
Full citation: Frantzeskou, G., Gritzalis, S., & MacDonell, S. (2004) Source code authorship
analysis for supporting the cybercrime investigation process, in Proceedings of the 1st International
Conference on E-Business and Telecommunication Networks. Setúbal, Portugal, INSTICC Press,
pp. 85-92.

SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE
CYBERCRIME INVESTIGATION PROCESS

Georgia Frantzeskou, Stefanos Gritzalis
Laboratory of Information and Communication Systems Security, Aegean University

Department of Information and Communication Systems Engineering
Karlovasi, Samos, 83200, Greece

{gfran, sgritz}@aegean.gr

Stephen MacDonell
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
stephen.macdonell@aut.ac.nz

Abstract
Cybercrime has increased in severity and frequency in the
recent years and because of this, it has become a major
concern for companies, universities and organizations.
The anonymity offered by the Internet has made the task
of tracing criminal identity difficult. One study field that
has contributed in tracing criminals is authorship
analysis on e-mails, messages and programs. This paper
contains a study on source code authorship analysis. The
aim of the research efforts in this area is to identify the
author of a particular piece of code by examining its
programming style characteristics. Borrowing extensively
from the existing fields of linguistics and software
metrics, this field attempts to investigate various aspects
of computer program authorship. Source code authorship
analysis could be implemented in cases of cyber attacks,
plagiarism and computer fraud. In this paper we present
the set of tools and techniques used to achieve the goal of
authorship identification, a review of the research efforts
in the area and a new taxonomy on source code
authorship analysis.

Keywords: Authorship Analysis, Software Forensics,
Plagiarism.

1. INTRODUCTION

Computers and networks have played an important role in
peoples’ everyday life over the last decade. But while
computers have made our lives easier and have improved
our standard of living, have also introduced a new venue
of criminal activities.
Cyber attacks in the form of viruses, trojan horses, logic
bombs, fraud, credit card cloning, plagiarism of code have
increased in severity and frequency. Once forensic
investigators have identified the piece of software
responsible for the attack we might want to try to locate
its source (Krsul, and Spafford, 1996).

In an attempt to deal in a more formal way to tackle these
problems, Spafford and Weeber suggested that a
technique they called software forensics could be used to
examine and analyze software in any form, source or
executable code, to identify the author (Spafford, and
Weeber, 1993).

But why do we believe it is possible to identify the author
of a computer program? Humans are creatures of habit
and habits tend to persist. That is why, for example, we
have a handwriting style that is consistent during periods
of our life, although the style may vary, as we grow older.
Does the same apply to programming?

Although source code is much more formal and restrictive
than spoken or written languages, there is still a large
degree of flexibility when writing a program (Krsul, and
Spafford, 1996). This flexibility includes characteristics
that deal with the layout of the program (placement of
comments, indentation), characteristics that are more
difficult to change automatically by pretty printers and
code formatters, and deal with the style of the program
(comment lengths, variable names, function names) and
features that we hypothesize are dependent on the
programming experience (the statistical distribution of
lines of code per function, usage of data structures).
Research studies on this field have proved that many of
these features (layout, style, structure) of computer
program can be specific to a programmer. Section 2
contains a revised categorisation on applications areas of
the field, section 3 is an overview of tools and techniques
available, section 4 contains a review of the area and
section 5 a new taxonomy.

2. BACKGROUND
2.1 Motivation
As the incidence of computer related crime increases it
has become increasingly important to have techniques
that can be applied in a legal setting to assist the court in

making judgements (Gray et al. 1997). Some types of
these crimes include attacks from malicious code (such as
viruses, worms, trojan horses, and logic bombs) and
computer fraud.

Another widely known example of authorship analysis is
plagiarism detection. In the academic community, it is
considered unethical to copy programming assignments
(MacDonell et al. 1999). Using this technique,
assignments can be compared to see if some are
“suspiciously similar”. Authorship analysis could also be
applied in psychological studies of the relationship
between programmer attributes and their code (Spafford
1989).

In the commercial world when a specific program module
or program needs to be maintained the author may need to
be located. It would be convenient to be able to
determine the name of the programmer from a set of
several hundred programmers, which is not otherwise
recorded or may be incorrect

Some of these problems are already faced with a variety
of techniques (Gray et al. 1997). The creation of a new
field with its own methods and tools, called software
forensics, has helped to tackle these issues in a proper
way and not in an ad hoc manner. The term software
forensics implies the use of these tools and methods for
some legal or official purpose.

2.2 Where could it be used?
Source code authorship analysis can be divided into 5
sub-fields according to the application area. This
categorisation is an extended version of Gray’s et al.
(1997) work.

1. Author identification. The aim here is to decide
whether some piece of code was written by a certain
programmer. This goal is accomplished by comparing
this piece of code against other program samples written
by that author. This type of application area has a lot of
similarities with the corresponding literature where the
task is to determine that a piece of work has been written
by a certain author.

2. Author characterisation. This application area
determines some characteristics of the programmer of a
piece of code, such as cultural educational background
and language familiarity, based on their programming
style.

3. Plagiarism detection. This method attempts to find
similarities among multiple sets of source code files. It is
used to detect plagiarism, which can be defined as the use
of another person’s work without proper
acknowledgement.

4. Author discrimination. This task is the opposite of the
above and involves deciding whether some pieces of code
were written by a single author or by some number of
authors. An example of this would be showing that a
program was probably written by three different authors,
without actually identifying the authors in question.
5. Author intent determination. In some cases we need to
know whether a piece of code, which caused a
malfunction, was written having this as its goal or was the
result of an accidental error. In many cases, an error

during the software development process can cause
serious problems.

3. THE PRACTICE OF PROGRAM
AUTHORSHIP ANALYSIS
3.1 Overview
The essence of authorship analysis is locating some
features that most likely remain constant among a set of
programs written by the same author (Metrics extraction).
The next step is using these source code features to
develop models that are capable of discriminating
between several authors (Data analysis & classification).

3.2 Metrics extraction
Based on general appearance of the code or the use of
programming idioms, expert opinion can, potentially, be
given on the degrees of similarity and difference between
code fragments (MacDonell et al. 1999). However, a
more scientific approach may also be taken since both
quantitative and qualitative measurements can be made on
computer program source code and object code. These
measurements are referred to as metrics and most of them
are borrowed and/or adapted from the field of software
metrics and have primarily been used for software process
estimation.

Authorship analysis is based on the construction of an
author profile (Sallis et al. 1996), using a comprehensive
set of such metrics. The profile for a given programmer is
likely to include metrics relating to product size,
structure, layout, and expression. Ideally, such metrics
should have low within-programmer variability, and high
between-programmer variability.

We could divide the metrics used for authorship analysis
into 4 sub-categories. The first three belong to
quantitative metrics category and the last on the
qualitative metrics category: (Krsul and Spafford, 1996),
(Kilgour et al., 1997).

Programming layout metrics include those metrics that
deal with the layout of the program. For example metrics
that measure indentation, placement of comments,
placement of braces etc. These metrics are fragile because
the information required can be easily changed using code
formatters. Also many programmers learn programming
in university courses that impose a specific set of style
rules regarding indentations, placement of comments etc.

Programming style metrics are those features that are
difficult to change automatically by code formatters and
are also related to the layout of the code. For example
such metrics include character preferences, construct
preferences, statistical distribution of variable lengths and
function name lengths etc.

Programming structure metrics include metrics that we
hypothesize are dependent on the programming
experience and ability of the programmer. For example
such metrics include the statistical distribution of lines of
code per function, ratio of keywords per lines of code etc.

Fuzzy logic metrics include variables that they allow the
capture of concepts that programmers can identify with,
such deliberate versus non deliberate spelling errors, the

degree to which code and comments match, and whether
identifiers used are meaningful.

Measurements in the first three categories are
automatically extracted from the source code using
pattern matching algorithms. These metrics are primarily
used in managing the software development process, but
many are transferable to authorship analysis. Fuzzy logic
metrics cannot be extracted in an automatic way and
expert intervention is required.

It is possible to perform authorship analysis on the
executable code, which is the usual form of an attack in
the form of viruses, trojan horses, worms etc. In order to
perform such analysis executable code is decompiled
(Gray et al., 1997), a process where a source program is
created by reversing the compiling process. Although
there is a considerable information loss during this
process there are many code metrics still applicable, such
as compiler and system information, level of
programming skill and areas of knowledge.

3.3 Data analysis & classification
Once these metrics have been extracted, a number of
different modelling techniques, such as neural networks,
discriminant analysis, case based reasoning can be used to
develop models that are capable of discriminating
between several authors (MacDonell et al., 1999).

3.3.1 Discriminant Analysis
Discriminant analysis (SAS) is a statistical technique that
uses continuous variable measurements on different
groups of items to highlight aspects that distinguish the
groups and to use these measurements to classify new
items. This technique is the most widely used for source
code authorship classification.

An important advantage of the technique (MacDonell et
al., 1999) is the availability of stepwise procedures for
controlling the entry and removal of variables. By
working with only those necessary variables we increase
the chance of the model being able to generalize to new
sets of data.

3.3.2 Neural Networks
Artificial Neural Networks (ANN) are computational
models that try to emulate the behavior of the human
brain (Mair et al., 2000). They are based on a set of
simple processing elements, highly interconnected, and
with a massive parallel structure. Some of the
characteristics of neural networks are their learning,
adapting and generalization capabilities. Feed-Forward
Neural Networks (FFNNs) are the most commonly used
form of ANNs and have been used in source code
authorship analysis (MacDonell et al., 1999).

3.3.3 Case Based Reasoning
CBR is a machine learning method originating in
analogical reasoning, and dynamic memory and the role
of previous situations in learning and problem solving
(Schank, 1982). Cases are abstractions of events (solved
or unsolved problems), limited in time and space.

Aarmodt and Plaza (1994) describe CBR as being cyclic
and composed of four stages, the retrieval of similar

cases, the reuse of the retrieved cases to find a solution to
the problem, the revision of the proposed solution if
necessary and the retention of the solution to form a new
case.

When a new problem arises, a possible solution can be
found by retrieving similar cases from the case repository.
The solution may be revised based upon experience of
reusing previous cases and the outcome retained to
supplement the case repository. One particular case-based
reasoning system that has been previously used for
software metric research and in source code authorship
analysis is the ANGEL system (Shepperd and Schofield,
1997).

3.3.4 Manual Approach
This approach involves examination and analysis of a
piece of code by an expert. The objective is to draw
conclusions about the authors’ characteristics such as
educational background, and technical skill. This
technique can also be used also in combination with an
automated approach (Kilgour et al., 1997), in order to
derive fuzzy-logic linguistic variables to capture more
subjective elements of authorship, such as the degree to
which comments match the actual source code’s
behaviour etc.

3.3.5 Similarity Calculation
This approach uses a set of numeric metric values or
token strings (Verco and Wise, 1996) to represent each
program. Based on these values programs are being
compared in order to produce a measure that quantifies
how close these programs are (Jones, 2001).

4. REVIEW OF RELATED WORK

Primarily authorship analysis studies have been
performed in text and later this technique has been
applied to computer programs. We now review previous
research done in each of these areas keeping our focus on
source code authorship analysis.

4.1 Text authorship analysis
The most extensive and comprehensive application of
authorship analysis is in literature. One famous authorship
analysis study is related to Shakespeare’s works and is
dating back over several centuries. Recently Elliot and
Valenza (1991) compared the poems of Shakespeare and
those of Edward de Vere, 7th Earl of Oxford, where
attempts were made to show that Shakespeare was a hoax
and that the real author was Edward de Vere, the Earl of
Oxford. In this study, specific author features such as
unusual diction, frequency of certain words, choice of
rhymes, and habits of hyphenation have been used as tests
for author attribution. The results indicated significant
differences between the works of the two authors, which
denied the claim that Edward de Vere was indeed
Shakespeare. A similar study had been carried out on the
disputed Federalist papers (Mosteller and Wallace, 1964),
(Bosch, and Smith, 1998). Mosteller and Wallace (1964)
adopted a statistical inference method to analyze the
paper contents, while Bosch and Smith (1998) used linear
programming techniques to find a separating hyperplane
based on various combinations of 70 function words.

Both studies reached the same conclusion that the papers
were written by Madison, one of the two authors in
dispute. Diederich (2000) applied for first time a machine
learning technique called Support Vector Machine (SVM)
to this problem. He performed a number of experiments
with texts from a German newspaper. With nearly perfect
reliability the SVM was able to reject other authors and
detected the target author in 60-80% of the cases.

Text authorship analysis has also been applied in the
context of criminal investigation. The analysis of the
Unabomber manifesto is an example of using linguistics
metrics (e.g. word usage) along with manual and
statistical analysis to attribute a piece of work to a
particular author. In this case, the manifesto and the
suspect terrorist, Theodore Kaczynski, shared similar
characteristics, such as a distinctive vocabulary, irregular
hyphenations, etc (Foster, 2001).

A new area of study is the identification and
characterisation of electronic message authors based on
message contents. De Vel et al (2001) evaluated author
attribution performance in the context of multiple e-mail
topic categories. The same authors have also undertaken
authorship characterization and in particular authorship
gender (male or female) and language background
(English as first or second language) cohort attribution. In
both cases they used structural and stylometric features
and in the later experiment they used in addition, a set of
gender-preferential language attributes. A machine
learning approach was adopted and the SVM was
employed as the learning algorithm. The experiments
gave promising results.

4.2 Source code authorship analysis
On the evening of 2 November 1988, someone infected
the Internet with a worm program. Spafford (1989)
conducted an analysis of the program using three
reversed-engineered versions. Coding style and methods
used in the program were manually analyzed and
conclusions were drawn about the author’s abilities and
intent. Following this experience, Spafford and Weeber
(1993) suggested that it might be feasible to analyze the
remnants of software after a computer attack, such as
viruses, worms or trojan horses, and identify its author.
This technique, called software forensics, could be used
to examine software in any form to obtain evidence about
the factors involved. They investigated two different
cases where code remnants might be analyzed: executable
code and source code. Executable code, even if
optimized, still contains many features that may be
considered in the analysis such as data structures and
algorithms, compiler and system information,
programming skill and system knowledge, choice of
system calls, errors, etc. Source code features include
programming language, use of language features,
comment style, variable names, spelling and grammar,
etc.

Cook and Oman (1989) used “markers” based on
typographic characteristics to test authorship on Pascal
programs. The experiment was performed on 18
programs written by six authors. Each program was an
implementation of a simple algorithm and it was obtained

from computer science textbooks. They claimed that the
results were surprisingly accurate.

Longstaff and Shultz (1993) studied the WANK and
OILZ worms which in 1989 attacked NASA and DOE
systems. They have manually analyzed code structures
and features and have reached a conclusion that three
distinct authors worked on the worms. In addition, they
were able to infer certain characteristics of the authors,
such as their educational backgrounds and programming
levels. Sallis et al (1997) expanded the work of Spafford
and Weeber by suggesting some additional features, such
as cyclomatic complexity of the control flow and the use
of layout conventions.

An automated approach was taken by Krsul and Spafford
(1995) to identify the author of a program written in C.
The study relied on the use of software metrics, collected
from a variety of sources. They were divided into three
categories: layout, style and structure metrics. These
features were extracted using a software analyzer program
from 88 programs belonging to 29 programmers. A tool
was developed to visualize the metrics collected and help
select those metrics that exhibited little within-author
variation, but large between-author variation. A statistical
approach called discriminant analysis (SAS) was applied
on the chosen subset of metrics to classify the programs
by author. The experiment achieved 73% overall
accuracy.

Other research groups have examined the authorship of
computer programs written in C++ (Kilgour et al., 1997);
(MacDonell et al. 1999), a dictionary based system called
IDENTIFIED (integrated dictionary- based extraction of
non-language-dependent token information for forensic
identification, examination, and discrimination) was
developed to extract source code metrics for authorship
analysis (Gray et al., 1998). Satisfactory results were
obtained for C++ programs using case-based reasoning,
feed-forward neural network, and multiple discriminant
analysis (MacDonell et al. 1999).

Ding (2003), investigated the extraction of a set of
software metrics of a given Java source code, that could
be used as a fingerprint to identify the author of the Java
code. The contributions of the selected metrics to
authorship identification were measured by a statistical
process, namely canonical discriminant analysis, using
the statistical software package SAS. A set of 56 metrics
of Java programs was proposed for authorship analysis.
Forty-six groups of programs were diversely collected.
Classification accuracies were 62.7% and 67.2% when the
metrics were selected manually while those values were
62.6% and 66.6% when the metrics were chosen by SDA
(stepwise discriminant analysis).

4.3 Plagiarism Detection
Plagiarism detection is another field closely related to the
problem of authorship analysis, especially authorship
categorization and similarity detection. Jones (2001),
offered a useful definition of plagiarism detection,
characterising it as a problem of pattern analysis, based
on plagiarising transformations, which have been applied
to a source file. Such transformations include “verbatim
copying, changing comments, changing white space and

formatting, renaming identifiers, reordering code blocks,
reordering statements within code blocks, changing the
order of operands/operators in expressions, changing data
types, adding redundant statements or variables, replacing
control structures with equivalent structures”.

One of the earliest set of techniques for plagiarism
detection in software is the attribute counting techniques
which count the level of a certain attribute contained
within a piece of code. These systems use a number of
metrics such as Halstead’s software science metrics
(Halstead, 1977), McCabe’s cyclomatic complexity
(McCabe, 1976), the nesting depth (Dunsmore, 1984) etc.
The first automated system used Halstead’s metrics for
plagiarism detection and has been developed by
Ottenstein (1979). Other examples of attribute counting
system include the work of Berghell, and Sallach, (1984),
Grier’s Accuse system (1981). This approach was at best
moderately successful (Verco, and Wise, 1996), because
“summing up a metric across the whole program throws
away too much structural information”.

More recent approaches named structure metrics
techniques, which as Clough (2000) writes, “compare
string representations of the program structure”, are
assessing “the similarity of token strings”. Examples of
these include Plague, Sim, YAP, and JPlag.

The sim plagiarism detection system (Grune, 1991)
developed by Dick Grune converts the source programs
into token strings and then in pairs finds matching
substrings of decreasing lengths The YAP family
approaches (Wise, 1992), (Wise, 1996), uses the source
code to generate token sequences by removing comments,
translating upper case letters to lower case, mapping
synonyms to a common form, reordering the functions
into their calling order and by removing all tokens that are
not from the lexicon of the target language. The next step
is to apply an algorithm where each token string is (non-
redundantly) compared with all the others. The biggest
change that has occurred in the latest version of YAP,
YAP3, is a switch to the underlying use of the Running-
Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithm
which allows the system to detect transposed
subsequences, JPlag (Prechelt, 2002) uses the same basic
comparison algorithm, the Greedy-String-Tiling (GST)
as YAP3, but uses a different set of optimizations for
improving its run time efficiency. Plague (Whale, 1990)
works in a similar fashion to the YAP3 method discussed
previously, but without using the RKR-GST algorithm.

A different set of approaches include the work proposed
by Jankowitz (1988) on a model for detecting plagiarism
in student Pascal programs, where a template was
constructed for each program, using elements like
programming style features and the order in which
procedures are referenced during static execution. All
templates were compared against each other and similar
regions were extracted from the programs. Statistical
analysis was then performed on those common regions to
characterize the students’ programming styles. Jones
(Jones 2001) in order to detect program similarities has
created metrics based physical and Halstead program
profiles. Closeness was computed as the normalized
Euclidean distance between profiles.

5. TAXONOMY
A new taxonomy of source code authorship analysis is
presented, which is a modified and expanded version of
the taxonomy developed by Zheng et al (2003).

Table 1: Taxonomy for Source Code Authorship
Analysis

1 Problem

Category Description

Authorship
Identification

Aims to determine whether a piece of
code was written by a certain author.

Authorship
Characterization

Based on the programming style and
techniques used determines some
characteristics of the programmer of
a piece of code, such as cultural
educational background and language
familiarity.

Plagiarism
Detection

This method attempts to find
similarities among multiple sets of
source code files. It is used to detect
plagiarism, which can be defined as
the use of another person’s work
without proper acknowledgement.

Author intent
determination

We need to know whether a piece of
code which caused a malfunction was
written having this as its goal or was
the result of an accidental error.

Author
discrimination

Determines whether some pieces of
code were written by a single author
or by some number of authors.

2 Approach

Category Description

Manual
Analysis

This approach involves examination
and analysis of a piece of code by an
expert. It can be used to draw
conclusions about the authors’
characteristics such as educational
background, and technical skill.

Similarity
Calculation

Uses a set of numeric metric values
or token strings (Verco, and Wise,
1996) to represent each program.
Based on these values programs are
being compared in order to produce a
measure that quantifies how close
these programs are (Jones, 2001).

Statistical
Analysis

Uses statistical techniques such as
discriminant analysis in order to
investigate differences between
authors of programs and to
discriminate authors effectively.

Machine
Learning

Uses methods such as Case Base
Reasoning and Neural networks to
predict the author of a piece of code
based on a set of metrics.

6. CONCLUSIONS

It seems that source code authorship analysis is an
important area of practice in computer security, computer
law, and academia as well as an exciting area of research.
The experiments that have been performed support the
theory that it is possible to find a set of metrics that can be
used to classify programmers correctly. Within a closed
environment, and with a limited number of programmers,
it is possible to identify authorship of a program by
examining some finite set of metrics. As part of this
development in the field there is the necessity for more
formally defined methods and metrics specifically used in
this area. Further work will be to enrich the set of metrics
in order to improve classification accuracy. An example
could be introducing object oriented metrics when
examining authorship in C++ or Java. Also by employing
other machine learning techniques or statistical methods
such as Bayesian techniques, we could produce better
results.

7. REFERENCES
Aarmodt, A., and Plaza, E., 1994, Case-Based Reasoning:
Foundational issues, Methodical Variations and System
Approaches. AI Communications, vol 7(1).

Bosch, R., and Smith, J., 1998, Separating hyperplanes and the
authorship of the disputed federalist papers, American
Mathematical Monthly, 105(7):601-608, 1998.

Berghell, H., L., and Sallach, D., L., 1984, Measurements of
Program Similarity in Identical Task Environments, SIGPLAN
Notices 19(8), pp. 65-75.

Clough, P., 2000, Plagiarism in natural and programming
languages: an overview of current tools and technologies,
Department of Computer Science, University of Sheffield.

Diederich, J., Kindermann, J., Leopold, E., and Paass, G., 2000,
Authorship attribution with Support Vector Machines, Applied
Intelligence (Submitted).

Ding, H., Samadzadeh, M., H., 2003, Extraction of Java
program fingerprints for software authorship identification, The
Journal of Systems and Software, article under press.

Dunsmore, 1984, Software metrics: an overview of an evolving
methodology, Information Processing and Management 20, pp.
(183-192).

Elliot, W., and. Valenza, R., 1991, Was the Earl of Oxford The
True Shakespeare?, Notes and Queries, 38:501-506.

Foster, D., 2001, Author Unknown: On the Trail of Anonymous,
Henry Holt, New York.

Faidhi, J., A., and Robinson, S., K., 1987, An Approach for
Detecting Program Similarity within a University Programming
Environment, Computers and Education 11(1), pp. 11-19.

Grier, S., 1981, A Tool that Detects Plagiarism in Pascal
Programs, Twelfth SIGCSE Technical Symposium, St Louis,
Missouri, pp. 15–20 (February 26-27, 1981) (SIGCSE Bulletin
Vol. 13, No. 1, February 1981).

Grune, D., 1991, Concise Report on Algorithms in Sim, (Report
distributed with Sim software).

Gray, A., Sallis, P., and MacDonell, S., 1997, Software
forensics: Extending authorship analysis techniques to computer
programs, in Proc. 3rd Biannual Conf. Int. Assoc. of Forensic
Linguists (IAFL'97), pages 1-8.

Gray, A., Sallis, P., and MacDonell, S., 1998, Identified
(integrated dictionary-based extraction of non-language-
dependent token information for forensic identification,
examination, and discrimination): A dictionary-based system for
extracting source code metrics for software forensics. In
Proceedings of SE:E&P’98 (Software Engineering: Education
and Practice Conference), pages 252–259. IEEE Computer
Society Press.

Halstead, M., H., 1977, Elements of software science, North
Holland, New York.

Jankowitz, H. T., 1988, Detecting Plagiarism in Student Pascal
Programs, Computer Journal, 31(1).

Jones, E., L., 2001, Metrics Based Plagiarism Monitoring, in
Proc. Consortium for Computing in Small Colleges

Kilgour, R. I., Gray, A.R., Sallis, P. J., and MacDonell, S. G.,
1997. A Fuzzy Logic Approach to Computer Software Source
Code Authorship Analysis, Accepted for The Fourth
International Conference on Neural Information Processing --
The Annual Conference of the Asian Pacific Neural Network
Assembly (ICONIP'97). Dunedin. New Zealand

Krsul, I., and Spafford, E. H., 1995, Authorship analysis:
Identifying the author of a program, In Proc. 8th National
Information Systems Security Conference, pages 514-524,
National Institute of Standards and Technology.

Krsul, I., and Spafford, E. H., 1996, Authorship analysis:
Identifying the author of a program, Technical Report
TR-96-052, 1996

Longstaff, T. A., and Schultz, 1993, E. E., Beyond Preliminary
Analysis of the WANK and OILZ Worms: A Case Study of
Malicious Code, Computers and Security, 12:61-77.

McCabe, T. J., 1976, A complexity measure, IEEE Transactions
on Software Engineering, SE-2 (4), pp(308-320).

MacDonell, S.G., Gray, A.R., MacLennan, G., Sallis, P.J.,
1999.Software forensics for discriminating between program
authors using case- based reasoning, feed forward neural
networks, and multiple discriminant analysis. In: Proceedings of
the 6th International Conference on Neural Information, vol. 1,
Dunedin, New Zealand, pp. 66–71.

Mair, C., Kadoda, G. Lefey, M., Phalp, K., Schofield , C.,
Shepperd, M., Webster, S., 2000, An investigation of machine
learning based prediction systems The Journal of Systems and
Software 53 23-29.

Mosteller, F., and Wallace, D., 1964, Inference and Disputed
Authorship: The Federalist, Addison-Wesley, Reading, Mass.

Oman, P., and Cook, C., Programming style authorship
analysis. In Seventeenth Annual ACM Science Conference
Proceedings, pages 320–326. ACM, 1989.

Ottenstein, L., M., Quantitative estimates of debugging
requirements, 1979, IEEE Transactions of Software
Engineering, Vol. SE-5, pp(504-514).

Prechelt, L., Malpohl, G., Philippsen, M., Finding Plagiarisms
among a Set of Programs with JPlag, Journal of Universal
Computer Science, vol. 8, no. 11 (2002), 1016-1038

Sallis P., Aakjaer, A., and MacDonell, S., 1996, Software
Forensics: Old Methods for a New Science. Proceedings of
SE:E&P’96 (Software Engineering: Education and Practice).
Dunedin, New Zealand, IEEE Computer Society Press, 367-371.

SAS on line docs http://www.sasdocs.utoledo.edu/

Schank, R., 1982,. Dynamic Memory: A theory of reminding and
learning in computers and people. Cambridge University Press.

 last accessed
12/1/2004

Spafford, E. H., 1989, The Internet Worm Program: An
Analysis,” Computer Communications Review, 19(1): 17-49.

Shepperd, M. J., and Schofield, C., 1997, Estimating software
project effort using analogies, IEEE Transactions on Software
Engineering, 23(11), 736-743.

Spafford, E. H., and Weeber, S. A., 1993, Software forensics:
tracking code to its authors, Computers and Security, 12:585-
595.

Verco, K. K., and Wise, M. J., 1996, Software for detecting
suspected plagiarism: Comparing structure and attribute-
counting systems, In John Rosenberg, editor, Proc. of 1st
Australian Conference on Computer Science Education, Sydney,
ACM.

Vel, O., Anderson, A., Corney, M., and Mohay, G., 2001,
Mining E-mail Content for Author Identification Forensics,
SIGMOD Record, 30(4): 55-64.

Whale, G., 1990, Identification of Program Similarity in Large
Populations, The Computer Journal 33(2), pp. 140–146.

Wise, M., J., 1992, Detection of Similarities in Student
Programs: YAP'ing may be Preferable to Plagueing,
Proceedings, Twenty Third SCGCSE Technical Symposium,
Kansas City, USA, 268-271.

Wise, M. J., 1996, Improved Detection of Similarities in
Computer Program and other Texts, Twenty-Seventh SIGCSE
Technical Symposium, Philadelphia, U.S.A., pp. 130-134.

Zheng, R., Qin, Y., Huang, Z., and Chen H., 2003, Authorship
Analysis in Cybercrime Investigation Springer-Verlag
Heidelberg, ISSN: 0302-9743, Volume 2665.

	1. Introduction
	2. BACKGROUND
	3. THE PRACTICE OF PROGRAM AUTHORSHIP ANALYSIS
	4. REVIEW OF RELATED WORK
	5. TAXONOMY
	1 Problem
	2 Approach

