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Abstract 
Cybercrime has increased in severity and frequency in the 
recent years and because of this, it has become a major 
concern for companies, universities and organizations.  
The anonymity offered by the Internet has made the task 
of tracing criminal identity difficult. One study field that 
has contributed in tracing criminals is authorship 
analysis on e-mails, messages and programs. This paper 
contains a study on source code authorship analysis. The 
aim of the research efforts in this area is to identify the 
author of a particular piece of code by examining its 
programming style characteristics. Borrowing extensively 
from the existing fields of linguistics and software 
metrics, this field attempts to investigate various aspects 
of computer program authorship. Source code authorship 
analysis could be implemented in cases of cyber attacks, 
plagiarism and computer fraud. In this paper we present 
the set of tools and techniques used to achieve the goal of 
authorship identification, a review of the research efforts 
in the area and a new taxonomy on source code 
authorship analysis. 
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1. INTRODUCTION 

Computers and networks have played an important role in 
peoples’ everyday life over the last decade. But while 
computers have made our lives easier and have improved 
our standard of living, have also introduced a new venue 
of criminal activities.   
Cyber attacks in the form of viruses, trojan horses, logic 
bombs, fraud, credit card cloning, plagiarism of code have 
increased in severity and frequency.  Once forensic 
investigators have identified the piece of software 
responsible for the attack we might want to try to locate 
its source (Krsul, and Spafford, 1996).  

In an attempt to deal in a more formal way to tackle these 
problems, Spafford and Weeber suggested that a 
technique they called software forensics could be used to 
examine and analyze software in any form, source or 
executable code, to identify the author (Spafford, and 
Weeber, 1993).  

But why do we believe it is possible to identify the author 
of a computer program?  Humans are creatures of habit 
and habits tend to persist. That is why, for example, we 
have a handwriting style that is consistent during periods 
of our life, although the style may vary, as we grow older. 
Does the same apply to programming?  

Although source code is much more formal and restrictive 
than spoken or written languages, there is still a large 
degree of flexibility when writing a program (Krsul, and 
Spafford, 1996). This flexibility includes characteristics 
that deal with the layout of the program (placement of 
comments, indentation), characteristics that are more 
difficult to change automatically by pretty printers and 
code formatters, and deal with the style of the program 
(comment lengths, variable names, function names) and 
features that we hypothesize are dependent on the 
programming experience (the statistical distribution of 
lines of code per function, usage of data structures). 
Research studies on this field have proved that many of 
these features (layout, style, structure) of computer 
program can be specific to a programmer.  Section 2 
contains a revised categorisation on applications areas of 
the field, section 3 is an overview of tools and techniques 
available, section 4 contains a review of the area and 
section 5 a new taxonomy.  

 
2. BACKGROUND 
2.1 Motivation  
As the incidence of computer related crime increases it 
has become increasingly important to have techniques 
that can be applied in a legal setting to assist the court in 



making judgements (Gray et al. 1997). Some types of 
these crimes include attacks from malicious code (such as 
viruses, worms, trojan horses, and logic bombs) and 
computer fraud.   

Another widely known example of authorship analysis is 
plagiarism detection. In the academic community, it is 
considered unethical to copy programming assignments 
(MacDonell et al. 1999). Using this technique, 
assignments can be compared to see if some are 
“suspiciously similar”. Authorship analysis could also be 
applied in psychological studies of the relationship 
between programmer attributes and their code (Spafford 
1989).  

In the commercial world when a specific program module 
or program needs to be maintained the author may need to 
be located.  It would be convenient to be able to 
determine the name of the programmer from a set of 
several hundred programmers, which is not otherwise 
recorded or may be incorrect  

Some of these problems are already faced with a variety 
of techniques (Gray et al. 1997). The creation of a new 
field with its own methods and tools, called software 
forensics, has helped to tackle these issues in a proper 
way and not in an ad hoc manner.  The term software 
forensics implies the use of these tools and methods for 
some legal or official purpose.  

2.2 Where could it be used?  
Source code authorship analysis can be divided into 5 
sub-fields according to the application area. This 
categorisation is an extended version of Gray’s et al. 
(1997) work.  

1. Author identification.  The aim here is to decide 
whether some piece of code was written by a certain 
programmer.  This goal is accomplished by comparing 
this piece of code against other program samples written 
by that author. This type of application area has a lot of 
similarities with the corresponding literature where the 
task is to determine that a piece of work has been written 
by a certain author.  

2. Author characterisation. This application area 
determines some characteristics of the programmer of a 
piece of code, such as cultural educational background 
and language familiarity, based on their programming 
style.   

3. Plagiarism detection. This method attempts to find 
similarities among multiple sets of source code files. It is 
used to detect plagiarism, which can be defined as the use 
of another person’s work without proper 
acknowledgement.  

4. Author discrimination. This task is the opposite of the 
above and involves deciding whether some pieces of code 
were written by a single author or by some number of 
authors. An example of this would be showing that a 
program was probably written by three different authors, 
without actually identifying the authors in question.  
5. Author intent determination. In some cases we need to 
know whether a piece of code, which caused a 
malfunction, was written having this as its goal or was the 
result of an accidental error.  In many cases, an error 

during the software development process can cause 
serious problems. 
 
3. THE PRACTICE OF PROGRAM 
AUTHORSHIP ANALYSIS 
3.1 Overview  
The essence of authorship analysis is locating some 
features that most likely remain constant among a set of 
programs written by the same author (Metrics extraction). 
The next step is using these source code features to 
develop models that are capable of discriminating 
between several authors (Data analysis & classification).   

3.2 Metrics extraction  
Based on general appearance of the code or the use of 
programming idioms, expert opinion can, potentially, be 
given on the degrees of similarity and difference between 
code fragments (MacDonell et al. 1999). However, a 
more scientific approach may also be taken since both 
quantitative and qualitative measurements can be made on 
computer program source code and object code.  These 
measurements are referred to as metrics and most of them 
are borrowed and/or adapted from the field of software 
metrics and have primarily been used for software process 
estimation.   

Authorship analysis is based on the construction of an 
author profile (Sallis et al. 1996), using a comprehensive 
set of such metrics. The profile for a given programmer is 
likely to include metrics relating to product size, 
structure, layout, and expression. Ideally, such metrics 
should have low within-programmer variability, and high 
between-programmer variability.  

We could divide the metrics used for authorship analysis 
into 4 sub-categories.  The first three belong to 
quantitative metrics category and the last on the 
qualitative metrics category: (Krsul and Spafford, 1996), 
(Kilgour et al., 1997).  

Programming layout metrics include those metrics that 
deal with the layout of the program. For example metrics 
that measure indentation, placement of comments, 
placement of braces etc. These metrics are fragile because 
the information required can be easily changed using code 
formatters. Also many programmers learn programming 
in university courses that impose a specific set of style 
rules regarding indentations, placement of comments etc.  

Programming style metrics are those features that are 
difficult to change automatically by code formatters and 
are also related to the layout of the code. For example 
such metrics include character preferences, construct 
preferences, statistical distribution of variable lengths and 
function name lengths etc.  

Programming structure metrics include metrics that we 
hypothesize are dependent on the programming 
experience and ability of the programmer.  For example 
such metrics include the statistical distribution of lines of 
code per function, ratio of keywords per lines of code etc.  

Fuzzy logic metrics include variables that they allow the 
capture of concepts that programmers can identify with, 
such deliberate versus non deliberate spelling errors, the 



degree to which code and comments match, and whether 
identifiers used are meaningful.   

Measurements in the first three categories are 
automatically extracted from the source code using 
pattern matching algorithms. These metrics are primarily 
used in managing the software development process, but 
many are transferable to authorship analysis. Fuzzy logic 
metrics cannot be extracted in an automatic way and 
expert intervention is required.   

It is possible to perform authorship analysis on the 
executable code, which is the usual form of an attack in 
the form of viruses, trojan horses, worms etc. In order to 
perform such analysis executable code is decompiled 
(Gray et al., 1997), a process where a source program is 
created by reversing the compiling process. Although 
there is a considerable information loss during this 
process there are many code metrics still applicable, such 
as compiler and system information, level of 
programming skill and areas of knowledge.  

3.3 Data analysis & classification  
Once these metrics have been extracted, a number of 
different modelling techniques, such as neural networks, 
discriminant analysis, case based reasoning can be used to 
develop models that are capable of discriminating 
between several authors (MacDonell et al., 1999).  

3.3.1 Discriminant Analysis  
Discriminant analysis (SAS) is a statistical technique that 
uses continuous variable measurements on different 
groups of items to highlight aspects that distinguish the 
groups and to use these measurements to classify new 
items. This technique is the most widely used for source 
code authorship classification.  

An important advantage of the technique (MacDonell et 
al., 1999) is the availability of stepwise procedures for 
controlling the entry and removal of variables. By 
working with only those necessary variables we increase 
the chance of the model being able to generalize to new 
sets of data.  

3.3.2 Neural Networks  
Artificial Neural Networks (ANN) are computational 
models that try to emulate the behavior of the human 
brain (Mair et al., 2000). They are based on a set of 
simple processing elements, highly interconnected, and 
with a massive parallel structure.  Some of the 
characteristics of neural networks are their learning, 
adapting and generalization capabilities. Feed-Forward 
Neural Networks (FFNNs) are the most commonly used 
form of ANNs and have been used in source code 
authorship analysis (MacDonell et al., 1999).  

3.3.3 Case Based Reasoning  
CBR is a machine learning method originating in 
analogical reasoning, and dynamic memory and the role 
of previous situations in learning and problem solving 
(Schank, 1982). Cases are abstractions of events (solved 
or unsolved problems), limited in time and space.  

Aarmodt and Plaza (1994) describe CBR as being cyclic 
and composed of four stages, the retrieval of similar 

cases, the reuse of the retrieved cases to find a solution to 
the problem, the revision of the proposed solution if 
necessary and the retention of the solution to form a new 
case.  

When a new problem arises, a possible solution can be 
found by retrieving similar cases from the case repository. 
The solution may be revised based upon experience of 
reusing previous cases and the outcome retained to 
supplement the case repository. One particular case-based 
reasoning system that has been previously used for 
software metric research and in source code authorship 
analysis is the ANGEL system (Shepperd and Schofield, 
1997).  

3.3.4 Manual Approach  
This approach involves examination and analysis of a 
piece of code by an expert. The objective is to draw 
conclusions about the authors’ characteristics such as 
educational background, and technical skill. This 
technique can also be used also in combination with an 
automated approach (Kilgour et al., 1997), in order to 
derive fuzzy-logic linguistic variables to capture more 
subjective elements of authorship, such as the degree to 
which comments match the actual source code’s 
behaviour etc.   

3.3.5 Similarity Calculation  
This approach uses a set of numeric metric values or 
token strings (Verco and Wise, 1996) to represent each 
program.  Based on these values programs are being 
compared in order to produce a measure that quantifies 
how close these programs are (Jones, 2001).  
 
4. REVIEW OF RELATED WORK 

Primarily authorship analysis studies have been 
performed in text and later this technique has been 
applied to computer programs.  We now review previous 
research done in each of these areas keeping our focus on 
source code authorship analysis.  

4.1 Text authorship analysis  
The most extensive and comprehensive application of 
authorship analysis is in literature. One famous authorship 
analysis study is related to Shakespeare’s works and is 
dating back over several centuries. Recently Elliot and 
Valenza (1991) compared the poems of Shakespeare and 
those of Edward de Vere, 7th Earl of Oxford, where 
attempts were made to show that Shakespeare was a hoax 
and that the real author was Edward de Vere, the Earl of 
Oxford. In this study, specific author features such as 
unusual diction, frequency of certain words, choice of 
rhymes, and habits of hyphenation have been used as tests 
for author attribution. The results indicated significant 
differences between the works of the two authors, which 
denied the claim that Edward de Vere was indeed 
Shakespeare.  A similar study had been carried out on the 
disputed Federalist papers (Mosteller and Wallace, 1964), 
(Bosch, and Smith, 1998). Mosteller and Wallace (1964) 
adopted a statistical inference method to analyze the 
paper contents, while Bosch and Smith (1998) used linear 
programming techniques to find a separating hyperplane 
based on various combinations of 70 function words.  



Both studies reached the same conclusion that the papers 
were written by Madison, one of the two authors in 
dispute. Diederich (2000) applied for first time a machine 
learning technique called Support Vector Machine (SVM) 
to this problem. He performed a number of experiments 
with texts from a German newspaper.  With nearly perfect 
reliability the SVM was able to reject other authors and 
detected the target author in 60-80% of the cases.  

Text authorship analysis has also been applied in the 
context of criminal investigation. The analysis of the 
Unabomber manifesto is an example of using linguistics 
metrics (e.g. word usage) along with manual and 
statistical analysis to attribute a piece of work to a 
particular author.  In this case, the manifesto and the 
suspect terrorist, Theodore Kaczynski, shared similar 
characteristics, such as a distinctive vocabulary, irregular 
hyphenations, etc (Foster, 2001).  

A new area of study is the identification and 
characterisation of electronic message authors based on 
message contents. De Vel et al (2001) evaluated author 
attribution performance in the context of multiple e-mail 
topic categories.  The same authors have also undertaken 
authorship characterization and in particular authorship 
gender (male or female) and language background 
(English as first or second language) cohort attribution. In 
both cases they used structural and stylometric features 
and in the later experiment they used in addition, a set of 
gender-preferential language attributes.  A machine 
learning approach was adopted and the SVM was 
employed as the learning algorithm.  The experiments 
gave promising results.  

4.2 Source code authorship analysis  
On the evening of 2 November 1988, someone infected 
the Internet with a worm program. Spafford (1989) 
conducted an analysis of the program using three 
reversed-engineered versions. Coding style and methods 
used in the program were manually analyzed and 
conclusions were drawn about the author’s abilities and 
intent.  Following this experience, Spafford and Weeber 
(1993) suggested that it might be feasible to analyze the 
remnants of software after a computer attack, such as 
viruses, worms or trojan horses, and identify its author. 
This technique, called software forensics, could be used 
to examine software in any form to obtain evidence about 
the factors involved. They investigated two different 
cases where code remnants might be analyzed: executable 
code and source code. Executable code, even if 
optimized, still contains many features that may be 
considered in the analysis such as data structures and 
algorithms, compiler and system information, 
programming skill and system knowledge, choice of 
system calls, errors, etc. Source code features include 
programming language, use of language features, 
comment style, variable names, spelling and grammar, 
etc.   

Cook and Oman (1989) used “markers” based on 
typographic characteristics to test authorship on Pascal 
programs.  The experiment was performed on 18 
programs written by six authors. Each program was an 
implementation of a simple algorithm and it was obtained 

from computer science textbooks. They claimed that the 
results were surprisingly accurate.  

Longstaff and Shultz (1993) studied the WANK and 
OILZ worms which in 1989 attacked NASA and DOE 
systems.  They have manually analyzed code structures 
and features and have reached a conclusion that three 
distinct authors worked on the worms. In addition, they 
were able to infer certain characteristics of the authors, 
such as their educational backgrounds and programming 
levels. Sallis et al (1997) expanded the work of Spafford 
and Weeber by suggesting some additional features, such 
as cyclomatic complexity of the control flow and the use 
of layout conventions.  

An automated approach was taken by Krsul and Spafford 
(1995) to identify the author of a program written in C. 
The study relied on the use of software metrics, collected 
from a variety of sources. They were divided into three 
categories: layout, style and structure metrics.  These 
features were extracted using a software analyzer program 
from 88 programs belonging to 29 programmers.  A tool 
was developed to visualize the metrics collected and help 
select those metrics that exhibited little within-author 
variation, but large between-author variation. A statistical 
approach called discriminant analysis (SAS) was applied 
on the chosen subset of metrics to classify the programs 
by author.  The experiment achieved 73% overall 
accuracy.  

Other research groups have examined the authorship of 
computer programs written in C++ (Kilgour et al., 1997); 
(MacDonell et al. 1999), a dictionary based system called 
IDENTIFIED (integrated dictionary- based extraction of 
non-language-dependent token information for forensic 
identification, examination, and discrimination) was 
developed to extract source code metrics for authorship 
analysis (Gray et al., 1998). Satisfactory results were 
obtained for C++ programs using case-based reasoning, 
feed-forward neural network, and multiple discriminant 
analysis (MacDonell et al. 1999).  

Ding (2003), investigated the extraction of a set of 
software metrics of a given Java source code, that could 
be used as a fingerprint to identify the author of the Java 
code. The contributions of the selected metrics to 
authorship identification were measured by a statistical 
process, namely canonical discriminant analysis, using 
the statistical software package SAS. A set of 56 metrics 
of Java programs was proposed for authorship analysis. 
Forty-six groups of programs were diversely collected.  
Classification accuracies were 62.7% and 67.2% when the 
metrics were selected manually while those values were 
62.6% and 66.6% when the metrics were chosen by SDA 
(stepwise discriminant analysis).  

4.3 Plagiarism Detection  
Plagiarism detection is another field closely related to the 
problem of authorship analysis, especially authorship 
categorization and similarity detection. Jones (2001), 
offered a useful definition of plagiarism detection, 
characterising it as a problem of pattern analysis, based 
on plagiarising transformations, which have been applied 
to a source file. Such transformations include “verbatim 
copying, changing comments, changing white space and 



formatting, renaming identifiers, reordering code blocks, 
reordering statements within code blocks, changing the 
order of operands/operators in expressions, changing data 
types, adding redundant statements or variables, replacing 
control structures with equivalent structures”.  

One of the earliest set of techniques for plagiarism 
detection in software is the attribute counting techniques 
which count the level of a certain attribute contained 
within a piece of code. These systems use a number of 
metrics such as Halstead’s software science metrics 
(Halstead, 1977), McCabe’s cyclomatic complexity 
(McCabe, 1976), the nesting depth (Dunsmore, 1984) etc. 
The first automated system used Halstead’s metrics for 
plagiarism detection and has been developed by 
Ottenstein (1979). Other examples of attribute counting 
system include the work of Berghell,  and Sallach, (1984), 
Grier’s Accuse system (1981).  This approach was at best 
moderately successful (Verco, and Wise, 1996), because 
“summing up a metric across the whole program throws 
away too much structural information”.  

More recent approaches named structure metrics 
techniques, which as Clough (2000) writes, “compare 
string representations of the program structure”, are 
assessing “the similarity of token strings”. Examples of 
these include Plague, Sim, YAP, and JPlag.  

The sim plagiarism detection system (Grune, 1991) 
developed by  Dick Grune converts the source programs 
into token strings and then in pairs finds matching 
substrings of decreasing lengths  The YAP family 
approaches (Wise, 1992), (Wise, 1996), uses the source 
code to generate token sequences by removing comments, 
translating upper case letters to lower case, mapping 
synonyms to a common form, reordering the functions 
into their calling order and by removing all tokens that are 
not from the lexicon of the target language.  The next step 
is to apply an algorithm where each token string is (non-
redundantly) compared with all the others. The biggest 
change that has occurred in the latest version of YAP, 
YAP3, is a switch to the underlying use of the Running-
Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithm 
which allows the system to detect transposed 
subsequences, JPlag (Prechelt, 2002) uses the same basic 
comparison algorithm, the  Greedy-String-Tiling (GST) 
as YAP3, but uses a different set of optimizations for 
improving its run time efficiency. Plague (Whale, 1990) 
works in a similar fashion to the YAP3 method discussed 
previously, but without using the RKR-GST algorithm.  

A different set of approaches include the work proposed 
by Jankowitz (1988) on  a model for detecting plagiarism 
in student Pascal programs, where a template was 
constructed for each program, using elements like 
programming style features and the order in which 
procedures are referenced during static execution. All 
templates were compared against each other and similar 
regions were extracted from the programs.  Statistical 
analysis was then performed on those common regions to 
characterize the students’ programming styles.  Jones 
(Jones 2001) in order to detect program similarities has 
created metrics based physical and Halstead program 
profiles. Closeness was computed as the normalized 
Euclidean distance between profiles. 

5. TAXONOMY 
A new taxonomy of source code authorship analysis is 
presented, which is a modified and expanded version of 
the taxonomy developed by Zheng et al  (2003).  

Table 1: Taxonomy for Source Code Authorship 
Analysis  

1 Problem  

Category  Description  

Authorship 
Identification  

Aims to determine whether a piece of 
code was written by a certain author. 

Authorship 
Characterization  

Based on the programming style and 
techniques used determines some 
characteristics of the programmer of 
a piece of code, such as cultural 
educational background and language 
familiarity.  

Plagiarism 
Detection  

This method attempts to find 
similarities among multiple sets of 
source code files. It is used to detect 
plagiarism, which can be defined as 
the use of another person’s work 
without proper acknowledgement.  

Author intent 
determination  

We need to know whether a piece of 
code which caused a malfunction was 
written having this as its goal or was 
the result of an accidental error.  

Author 
discrimination  

Determines whether some pieces of 
code were written by a single author 
or by some number of authors.   

2 Approach  

Category  Description  

Manual 
Analysis  

This approach involves examination 
and analysis of a piece of code by an 
expert. It can be used to draw 
conclusions about the authors’ 
characteristics such as educational 
background, and technical skill.  

Similarity 
Calculation  

Uses a set of numeric metric values 
or token strings (Verco, and  Wise, 
1996) to represent each program. 
Based on these values programs are 
being compared in order to produce a 
measure that quantifies how close 
these programs are (Jones, 2001).  

Statistical 
Analysis  

Uses statistical techniques such as 
discriminant analysis in order to 
investigate differences between 
authors of programs and to 
discriminate authors effectively.  

Machine 
Learning  

Uses methods such as Case Base 
Reasoning and Neural networks to 
predict the author of a piece of code 
based on a set of metrics.  



6. CONCLUSIONS  

It seems that source code authorship analysis is an 
important area of practice in computer security, computer 
law, and academia as well as an exciting area of research. 
The experiments that have been performed support the 
theory that it is possible to find a set of metrics that can be 
used to classify programmers correctly. Within a closed 
environment, and with a limited number of programmers, 
it is possible to identify authorship of a program by 
examining some finite set of metrics. As part of this 
development in the field there is the necessity for more 
formally defined methods and metrics specifically used in 
this area.  Further work will be to enrich the set of metrics 
in order to improve classification accuracy. An example 
could be introducing object oriented metrics when 
examining authorship in C++ or Java. Also by employing 
other machine learning techniques or statistical methods 
such as Bayesian techniques, we could produce better 
results. 
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