number of bits spent for CRC and zero padding is denated blocks (first decoding failure at bloek+ 1). This probability is
The total length of the block before error-correction coding ®qual toP,,+1 [, (1 — P;). Keeping in mind that the first and

L' = L+ h. last block need special treatment, the total expected distortion

The channel code rate for th¢h block is denoted by,,. The for a memoryless channel is
channel code maps each source block of lerdgtto a channel N1 . N
Eclzat;;:ir?gthl(n, so that thenth channel packet length is D=dy P+ Z dp Prit H(I_Pi)‘l'dN H(I_Pi) @)

In a memoryless BSC, we denote the crossover probability ] ) )
(channel BER) by: and the block-error rate by,. As is cus- WhereN is the total num'b_er'ofchann'el qucks mthgtransmﬂted
tomary,P, is defined as the probability of at least one bit error jfitré@m. We need to minimize the distortion, subject to a con-
thenth block after decoding. Given that is fixed, the channel Straint on the total bitrate, namely
code rate is inversely proportional to th&,. Thus, the block- N_1 n N
error rate is determineq bi(,, ande. We.:';lssume a log-affine min  do Py + Z dp Prt1 H(1 —P)+dy H(1 - P)
model for the relationship of the probability of block errors andi<~ - 1 im1 el
the length of the channel packets, depending on the valuge of

~
ie. st. Y K,=B (3)
n=1
logP,=aK, +0 1)

Fig. 4. Accuracy of logarithmic model for block-error rates. Error rates shown
inlog,, scale.

n=1 =1 =1

where {d,,} are obtained from the operational rate-distortion
wherea and g are parameters acquired through offline simweurve of the source coder. These curves are easily available
lations and stored in a lookup table at the encoder. Thus, tlthen the images are encoded. Assumebits are available
calculation ofa, 8 has no bearing on the computational comfor transmission of the image. This total bandwidth must
plexity of the encoder. Fig. 4 illustrates the match between the divided between the source coder and the channel coder,
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Fig. 5. Structure of the header and data packets. Header indicates the transition points in channel rate.

leading to an optimization over{, } and N. We have assumed nite number of channel codes; b) there are, at mésjfferent

that the number of source bits per packeis fixed, therefore rates, one per each packet; and c) the channel error protection

N determines the overall tradeoff between source coding bissmonotonically nonincreasing, so we only need to convey the

and channel protection bits, an&{,} determines how the total position of rate changes in the packet stream.

available channel protection is spread over different blocks. ForThe header string starts with the number of blocks, followed

fixed N, the solution lies at the equilibrium of the Lagrangianhy the index of the first code rate, and the location of transitions

which yields the recursive expression to higher rates (see Fig. 5). Transiti@iis are represented by

i their distance from the end of the stream, motivated by the fact
(1-P). (&) that transitions are more dgnse at the end of thg stream. Since

L T; > T;_ 1, the number of bits needed to specifyis no more

) o ) B ) than [log,(Tena — T3)]. This overhead is protected strongly,

A proofis provided in the Appendix . The analysis presentsgith error probability better than 16. The header is relatively

for memoryless channels is completely general, and can §8,|: even though it is strongly protected, its impact on overall
applied with any progressive source code and any family g rate is negligible.

channel codes.
To summarize, the rate allocation algorithm for the memory-  Numerical Results
less BSC is as follows:

<Pj1+1 - P%) (=AP) = (dj — dj-1)

1=1

In the following simulations, the system specified in Sec-
1) Initialize N=1 D= oo tion I-A is used. The_: “Lenna” image is tran_smltted through a
memoryless BSC witBBER. = 0.1. We obtained block-error
across all packets rate probabilities and calculated the parameteasd3 in (1).
3) Use (42 to compute new rate allocation: Thls en_ables us to solve (3) using the iterative algorithm given
update Rk) and get Pfk“), where £k is the n ?ectlcgn ”r}A‘ h fimal tecti il ;
iteration index, until Z,‘(Pl(k+1) _ Pl(k))Q <. ig. shows the optimal error protection profile a
vt v BER = 0.1 and transmission rate 0.2 bits per pixel (bpp).
4) Increment N, go to Step 2, repeat . .
. . Because channel codes are not available at arbitrary rates, the
untii - D in (2) no longer decreases. ; . )
optimal values for the rate must be quantized. The two staircase
characteristics represent rounding to the nearest rate and the
B. Rate Overhead nearest lower rate. For performance comparison, we also
In general, the solution foK,, from the preceding analysispresent the fixed-code rate solution (equal error protection).
is not constant ovet, i.e., different codes may be used for dif-The final end-to-end distortion of the system is tested through
ferent packets.Therefore, the decoder must know the code usédonte Carlo simulations, and presented in Table I. The impact
for each packet. This requires the transmission of some ovef-overhead on bit rate is approximately 0.001 bpp (262 bits
head information to the decoder. To limit the impact of this ovefer a 512x 512 image).
head, we take advantage of the following facts: a) there are a fi-Our experiments indicate up to 0.3-dB gain for a variable-rate

) . ) . ) strategy, compared to fixed rate (see Table ). Most of this gain is
2t is possible to restrict the analysis to a special case of equal error protecti

[0) . . . .
and avoid the complication of the overhead. In that case, all preceding devel@;ﬂlower trqnsm|SS|on rates. Loosel)_’ speaklng_, 'Fhe variable-rate
ments will repeat, except for replacidg, with & . strategy will save some bitrate while maintaining the overall

2) Initialize K, by allocating B equally
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TABLE | T o
AVERAGE PSNR OVER MEMORYLESSBSC WITH BER 0.1 6
o
z
Transmission Rate 2 s
0.1 0.2 0.4 0.6 0.8 1.0 g ol
fixed 2533 27.64 3023 32.00 3320 3424
variable | 25.64 27.87 3045 32.11 33.32 3426 3r
ot
1 -
Soz 0.04

Fig. 8. Average PSNR (top) and variance of PSNR (bottom) for fading

channels under different design BER. Solid line is for Channel 1, where the
“bad” state dominates, dashed line for Channel 2, where the “good” state

Fig. 7. Gilbert-Elliott model. dominates.
. . TABLE 1l
level of error protection. The saved bits are then used for a better BER AND MARKOV PARAMETERS FORFADING CHANNEL
description of the source. This effect is important primarily at > 5
i -di i i €9 €b gb bg
lower sourqe_ bltrat(_es, where th.e ra}te distortion curve is steep, Chame T 1 0001042 1 0,005 0.0031
so that additional bits make a big difference. Channel2 | 0001 012 | 0.00125  0.005

D. Fading Channels Without Feedback

In the case where no feedback is available, the encoé'glsj the vajue fqrth&d that.maxmlzes the performance of the
S §tem. A detailed set of simulations for the fading channel are

cannot have any information about the instantaneous state . . .
the channel. At best, it can know about the statistics of tﬁ)éesented in [13], where a variety of cases are considered. Here,

' ' L . e present a summary of these simulation results in Fig. 8. The
states of the channel. These statistics, at the bit level, are o

A el conditions for th iment iven in Table I
characterized through the Gilbert—Elliott model [10]-[1 annet conditions for these expenments are given in 1apie fl.
(Fig. 7).

e simulated two channels, both of which h&BR = 103
In this model, the channel alternates between two statg%

the “good” state, andBER. = 0.12 for the “bad” state. In
known as the “good” and “bad” states. It is assumed that annel 1, the “bad” state dominates, whereas in Channel 2,
know the BER of the channel in each state, as well as t

vﬁﬁe “good” state is dominant. Fig. 8 shows that in both cases,
transition probabilities of the Markov model, but the encoder.

ee average distortion is optimal or near-optimal when the de-
does not know the actual time-varying state of the chann%‘é;\zaigsé‘? ;ie:;?ftctfe?j ;SBIGIRFL;rt;ee;HS]EE’;??hzterlgl?:t:ﬁit
The prudent engineering choice in this situation is to desi%? the individual transmission. is bést when= ¢ y
for the worst case of the channel. We demonstrate that this ' -
minimax approach is also near-optimal in ageragesense for
cellular wireless channels where “good” and “bad” states are
very different. The existence of feedback is helpful in two ways. First, the

Because the instantaneous variable BER is not known at feedback information can be used to retransmit a subset of the
encoder, we devise a parameter called the “design BgRVe erroneously received information, therefore, one can relax the

I1l. CHANNELS WITH FEEDBACK
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forward error protection. This releases some portion of the bbir adopting this approximation, it is also reassuring to know that
trate, which can then be used to transmit more source symbalsymptotically, the distortidnof a wide class of sources decays
Second, the feedback information can be used to estimate éxxponentially with rate [21], [22].
state of the time-varying channel. Matching the channel code toUnder this modelD (M) has a log-normal distribution, i.e.,
the current channel condition provides another way to improve
performance. - (d) = 1 <loge) L Gogd/r—8/rn)? 207 @)

We saw earlier that rate allocation is critically important in d\ |7l 2no

channels without feedback; the same is true for channels withI . cp .
. . tis not difficult then to calculate the average end-to-end dis-
feedback. Prior work on the computation of rate for source and

channel coding includes empirical studies, e.g., [14]-[16], 5%”'0”
WeI.I as the more systematic works of [17]-[19]. The latter al- (D] = loge 1 o—(log a/v=8/v=u)? /202 g ®)
gorithms use only the channel BER, and have no need for the vl o Yro

source parameters (aside from assuming embeddedness). ) o
Therefore, under a given transmission rate and channel BER

A. Memoryless Channels With Feedback the optimal bit allocation problem for a BSC can be formulated

Our study of rate allocation in channels with feedback uses an
extension of our technique for channels without feedback. The min E[D] ©)
packetization for this case is similar to the feed-forward case. T '
The progressive source stream is divided into blocks of lehgth ;
X ) Note that in (8)u = uy ando = o,y are related to through
there arew header bits per packet, and after error protection, tt@ ®)u = pas g oM g

. ) §), (20), and (21). Problem (9) can be solved numerically to
length of the channel packetsk§ which we assume to be fixed ield the optimal-, the rate of the channel error-correction code.

Eﬁqualde:ror paoé‘?‘;“ot'f‘ for ag_pa::rets)._ The goal :lsbt_c:t;nlmm; € The problem (9) does not admit a closed-form solution,
e end-to-end distortion subjectto a given overall bit budge however, the cost function is merely a 1-D integral of a scalar

At this point, we do not consider transmission delay. variable, whose minimization is much easier than the multidi-

Ir;)thbe_zl_?lnar{jsymnlﬁtnc ﬁhannlel, W; derlemir:]he c][(c));;esol/er mensional optimization problems arising from a nonparametric
probability andr as the channel code rate. Therelare, = .o 4iment of the rate allocation problem.

L' /r. The channel block-error rat#, is a function ofr and
e. Similar to (1), for a given crossover probabilitythe relation g Fading Channels With Feedback

between block-error rate and inverse of code rate has a log-affine ) ] ] ) ]
We characterize the fading channel with the Gilbert—Elliott

characteristic . .
o model (Fig. 7). In each statethe channel is modeled as a BSC
logP,=—+p (5) with a fixed BERe;. For each state, the encoder can use a
" (potentially) different code ratel”. In general, solving for(*)
wherea and3 are channel parameters that depend.on requires an optimization whose complexity grows(xscC|?),

In a feedback scheme, some of the packets going over thiere|C| and are, respectively, the number of distinct channel
channel are retransmissions due to channel errors. Aftercodes and distinct channel states. This optimization is prohibi-
packets have been sent over the channel, the number of sucaggsly expensive.
fully received (unique) packets will b&/,,, whose distribution  To perform the optimization, we make an approximation. We
depends ore andr. Because of independent channel errorassume that maximizing the number of successfully decoded
the interarrival process of two successfully received packesurce bits (equivalently, throughput of the ARQ system) is ap-
is independent and identically distributed (i.i.d.) with finitgproximately the same as minimizing the distortion. Because the
variance, and the number of successfully received padWgts source bitstream is progressive, the more the decoded bits, the
is a counting process. Therefore,ras—+ oo, M,, converges to smaller the distortion
a Gaussian random variable [20]. Asymptotically, this process
has meam, = n(1 — P,) and variancer2, = nP(1 — B,), min E[D(R)] ~ D(max E[R]). (10)
wherep, is the error rate of channel packets anid the number " "
of transmitted packets, as demonstrated in the Appendix.  This is equivalent to a local first-order (linear) Taylor approxi-

Now consider the case = N, whereN is the total number mation toD(R).
of packets transmitted for one image over the channel. In the fol-Assuming X, is the interarrival process of packets (the
lowing, we use the notatioll = M for simplicity. We model number of transmissions until the next successful packet recep-
the operational distortion-rate characteristics of the source éen), andu, = E[X] is the average number of transmissions

coder with an exponential function per successful reception, we define a new parametefr,
M4 which we call the average effective transmission number. Con-
D(M) = 107 (6) ditioned on the state of the channel, maximizing the number of

successfully received packets is equivalent to minimizing the

where~ andé are constants, ang < 0. This approximation o . . .
; verage transmission number. This result is demonstrated in
is reasonable because we generally only need to match pathloe Appendix

the distortion-rate curve of an image. Experiments show that a
very good match can be achieved for a wide variety of images3For distortion measures expressible as a power of Euclidean distance.
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Now it is possible to show the following decoupling resultproposed system and evaluate the retransmission delay accord-
Suppose a code rai¢?) is designated for each channel state ingly.
in a fading channel; € 7 = {1,2,...,I}. Under slow fading,  If a channel realization incurs no unrecoverable packet error,

the I-dimensional joint optimization problem there will be no repeat requests and the overall delay is iden-
tical to that of a system without feedback. Since the existence

min E[D] of feedback allows higher channel code rates, the encoding/de-

() () (D) coding is actually faster than in a system without feedback, even

) ) in the presence of occasional retransmission.
is reduced tol 1-D problems, each corresponding t0 one 4 yerify this comment, we simulated the system specified
channel stateA proof is given in the Appendix. in Section I-A on a BSC witBER = 0.1. The optimal code
~ Our confidence in channel state estimation, and thus, the Ygee for that system is 8/19, at which the block-error rate is
lidity of decoupled optlmlgat|on, is justified in the foIIowmg.Pb — 0.0992. Therefore, the probability of retransmission is
When a channel packet is successfully decoded, the changgl,yimately 0.1, and the average number of transmissions for
state is estimated by computing the average BER within thg{ccesstully transmitting one channel packet is 1.1.
packet. Since the typical BER of the bad state in our examplesyihough on average it takes 1.1 transmissions to success-
is around 0.1 or better, and the channel packet length is aroypfl; yransmit one packet in feedback channels, the transmission
500-700, the channel state classification through BER sam|e is in fact, less than that used in systems without feedback.
mean is sufficiently accurate. Simulations show that the profy; \yireless communication systems, where a mobile station is
ability of incorrect state classification via this method is belo‘{‘.{sually within several miles of a base station, the encoding/de-
0.02%. After classification, the computed code rate can be segjing time is dominant, so the delay in transmission and propa-
back to the transmitter via the feedback channel. gation can be ignored. In the previous example, the optimal code

If the receiver experiences an unrecoverable error in a packgte for ARQ system is 8/19. The average decoding time for
the encoder and decoder assume a bad channel state for theé"ﬁé“packet is 0.8 of the time for decoding in a system without
transmission, regardless of the code used in the last transr?é%‘dback, whose optimal code rate is 8/28. Considering the av-
sion. This strategy is reasonable, since the probability of unsygz ge number of transmissions for each packet is 1.1, theoreti-
cessful rece_ption in the good state is very small with either 85||y, the ARQ system will have smaller average delay than the
the two designated codes. system without feedback.

Using list decoding [9] in fading channels further compli-

C. Feedback Scheme and Retransmission Delay cates the delay analysis, because searching down into the trellis

The effects of delay depend largely on the feedback strateg@th generates an unpredictable decoding delay. An exact delay
Two widely used schemes are stop-and-wait and selective repg@alysis in this case is difficult; instead, we present a compara-
[8]. The stop-and-wait scheme is easy to implement, howevetite study based on simulations. Assume we desire a feedback
has longer average delay before any one packet is successfifigtem with average delays comparable to the optimal system
decoded. Selective repeat is more efficient in terms of overdithout feedback. Because the channel state estimation selects
delay when the transmission/propagation delay of packetsti€ correct channel code with high probability, and the selected
dominant and there is no strict delay jitter constraint. HowevdFellis path is often the first one in the list, allowing a maximum
that is not true in progressi\/e image transmissions. of 3—4 retransmissions per failure seems reasonable.

In fact, in a progressive image transmission system with rel- Thus, to maintain an average delay comparable to the scheme
atively high channel BER, the stop-and-wait scheme is moréthout feedback, one can allow a certain number of retransmis-
appropriate_ Suppose that the encoding/decoding of one paéﬂ@ﬂs, after which the connection is aborted. To see how restric-
takes much longer than the transmission and propagation of thg¢ such a termination policy will be, we compute the prob-
packet. This is a practical assumption. In the wireless chan@llity of repeated retransmissions. Simulations are performed
with feedback, for example, the decoding time easily dominattstwo different channels (see Table I1l). The typical number of
the transmission time for each packet. Further assume that ggiransmissions is zero, and each failure requires two retrans-
Coding isn times faster than decoding_ This is another pra@]iSSiOﬂS or less with probability better than 0.99. Therefore, if
tical assumption which is true when advanced error-protectiéite humber of retransmissions is limited to two or less, the re-
decoding, such as list decoding or turbo decoding, is in plag!ltingimpact on the average end-to-end distortion is negligible.
At each unsuccessful reception, the decoder sends back a re- )
peat-request signal (NAK). When selective repeat is used, e Numerical Results
ith retransmission packet arrives(:) packets after the corre- In all experiments, the system specified in Section I-Ais used.
sponding NAK was sent, where(1) = n andm(i + 1) = The source packet length, including CRC and zero padding, is
[m(i) + 1] X n,¥n > 1. Thereforem(i) is on the order ofi’. L' = 224. The forward channel is either memoryless or fading,
Due to the progressive nature of the source code, each paclw the feedback channel is assumed error free. The transmis-
needs to be decoded successfully before the decoder can start system uses the stop-and-wait feedback scheme.
working on subsequent packets, so the number of retransmisThe first simulation is on a feedback memoryless BSC with
sions during each failure cannot be very large. In this case, the= 0.1. The optimal channel code rate as a result of (9) is
characteristics of selective repeat strategy clearly do not fit our= 8/19. The PSNR of the received image is listed in Table IV.
purposes. Therefore, we use the stop-and-wait scheme in uthe same table, we also list the results of the system given in
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TABLE Il The success of the proposed algorithms depends critically on

PROBABILITY OF RETRANSMISSION ¢ = 0.1, AND THE CHANNEL DENOTED 5 raligble knowledge of channel BERS. It is possible to increase
FC” 1s GIVEN UNDER “CHANNEL 1 . . . o

robustness to channel estimation via robust packetization [23],

Retransmission number [24], pseudo fixed-length entropy coding [25], or regrouping of
0 1 2 23 the source bits according to sensitivity to errors [26], as well
BSC g; Egg 8:381(7) 8:822? 8882% 883(1)8 as a number Qf other_ approach_es. In general, however, robu_st-
1.0bpp | 0.9048 0.0860 0.0082 0.0009 ness comes with a price; sometimes with the loss of progressive
0.1bpp | 09029 0.0894 0.0070 0.0007 transmission, and often with lower performance at the ideal op-
FC 0.5bpp | 09123 0.0801 0.0069 0.0007 erating point. The desirability of this tradeoff depends largely on
1.0bpp | 09121 0.0804 0.0068 0.0006 the application. Finding suitable measures and tradeoffs for per-
formance versus robustness remains an important open problem
TABLE IV in joint source-channel coding.
MEMORYLESSCHANNEL: FEEDBACK GIVES UP TOONE DECIBEL IMPROVEMENT
Transmission Rate V. CONCLUSION

0.1 0.5 1.0 . . . .
ARQ [ 2635 32353 35.09 This paper develops bitrate allocation algorithms for pro-

FEC | 25.64 3133 3426 gressive joint source-channel coding of images. Our results
are applicable to any progressive source code, and any family
of channel codes. It is noteworthy that we do not require rate
compatibility of the channel codes. Our parametric approach is
constructed using a log-affine empirical model for the decoded

TABLE V
PSNRIN FADING CHANNELS WITH AND WITHOUT FEEDBACK

Oﬁﬁram““'osssi"“ Ratleo block-error rate probability of the channel codes. We used this
ChannelT ARQ 25:84 31:77 3457 method to study image transmission in BSCs with and without
FEC | 25.19 3089 33.77 feedback, under both memoryless and fading conditions.
Channel2 ARQ | 2599 31.86 34.66
FEC | 25.17 30.84 33.74 APPENDIX

Section II-C. The coding system performance in Table IV coft- Recursive Equation faf;
firms our analysis and indicates a 0.7-1.0 dB PSNR improve-To solve (3), we need to writ&,, in terms ofP,. Using (1),
ment. we rewrite the constraint

The second simulation is performed on two feedback fading
channels. The Gilbert—Elliott model is used for the simulation N
(see Fig. 7). The channel parameters are listed in Table Il, where H P, =P. (11)
Channel 2 is a slow fading channel compared to Channel 1. The el
optimal code rate in this case is 8/9 for the good state and 8/22
for the bad state. The PSNR results are listed in Table V. Again, . . . :
for comparison, we also list the results of a comparable Scheﬁ}erefore, the Lagrangian O_f (3)is as .ShO_W” n t_he equation at
without feedback [13] in the same table. Results in Table V sh £ bottom of the page. Taking the derivative/ovith respect
about 1-dB PSNR gain. Understandably, there is more gaintﬁ']Pj' we have
the slow fading channel (Channel 2).

aJ g
IV. DISCUSSION — =d;_ 1- P
8P] j—1 ];|1:( )
This paper concentrates on the transmission of images over N_LI . N
noisy channels, but our methodology is not limited to images. 4P P
4 . ) : — nPn 1—-PF)—dn 1—PF)+\—,
The identical approach may be used for progressive transmis- nz_: + Ll:[l( ) N }:[1( )+ P;
sion of any source over a noisy channel, under an end-to-end - i) i#
distortion criterion. j=1,2,...,N.
N-1 n N N
J=do Pr+ Y dpPor [J( = P) +dy [J(1 - P) + A <H P, - P)
n=1 i=1 i=1 n=1

j—1 n N-1 n N N
=do Py + > dnPryr [[1=P)+ > duPoyr [J(1 = P) +dy [J(1 = P) + A (H P, — P)
n=1 i=1 n=j i=1 i=1

n=1
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Setting the derivative to zero yields (12), as shown at the bott@uccessfully decoded channel packets.aando,., from [20]
of the page. Dividing both side of (12) by ¢ P;) we will have

(13), as shown at the bottom of the page. Similarly, we get (14), N
. ) po=— (16)
as shown at the bottom of the page. Inverting and subtracting e
(13) from (14), we get o =0,V Nu;%? 17)
<1 S Pj> (—AP) Notice that
Pj1 P; P(X =m)=P" 1-P
. (X =m) = P/ (1= )
=(dj(1 = Pj+1) H ) +d; P H (1- then it is easy to compute the mean as
=1 =1
J o
=(d; —d;j 1) [J(1 - P). e =E[X] = 3 mPP (1 - Py)
=1 m=1
Hence =(1-P) > mprt
m=1
1 1 ! 0 [
- — AP i 15 =(1—-PFPy)— P
(Pj+1 Pj>( )= £[1 (19 ( b)an <"12::1 b)
Notice that wherj = N, (12) b —(11’)3 :
otice that whery = N, (12) becomes = b op, \1— P,
1
—A\P = .
PN = 1-— Pb (18)

(dy—1 —dn) [Tisy (1= P)

which gives\ < 0 becausely 1 > dy and0 < P, Py < 1.

Similarly, we can show that the second moment is

Substituting this back into (15), it easily follows that > 1+ P
X2 — 2Pm—1 1_P) = 71)
. ! ;m v 2 (1-P)?
Piy1 2 P Vj
Hence
i.e., the optimal end-to-end block errors are nondecreasing, as
one would expect. o2 =B[X?] - (E[X])?
1+ P 1
B. Mean and Variance of Arrival Process = (1—Py)? - (1= P,)?
Assuming a total ofN packets have been transmitted, and . h 19
denoting the mean and variance of interarrival inteX/aif two T (1= P (19)
—AP
P, = (12)
j—1 N
djfl H;:l(l ) Z dnPri1 Hz 1( i>_dNHi:1(1_Pi>
i#j i#]
P; _ —AP (13)
T4 [T -P) - Z dpPri1 11y (1= P) = dy TI, (1 - P)
Pji —-\P
= 14
1—Pjn N-1 (14)

G (1 =P) = Y duPust I (1 - P) —dx TIY, (1 - P)

n=j+1
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Substituting (18) and (19) into (16) and (17) yields At the kth fading interval, the fading state B*) = ¢;, with

i, € Z. Assuming reliable channel estimation, this state will be

p=N(1- 1) (20) known at the receiver. The receiver will then choose a code rate
(ix)
o0 =\/Py(1 - P,)N. @1 " #). From (22)
Bk
E[M®] = L
C. Maximizing the Effective Transmission Number pt”

<

(i
We intend to show that maximizing the effective transmis- )

sion number is equivalent to maximizing the information bit&/here: = iy is the state of the channel during fading period

successfully received. From the previous result, we know thafifd the expected value is taken with respect to the randomness

atotal of N packets have been transmitted, the average num®é¢he channel, conditioned on the state of the channel.

of successfully transmitted channel packets is

N
p=—.
M
Notice that
B
N = 7

where L’ is the source packet length (constant) ans the
channel code rate. Therefore

w

E[M]=p=

=
53

SinceB and L’ are constants

argmax, E[M] = argmin,. Ha (22)
r

We definep, /r as theeffective transmission numbef a suc-
cessfully transmitted channel packet.

D. Decoupling the Optimization for Fading Channels With
Feedback

Denote byk the time index of the underlying (hidden)
Markov process of the Gilbert—Elliott model, and assume that
.,er} lasts for a length
of B%) channel bits. In each staigthe channel maintains a
constant BER;. We assume that the number of bits transmitted
in each state3®) is much longer than the packet length, and=— "3
ignore the effects of a state change in the middle of a packet.

fading stateS*) € S = {ey,es,..

The total number of successfully received packet®isUsing
a first-order approximation ab (M)

min E[D] ~ D(max E[M]).

T T

The number of packets successfully received during iitie
fading period is denoted/(*), Then

min E|D]
r(2) .. (D)

(1),

E[M]

max
r(1) r(2) (D)

E[M(l) + M 4. M(K)]

= max
r(1) r(2) (D)

= max
(1) #(2)

EMO)+ EIM®] + ... + E[MTO].

(D

min E[D]
P p(2), p(D)
&=, max {E[M(l)]-f-E[M(2)]_|_...+E[M(K)]}
1) gk @) gk
T T
R L D D i Tab D Dl v
LA o = s
S(k)=eq S(k)=ey
(D) gk
T
+...+ Z ﬁ L/
k Moz
S(k)=e,
(D) [ G B
= max _ —+_
r(1) r(2),. (D) M:(rl) - L ug) - L
S(k):el S(k)zez
) 10
T
ot em X
Ha ®
S(k)=e;
(1) 10
T
C}Iil(?)x W Z —L/ .....
Ha " g(k)—e,
) [0
T
max | 75 > -
T g(k)=¢,
1) (1)
T T
— ., — 23
Fol &

where in (23) the first summation is over alsuch thats*) =

e1, and so on. The cost function consists of a number of non-
negative terms, each of which depend only on one optimization
variable. This becomes apparent by noting that the expressions
S> B®) /L depend on channel realization but are not affected
by our choice of code rate. As a result, the optimization can be
decoupled.
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