
 74

SOURCE CODE AND TEXT PLAGIARISM DETECTION STRATEGIES

Maeve Paris
School of Computing & Intelligent

Systems
University of Ulster at Magee

 m.paris@ulster.ac.uk
 http://www.infm.ulst.ac.uk/~maeve

ABSTRACT
Plagiarism and collusion among students may be
facilitated by the preponderance of material in
electronic format and the ability to submit
coursework online. A distinction has generally been
drawn between plagiarism of text and plagiarism of
source code, and different tools and metrics have
been developed for either type. However, if a
computer programming language is considered to
be similar to a natural language (although it has a
restricted syntax and vocabulary), computer-
assisted text analysis techniques may be employed
to assist the academic in detecting plagiarism in
source code. So computational linguistics might
inform software metrics, and vice versa.

Keywords
Plagiarism, Source code, Computer-assisted text
analysis.

1. INTRODUCTION
Two distinct approaches have evolved to the
process of automating the detection of plagiarism
and collusion, depending on whether the material
under investigation is a text document or a
computer program. Surveys of software and
services to assist detection (such as the
publications from the Joint Information Services
Committee (JISC)) generally focus on one or other
of these approaches: plagiarism detection in text-
based documents was examined in the Technical
Review of Plagiarism Detection Report [1], which
evaluated the performance of five products and
services; plagiarism in computer programs was the
focus of the report on Source Code Plagiarism in
UK HE Computing Schools, Issues, Attitudes and
Tools

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
4th Annual LTSN-ICS Conference, NUI Galway
© 2003 LTSN Centre for Information and Computer Sciences

[2], which tested two services. Neither report gave
explicit consideration to this separation of concerns;

there appears to be an implicit assumption that the
practice of plagiarism differs according to whether
the material is text or source code (even though the
perpetrators, in this case, students, remain the
same). Further studies compound this division: the
LTSN Centre for Information and Computing
Sciences [3] compared three source code analysis
systems, highlighting mixed performance results,
and further evaluations of text-based systems were
carried out by the Learning Technologies Group [4].
Neither of the systems evaluated detected
plagiarism although it was suggested the systems
might help in the detection of collusion.
Despite this separation of concerns, computer
programming languages have much in common
with natural languages. They may operate with a
more formal and restricted semantics and syntax,
but they allow for a range of expression. It is
possible to distinguish programming styles in code,
in the same way as it is possible to distinguish
writing styles in text. So, computer-assisted text
analysis (CATA) techniques might be applied to the
analysis of source code, and statistical methods
from the domain of computational linguistics could
be employed to enhance manual code inspection.
This study compares existing detection systems for
text-based and source code plagiarism, and
identifies the applicability of CATA techniques to
source code analysis, illustrating this with a study of
three approaches to the identification of plagiarism
in a corpus of student assignments.

2. PLAGIARISM AND COLLUSION
The offences of plagiarism and collusion are closely
related: both involve a failure to acknowledge
sources, and collusion is a form of plagiarism. Most
UK and Irish academic institutions have elaborated
their own policy statements on these offences, and
definitions vary in granularity and tone. Plagiarism
covers a wide spectrum from extensive verbatim
copying to phrase-level substitution. A useful
indicator was offered from Lancaster University:
plagiarism is “submission of work that is identical or
substantially similar for assessment in more than
one course […] passing off work as yours that is
really the work of others (whether by other students
or from other sources you have found)” [5].

 75

Essentially, plagiarism relates to the submission of
work for assessment which has been appropriated
from another writer, but which fails to indicate this
through the use of quotation marks or references.
Collusion (or unauthorised collaboration) generally
tends to be the result of students working together,
but submitting work in such as way as to mislead an
assessor with regards to the identification of the
author.

3. EXISTING DETECTION SYSTEMS:
TEXT
Systems to detect plagiarism in text are either
standalone or accessed through a Web interface,
and are largely based on text analysis techniques.
Plagiarism or collusion in text can involve verbatim
copying from a source document, or paraphrasing,
and text analysis techniques can reveal
inconsistencies in vocabulary, punctuation, spelling
and word frequencies. Authoring styles can be
identified through the calculation of statistics based
on frequency counts such as the average number of
words in a sentence, or sentences in a paragraph.
Such statistics can also be generated through the
use of CATA tools for concordancing, and a Key
Word In Context (KWIC) index can be exploited to
reveal parallels in aligned texts.
Online services (evaluated in the JISC report [1])
are available to detect plagiarism in text:
plagiarism.org creates a representation of each
document submitted to its database which it can
check against other representations in the database
as well as documents on the World Wide Web;
standalone products include CopyCatch and
WordCHECK. WordCHECK maintains an internal
database of documents against which it checks
submitted documents by matching keyword profiles.
CopyCatch measures pairwise similarity between
texts based on word frequencies.

4. EXISTING DETECTION SYSTEMS:
SOURCE CODE
Modern detection systems tend to adopt a metrics-
driven approach in order to produce a measurement
of the closeness or similarity between two
programs. These metrics can be drawn from the
domain of software engineering, including such
measurements as the cyclomatic complexity of the
control flow of a program, or the number of each
type of data structure; or they may be drawn from
the domain of linguistics, including the choice of
variable names, the use of certain layout
conventions such as indentations, and the quantity
and quality of comments. Taken as a whole, such
measurements can assist in building a profile of a
programming or authoring style [6]. Most detection
systems are based on this lexical-structural
approach, where programs are tokenised, and

profiles are created and subsequently compared
with other program profiles in order to quantify
closeness.
The selection of items to include in a profile
depends on how plagiarism in source code is
quantified. Jones [7] offered a useful definition of
plagiarism detection, characterising it as a problem
of pattern analysis, based on plagiarising
transformations which have been applied to a
source file. Such transformations include “verbatim
copying, changing comments, changing white space
and formatting, renaming identifiers, reordering
code blocks, reordering statements within code
blocks, changing the order of operands/operators in
expressions, changing data types, adding
redundant statements or variables, replacing control
structures with equivalent structures” [7]. So these
patterns are a combination of software and linguistic
elements:
Some academic institutions have developed their
own internal detection systems (for example, Big
Brother [8] at the University of Glasgow, which has
been used to identify instances of collusion in order
to improve assessment procedures), but there are
also online services available through a Web
interface. The most prominent of these services are
sim (Software Similarity Tester), YAP (Yet Another
Plague), MOSS (Measure of Software Similarity)
and JPLAG.
Little is known about the implementation details of
most of these services, presumably because if this
information was in the public domain, it could be
employed to evade plagiarism detection. Sim
tokenizes source code and compares strings using
pattern-matching algorithms based on work from the
human-genome project [9]; and YAP also tokenizes
source code, but retains only those tokens which
are concerned with the structure of the program
[10].
MOSS is a free Internet service which can be
applied to C, C++, Java, Pascal, Ada, ML, Lisp, or
Scheme programs. Batches of programs are
submitted to the MOSS server, which returns HTML
pages with lists of pairs of programs with similar
code, and highlighted passages in individual
programs. The service is based on the syntax of a
program, rather than the algorithms which drive the
program [11]. JPLAG (another free service)
compares submitted programs in pairs and supports
Java, C, C++ and Scheme files. Unlike other
services, JPLAG also supports natural language
text, even though it claims to have inferior
performance than that expected on source code.
Like MOSS, JPLAG focuses on structure and
syntax, and is based on the assumption that while
plagiarists may vary the names of variables and
classes, they are less likely to change a program’s
control structure. A technical report provides details
the detection algorithm [12].

 76

The JISC report [2] provided performance
evaluations on MOSS and JPLAG, and concluded
that there was little consensus between the services
in identifying plagiarism. JPLAG was considered
easier to use, but it supported fewer programming
languages than MOSS, and crucially, it could not
handle programs which do not parse. The report
concluded that the results returned were widely
different. Another comparison report produced by
the LTSN [3] also revealed patchy performance and
inconsistencies, and a commentator [13] identified a
major problem with tools such as JPLAG which rely
on control structure metrics to detect pairwise
similarities: “these primitive constructs – the IF,
THEN and ELSE statements – are used in about
the same ratio in just about every program” [14]; as
a consequence, tools which rely on such metrics
may generate false positive results.

5. CATA AND PROGRAMMING
LANGUAGES
Reports point to inconsistent performance by
available source code plagiarism detection systems
[2,3], and most contemporary systems base metrics
largely on the structure and syntax of the programs
under investigation. The results of such an
approach may be of little use to instructors: perhaps
CATA techniques might be of greater use. Some
commentators have identified this, although from
the opposite perspective. Clough [14], for example,
identified similarities between methods used for
source code and text plagiarism detection, including
“replacement of synonyms, re-ordering of
sentences, insertion and deletion of text, change of
author style“. He concluded that “methods used for
software plagiarism detection may well work for text
also“. If that is the case, then the reverse may also
be true: if there are similarities between detection of
plagiarism in both areas, then the methods used for
text plagiarism detection may work for software
plagiarism detection also.
Programming languages typically consist of a
lexicon (vocabulary), and syntax (structure), which
determines whether a program is capable of being
compiled or parsed. Even though these may be
restricted in nature, they can still be treated as a
language from a linguistic perspective: natural
languages also have a lexicon (the words in a
vocabulary), and syntax (the structure of phrases
and sentences), which governs whether strings of
words are grammatical (well-formed) or
ungrammatical (ill-formed). Although the richness of
the lexicon and syntax is a function of the individual
programming language, the individual programmer
still has a certain amount of flexibility in achieving
the desired functionality of source code, including
the choice of implementation algorithm, the
nomenclature of classes and variables, and the
physical layout of code on the screen through the

user of whitespace and indentation, for example.
Control flow statements, variable names and
selection of expressions all allow for the individual
programmer to exercise some degree of choice; this
in turn enables the identification of authoring styles:
“the stylistic influence of an individual on algorithm
implementation within the constraints of a given
programming language is limited but can be
identified to some extent as traits or tendencies in
the expression of logic constructs, data structure
definition, variable and constant names and calls to
fixed and temporary data sets” [15]. Other
commentators have made similar observations: “it is
possible to identify the author of a section of
program code in a similar way that linguistic
evidence can be used for categorizing the authors
of free text” [16].
Similarity between programs can also be
determined through examination of spelling and
grammar, and tools developed for computer-
assisted text analysis should be able to assist in
quantifying such data: “many programmers have
difficulty writing correct prose. Misspelled variable
names […] and words inside comments may be
quite telling if the misspelling is consistent.
Likewise, small grammatical mistakes inside
comments or print statements, such as misuse or
overuse of em-dashes and semicolons might
provide a small additional point of similarity between
two programs“ [17].

6. ANALYSIS
The aim of the analysis was to ascertain the extent
to which a concordance program could assist an
experienced instructor in the detection of source
code plagiarism or collusion. The use of the
concordance tool was also compared with a manual
inspection of the same files, and the results
obtained from the JPLAG service.
A corpus of Java source code programs was
obtained from a group of first year BSc Honours
Computer Science students, submitted for
assessment based on the development of a static
method which converted a percentage value to a
letter grade. The program should prompt for a name
and percentage, use the method to determine the
grade and output the summary onscreen1. The
corpus comprised thirty-five files, two
(StudentGrade.java and GradeWork.java) were
similar, apart from a difference in class name and
substitution of the word ‘got’ for ‘achieved’ in the
output, and in addition, Prac7.java and
Percentage.java had an identical (unusual) static
method. The remaining files in the corpus were not
substantially similar, and some of the files would not
compile successfully.

1 Heather Sayers, University of Ulster.

 77

6.1 Manual Inspection and JPLAG
An assessor examined the thirty-five files in printed
form: the very similar files were identified within
fifteen minutes, and the remaining similarities were
identified after a further five minutes. The assessor
felt this method was impractical for large collections
of files, and she commented that she was
specifically looking for similar variable or class
names, similar loops, programs with comments
removed or misspelled, and unusual naming
schemes.
The files were then submitted to the JPLAG server
using an Applet, and results were returned to a
webpage (Figure 1).

Figure 1: JPLAG summary results

Some of the files were rejected (JPLAG only
handles files which can be parsed), so twenty-six of
the files were considered and matches identified in
eleven of them. The results were somewhat
different from the manual inspection and the top
match identified (82.3% similarity) was between
prac7Q2.java and prac7.java (see Figure 2).
The assessor was not satisfied that these files
showed evidence of plagiarism, since all that they
shared was the control structure, but the way the
control structure was used was substantially
different in each case. JPLAG did not identify the
clear cases of plagiarism, as the programs
concerned did not parse. So, the main
disadvantages to the JPLAG approach are that it is
largely based on control structures, and it cannot
handle programs which cannot be compiled

Figure 2: JPLAG detailed feedback

6.2 Concordance
The thirty-five files were input to the Concordance
tool [19]. Although this tool is designed to work with
text, it can be modified to handle source code files.
Adjustments need to be made in terms of specifying
syntax and lexicon items: a stop list needs to take
into account the most common words which are
found in Java programs (public, static, void, main,
and so on). The tool batch converted java files to
text files while retaining file and line information.

Figure 3: Concordance results window

Once the concordance was generated, the results
were displayed sorted in descending frequency. By
selecting suspect headwords with a high
occurrence frequency, the assessor could see
these keywords in context on the right, and by
clicking on the line of code, the program itself
appeared in a separate window with the line
highlighted. The files are referenced, and the
assessor located similarities between
StudentGrade.java and GradeWork.java within five
minutes, despite having little experience of a
concordance application. The assessor felt that the
application enabled her to locate instances of
possible similarity more quickly and accurately than
through manual inspection or JPLAG, and it also
facilitated quick identification of files and lines of
code. Drawbacks included the need to scroll
through the list of headwords to make judgements
on which suspect occurrences should be
investigated further, and also the configuration of
the application which had to be set up to handle
computer files through specific stop lists for different
programming languages.

7. CONCLUSIONS
Software and services to detect plagiarism and
collusion have evolved separately, depending on
whether the suspect material is text-based or
source code; however, it might be more useful to
combine software metrics with computational
linguistics when dealing with source code. Although
programming languages have a more formal and
restricted lexicon and syntax than natural language,
it is still possible to distinguish a programming style,
and this small study indicates that techniques from

 78

computer-assisted text analysis might usefully be
applied to the detection of source code plagiarism.
Existing systems concentrate largely on control
structures, which may not be so important given that
many student assignments are relatively short:
control structures tend to be repeated, and in
practice, plagiarists tend to modify variable or class
names. Programs which cannot be compiled as just
as likely to be plagiarised, and most current
systems cannot handle these. In the longer term,
tools might be developed which combine metric-
based profiles with concordancing features. It is
important to remember that tools cannot prove that
plagiarism has occurred; they merely indicate its
possibility, and it is up to the instructor to decide if
the offence has taken place.

8. REFERENCES
[1] Bull J., Collins C., Coughlin E., Sharp. D

Technical Review of Plagiarism Detection
Report JISC (2001).

[2] Culwin F., MacLeod A., Lancaster T. Source
Code Plagiarism in UK HE Computing Schools,
Issues, Attitudes and Tools JISC, (2001).

[3] LTSN, Tools to assist detecting plagiarism
Available at: http://www.dcs.warwick.ac.uk/ltsn-
ics/resources/plagiarism/tools/comparison_perf
ormance.html (2002).

[4] Lee S. Plagiarism Detection Study
http://www.oucs.ox.ac.uk/ltg/reports/plag3.htm
(2001).

[5] Lancaster University, Undergraduate Guide to
Essay Marking and Essay Quality, Number 6
http://www.comp.lancs.ac.uk/sociology/ugessay
.html (2000).

[6] Gray A., Sallis P., MacDonell S. Software
Forensics: Extending Authorship Analysis
Techniques to Computer Programs.
Proceedings of the 3rd Biannual Conference of
the International Association of Forensic
Linguists pp 1 – 8 (1997).

[7] Jones E., Plagiarism monitoring and detection –
towards an open discussion. Proceedings of 7th
annual CCSC Central Plains Conference,
Branson, Missouri, April 6-7, (2000).

[8] Irving R., Plagiarism Detection: Experiences
and Issues. JISC Fifth Information Strategies
Conference, Focus on Access and Security,
London, (2000).

[9] Gitchell D., Tran N., Sim: a utility for detecting
similarity in computer programs. Proceedings of
the thirtieth SIGCSE technical symposium on
computer science education New Orleans,
Louisiana, pp 266-270 (1999).

[10] Wise M YAP3: improved detection of similarities
in computer programs and other texts.
SIGCSE’96, Philadelphia, Feb 16 – 17, (1996).

[11] MOSS
http://www.cs.berkeley.edu/~aiken/moss.html
(2002).

[12] Prechelt L, Malpohl G, Philippsen M JPlag:
Finding plagiarisms among a set of programs,
Universität Karlsruhe, Institut für
Programmstrukturen und Datenorganisation,
(2000).

[13] Stutz M., Catching Computer Science Cheaters.
Wired News
http://www.wired.com/news/technology/0,1282,
10464,00.html (1998).

[14] Clough P., Plagiarism in natural and
programming languages: an overview of current
tools and technologies. University of Sheffield.
http://www.dcs.shef.ac.uk/~cloughie/plagiarism/
HTML_Version/ (2000).

[15] Sallis, P, Aakjaer A, MacDonell Software
Forensics: old methods for a new science.
Proceedings of Software Engineering:
Education and Practice IEEE Computer Society
Press, pp 481-485 (1996).

[16] DeVel O, Anderson A, Corney M, Mohay GM
Mining Email Content for Author Identification
Forensics. SIGMOD RECORD 30(4): 55-
64(2001).

[17] Weeber S.A., Spafford E.H., Software forensics:
can we track code to its authors? Computers &
Security 12(6): 585-595, (1993).

[18] Watt RJC Concordance.
http://www.rjcw.freeserve.co.uk/ (2002).

