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ABSTRACT

Sisman, Bunyamin Ph.D., Purdue University, December 2013. Source Code Retrieval
from Large Software Libraries for Automatic Bug Localization. Major Professor:
Avinash C. Kak.

This dissertation advances the state-of-the-art in information retrieval (IR) based

approaches to automatic bug localization in software. In an IR-based approach, one

first creates a search engine using a probabilistic or a deterministic model for the files

in a software library. Subsequently, a bug report is treated as a query to the search

engine for retrieving the files relevant to the bug.

With regard to the new work presented, we first demonstrate the importance of

taking version histories of the files into account for achieving significant improvements

in the precision with which the files related to a bug are located. This is motivated by

the realization that the files that have not changed in a long time are likely to have

“stabilized” and are therefore less likely to contain bugs. Subsequently, we look at

the difficulties created by the fact that developers frequently use abbreviations and

concatenations that are not likely to be familiar to someone trying to locate the files

related to a bug. We show how an initial query can be automatically reformulated

to include the relevant actual terms in the files by an analysis of the files retrieved

in response to the original query for terms that are proximal to the original query

terms. The last part of this dissertation generalizes our term-proximity based work

by using Markov Random Fields (MRF) to model the inter-term dependencies in a

query vis-a-vis the files. Our MRF work redresses one of the major defects of the

most commonly used modeling approaches in IR, which is the loss of all inter-term

relationships in the documents.
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1. INTRODUCTION

Developing a large software system is a complex process requiring a long time and

tremendous effort from the developers in terms of design, implementation, testing,

quality assurance, deployment and maintenance. It is, nowadays, not uncommon to

have a large number of developers, possibly geographically distributed, to work on

the development of a single software system for many years. In order to manage

this intricate development process and to ensure the quality of software, there is an

increasing need for sophisticated tools that are tailored for the specific needs of the

developers.

Among all the software engineering tasks, searching the code base of a project to

locate the software artifacts relevant to an information need is perhaps one of the most

prominent activities performed in large projects. The tasks for which code search is

carried out include concept and bug localization, change impact analysis, traceability

link recovery, and so on. Over the years, researchers proposed many source code

retrieval tools to perform these tasks efficiently [1–7]. Retrieval for the localization

of the buggy parts of a software project particularly received much attention from

the research community as it is an expensive maintenance task repeated many times

during the life-cycle of a project [8].

The focus of this dissertation is on Bug Localization (BL) using source code re-

trieval. We present all the components of a new retrieval engine for locating the

relevant software artifacts in the code base of a software project with respect to the

reported bugs. The underlying retrieval mechanism responds to the textual queries

which may be either designed by a user or obtained more automatically by using

the textual information in a given bug report. The goal is to rank the files in the

target code base in such a way that the highest ranked files will be those that are

relevant to the given bug. For this purpose, we first propose a Bayesian framework
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for source code retrieval that incorporates the prior knowledge on the bug likelihoods

of the software artifacts as stored in the Software Configuration Management (SCM)

systems. Next we describe an automatic Query Reformulation (QR) model based

on Pseudo-Relevance Feedback that takes into account the Spatial Code Proximity

(SCP) in the software artifacts. Finally, we present a Markov Random Field (MRF)

based approach that exploits SCP directly in the retrievals for improved BL accuracy.

1.1 Traditional Bug Localization Methods

Traditional methods for source code retrieval for the purpose of BL include an

analysis of either the dynamic or the static properties of software [9, 10]. While dy-

namic approaches rely on passing and failing executions of a set of test cases to locate

the parts of the program causing the bug, static approaches do not require execution

of the program and aim at leveraging the static properties or interdependencies to

locate bugs. The main deficiency of the dynamic approaches is that designing an

exhaustive set of test cases that could effectively be used to reveal defective behav-

iors is very difficult and expensive. Static properties of a software project as derived

from, say, call graphs, on the other hand, tend to be language specific. The static and

dynamic approaches also are not able to take into account non-executable files, such

as configuration and documentation files, in a code base that can also be a source of

bugs in modern software.

In comparison with the dynamic and static approaches of the sort mentioned

above, the proposed IR framework to bug localization in this dissertation may be

found preferable in certain software development contexts because it can be used in

interactive modes for the refinement of the retrieved results. That is, if a developer is

not satisfied with what is retrieved with a current query (because, say, the retrieved

set is much too large to be of much use), the developer has the option of reformulating

his/her query in order to make the next retrieval more focused. The set of artifacts

retrieved in response to the current query can often give clues as to how to reformulate
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one’s query for better results the next time. Being able to query the source code

flexibly in this manner can only be expected to increase programmers’ understanding

and knowledge on the software, which, in turn, is the key to efficient bug localization.

1.2 Information Retrieval for Bug Localization

The main goal of a document retrieval system is to return a ranked list of the

documents in a corpus in response to a query in such a way that the top ranked

documents are more relevant to the query than the documents in the lower ranks. This

is usually achieved by assigning a retrieval score to each document in the corpus. The

higher the score, the higher the relevancy of a particular document to the information

need. Obviously, the ranking of the documents in such a framework depends on

the notion of the relevancy that is formulated by the underlying scoring algorithm.

In order to accurately retrieve the set of relevant files from a large collection of

documents, this scoring algorithm should capture the human notion of relevancy for

the given application.

Although there has been a tremendous amount of work that has perfected and

commercialized document retrieval, there are still many challenges waiting to be ad-

dressed in its particular applications. One such problem is to find the optimal model

for a given retrieval task that can be scaled up to work on very large, evolving datasets

and at the same time learn from the feedback information to capture the human no-

tion of relevancy [11]. This dissertation presents such a retrieval framework that

targets BL in large, ever-changing software systems.

In the early days of Information Retrieval (IR), document retrieval has taken place

solely based on the presence of the query words in the documents. In this retrieval

model, named Standard Boolean Model (SBM), the queries are formed by combining a

set of words with logical operators. The documents that satisfy the logical expression

of the query are then retrieved and shown to the user. However this model lacks

the notion of ranking, an essential prerequisite for specifying the degree of relevancy
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of the documents to the queries. In order to rank the set of documents in a given

corpus, Vector Space Model (VSM) represents each document with a vector in which

each element stores the frequency of the corresponding word in the document. VSM

makes it possible to rank the documents for retrieval on the basis of their similarity

to the query which is also represented as a vector of words. While VSM provides a

theoretically sound platform for document retrieval, many competitive probabilistic

models have been proposed over the years for a better modeling of the documents

that would eventually improve the retrieval accuracy among other tasks.

In general, for large datasets, retrieval models are founded on the “bag-of-words”

assumption which states that each word is sampled independently from the rest of

the words in the document or in the collection. This assumption has been popular

in the IR community since capturing term dependencies is intractable for large set of

documents. Two commonly used document retrieval techniques that employ the bag-

of-words assumption are the Language Modeling (LM) — a probabilistic framework

and the Divergence From Randomness (DFR) — an information theoretic approach

to document retrieval. A language model with the bag-of-word assumption is referred

to as a Unigram Model, which has been commonly used in many retrieval tasks suc-

cessfully [12, 13]. On the other hand, the information theoretic approaches that use

the bag-of-word assumption, such as TF-IDF1, remained competitive in document

retrieval [14]. Although ignoring the structure in a document may seem too sim-

plistic, these retrieval mechanisms perform well for text retrieval in practice. With

the increased processing power, superior retrieval models that relax the bag-of-words

assumption to some extent have also been proposed over the years [15].

Employing the document retrieval models mentioned above for BL brings about

several issues. An important aspect of software development to mention in that

regard is the ever-changing nature of software. As new features are added or bugs

get fixed, the textual content of a software library is incrementally modified and each

set of modifications is stored via an SCM tool. These prior set of changes is one of

1Term Frequency - Inverse Document Frequency
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the primary sources of information to predict the potential locations of the future

bugs [16]. Therefore, a retrieval system that is oblivious to the change history of the

software artifacts may result in poor accuracies for BL.

Another aspect of the code search in software development is the quality of the

queries for retrieval [17–19]. Constructing a query that can successfully distinguish

the relevant documents from the irrelevant ones is especially challenging in source

code retrieval. This is because, despite the naming conventions in all Programming

Languages (PL), arbitrary abbreviations and concatenations are commonly used by

programmers when creating software constructs such as variables, methods, class

names etc. Searching the code base of a project without being aware of these pecu-

liarities is not expected to yield satisfactory results.

Beside these issues that should be considered carefully when IR algorithms are

employed for BL, modeling the term dependencies in queries and in source code also

carries high importance in locating the software artifacts relevant to the informa-

tion need [19]. Especially, when long queries comprising structural elements such

as a textual narrative, a stack trace, one or more snippets of code etc. are used in

the retrievals [20, 21], the BL accuracy may deteriorate if the proximity and order

relationships between the terms of the query are not taken into account. In order

to model the spatial term dependencies in source code, we employ Markov Random

Fields (MRF).

While MRF is a powerful approach to the modeling of query-document relation-

ship, to fully exploit its potential for long queries e.g. bug reports, it must be used

in conjunction with what we refer to as Query Conditioning (QC). The main idea

behind QC is that for a given set of terms, the inter-term relationships should not

carry the same weight in the different parts of the query for obvious reasons. For

example, the proximity of the terms used in the stack trace portions of a bug report

should carry far more weight than that in the textual narrative. In other words, the

ordering and proximity constraints are likely to be far more discriminative in those

portions of the bug report that, by their very nature, are far more structured.
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In this dissertation, we address all these aspects of source code retrieval for BL

with Terrier+, our source code retrieval engine for BL.

1.3 Organization of the Dissertation

This dissertation is organized in 9 chapters. In the next chapter, we overview

the related work. Chapter 3 describes the retrieval models prominent in the Natural

Language (NL) document modeling. The retrieval models we employ for Bug Local-

ization (BL) are explained in Chapter 4. Our Bayesian framework that takes into

account the version histories of the software artifacts during BL is presented in Chap-

ter 5. Chapter 6 presents our automatic QR framework to assist code search for BL.

In Chapter 7, we describe the MRF modeling of the query-document relationships in

source code along with the proposed Query Conditioning (QC) framework. In Chap-

ter 8, we present the main components of our retrieval engine for Bug Localization:

Terrier+. We present our conclusions along with the summary of the achievements

in Chapter 9.
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2. RELATED WORK

Concept location, Bug localization and feature/concern localization are closely related

problems. In this chapter, we will overview the respectable approaches developed for

these problems from a broad perspective.

2.1 Dynamic and Static Methods

Dynamic techniques depend on a set of passing and failing test cases to determine

the possible locations of the bugs [22–31]. This type of bug localization is also referred

to as spectrum or coverage based fault localization as it is based on the parts of the

code base that get executed when a set of test cases are run.

In [32], Jones et al. proposed a dynamic bug localization technique that lever-

ages visualization to indicate the bug likelihoods of the suspicious statements based

on a color mapping. For this purpose, they present a bug localization tool, called

Tarantula, which associates colors with the statements in such a way that the less

suspicious statements that are invoked by fewer failing test cases appear more green;

while the statements that are invoked by many failing cases appear more red.

In [9], Dallmeier et al. proposed AMPLE, a lightweight bug localization technique

that compares the call sequences of the passing and the failing test cases. The main

motivation behind AMPLE is that faults correlate with the differences in the call

sequences of the passing and failing test cases. In order to localize faults, AMPLE

compares the call sequence of a single failing test to the call sequences of many passing

tests. If the methods of a class are primarily called when the failing test is run then

the class is likely the cause of the bug. Such classes are ranked higher in a ranked

list of suspected classes which are later examined by the programmer until the fault

is located. AMPLE was implemented as an Eclipse plug-in.
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Liblit et al. [29] showed that dynamic bug localization techniques perform poorly

when there are multiple bugs in a program. By identifying the effect of individual

bugs, their method reaches better accuracies with fewer program executions. In

[27], Lie et al. proposed SOBER, another dynamic bug localization tool that uses

statistical properties of the passing and the failing executions. They reported superior

bug localization accuracies over the work reported by Liblit et al. [29] by considering

both correct and incorrect runs during the evaluation of the predicates.

Another important class of bug localization techniques are grouped under static

analysis. As the name implies, static bug localization techniques depend on the static

properties of software such as class structure, inheritance, dependency graphs and so

on [10, 33, 34]. One such study is reported by Hovemeyer et al. [10]. They proposed

FindBugs, a static bug localization tool that uses bug pattern detectors to locate

bugs.

In [33], Robillard proposed a navigation tool to assist developers with finding

relevant parts of a software system by analyzing the topology of the structural de-

pendencies. This method takes a set of program elements such as methods or fields as

input and recommends a set of program elements worthy of exploration while sifting

out the less interesting ones.

While static properties are important in software systems, the techniques that only

leverage the static dependencies tend to return many false positives [7]. Therefore

static techniques are commonly used in conjunction with IR or dynamic methods.

2.2 IR Methods

Early work on using text retrieval methods in source code retrieval includes the

work by Marcus et al. [1]. They used Latent Semantic Indexing (LSI) to retrieve

the software artifacts with respect to short queries. The retrievals are performed in

the lower dimensional LSI space which assigns greater importance to the terms that
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frequently co-occur in the source files. This framework can also be used to expand a

given initial query that consists of a single query term initially.

In [35], Emily et al. leveraged source code identifiers to automatically extract

relevant phrases to a given initial query. These phrases are then used to either find

the relevant program elements or to manually reformulate the query for superior

feature/concern localization. In [36], they also investigated the effect of the position

of a query term on the accuracy of the search results. The main idea behind this study

is that the location of a query term in the method signatures and in the method bodies

determines its importance in the search process.

Several studies focused on the retrieval of the software artifacts with IR methods

for bug localization. In a comparative study, Rao and Kak evaluated the generic and

the composite Information Retrieval (IR) techniques that leverage the textual content

of the bug reports to localize the files that should be modified to resolve bugs [37].

Along the same lines, Lukins et al. [2] used Latent Dirichlet Allocation (LDA) for

automatic bug localization. Their comparative study shows that LDA performs at

least as good as Latent Semantic Indexing (LSI), the competing deterministic topic

model for text retrieval. Nguyen et al. [38] also proposed an LDA-based approach to

narrow down the search space for improving bug localization accuracy. This method

also takes into account the prior bug-proneness of the software files to enhance the

accuracy of the retrievals.

In [21], Ashok et al. have shown how relationship graphs can be used to retrieve

source files and prior bugs in response to what they refer to as “fat queries” that con-

sist of structured and unstructured data. Another bug localization tool was proposed

by Zhou et al. [39]. Their BugLocator tool, uses the textual similarities between a

given bug report and the prior bug reports to enhance the bug localization accuracy.

The main motivation behind BugLocator is that the same files tend to get fixed for

similar bug reports during the life-cycle of a software project. Therefore the files

modified in the past for similar bugs are more likely to be relevant to a given bug
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report. They reported that the retrieval accuracies increase significantly when the

prior bug reports are taken into account.

In [40], Gay et al. used Explicit Relevance Feedback for Query Reformulation

(QR) for the purpose of concept location. This framework requires developers to

engage in an iterative query/answer session with the search engine. At each iteration,

the developer is expected to judge the relevancy of the returned results vis-á-vis the

current query. Based on these judgments, the query is reformulated with the Rocchio’s

formula [41] and resubmitted to obtain the next round of retrieval results. This

process is repeated until the target file is located by the developer or the developer

gives up.

In [42], Haiduc et al. introduced Refocus, an automatic QR tool for text retrieval

in software engineering. Refocus automatically reformulates a given query by choosing

the best QR technique which is determined by training a decision tree on a separate

query set and their retrieval results. After training, based on the statistics of the given

query, the decision tree recommends an automatic query reformulation technique that

is expected to perform the best among the others.

2.3 Hybrid Methods

Beside the dynamic, static and IR methods, researchers also proposed many hybrid

approaches that combines these methods [43–46]. The main idea behind combining

dynamic and static analysis is to narrow down the search space with dynamic ap-

proaches and then use static analysis on this smaller search space for better accuracy.

One such work is reported by Eisenbarth et al. [25, 47]. Their approach clusters the

execution traces extracted by dynamic analysis then these traces are used in concept

analysis. Along the same lines, Antoniol and Guéhéneuc introduced Scenario-based

Probabilistic Ranking (SPR) [45]. This approach assigns two probabilities to the

methods in the execution traces: one indicates the probability of the method to ex-
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ercise the feature and the other not to. Based on these probabilities, the method is

classified as either relevant or irrelevant.

In [45], Poshyvanyk et al. introduced The Probabilistic Ranking of Methods based

on Execution Scenarios and Information Retrieval (PROMESIR), a feature location

technique that uses both dynamic analysis and IR. This approach first extract a set

of candidate methods with dynamic analysis and then uses a query created by an

expert to find the relevant methods. Along the same lines, in [48], Poshyvanyk et

al. presented a hybrid framework that combines SPR with Latent Semantic Index-

ing (LSI) for feature location. They showed that the composition of these methods

performs better than the individual methods without requiring the user to have an

extensive knowledge about the code base. Another hybrid approach again reported

by Poshyvanyk et al. [49,50] extended this approach to include formal concept analy-

sis (FCA). They showed that the irrelevant search results returned by the LSI model

can be reduced with (FCA).
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3. MODELS FOR DOCUMENT RETRIEVAL

Over the years, many document retrieval algorithms have been developed to solve

various problems with implementations ranging from simple command line tools to

large scale web retrieval engines. In this chapter, we will briefly overview the mod-

els commonly used in Natural Language (NL) document retrieval and discuss their

advantages and disadvantages.

3.1 Standard Boolean Model

The Standard Boolean Model (SBM) is one of the earliest and commonly used

retrieval model for textual data. With SBM, document retrieval is performed on the

basis of the presence of the query words in the documents. This is accomplished

with the use of the boolean logic and the set theory. Since the SBM model does not

indicate any word being more important than the others, the three boolean operators

AND, OR, and NOT are sufficient to construct any logical statement over the query

words. After the desired logical expression is obtained, it can be used to match the

documents in a corpus for retrieval [51].

Table 3.1 The notation used for SBM

F Retrieval function

B Boolean algebra over sets of words

Q A boolean statement of a query

d Binary representation of a document in the corpus

qi Binary representation of ith word in a query
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F(Q, d) =











1 if B(Q, d) = true,

0 if B(Q, d) = false.

(3.1)

With the retrieval function F given above, all the documents in the corpus of

software library for which F evaluates to 1 vis-a-vis the logical expression of a query

are retrieved. Note that the retrieval is binary in the sense that there is no degree of

the relevance of a document to the query. For example, if a query has three words:

q1, q2, q3, a boolean statement B can be constructed as B = ¬q1 ∧ (q2 ∨ q3). Using

this statement, we would retrieve all the files which do not include q1 and have either

q2 or q3 in them. Notice that there are also no weights for the query words. The

retrieval is simply based on the presence of the words in the query. Because of the

simple structure of SBM model, the implementation is very easy and the retrieval is

very fast even for large datasets. However, this mechanism can retrieve too few or

too many documents since it is solely based on exact matching. Moreover, there is

no sense of ranking during retrieval, all the retrieved documents are equally relevant

to the query.

3.2 Vector Space Model

Vector Space Model (VSM) represents a document with a vector in which each

word occupies a fixed index with its frequency in the document. If we denote the

vocabulary of the corpus by V then clearly the size of this vector, w, will be equal

to the size of the vocabulary |V | = N . Then the dth document in the corpus can be

written as wd =
[

w1,d w2,d · · · w|V |,d

]T

where wi,d is the frequency of the ith word

in the dth document [52]. For a better retrieval performance, instead of raw word

frequencies, TFIDF1 is commonly used in this vector representation [14]. TFIDF of

a word is obtained with the following equation:

1Term Frequency - Inverse Document Frequency
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tfidf(w) = w × log2
M

E
(3.2)

whereM is the number of documents in the corpus and E is the number of documents

in which the word appears at least once. The logarithmic expression in the right hand

side of the equation is called IDF and it helps assign lower frequencies to the terms

that appears in many documents in the corpus. This leads to a better document

representation for retrievals as the terms that appear in many documents in a corpus

are nondiscriminatory.

With this vector representation of the documents, a corpus can be represented by

a matrix D where the columns are the document vectors and the rows are the term

vectors. This matrix encapsulates all the semantic information of the corpus with the

bag-of-word assumption.

VSM representation allows us to use the geometrical properties of the document

vectors for comparisons. If we also represent a query using the same notation by

wq =
[

w1,q w2,q ... w|V |,q

]T

, then the documents can be ranked based on their

similarities to the query in terms of the angle between the corresponding vectors.

Conventionally, the similarity between a query and a document is determined by the

cosine of the angle.

cos(wq,wd) =
wd ·wq

||wd|| ||wq||
(3.3)

A cosine value of 1 means that the query and the document are exactly the same

and a cosine value of 0 means that there is no similarity between the query and the

document.

On the basis of this retrieval infrastructure, Latent Semantic Analysis (LSA)

brings a new perspective to the VSM model by introducing the concept space or

the topic space via Singular Value Decomposition (SVD) of the corpus matrix D [53].

D = UΣV T (3.4)



15

where the orthonormal matrix U has the eigenvectors of DDT and the orthonormal

matrix V has the eigenvectors of DTD in their columns. The diagonal matrix Σ

holds the square roots of the eigenvalues of DDT and DTD called singular values

for the corresponding eigenvectors in U and V . It is important to observe that only

the ith row of the matrix U contributes to the ith term and only the jth column of

V T contributes to the jth document. Therefore, the matrix V T has the transformed

document vectors in its columns and the matrix U has the transformed term vectors

in its rows. It turns out that when the largest k singular values and the corresponding

eigenvectors from the matrices U and V are taken, rank k approximation of the matrix

D, Dk, is obtained with minimum error in the least square sense. This dimension

reduction not only allows us to exclude the unimportant details of the corpus but also

to create a k-dimensional topic space in which the correlations between documents

and terms are stressed.

Dk = UkΣkV
T
k (3.5)

In order for document retrieval to take place, clearly a query also needs to go

through the same transformation as the documents.

ŵq = Σ−1
k UT

k wq (3.6)

Now using again the cosine similarity, a query can be compared to the documents in

the topic space for retrieval.

These deterministic models are proven to be useful for document retrieval and

data summarization. Unfortunately, VSM and LSA have some disadvantages when

they are used in bug localization. Although the document comparison with VSM

is very intuitive, it suffers from the inappropriate document length normalization

of the source files as it tends to penalize long documents [39]. As for LSA, it is

difficult to interpret the resulting document and term matrices of SVD since they

can include negative values. For large datasets, SVD may also be undesirable as it is

computationally expensive.
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3.3 Divergence From Randomness

An important class of retrieval models are grouped under the Divergence From

Randomness (DFR) framework [54]. DFR is an information theoretic approach that

evaluates the appropriateness of a document to a query on the basis of the divergence

of document feature probabilities from pure non-discriminative random distributions.

The goal is to model the noise in the data with simple probability distributions in

order to separate the discriminatory document features from the background noise.

For this purpose, two probability distributions are used to capture the information

content of the documents with respect to the query terms:

scoreDFR(wi,wd) = [−log2Prob1(wi,wd)] · [1− Prob2(wi,wd)]. (3.7)

In this formulation, [−log2Prob1(wi,wd)] measures the divergence from randomness.

Prob1 is the probability of having tf occurrences of the term wi in the document

wd by pure chance and the lower the value of Prob1, the higher the score of the

term for that document. Prob2, on the other hand, works as a normalizer. Using

different distributions for these probabilities results in different retrieval models. We

will explain this framework in detail in Chapter 4 as we will use it for bug localization.

3.4 Unigram Model

The unigram model is the simplest probabilistic model that makes the bag-of-word

assumption, as the other popular models, when sampling the words from documents.

With this model, we compute the probabilities of individual terms in a document

using the maximum likelihood estimate:

PML(wi|wd) =
tf(wi,wd)

∑N

i=1 tf(wi,wd)
(3.8)

where tf(wi) is the term frequency of the word. In order for document retrieval to

take place, given a query wq, we can estimate the query likelihood p(wq|wd) [13]. The

documents that yield the largest values for such likelihoods could then be returned
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in response to the query. If we assume that the query wq consists of the words

{w1, w2, ...., wn}, then under the bag-of-words assumption for both the query and the

corpus model, we could decompose the query likelihood as follows:

P (wq|wd) =
∏

wi∈wq

PML(wi|wd) (3.9)

Query likelihood given in this form is a widely accepted document retrieval technique

with language models. Although the underlying language model P (wi|wd) can be

made much more sophisticated, query likelihood is computed by the same product

for other language models as well.

Because of the bag-of-words assumption, an interesting dilemma occurs when

query likelihoods are used for document retrieval. If a query word is missing in a

document, the likelihood formula above would become zero for that document. For

such cases, even if a document was highly relevant to a query on account of containing

the rest of the query words, the absent words would make it impossible to retrieve

those documents.

To address this problem created by the query words not being present in a docu-

ment, researchers have proposed that the estimated model be “smoothed” to account

for the missing words. The goal of smoothing is to discount the probabilities assigned

to the words that actually occur in a document and to then apportion the left-over

probability mass among the vocabulary words not present in the document [55].

In Chapter 4, we will describe the unigram model with smoothing in detail and

show how it can be used in bug localization.

3.5 Probabilistic Topic Models

Recently, probabilistic topic models have become very popular as they provide a

latent topic space in which the dependencies of the documents and the words can be

revealed efficiently. Especially the Latent Dirichlet Allocation (LDA) model which

allows the documents to have multiple topics with continuous weights gained a con-
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siderable attention from the research community [56–58]. Before going into the details

of how topic models can be used for document retrieval, we will briefly explain the

three commonly used topic models in the literature.

3.5.1 Mixture of Unigrams (MU)

The Mixture of Unigrams is one of the most powerful models for data classification

and in particular for text classification. In this model, the probability distribution of

a document is expressed in terms of the mixture components cj ∈ C = c1, ..., cK
2. In

this framework, a document is generated by first selecting a topic and then using the

parameters of that topic. The likelihood of a document wi is given by:

P (wi|θ) =
K
∑

j=1

P (zj|θ)P (wi|zj; θ) (3.10)

where K is the number of latent topics in the corpus.

Since the documents in the collection are independent of each other, the likelihood

of the whole dataset is given by:

P (D|θ) =
M
∏

i=1

P (yi = zj|θ)P (wi|yi = zj; θ) (3.11)

where we indicate the topic labels for each document by a binary variable yi. Smooth-

ing plays an important role when we compute the parameters of the model. Because

of the bag-of-words assumption, a dirichlet prior θ with parameter α is used to smooth

the word and the topic distributions to prevent zero probabilities [59].

P (θ) ∝
∏

zj∈C

((θzj)
α−1

∏

wt∈V

(θwt|zj)
α−1). (3.12)

Note that when α = 2, the smoothing that the above prior causes becomes Laplace

smoothing.

2The model assumes that there is a one-to-one correspondence between the topics zj and the classes
cj for j = 1, · · · ,K.
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N
M

z w

Fig. 3.1. The Mixture of Unigrams Model in its graphical representation. M repre-
sents the number of documents in the corpus and N represents the vocabulary size.

Inference includes learning the parameters of the model given the data: D =

{w1, ...,wM}. The maximum a posteriori (MAP) is used to obtain the estimate θ̂ of

the parameters θ with Laplace Smoothing.

P (θ|D) ∝ P (D|θ)P (θ) (3.13)

There are two sets of parameters of the model which are computed by the following

familiar ratios [59]. The probability of a word given a topic can be estimated by:

θ̂wt|zj ≡ P (wt|zj; θ̂) =
1 +

∑M

i=1N(wt,wi)P (yi = zj|wi)

N +
∑N

s=1

∑M

i=1N(ws,wi)P (yi = zj|wi)
(3.14)

where N(wt,wi) is the count of the word wt in document wi and P (yi = zj|wi) is 1

if the label of document wi is zj, 0 otherwise.

Similarly, the probability of a topic is estimated by

θ̂zj ≡ P (zj|θ̂) =
1 +

∑M

i=1 P (yi = zj|wi)

K +M
(3.15)

Using this classifier, we can cluster the documents or classify an unseen document

into one of the |C| classes. We can also rank the documents in the collection based

on the likelihood of a new document (as a query).

In order to predict the label of an unlabeled document, the Bayes Rule is used to

rank the topics:

P (yi = zj|wi; θ̂) =
P (zj|θ̂)

∏|wi|
k=1 P (wk,i|zj; θ̂)

∑K

r=1 P (zr|θ̂)
∏|wi|

k=1 P (wk,i|zr; θ̂)
. (3.16)
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Note that, this classification assigns each document into only one topic, however

in a real life scenario a document might discuss more than one topic. Despite this

assumption of one-to-one correspondence of the topics and the classes, the Mixture

of Unigrams model does very well in practice [59].

3.5.2 Probabilistic Latent Semantic Analysis (pLSA)

Probabilistic Latent Semantic Analysis relaxes the one topic per document as-

sumption that the mixture of unigrams model makes [60]. As can be seen in Fig.

3.2, it associates a latent topic with each word, instead of sampling a single topic for

each document. pLSA can also be viewed as the probabilistic counterpart of Latent

Semantic Analysis. Since pLSA is a discrete probabilistic model, it does not suffer

from the negative weights for words or documents as LSA does. It also provides a

better fit to the data. With pLSA, the probability of generating a document is given

by:

p(wd) =

nd
∏

i=1

K
∑

j=1

p(wi,d|zj)p(zj|wd) (3.17)

Model fitting is done using an Expectation Maximization (EM) procedure. In

E-step p(zj|wi, wt) is computed by:

p(zj|wi, wt) =
p(zj)p(wi|zj)p(wt|zj)

∑K

k=1 p(zk)p(wi|zk)p(wt|zk)
. (3.18)

In M-step:

p(wt|zj) ∝
M
∑

i=1

N(wt,wi)p(zj|wi, wt) (3.19)

p(wi|zj) ∝
N
∑

t=1

N(wt,wi)p(zj|wi, wt) (3.20)

p(zj) ∝
M
∑

i=1

N
∑

t=1

N(wt,wi)p(zj|wi, wt). (3.21)
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Fig. 3.2. pLSA Model in its graphical representation.

Although promising results are obtained with pLSA model, the model does not

have well defined semantics and there is no natural way of computing the probability

of an unseen document [61]. Moreover, the number of parameters to calculate grows

linearly with the number of documents, implying overfitting to the training data.

3.5.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), introduced by Blei et al. [61], is a powerful

approach for the probabilistic modeling of text corpora. It provides us with a gen-

erative framework in which topics serve as hidden variables that mediate between

the documents and the words as pLSA model does. Roughly speaking, the main

difference from pLSA is the use of dirichlet priors for the topic and the word distri-

butions. This makes it possible for LDA to create a continuous topic space leading

to interpretable semantics for the corpus. pLSA lacks this smoothing effect — a very

important component for text modeling [62].

N
M

z w

 

Fig. 3.3. The LDA model in its graphical representation
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Table 3.2 The parameters of the LDA model

α a K-dimensional hyper-parameter vector of the Dirichlet distribution

that is used to derive the topic proportions in each document

β a |V |-dimensional hyper-parameter vector of the Dirichlet distribution

that is used to derive the word proportions in each topic

Θ anM×K matrix of latent variables whose each row expresses the topic

proportions in each document (derived from Dir(α)))

Φ a K×|V | matrix of latent variables whose each row expresses the word

proportions on a corpus-wide basis in each topic (derived from Dir(β))

The goal of LDA modeling is to estimate the parameters of Dirichlet-based prob-

abilities for the topic proportions in the documents and the word proportions in the

topics. Figure 3.3 gives the graphical representation of the LDA model and Table 3.2

gives a description of the parameters involved.

Regarding the parameters shown in Table 3.2, the corpus D of vocabulary V is

modeled as a multinomial distribution over K topics, and each topic is modeled as a

multinomial distribution over |V | = N words. All multinomial parameters are based

on Dirichlet priors because of the conjugate property of such functions. The Dirichlet

prior for how the topics are distributed in a corpus is parametrized by α and the

Dirichlet prior for how the words are distributed in the topics for the entire corpus is

parameterized by β.

LDA derives its representational power from the fact that the various topics may

“reside” in a document in any proportion over a continuous range, subject to the usual

normalization constraints. Various approaches have been suggested for estimating the

parameters of the LDA model for a given corpus [61, 63]. A previously constructed

LDA model can be used to characterize an unseen document by the distribution of

the K topics in the document, this distribution being similar to a row of the M ×K

matrix Θ for all the seen documents in the corpus.
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3.6 Document Retrieval with Probabilistic Topic Models

With topic-based document models such as MU, pLSA and LDA, document re-

trieval can be performed in the hidden layer of topics using a divergence based similar-

ity metric. With LDA, given a query, one can treat the query as an unseen document

onto itself and then calculate a maximum a posteriori estimate for its topic propor-

tions using either the Blei’s variational inference procedure [61] or a Gibbs sampling

based approach [63, 64]. What is interesting is that MAP estimate of the topic pro-

portions for a query (that is treated as a document) and such previously-calculated

estimates for the topic proportions for the corpus documents can all be treated as

valid 1-D distributions in the form of histograms discretized to K bins. Recall that

we have K topics and that the topic proportions, being parameters of the multinomial

distributions, must sum up to 1. The 1-D topic-proportion distribution representing

a query can therefore be compared with similar 1-D distributions for the corpus docu-

ments with the help of, say, the Jensen-Shannon divergence. As demonstrated in [64],

such a topic-based approach can also be used for document clustering.

However, comparing the documents to a query solely on the basis of their topic

distributions is not enough in general. Several researchers proposed cluster based

document retrieval for superior results. One such approach uses the document clus-

tering as a filtering process in a large corpus by first selecting the most likely cluster

for a given query and then retrieving the documents from that cluster only [65, 66].

Combining unigram model with topic models and/or cluster models to increase

the performance is another approach [67]. Wei and Croft [68] demonstrated how

LDA model can be combined with unigram and collection model to produce superior

retrieval performance. As mentioned earlier, the query likelihood formula is also the

skeleton of document retrieval with topic models.

p(wq|wd) =
∏

wi∈wq

p(wi|wd) (3.22)
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In this formula, instead of using only unigram model, p(wi|wd) includes a weighted

mixture of the following three likelihoods: (1) the unigram model (this is usually

referred to as representing the document model); (2) the maximum-likelihood proba-

bility PML(wi|D)) of a query word wi conditioned directly on the entire corpus D (this

is usually referred to as representing the collection model); and, finally, (3) the like-

lihood probability that the LDA model associates with a query word wi conditioned

on the document wd. Here is Wei and Lafferty’s formula:

p(wi|wd) = λ(
nd

nd + µ
PML(wi|wd)+

(1−
nd

nd + µ
)PML(wi|D)) + (1− λ)PLDA(wi|wd)

(3.23)

Where λ and µ are the weighting parameters that need to be tuned for a corpus

and nd the number of distinct words in the document wd. With regard to the LDA

portion of the above formula, we can make explicit the dependence of that likelihood

on the hidden topics of the LDA model by expressing it as:

PLDA(wi|wd) =
K
∑

k=1

p(wi|zk,Φ)p(zk|wd,Θ) (3.24)

3.6.1 Discussion

Although the topic models mentioned in this chapter have been successfully ap-

plied in many applications, they do not perform as well for Bug Localization (BL)

[37, 39]. Moreover, the exact inference for complex topic models is not tractable.

Although the retrievals may benefit from these approaches when they are combined

with simpler models, the computational overhead may be too severe to justify the

minor improvements in large projects [37, 67, 68].
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4. INFORMATION RETRIEVAL FOR BUG

LOCALIZATION

Based on the advantages and the disadvantages of the retrieval models mentioned

in Chapter 3, we adapt two IR frameworks for Bug Localization (BL): (1) Language

Modeling (LM) and (2) Divergence From Randomness (DFR) [54,69]. LM is a prob-

abilistic approach whereas DFR is an information theoretic framework. These ap-

proaches to document retrieval do not require any training and are shown to perform

well in retrieval tasks [16, 37].

4.1 Language Modeling

The language modeling approach uses the notion of query likelihood which ranks

the documents in a collection according to the likelihood of relevance to the query [69].

Given a bug Q formulated as a textual query, our goal in BL is to compute the

probability of a file f to be relevant to the query: P (Q|f). With the bag of words

assumption, the terms in the query, as well as in the documents, are regarded as

occurring independently of one another, therefore we can write

P (Q|f) =
∏

w∈Q

P (w|f) (4.1)

where P (w|f) is the likelihood of a bug term w in f and it is computed with ML

estimation. Given a term w from the vocabulary V of the collection C, the ML

estimate we seek is given by PML(w|f) = tf(w, f)/
∑

w′∈f tf(w
′, f) where tf(w, f) is

the term frequency of w in f ∈ C. Scoring the set of files in this way is problematic

as all the query terms may not be present in a given document, leading to zero

probabilities. To overcome this problem, several smoothing techniques have been
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proposed over the years [13]. Using the collection model for smoothing, Hiemstra

Language Model (HLM) [13] computes the file likelihood of a term as follows:

PHLM(w|f) = λ · PML(w|f) + (1− λ) · PML(w|C) (4.2)

where PML(w|C) is the collection likelihood of the term and it is given by P (w|C) =

tf(w,C)/
∑

w′∈V tf(w
′, C) where tf(w,C) represents the term frequency of w in the

collection. The parameter λ is called the mixture variable and governs the amount of

smoothing.

Another powerful smoothing approach is the Bayesian Smoothing with Dirichlet

Priors [13]. If the Dirichlet parameters are chosen as µP (w|C) for each term w ∈ V

then the file likelihood of a term is given by

PDLM(w|f) =
tf(w, f) + µP (w|C)
∑

w′∈f tf(w
′, f) + µ

(4.3)

where µ is the smoothing parameter. We denote this model by DLM (Dirichlet

Language Model).

After computing the query likelihoods for all the files in a software collection, we

rank the files in decreasing order of these probabilities and show a certain number of

the top files to the developer as the most likely locations of the bug.

4.2 Divergence from Randomness

That brings us to the second major approach to document retrieval: the Diver-

gence from Randomness (DFR) based approach. As mentioned earlier, DFR is an

information theoretic approach. It evaluates the appropriateness of a document to

a query on the basis of the divergence of document feature probabilities from pure

non-discriminative random distributions. The core idea in DFR is that the terms

that do not help discriminate the documents in a collection are distributed randomly

while the discriminative terms tend to appear densely only in a small set of elite1

1A document is regarded as an elite document for a term if the term appears at least once in the
document.
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documents. These content bearing terms or the specialty terms should not follow a

random distribution and the amount of divergence from randomness determines the

discriminatory power of the term for retrieval. The higher the divergence, the higher

the importance of the term in the retrieval. The DFR framework allows us to avoid

parameter tuning to a great extent since the models are non-parametric.

In this framework, the score of a document with respect to a single query term is

given by the product of two information content:

sDFR(w, f) = [1− Prob2(w, f)] · [−log2Prob1(w, f)]. (4.4)

Prob1 is the probability of having tf occurrences of the term in the document by

pure chance and as this probability decreases, the information content −log2Prob1

of the document vis-a-vis the term increases. (1 − Prob2), on the other hand, is

related to the risk of choosing the query term as a discriminative term and works

as a normalization factor. Amati and Rijsbergen [54] uses the probability of having

one more occurrence of the term in the document as Prob2, which leads to penalizing

the high frequency terms during retrieval. Using different probability distributions in

these two information contents results in different retrieval models.

Similar to the LM, the models we present from DFR also use the bag of words

assumption. Therefore the score of a file with respect to a query is given by

sDFR(f |Q) =
∑

w∈Q

sDFR(w, f). (4.5)

4.2.1 Tf-Idf Models for Prob1

Assuming that the terms are being distributed in the documents randomly, having

tf occurrences of a term in a document by pure chance is given by Prob1 = ptf where

p is the probability of a term to appear in any document. In order to compute the

posterior distribution for p, usually a beta prior with parameters α1 = −0.5 and

α2 = −0.5 is assumed. The evidence in computing p is given by the probability of the

term to land in E elite documents out of M documents in a collection, which can be
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modeled by a binomial distribution P (E|p,M) =
(

M

E

)

pE · (1 − p)M−E. In this case,

the posterior will also be in the form of the beta distribution and the expected value

of p is given by (E + 0.5)/(M + 1). Therefore,

−log2Prob1 = tf · log2
M + 1

E + 0.5
. (4.6)

This information content is denoted by “In” (Inverse document frequency).

Using the expected number of elite documents Ee instead of E in the formula

above results in a separate retrieval model. For this purpose, the expected number of

elite documents for a given term can be computed by Ee = M · P (tf 6= 0). In order

to compute the probability P (tf 6= 0), we again assume that the terms are being

distributed to the documents randomly. If the probability of a term appearing in a

document out of M documents is given by 1/M , then P (tf 6= 0) = 1 − (M−1
M

)TF

where TF is the total number of occurrences of the term in the collection. We denote

this retrieval model by “InExp”.

4.2.2 Normalizing Information Content (Prob2)

Prob1 by itself is not sufficient to accurately discriminate specialty terms since

the terms with high frequencies will always produce small Prob1 and thus become

dominating during retrieval. To normalize the information content, two main methods

have been proposed: Normalization L and Normalization B [54]. Normalization L2

achieves this effect by estimating the probability of having one more token of the

same term in the document by

Prob2 =
tf

tf + 1
. (4.7)

Normalization B, on the other hand, assumes that a new token of the same term

already having TF tokens is added to the collection. With this new token, the

2L stands for Laplace as this probability is given by so-called Laplace’s law of succession
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probability of having tf + 1 occurrences of the term in a document can be estimated

by the following binomial probability:

Binom(E, TF + 1, tf + 1) =

(

TF + 1

tf + 1

)

ptf · qTF−tf (4.8)

where p = 1/E and q = 1− p. Then the incremental rate between Binom(E, TF, tf)

and Binom(E, TF + 1, tf + 1) gives the normalization factor:

Prob2 = 1−
Binom(E, TF + 1, tf + 1)

Binom(E, TF, tf)
. (4.9)

4.2.3 Document Length Normalization

Document length is another important factor in retrieval. It has been shown that

the relevancy of a document to a query is dependent on the document length [13].

Normalization 2 as proposed in [54] uses the assumption that the term frequency

density in a document is a decreasing function of the document length. If the effective

document length is chosen as the average document length in the collection, then the

normalized term frequency can be estimated by

tfn = tf · log2(1 +
avg l

l
) (4.10)

where l is the length of the document and avg l is the average document length in

the collection. Note that with this normalization, instead of the regular tf , tfn is

used in the computation of Prob1 and Prob2.

4.3 TF-IDF Retrieval Models

Another set of widely used retrieval algorithms are grouped under the TF-IDF

scheme [14]. In this retrieval framework, the score of a document with respect to

a single query term is given by the multiplication of the term frequency with the
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Table 4.1 Retrieval Models used in BL with bag-of-words assumption.

Language Models (Section 4.1)

HLM Hiemstra Language Model

DLM Dirichlet Language Model

Divergence from Randomness (Section 4.2)

InB2 Inverse Document Frequency + Normalization B + Normalization 2

InExpB2 Inverse Document Frequency with expected number of elite documents

+ Normalization B + Normalization 2

InL2 Inverse Document Frequency + Normalization L + Normalization 2

Tf-Idf Robertson’s tf + Sparck Jones’ Idf

inverse document frequency. One algorithm that produced strong empirical results

in our experiments uses Robertson’s tf which is given by

a1 ·
tf

(tf + a1 · (1− a2 + a2 · l/avg l))
(4.11)

and Spark Jones’ Idf which is given by log2(
M

E+1
). The parameters a1 and a2 in

Robertson’s tf provide non-linearity to the term frequencies for scoring the documents.

Table 4.1 summarizes the models explained in this section.
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5. INCORPORATING VERSION HISTORIES IN

IR-BASED BUG LOCALIZATION

Software defects can emanate from a large variety of sources. In addition to the type

of the bugs e.g. functional errors, technical errors etc., the severity of the bugs e.g.

critical, high, low, enhancement and so on, also plays an important role in Bug Local-

ization (BL). This intricate nature of the bugs often leads to poor retrieval accuracies

when the underlying retrieval algorithm depends only on the textual content of the

software. In this chapter, we present a Bayesian retrieval framework that incorporates

query independent prior knowledge to improve the accuracy of BL. For this purpose,

we show how version histories of a software project can be used to estimate a prior

probability distribution for defect proneness associated with the files in a given ver-

sion of the project. Subsequently, we use these priors in our Bayesian framework to

determine the posterior probability of a file being the cause of a bug.

We first introduce two models to estimate the priors, one from the defect histories

and the other from the modification histories, with both types of histories as stored

in the versioning tools. Referring to these as the base models, we then extend them

by incorporating a temporal decay into the estimation of the priors, placing greater

weight on recent maintenance efforts. We demonstrate that IR based BL accuracy can

be significantly improved when such models for the priors are employed in retrieval.

With regard to leveraging prior development efforts, many researchers investi-

gated the predictive power of the version histories of the software artifacts to assist

developers in software development tasks [70]. In an IR based retrieval framework

that leverages the prior evolutionary information concerning the development of the

software, Kagdi et al. [71] have demonstrated how change impact analysis can be

carried out by exploiting the conceptual and evolutionary couplings that exist be-

tween the different software entities. Another relevant work is reported by Nguyen
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et al. [38]. They have proposed BugScout, an automated approach based on Latent

Dirichlet Allocation to narrow down the search space while taking into account the

defect proneness of the source files.

In support of the predictive power of version and modification histories stored in

software repositories, studies such as those reported in [72–77] have demonstrated

that the version histories store a wealth of information that could potentially be used

to predict the future defect likelihoods of the software entities such as files, classes,

methods, and so on. Along the same lines, studies such as those reported in [78, 79]

have shown that prior modification history of software components can be used to

guide engineers in future development tasks. Motivated by these and similar other

studies, our goal here is to mine the defect and file modification related knowledge

that is always buried in the software repositories and to incorporate this knowledge

in well-principled retrieval models for fast and accurate BL in large software projects.

In regard to using version histories for BL, the work by Hassan and his collabora-

tors has demonstrated that defects are mainly associated with high software modifica-

tion complexity [76]. Many modifications committed by several programmers during

a short period of time is a strong predictor for future defects [77]. Besides complex

prior modification history, the defect histories of the files in a software project is also

a good predictor of future defects. A buggy file in the early stages of the project

development is likely to produce defects throughout the life cycle of a project unless

the project undergoes a fundamental design change [80,81].

5.1 Estimating Defect & Modification Based Prior Probabilities

After a software product has entered the market place, any further evolution

of the software typically takes place in small steps in response to change requests

such as those for adding a new feature, modifying an existing feature, bug fixing,

and so on. At each step, new files may be added to the code base of the project or

existing files may be removed or altered to implement the requested change. Software
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Configuration Management (SCM) tools such as SVN create a new revision of the

project by incrementally storing these change-sets with every commit operation. This

incremental nature of software development plays an important role in many software

engineering tasks, particularly in BL, because the modifications made to a specific set

of files in response to a change request suggest strong empirical dependencies among

the changed files that may not be captured otherwise via dynamic or static properties

of the software such as call graphs, APIs or execution traces created by running a set

of test cases etc.

Naturally, not all change-sets imply strong interdependencies among the involved

files. For example, the change-sets for what are usually referred to as General Mainte-

nance (GM) tasks tend to be very large. As a case in point, a change-set for removing

unnecessary import statements from all Java files in a code base [82] does not carry

much useful information with regard to any co-modification dependencies between

the files. We do not use such change-sets in our models. We regard all non-GM

change-sets accumulated during the life cycle of a software project as Feature Imple-

mentation (FI) change-sets. We consider an FI change-set to be of type BF (Bug

Fixing) if it is specifically committed to implement a bug fix. The common approach

to determining whether a change-set is BF is to lexically analyze the commit message

associated with it [83]. Those commit messages include key phrases such as “fix for

bug” or “fixed bug” etc.

Over the years, researchers have proposed several process and product related

metrics to predict the defect potential of software components in order to help the

software managers make smarter decisions as to where to focus their resources. Sev-

eral studies have shown that bug prediction approaches based on process metrics

outperform the approaches that use product metrics [74–76]. Along the same lines,

in our work we use FI and BF change-sets to compute the modification and the defect

probabilities respectively.

We denote the kth change-set of a software project by rk; this represents the set

of the modified files in response to the kth change request for k = 1 · · ·K during
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Table 5.1 The Notation Used in modeling version histories

K Total number of change-sets

Ck The collection of the software files after the kth commit

Rk The set of change-sets up to and including the kth change-set

β1 The decay parameter for modification probabilities

β2 The decay parameter for defect probabilities

software development or maintenance. After the kth commit, with some files having

being altered, a new collection of files Ck is created. If Ck exhibits defective behavior,

the defect and the modification probabilities of the files in Ck can be modeled by a

multinomial distribution1 where P (f |Ck) represents the probability of a file f to be

responsible for the defective behavior reported. Obviously,
∑

f∈Ck
P (f |Ck) = 1. We

assume that this probability associated with a file is independent of the rest of the

files in the collection. We refer to this as the “bag of files” assumption.

In the rest of this section, we first propose two base models that determine from

the version histories the prior defect and modification probabilities associated with

the files in a software project. We have named them Modification History based Prior

(MHbP) and Defect History based Prior (DHbP). Then we extend these models by

incorporating in them a time decay factor. We add the suffix ‘d’ to the acronyms of

the base models to indicate the decay-based versions of the two models by MHbPd

and DHbPd respectively. Table 5.1 summarizes the notation used in these models.

5.1.1 The MHbP Model

Several authors have established that the modification history of a file is a good

predictor of its fault potential. Hassan used the code change complexity to estimate

the defect potential of the files on the basis of the rationale that as the number of

1The multinomial distribution and the categorical distribution are used exchangeably in the IR
community. Here we adhere to the tradition.
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modifications to the files increases, the defect potential of the files must also increase

[76]. Nagappan et al. [77] showed that the change bursts during certain periods

of software development are good indicators of future defects. The main intuition

behind their approach is that implementing many changes in a short period of time

complicates the development process, leading to defects.

With the MHbP model, we translate the frequencies with which the files are men-

tioned in the change records into file modification probabilities. Using Maximum

Likelihood (ML) estimation, the modification probability of a file f in a given collec-

tion Ck can be expressed as

PMHbP (f |Ck, Rk) =

∑k

i=1 Im(f, ri)
∑

f ′∈Ck

∑k

i=1 Im(f
′, ri)

(5.1)

where

Im(f, ri) =











1, f ∈ ri & ri ∈ FI

0, otherwise.

(5.2)

In the formulation, Rk represents the set of change-sets from the beginning of the

development to the kth change-set. Obviously RK = FI ∪GM . The model assigns a

larger probability mass to the files modified more frequently with

∑

f∈Ck

PMHbP (f |Ck, Rk) = 1. (5.3)

5.1.2 The DHbP Model

Bug fixing change-sets mark the defect producing files during the life cycle of a

project. The files mentioned in these change-sets are highly likely to produce bugs in

the future as the buggy files tend to remain buggy [80,81].

Similar to the MHbP model, we estimate the defect probability of a file by

PDHbP (f |Ck, Rk) =

∑k

i=1 Ib(f, ri)
∑

f ′∈Ck

∑k

i=1 Ib(f
′, ri)

(5.4)
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where

Ib(f, ri) =











1, f ∈ ri & ri ∈ BF

0, otherwise.

(5.5)

Ib(f, ri) is an indicator variable that becomes one if ri implements a bug fix that

results in a modification in f . This probability gives the ML estimate for the defect

probabilities of the files.

5.1.3 Modeling the Priors with Temporal Decay

MHbPd

After a change request is implemented, it takes time for the files to stabilize and

become bug-free. Indeed, implementing certain change requests may even take more

than one commit operation perhaps from several developers [84]. However after the

files have been stabilized, we expect a decrease in the modification probabilities.

Therefore, even if a file had been modified frequently during a certain period of

time in the past, if it has not been modified recently, the modification probability

should decrease [75]. We incorporate a time decay factor into the formulation of the

modification probabilities to take that facet of software development into account as

follows:

PMHbPd(f |Ck, Rk) =

∑k

i=1 e
1

β1
(ti−tk)Im(f, ri)

∑

f ′∈Ck

∑k

i=1 e
1

β1
(ti−tk)Im(f ′, ri)

(5.6)

where ti represents the time at which the ith change-set was committed. This type

of decay models has been used commonly in the past [75, 76, 80]. The parameter β1

governs the amount of decay and it is related to the expected time for the files to

stabilize with the implementation of a change request. As β1 decreases, the amount

of decay increases and therefore the expected stabilization time decreases.
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DHbPd

Similar to the MHbPd model, recency of the bugs is an important factor in esti-

mating the defect probabilities. We incorporate a time decay factor into the defect

probabilities to emphasize the recent bug fixes in the estimation of prior defect prob-

abilities as follows:

PDHbPd(f |Ck, Rk) =

∑k

i=1 e
1

β2
(ti−tk)Ib(f, ri)

∑

f ′∈Ck

∑k

i=1 e
1

β2
(ti−tk)Ib(f ′, ri)

. (5.7)

5.2 A Bayesian Framework for BL

Our main goal is to score the files in the code base of a software project in order to

rank them according to their relevance to a given bug. The models we have presented

in the previous section estimates the prior probability of a file to be defective. Now

we want to incorporate that prior probability into the bug localization process for an

increased accuracy. Although in different contexts, incorporating query independent

prior knowledge into IR systems has been extensively studied in the literature [85,86].

5.2.1 Document Priors

In the context of using document priors in a probabilistic retrieval framework,

we use the Language Modeling (LM) framework of Ponte and Croft [12] and the

Divergence From Randomness (DFR) framework of Amati and Risjbergen [54]. As

presented in Chapter 4, these are the two main approaches to text retrieval that have

been shown to produce strong empirical results. While LM presents a probabilistic

approach in the Bayesian framework, DFR is an information theoretic approach that

evaluates the appropriateness of a document to a query on the basis of the divergence

of document feature probabilities from pure non-discriminative random distributions.

In the Bayesian framework, given the description of a bug Q as a query, we

compute the posterior probability of a file f to pertain to the defective behavior by
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P (f |Q,Rk, Ck) =
P (Q|f, Ck)P (f |Rk, Ck)

P (Q|Rk, Ck)
. (5.8)

Since we are only interested in ranking the files and the denominator in Eq. 5.8 does

not depend on the files, it can be ignored. Taking the logarithm for computational

convenience, we compute the final score of a file being relevant to a given bug with

the prior belief by

sLM(f |Q,Rk, Ck) = log2[P (Q|f, Ck)] + log2[P (f |Rk, Ck)]. (5.9)

In the DFR framework, the final score of a file in response to a query is altered

to take the prior belief into account as follows [87]:

sDFR(f |Q,Rk, Ck) = sDFR(f |Q,Ck) + log2[P (f |Rk, Ck)]. (5.10)

Note that, in the previous section, we presented the estimation of P (f |Rk, Ck).

The estimations of P (Q|f, Ck) in LM and sDFR(f |Q,Ck) in the DFR framework, on

the other hand, are presented in Chapter 4.

5.3 Experimental Evaluation

In order to evaluate the proposed algorithms, we need to have the complete repos-

itory of a software project with a set of documented bug descriptions B. Unfortu-

nately, software repositories and bug tracking databases are usually maintained sep-

arately [84]. Therefore, in general, we may not know the actual change-sets in the

repository that are committed for implementing the fixes for bugs. One approach

that has been used to get around this limitation is to look for pointers in the commit

messages to the bug tracking database. The iBugs dataset created by Dallmeier and

Zimmerman [88] uses this approach and it is therefore an appropriate testbed for our

experiments.
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5.3.1 Data Preparation for Bug Localization with Version Histories

We have evaluated the BL performance of our approach on AspectJ, an aspect-

oriented extension to the Java programming language. The iBugs dataset for AspectJ

contains a set of reported bugs, the collection of the files before and after a fix was

implemented for each bug, and the files modified to implement the fix. We have used

the pre-fix versions of the project as the corpora for our retrieval experiments.

Besides the iBugs dataset, we obtained the complete CVS repository of the As-

pectJ project which is publicly available2. Unfortunately, CVS repositories do not

record the change-sets. In line with the approach presented in [89], we reconstruct

the change-sets by grouping the files that are committed by the same author with the

same commit message using a time fuzziness of 300 seconds. Table 5.2 gives various

properties of the AspectJ project.

Indexing the Source Code

Since the code base of a software project keeps changing during development, in

general, there can be significant differences in the underlying code base for any two

bugs. In order to keep track of the changes in the code base, we create a distinct

index for each collection that a bug Q ∈ B was reported on.

Modern software projects tend to include a substantial number of non-executable

files such as configuration files, documentation files, help files, and so on. Therefore

finding only the executable files may not constitute a complete answer to the bug

localization problem. XML files, for example, are used heavily in project configuration

and it may be necessary to make modifications to these files to fix certain bugs.

For obvious reasons, we regard the files with the extensions “.java” and “.aj” as

executable. The rest of the files in the code base that may also cause defective

behavior are regarded as non-executable. Figure 5.1 depicts the evolving size of the

AspectJ project during the bug reporting period. On average, the non-executable

2http://archive.eclipse.org/arch/tools-cvs.tgz
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Table 5.2 AspectJ Project Properties

K |FI| |BF | |B| Analysis Period

6,271 5,165 1,214 291 2001-01-16 - 2008-10-06
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Fig. 5.1. The size of the AspectJ project as a function of the time of the bug report
for each bug Q ∈ B.

files constitute 13.58% of the source code. It is important to note these different

types of files have different characteristics. So, as described below, they are subject

to slightly different tokenization procedures.

Treating each source-code file as a bag-of-words, we first use an initial stop list

to remove the programming language specific tokens such as “public,” “private,”

“transient” etc. from the executable files. Then we split the compound terms that

use camel-case and punctuation characters. After these steps, we apply an English

stop list to remove the noise terms such as “a,” “an,” “the” and so on, and apply

Porter’s Stemming algorithm to reduce the terms to their root forms [90]. All the

terms obtained through this process are then lowercased and incorporated in the

index. The non-executable files, also considered to be a bag of words, are not subject

to the programming-language-specific stop list. However, we split the compound

tokens in such files also.
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Fig. 5.2. An illustration of bug localization process with Terrier+.

Pre-processing Bug Reports

Typically, a bug report is written in ordinary English and it may include tokens

from the code base. For example, a bug report may include the trace of an exception

caused to be thrown by the bug, or it may include method names that are possibly

related to the defective behavior.

We apply the same pre-processing steps to the bug reports as we did for the non-

executables in the code base. That is, we carry out compound-term splitting and use

stopping and stemming rules to prune the reports. We also drop those bug reports

that have no associated files in the code base. After this pre-processing, we ended up

with 291 bug reports and 1124 files associated with them, implying 3.86 files per bug

on average. Figure 5.2 illustrates the BL process.

5.3.2 Retrieval Results

The accuracy of search engines is commonly measured by precision and recall

metrics [13]. Let’s say we have a query for which there exist four relevant files in

the collection that we want the search engine to retrieve. If three of the top r = 10

retrieved files in the ranked list are relevant then the precision would be calculated

as 3/10 and the recall as 3/4. A high precision indicates that a large fraction of the
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retrieved set is relevant. Recall, on the other hand, measures the completeness of the

results.

We have tabulated the retrieval performance using precision at rank r (P@r),

recall at rank r (R@r) and Mean Average Precision (MAP) metrics. The average

precision (AP) for a query Q ∈ B is given by

AP (Q) =

∑RT

r=1 P@r × I(r)

relQ
, (5.11)

where I(r) is a binary function whose value is 1 when the file at rank r is a relevant file,

and 0 otherwise. The parameter RT in the summation bound for the total number

of highest-ranked files that are examined for the calculation of AP for a given query

Q. We set RT = 100. The denominator relQ is the total number of relevant files in

the collection for Q. MAP is computed by taking the mean of the average precisions

for all the queries.
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The parameters λ for HLM and µ for DLM need to be tuned according to the

characteristic of the underlying collection. Figure 5.3 and Figure 5.4 plot the retrieval

accuracies in terms of MAP for various values of these parameters. For retrievals

with HLM, we obtained the highest baseline accuracy with λ = 0.8 which assigns a

higher weight to the file likelihoods as compared to the collection likelihoods of the

query terms. On the other hand, the optimum value of µ for DLM is 2400, although

the accuracies are not very sensitive to the variations in the [2000 − 4000] interval.

The constants a1 and a2 in the Tf-Idf model are set to 1.2 and 1.0 respectively. In

all of the experiments with DLM, HLM and Tf-Idf, we used these fixed values for

the parameters to solely compare the improvements with the proposed defect and

modification based models for the priors.

Comparison of the Retrieval Models

Table 5.3 presents the baseline retrieval performance across the models without

incorporating the defect or the modification probabilities. That is, we assume a

uniform prior for the results in Table 5.3. While DLM performs the best amongst

the models, HLM performs the worst. The models InB2, InExpB2 and InL2 from

the DFR framework do not require parameter tuning while performing as well as and

sometimes better than the models in LM.

Table 5.4 presents the hypotheses we have formulated to investigate as to what

extent using the defect and modification priors influences the retrieval of the files

likely to be defective. The retrieval performance results themselves are presented in

Tables 5.5, 5.6, 5.7 and 5.8. We use pairwise student’s t-test for significance testing.

The columns p-H1, p-H1a, p-H2 and p-H2a in the tables give the computed p-value of

the pairwise significance tests for the corresponding hypotheses. The highest score in

each column is given in bold. We also report the improvement percentages for MAP

and P@1 compared to the baseline results. Highest improvement in each column is

designated by the ‘*’ character.
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Table 5.3 Baseline Retrieval Results

Model MAP P@1 P@5 R@5

HLM (λ = 0.8) 0.1174 0.0859 0.0715 0.1607

DLM (µ = 2400) 0.1349 0.1271 0.0851 0.1642

InB2 0.1240 0.1233 0.0774 0.1491

InExpB2 0.1327 0.1237 0.0735 0.1485

InL2 0.1268 0.0993 0.0719 0.1555

Tf-Idf (a1 = 1.2, a2 = 1.0) 0.1264 0.1062 0.0712 0.1488

Table 5.4 Hypotheses

H1 Using the prior modification probabilities of the files (MHbP) in a

software project enhances the bug localization accuracy.

H2 Using the prior defect probabilities of the files (DHbP) in a software

project enhances the BL accuracy.

H1a MHbPd outperforms MHbP when they are employed in IR based bug

localization.

H2a DHbPd outperforms DHbP when they are employed in IR based bug

localization.

H3 Prior defect history is superior to prior modification history when they

are employed in IR based BL.
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Table 5.5 Retrieval performances across the models with MHbP.

Model MAP (Imp.) P@1 (Imp.) P@5 p-H1a

HLM 0.1318 (+12.27%) 0.0825 ( -3.96%) 0.0859 8.64e-07

DLM 0.1556 (+15.34%) 0.1375 ( +8.18%) 0.0907 7.30e-11

InB2 0.1329 (+6.83%) 0.1306 ( +5.58%) 0.0818 2.90e-03

InExpB2 0.1447 (+9.04%) 0.1271 ( +2.75%) 0.0838 2.49e-04

InL2 0.1481 (+16.43%) 0.1203 ( +20.66%)* 0.0914 1.43e-04

Tf-Idf 0.1508 (+18.93%)* 0.1271 ( +19.34%) 0.0893 4.61e-06

Table 5.6 Retrieval performances across the models with MHbPd (β1 = 1.0).

Model MAP (Imp.) P@1 (Imp.) P@5 p-H1a

HLM 0.1924 (+63.88%) 0.1856 (+116.07%) 0.1313 4.14e-08

DLM 0.1896 (+40.55%) 0.2131 (+67.66%) 0.1340 5.11e-05

InB2 0.1704 (+36.98%) 0.1924 (+55.54%) 0.1141 4.91e-05

InExpB2 0.1975 (+48.83%) 0.2268 (+83.35%) 0.1265 4.24e-06

InL2 0.2007 (+57.78%) 0.2337 (+134.40%)* 0.1388 3.07e-05

Tf-Idf 0.2121 (+67.27%)* 0.2474 (+132.30%) 0.1416 3.50e-06
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Table 5.7 Retrieval performances across the models with DHbP.

Model MAP (Imp.) P@1 (Imp.) P@5 p-H1a

HLM 0.1474 (+25.55%) 0.1100 (+28.06%) 0.0962 9.28e-09

DLM 0.1660 (+23.05%) 0.1546 (+21.64%) 0.0928 5.51e-07

InB2 0.1500 (+20.58%) 0.1409 (+13.90%) 0.0907 2.73e-06

InExpB2 0.1592 (+19.97%) 0.1512 (+22.23%) 0.0955 1.18e-05

InL2 0.1640 (+28.93%) 0.1409 (+41.32%)* 0.1031 3.06e-07

Tf-Idf 0.1651 (+30.21%)* 0.1409 (+32.30%) 0.1065 2.96e-08

Table 5.8 Retrieval performances across the models with DHbPd (β2 = 5.0).

Model MAP (Imp.) P@1 (Imp.) P@5 p-H1a

HLM 0.2114 (+80.07%)* 0.2199 (+156.00%)* 0.1326 3.84e-10

DLM 0.2041 (+51.30%) 0.2268 (+78.44%) 0.1423 1.50e-03

InB2 0.1847 (+48.47%) 0.2165 (+75.02%) 0.1175 1.93e-07

InExpB2 0.2047 (+54.26%) 0.2268 (+83.35%) 0.1320 4.29e-07

InL2 0.2194 (+72.48%) 0.2509 (+151.65%) 0.1471 5.78e-07

Tf-Idf 0.2258 (+78.08%) 0.2646 (+148.45%) 0.1512 1.77e-07

All of the improvements in the retrieval results are statistically significant at a

significance level of 1% i.e. α = 0.01, therefore the null hypotheses for H1, H1a,

H2 and H2a are rejected. As can be seen in Tables 5.5, 5.6, 5.7 and 5.8, using the

defect or the modification priors estimated from the version histories improves the

BL accuracies significantly. Especially the amount of improvement in precision is

extremely high with highest improvement being 156% in P@1 for the HLM model

incorporating DHbPd.

The InL2 model from the DFR framework stands out in the experiments. This

model does not need any parameter tuning and it performs comparably well, gaining

the highest improvements in P@1 with MHbP, MHbPd and DHbP, and second to the
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highest improvement in P@1 with DHbPd. With a MAP value of 0.2258, we obtained

the highest retrieval accuracy with the Tf-Idf model incorporating DHbPd. The InL2

model incorporating DHbPd came out as the second best with a MAP of 0.2194.

MHbP vs. DHbP

Intuitively, we expect the BF change-sets to be more descriptive in terms of the

defect potential for the files. Indeed, comparing the models using the prior defect

history with the models using the prior modification history, we observe that DHbP

consistently outperforms MHbP at a significance level of 1% i.e. α = 0.01 for all

the models except DLM for which the p-value is 0.026, indicating a significance level

of 5%. From these results, we conclude that using the defect histories of the files

results in superior BL in comparison to the modification histories. Therefore, the

null hypothesis for H3 is rejected.

Discussion

It is reasonable to assume that the effects of modification and bug-occurrence

events associated with a file should decay with time. Obviously, as developers fix

the faulty parts of a software project in response to the reported bugs, some files

may have caused the bugs to occur on just a one-off basis, while others may require

repeated fixes for the same set of bugs. So, one could argue that the weight given to a

file in relation to a given bug with just a one-off occurrence of the bug that was fixed

a long time ago should be low and this weight should become even lower with the

passage of time. On the other hand, a file requiring repeated fixes for a bug should

get a higher weight as being a likely source of the same bug again and this weight

should diminish only slowly with time.

As explained in Section 5.1.3, we incorporate time decay through the parameters

β1 and β2. Figure 5.5 and Figure 5.6 plot the retrieval accuracies for several different
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Fig. 5.6. The effect of varying β2 in DHbPd.

values of these parameters. Retrieval with the Tf-Idf model performed the best with

β1 = 1.0 and β2 = 5.0.

What is interesting is that the optimum value for the decay parameter β1 is always

less than the optimum value for β2 that resulted in the highest MAP for the analyzed

models as can be seen in Figure 5.5 and Figure 5.6. These results suggest that the

expected stabilization time of the BF change-sets tends to be longer than that of the

non-BF change-sets, i.e. the bug fixes take longer to be finally resolved.
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Table 5.9 Recall with InL2 incorporating version histories

Model
R@5 R@10 R@25 R@50 R@100

(0.1%) (0.2%) (0.5%) (1%) (2%)

MHbP 0.1926 0.2644 0.3966 0.5040 0.6588

DHbP 0.2048 0.2837 0.4189 0.5231 0.6676

MHbPd(β1 = 1.0) 0.2392 0.3170 0.4478 0.5388 0.6421

DHbPd(β2 = 5.0) 0.2519 0.3532 0.4750 0.6025 0.6863

Baseline 0.1555 0.2351 0.3468 0.4485 0.5745

Completeness of Retrievals

Table 5.9 presents the recall values at several cut-off points in the ranked list with

the proposed models for the priors. The row “Baseline” presents the recall results

with a uniform prior. Since the size of the source code is not the same for each bug,

we use the average size of the source code to designate the percentage of the code

at the reported ranks in parentheses. Here, we only report the results for the InL2

model because of space limitations. By analyzing 1% of the code on the average,

60.25% of the buggy files were localized with the InL2 model incorporating DHbPd.

5.3.3 Comparison with Relevant Work

Using the iBugs dataset, Dallmeier and Zimmerman [88] experimented with Find-

Bugs [10], a static bug pattern detection tool, and Ample [9], a dynamic BL tool.

These experiments allow us to indirectly compare our results with those obtained

through static and dynamic analysis. Their evaluation shows that FindBugs was not

able to locate any of the 369 bugs in the iBugs dataset. Based on these results, we

conclude that Terrier+ performs better than FindBugs. On the other hand, the ex-

periments with Ample in [9] are restricted to the 44 bugs that require a single class

to be fixed and that have at least one failing test. Ample locates 40% of those bugs
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by searching at most 10% of the executed classes. For comparison with our work,

notice that P@1 for the Tf-Idf model incorporating DHbPd is 0.2646, which indicates

that, for 77 of the 291 bugs, the first file in the retrieved list is actually a relevant

file. These results clearly show that our approach works extremely well for a larger

set of bugs. For 77 of the bugs, the developers locates the bug without investigating

a long list of classes.

Another relevant BL tool is BugScout by Nguyen et al. [38]. Their experiments

on AspectJ are restricted to a single collection of 978 files and 271 bug reports. The

accuracy of BugScout is reported in terms of hitrate. If BugScout correctly retrieves

at least one relevant file for a bug in a ranked list of a certain size, it is considered

to be a hit. The hitrate for a project is given by the ratio of the total number of hits

to the total number of bugs. BugScout’s hitrate for AspectJ with a ranked list of 10

files is reported as 35%. For a comparison with our work, note that the hitrate with

a ranked list of 10 files for the InL2 model incorporating DHbPd is 63.5%, indicating

more than 80% improvement. Additionally, P@10 for InL2 incorporating DHbPd in

our experiments is 0.1065. This result indicates that, on the average, the developer

is guaranteed to locate a relevant file with our approach if s/he is willing to examine

the top 10 files.
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6. ASSISTING CODE SEARCH WITH AUTOMATIC

QUERY REFORMULATION FOR BUG LOCALIZATION

Obviously, beside the retrieval model, the success of the bug localization depends

much on the quality of the queries — in other words, the quality of the bug reports

when IR-based search was used for automatic Bug Localization (BL). In general, in

code search, a poorly designed query is likely to be indiscriminate in assigning high

ranks to the relevant and the irrelevant documents, which would make it difficult to

locate the desired software components reliably. And, in general, constructing a good

query for retrieving the relevant files and/or artifacts with high reliability is no easy

task in the domain of software.

The problem of constructing a good query for code search is exacerbated by the

fact that, despite the naming conventions in all programming languages, arbitrary

abbreviations and concatenations are frequently used in source code for the naming

of concepts, objects, artifacts, and so on [91]. Therefore, searching a code base for

concepts, objects, artifacts, etc., using terms that are oblivious to the abbreviation

and concatenations actually used can, in the worst case, miss out entirely on the

files highly relevant to a given search, and, in the best, result in poor values for the

relevancies. While an experienced developer — especially one who is already familiar

with the code base — may be able to anticipate the peculiarities of the naming

conventions used in a software library, it is easy to imagine how much harder it would

be for an inexperienced developer to do the same [92].

Obviously, code search needs effective techniques for what is known as Query Re-

formulation (QR). As it turns out, researchers in the software engineering community

have looked at QR in the past — but in a way that either places additional burden on

the developer in constructing a query or that are based on general statistical proper-

ties of a software library. To elaborate, as an example of QR that places additional
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burden on the developer, we have the study of Explicit Relevance Feedback (ERF)

by Gay et al. [40]. They used Rocchio’s method for QR to locate a target file by

reformulating the original query [41] through an iterative interaction with the user.

And, as an example of QR that automatically reformulates a query on the basis of

general statistical properties of a library (without regard to the retrieval effectiveness

of the terms in the original query), we have the work by Marcus et al. [1]. They used

Latent Semantic Indexing (LSI) to determine what terms were more likely to co-occur

with what other terms in software artifacts. The term co-occurrence information ob-

tained in this manner was later used to automatically expand a given query that has

a single term initially. Along the same lines, Yang and Tan proposed an approach to

infer semantically related terms automatically via a pairwise comparison of the code

segments and the comments in the source code [93].

In this chapter, we present an automatic QR approach that aims to alleviate the

difficulty of designing a proper query. The proposed QR method does not require any

input from a user for reformulating the query and it is also attuned to the original

query. It works by enriching an initial (weak) query with certain specific additional

terms drawn from the highest-ranked artifacts retrieved in response to the initial

query. The important point here is that these additional terms injected into a query

are those that are deemed to be “close” to the original query terms in the source

code on the basis of positional proximity. This similarity metric, named Spatial Code

Proximity (SCP), is based on the notion that terms that deal with the same concepts

in source code are usually proximal to one another in the same files. We believe this

framework is ideally suited for automatic QR for BL in order to improve the quality

of what comes back from an IR-based search engine for the following reasons:

• Bug reports by their very nature contain terms that can be expected to result

in the retrieval of a set of documents with a reasonable chance that the set

will contain at least some documents directly relevant to the bug. The issue

then becomes how to analyze this set of initially retrieved documents for mod-

ifications to the original query so that the set of documents retrieved with the
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reformulated query will give us improved retrievals. Obviously, while a bug re-

port will contain terms relevant to the intended search task, in general it may

also contain terms that are extraneous to what a user is looking for.

• Within the naming conventions that may be recommended for a particular

programming language, the programmers are generally free to use any abbre-

viations and concatenations at all that, at least in their minds, convey some

information regarding the purpose served by a name. This obviously presents

hurdles in code search for those not already familiar with the code base. And

even by those who are familiar with the code base, the relative importance of the

different names with regard to their ability to serve as discriminating identifiers

for a software artifact may not be well understood.

For the evaluation of the proposed proximity based model, we compared it to the

well-known QR methods in the literature with the following Research Questions (RQ)

in mind:

• RQ1: Does the term proximity based QR technique we propose improve the

accuracy of source code retrieval, if so, to what extent?

• RQ2: How do the QR techniques that are currently in the literature perform

for source code retrieval?

• RQ3: How does the initial retrieval performance affect the performance of QR?

• RQ4: What are the conditions under which QR may perform poorly?

Our experimental validation presents answers to all these questions. We also show

that our spatial code proximity based approach to QR for BL extracts terms more

accurately and outperforms the other QR methods significantly.
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6.1 Background on Relevance Feedback

Locating a piece of information in a large repository of documents is a challenging

task as it requires formulating a query that can successfully distinguish the relevant

documents from the irrelevant ones. If the original query is found to yield unsatis-

factory results, it could be refined by either engaging in an explicit query-response

session with the search engine, or, more automatically, by analyzing the documents

retrieved for the initial query in order to find ways to augment it for further retrieval.

Relevance Feedback frameworks are commonly used to assist users in this process.

Although the main ideas underlying relevance feedback are straightforward, there

is no single feedback strategy that works for different types of queries and for dif-

ferent domains. As a result, relevance feedback has continued to be an active area

of research, with its focus being on (1) how to best acquire the feedback; and (2)

how to best utilize it to improve the retrieval accuracy [41, 94–96]. In the next two

subsections, we provide a brief survey of this research as it has been used in the past

for QR in software context. Our comments to follow include a comparison of this

framework with ours.

6.1.1 Explicit Relevance Feedback

In explicit relevance feedback (ERF), after seeing the first set of retrieval results

returned by the search engine, the user provides his/her judgments explicitly by mark-

ing the relevant and irrelevant set of results. In [40], Gay et al. showed that ERF

can assist developers in locating the target file(s) by reformulating the original query

iteratively. At each iteration, the reformulated query is submitted and a new set of

retrieval results is presented to the user to obtain the next round of feedback. This

process is repeated until all the target files are located.

The most commonly used method for query reformulation is perhaps Rocchio’s

method. With Rocchio’s method, both the query and the documents are regarded

as term vectors with the size of the vocabulary V . Given a query Q, and the set
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of top X retrieved files D with respect to Q, the user populates the set of relevant

files DREL ⊂ D and the irrelevant files DIR ⊂ D. Then the query is reformulated as

follows:

Qref = α ·Q+ β ·
∑

f∈DREL

f

|DREL|
− γ ·

∑

f∈DIR

f

|DIR|
. (6.1)

The new query reformulated in this way comes closer to the centroid of the set of

relevant files and moves away from the centroid of the set of irrelevant files. Although

ERF is the most accurate type of feedback, its use in source code retrieval is highly

limited as it prolongs the query session and developers can be expected to find it

burdensome to have to repeatedly mark the relevant and irrelevant documents in an

iterative session. Evaluating the performance gain obtained with ERF is another

drawback since the user spends a considerable amount of time judging the relevancy

of the retrievals and some of the relevant files are already located during this process.

6.1.2 Pseudo Relevance Feedback

In comparison to ERF, Pseudo (Blind) Relevance Feedback (PRF) employs a dif-

ferent approach in the sense that the user input is not required. With this method,

after getting the first set of retrieval results, the set D of the top X retrieved doc-

uments is regarded as an approximation to the set of relevant documents and the

“best” terms from these documents are chosen to reformulate the query. As this type

of RF does not require user involvement, it can be performed instantly even without

user noticing it.

The main intuition behind PRF is that since the files in D receive the highest

retrieval scores, they are highly likely to contain further informative terms that are

conceptually related to the original query. Obviously, PRF can only work if the

original query is reasonably strong in its power to retrieve at least some of the relevant

documents. As it turns out, and as we argue later in this paper, this assumption is
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well satisfied in the domain of bug localization on account of how the bug reports are

generally constructed.

6.2 Past Work on Automatic Query Reformulation

In this Section, we present two currently well-known methods for automatic QR.

We include them here since we will use them in a comparative evaluation of automatic

QR for BL in Section 6.5.

6.2.1 Rocchio’s Formula for Automatic QR

Rocchio’s Formula (ROCC) for automatic QR is well known in natural-language

document retrieval [41]. It is therefore an automatic candidate to try in software

context also. ROCC is based on the following rationale: Use the set D of the top files

retrieved for the initial query Q to create a vector space model (VSM) of the term-

term and term-document relationships in the set of documents in D. For each word

w in D, ROCC calculates a weight that expresses its importance in a reformulated

version Qref of the query Q according to:

tf(w,Qref ) = (1− β) · tf(w,Q) + β ·
∑

f∈D

tf(w, f)

|D|
(6.2)

where f ∈ D is a file in the set D, tf(w,Q) the term frequency of w in the initial

query Q, and tf(w, f) is the same in the file f . As illustrated by the formula, the

frequencies of the terms in D are used to express the importance of those terms for a

reformulation of Q. The greater the frequency of a term in D, the higher its weight

in the reformulated query (Qref ). The interpolation parameter β ∈ [0−1] adjusts the

weights of the expansion terms with respect to the original query terms. Although

ROCC is a robust performer, competitive probabilistic models with richer semantics

have been proposed over the years.
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6.2.2 Automatic QR Using the Relevance Model

Another approach to automatic QR, again in the natural language context, is the

Relevance Model (RM) [94,97]. What makes RM based QR different from Rocchio’s

formula is that as a formal probabilistic model, it incorporates the ranking scores

of the documents in D as an additional component for a more accurate selection of

the terms to be used for reformulating the original query. The goal is to estimate

a co-occurence probability distribution P ′(w|Q) for the terms in the vocabulary vis-

a-vis the query terms. Given the first pass retrieval results D, RM estimates this

probability by:

P ′(w|Q) =
P (w,Q)

P (Q)
∝

∑

f∈D

P (w|f)P (f)
∏

q∈Q

P (q|f) (6.3)

where the right-hand-side formula is based on the reasonable assumption that, given

a document f ∈ D, we can consider w and Q to be independent. The query likelihood

component in the above formula, P (Q|f) =
∏

q∈Q P (q|f), gives the score of a file f

with respect to the original query and different retrieval models can be used to com-

pute it. Subsequently, the query Q is reformulated using the following interpolation

formula:

P (w|Qref ) = (1− β) · P (w|Q) + β · P ′(w|Q) (6.4)

where β is an experimental parameter that determines the extent one should mix the

original query as presented by the user and the new terms as made evident by their

associated probabilities.

6.3 The Proposed Approach to Query Reformulation For Source Code

Retrieval

The QR methods we described in Section 6.2 consider all the terms in a file

f ∈ D equally for reformulation. However, given the distinct structure and the term



58

relationships in source code, one would think the importance of a term in a file to an

existing term in a query ought to depend on the likelihood that the former normally

shows up proximally to the latter in the same file. The proximity we are referring

to may relate to the different terms appearing in the same long name through an

underscore or a camel-case based concatenation. Proximity also refers to the different

terms appearing close to one another in the same method or class definition and so

on.

A number of different approaches have been proposed to capture the term-term

proximity effect in the context of natural-language [95,98,99]. Inspired by these stud-

ies, we propose a simple probabilistic model, which we call Spatial Code Proximity

(SCP) model for measuring term-term positional proximity that is particularly appro-

priate for source code. SCP estimates a proximity probability distribution P ′(w|Q)

over each term w in the vocabulary V of the system on the basis of their proximity

frequencies in D with respect to Q.

In order to use proximity for query reformulation, we index the position of each

term in a file as demonstrated in Fig. 6.1. Vis-à-vis a given query Q, we next

associate a term proximity frequency with each term in the file f in the following

manner: (1) We initialize the value of the proximity frequency to 0 for each term

in f . (2) We then identify every position in f where the term is the same as one

of the terms in Q. (3) Subsequently, we place a window of size 2W + 1 at each

position identified in the previous step. The window is placed symmetrically around

the identified positions. (4) The proximity frequency associated with every term in

the window is now incremented by 1. The proximity frequencies (pf) obtained in this

manner can be expressed as:

pf(w, f |Q) =
∑

q∈Q

∑

i∈Pf [w]

∑

j∈Pf [q]

IW (i, j) (6.5)

where Pf [·] is the position operator which returns the set of position indices of a given

term in f . The window operator IW (i, j) returns 1 if the positions i and j fall within

the same window of length W :
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Fig. 6.1. An illustration of indexing the positions of the terms in a source file.

IW (i, j) =











1 if |i− j| ≤ W

0 otherwise.

(6.6)

Based on these term frequencies, we may estimate the proximity probability distri-

bution P ′(w|Q) using the top retrieved documents D:

P ′(w|Q) =

∑

f∈D pf(w, f |Q)
∑

w′∈V

∑

f∈D pf(w
′, f |Q)

(6.7)

Using Eq. 6.4, we reformulate the query by interpolating the original query with

the proximity probability distribution. With this formulation, the terms that tend

to co-occur with the query terms consistently in close proximity across the files in

D will receive a high probability mass whereas the terms that appear far away from

the query terms will be discarded in QR. Fig. 6.2 presents the Query Reformulation

process.

6.3.1 A Motivating Example

The Bug 20750 filed for Google Chrome1 has a title that reads: “drag a loading

tab will cause the loading animation separate with the tab”. The target file that has

been modified to fix this bug is “chrome/browser/gtk/tabs/tab strip gtk.cc”. The

reformulated versions of this query along with the normalized term frequencies as

estimated by the three QR methods are given in Table 6.1.

1http://code.google.com/p/chromium/issues/detail?id=20750
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Fig. 6.2. An illustration of data flow in QR process.
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Table 6.1 QR achieved with the proposed SCP method vis-à-vis the same achieved
with the ROCC and RM methods for the Bug 20750 filed for the Chrome project.

SCP RM ROCC

Original Query Terms

tab 0.1965 tab 0.1201 tab 1.0000

animation 0.0650 load 0.0444 animation 0.2867

load 0.0444 animation 0.0359 load 0.2000

drag 0.0340 drag 0.0302 drag 0.1000

cause 0.0222 cause 0.0222 cause 0.1000

separate 0.0222 separate 0.0222 separate 0.1000

Expansion Terms

strip 0.0231 bookmark 0.0157 bookmark 0.1721

content 0.0161 strip 0.0145 gtk 0.1631

pin 0.0131 content 0.0132 browser 0.1524

gtk 0.0127 gtk 0.0121 content 0.1367

model 0.0111 model 0.0117 strip 0.1358

control 0.0094 drop 0.0116 model 0.1154

bound 0.0084 browser 0.0111 bar 0.1100

tabstrip 0.0083 window 0.0099 window 0.1040

layout 0.0072 control 0.0099 node 0.0820

Average Precision (Baseline: 0.1667)

1.0000 0.1429 0.2000
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Looking at the relevant file, we see that the most important terms of the query to

retrieve this file are tab, animation and load; while the terms cause and separate are

not related to the information need primarily. As can be seen in Table 6.1, all three

methods are able to capture this notion of relevancy by reweighing the original query

terms accordingly. Additionally, the QR methods are also able to extract relevant

terms from the initial retrieval results to expand the query. For instance, the terms

gtk and strip are good expansion terms that are conceptually related to the query.

Interestingly, differing from the other methods, SCP extracts the terms tabstrip,

bound and pin from the feedback files. These proximity terms are the key terms that

help the SCP method achieve a perfect average precision.

To better understand the affect of term proximity on QR, note that the rank

of the term strip as computed by the SCP method is relatively high in comparison

to the other two methods because this term frequently appears right next to the

term tab in the feedback files hence receiving a higher probability mass. The term

tabstrip is another interesting proximity term extracted by only the SCP method. As

a compound term constructed without using punctuation characters or camel casing,

it may be difficult for the developer to think of this term for retrieval purposes.

6.4 Retrieval & Evaluation Framework

6.4.1 Retrieval Model

Obviously, the underlying retrieval function has a prominent effect on QR since

it is first used to rank the files in the collection to obtain the set D of feedback files.

Then, after the reformulation, a second pass of retrieval with respect to the updated

query is performed to obtain the final retrieval set. For QR experiments, we use the

TF-IDF framework [14] as our baseline retrieval model where the score of a query

with respect to a file is computed by the following weight function:
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P (Q|f) ∝ scoreTFIDF(Q, f) =
∑

q∈Q

tf(q, f) · idf(q). (6.8)

We compute the frequency of a term in a file by Robertsons’s TF and the inverse

document frequency of the terms by Spark Jones’ IDF. See Section 4.3 for the defi-

nitions of these frequencies. Robertson’s TF contains two model parameters, a1 and

a2. We empirically set a1 = 1.2 and a2 = 0.75 for the QR experiments.

6.4.2 Query Performance Prediction (QPP) Metrics

To evaluate the effect of QR on the quality of the retrievals, we employ the fol-

lowing QPP metrics [18, 100]:

Average Inverse Document Frequency (avgIDF)

Inverse Document Frequency (IDF) of a term determines the specificity of the

term with respect to a collection. A query consisting of a set of terms with high IDF

values is more likely to locate the relevant files as the size of the retrieved set becomes

smaller for such queries. The average for this metric is given by

avgIDF (Q) =
∑

q∈Q

log2[|C|/(Nq + 1)]/|Q|. (6.9)

Average Inverse Collection Term Frequency (avgICTF)

Inverse Collection Term Frequency (ICTF) measures the specificity of a term on

the basis of the overall term frequency in the entire software library. Its average is

given by

avgICTF (Q) =
∑

q∈Q

log2[NT/(tf(q, C) + 1)]/|Q| (6.10)
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where NT is the number of terms in the collection and tf(q, C) is the frequency of a

term q in the collection.

Query Scope (QS)

In [100], Query Scope (QS) is defined as the percentage of the documents that

contain at least one query term. A small value of QS for a query with respect to a given

collection indicates that the query is discriminatory. Note that as the length of the

queries increase this metric becomes less effective in measuring the query specificity.

Simplified Clarity Score (SCS)

Simplified Clarity Score (SCS) is given by the Kullback-Leibler (KL) divergence

between the query and the collection:

SCS(Q) =
∑

q∈Q

P (q|Q)log2[P (q|Q)/P (q|C)]. (6.11)

SCS measures the discriminatory power of the query while also taking into account

the query length.

6.5 Experimental Evaluation

Our goal in this section is to compare the power of query reformulation that is

based on the spatial code proximity analysis with two other approaches drawn from

natural language research. In the graphs and tables that show comparative results,

SCP will denote the new “Spatial Code Proximity” method, RM the method based

on “Relevance Model”, and, finally, ROCC the method based on a direct application

of Rocchio’s formula for QR. Our comparative results are based on two large soft-

ware projects, namely Eclipse2, the Integrated Development Environment (IDE) and

2www.eclipse.org
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Google Chrome3, the WEB Browser. In order to evaluate the presented algorithms,

we need a set of bug reports, B and the source files modified to fix the correspond-

ing bugs as the ground truth. As mentioned earlier, unfortunately, the bug tracking

databases such as Bugzilla4 do not store the actual modifications committed for the

reported bugs. The common approach to link the modifications to the bug reports is

to look for pointers in the commit messages to the bug tracking database [39,88,101].

For Eclipse, we follow a similar approach and employ regular expressions for an ac-

curate reconstruction of the links between the bug reports and the corresponding

modifications as follows:

1. Scanning the repository logs, group the files that are modified by the same

author with the same commit message with a time fuzziness of 200 seconds [89].

This step is necessary as CVS repositories store the changes made to each file

separately.

2. For the target version of the software, use regular expressions to extract the bug

IDs from the commit messages. Our regular expressions match the following

generic phrases in the commit messages: Fix for ID, Fix ID, Fixed ID, Fixing ID,

Bug ID and they are insensitive to the punctuation characters and the spacing

within the identified phrase i.e. the phrases such as BugID, Bug: ID or Bug

#ID and so on are also matched.

3. Check if the extracted ID exists in the bug tracking database for the target

version of the software.

For Google Chrome, the commit messages follow a more specific form. They contain

a separate line to indicate whether the commit fixes any bugs and if so the bug IDs

are given in that line. Note that a bug may need more than one set of modifications

to be finally resolved. Therefore, we accumulate the set of modifications that are

committed for the same bug over the analysis period. Finally, we consider only the

3www.google.com/chrome
4https://bugs.eclipse.org/bugs/
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Table 6.2 Evaluated Projects

Project Language |B| #Files #Terms Analysis Period

Eclipse v3.1,

IDE

Java 4,035 12,825 19,955 2001-04-28 - 2010-05-21

Chrome v4.0,

WEB Browser

C/C++ 358 8,420 349,958 2008-07-25 - 2010-05-20

bug reports that are marked as “FIXED” in the bug tracking database, which means

a fix has been checked into the tree and tested for the corresponding bug. The result

of this reconstruction process is a dataset that we call BUGLinks5. Table 6.2 presents

the evaluated projects from this dataset and some of their statistics.

Establishing the ground truth for the retrievals in the presence of the links as

constructed above is an important step in the evaluation process. For a fair evaluation,

we use the set of files that are mentioned in the corresponding commits of a given

bug and that are also present in the indexed version of the software as the relevant

files to be retrieved. As a result, we discard the bug reports for which there are no

files to be located in the corpora of the evaluated projects. For index creation, we

used Eclipse version 3.1 and Chrome version 4.0.305.0.

6.5.1 Indexing Source Code

We use the same pre-processing steps as described in Chapter 5 to index the code

base of each project. Firstly, the compound terms are tokenized using punctuation

characters and camel case characters. The tokens thus generated are subject to a set

of stemming and stopping rules. We use Porter’s stemming algorithm to trim the

terms to their common root forms [90]. Regarding the stopping rules, these delete

the programming-language specific terms and the terms in a list of standard-English

5https://engineering.purdue.edu/RVL/Database/BUGLinks/



67

stop-words that has 733 words in it. The positions of each term in the files are

recorded for the SCP method after these pre-processing steps.

The bug reports are subject to the same preprocessing steps as the source files.

Each bug report is also divided into two parts: its title and its description. The title

of a bug report constitutes an explanation, albeit very brief, of the buggy behavior,

with further elaboration provided by the description part. For QR experiments, we

use the titles of the bug reports to populate the set of queries B as they are less noisy

and they resemble the real world search queries better than the descriptions.

6.5.2 Evaluating the Query Characteristics

Note that any QR strategy can only be expected to give us improvements on

the average, implying that we must admit to the possibility of a reformulated query

giving us worse results on occasion [95]. We define the set of queries for which QR

leads to improvements as positive queries and denote this set by B+. Similarly, the

set of queries for which QR results in a decreased performance is defined as negative

queries and it is denoted by B−. The remaining queries in B preserve their initial

performance after QR. We consider these queries as constituting the set of neutral

queries and we denote it by Bo. Obviously, |B+|+ |B−|+ |Bo| = |B|. As mentioned

in Section 6.4, we use the QPP metrics to analyze the characteristics of these query

sets. For comparing QPP metrics on these sets, we used unpaired two-sample t-test.

6.5.3 Parameter Sensitivity Analysis

The four experimental parameters that affect the quality of retrieval from refor-

mulated queries are: (1) The interpolation parameter β that determines the weight

to be accorded to the new terms to be added to a query vis-a-vis the original terms;

(2) The number of highest ranked files to be analyzed for QR; (3) The number of

terms to be added to the original query; and, finally, (4) The sizeW of the window to
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Fig. 6.3. The effects of varying the experimental parameters.
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Fig. 6.4. The effect of varying window size W .

be used for proximity analysis. Fig. 6.3 and 6.4 show how the retrieval performance

depends on these four parameters.

With regard to β, as can be seen in Fig. 6.3(a) and 6.3(b), while ROCC reaches

its peak point for β = 0.1, RM and SCP achieve better accuracies for higher values

of β. Fig. 6.3(c), 6.3(e), 6.3(d) and 6.3(f) present the retrieval accuracies as the

number of feedback files and the feedback terms to expand the queries are varied

for X ∈ {2, 4, 8, 16, 32, 64} and Y ∈ {2, 4, 8, 16, 32, 64, 128} for the analyzed projects.

Fixing these parameters at certain chosen values empirically is a common approach to

evaluating the QR methods [97]. Following this tradition, we set these parameters as

X = 8 and Y = 16 unless stated otherwise. Note that SCP outperforms the other two

methods consistently in these experiments. In addition to these parameters common

to all three methods, Fig. 6.4 plots the effect of varying the window length W for the

SCP method. Interestingly, in both software projects, we reached the best retrieval

accuracy for W = 8. Notice that the retrieval accuracy starts to degrade as far away

terms are considered for QR.
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Table 6.3 Retrieval accuracy with QR for the three QR methods on Eclipse

MAP P@1 P@5 R@5 R@10 p-value

SCP 0.2296 0.1893 0.1011 0.2849 0.3739 1.03e-17

RM 0.2154 0.1670 0.0970 0.2729 0.3631 1.56e-04

ROCC 0.2163 0.1713 0.0961 0.2743 0.3663 4.01e-05

Baseline 0.2089 0.1653 0.0921 0.2632 0.3559 ↑

Table 6.4 Retrieval accuracy with QR for the three QR methods on Chrome

MAP P@1 P@5 R@5 R@10 p-value

SCP 0.1820 0.1788 0.0933 0.2021 0.2775 0.0023

RM 0.1666 0.1480 0.0844 0.1966 0.2853 0.0140

ROCC 0.1564 0.1397 0.0793 0.1816 0.2779 0.5369

Baseline 0.1535 0.1453 0.0832 0.1838 0.2601 ↑
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Table 6.5 QR for positive (B+), negative (B−) and neutral (Bo) queries on Eclipse.

Retrieval Accuracy for B+

MAP (Imp.) P@1 P@5 R@5 R@10 |B+|

SCP 0.2530 (+66%) 0.2168 0.1325 0.3041 0.4405
1,674

Baseline 0.1524 0.0920 0.0957 0.2086 0.3501

RM 0.2128 (+45%) 0.1707 0.1286 0.2669 0.4009
1,459

Baseline 0.1463 0.1165 0.0949 0.1755 0.3103

ROCC 0.2143 (+44%) 0.1794 0.1206 0.2600 0.3920
1,449

Baseline 0.1486 0.0994 0.0962 0.1935 0.3320

Retrieval Accuracy for B−

MAP (Imp.) P@1 P@5 R@5 R@10 |B−|

SCP 0.1314 (-40%) 0.0681 0.0821 0.1965 0.3046
955

Baseline 0.2205 0.1853 0.1087 0.2723 0.3870

RM 0.1228 (-35%) 0.0577 0.0704 0.1659 0.2902
1,057

Baseline 0.1898 0.1258 0.0986 0.2556 0.3870

ROCC 0.1372 (-34%) 0.0764 0.0803 0.1925 0.3110
942

Baseline 0.2065 0.1741 0.1011 0.2474 0.3588

Retrieval Accuracy for Bo

MAP P@1 P@5 R@5 R@10 |Bo|

SCP 0.2682 0.2390 0.0767 0.3220 0.3416 1,406

RM 0.2823 0.2396 0.0852 0.3530 0.3776 1,519

ROCC 0.2634 0.2184 0.0835 0.3337 0.3752 1,644
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Table 6.6 QR for positive (B+), negative (B−) and neutral (Bo) queries on Chrome.

Retrieval Accuracy for B+

MAP (Imp.) P@1 P@5 R@5 R@10 |B+|

SCP 0.2655 (+90%) 0.2911 0.1544 0.2934 0.4071
158

Baseline 0.1401 0.1392 0.0937 0.1715 0.2841

RM 0.1999 (+50%) 0.2179 0.1244 0.2200 0.3392
156

Baseline 0.1337 0.1795 0.0872 0.1296 0.2352

ROCC 0.1604 (+32%) 0.1656 0.0954 0.1557 0.2964
151

Baseline 0.1219 0.1126 0.0861 0.1290 0.2380

Retrieval Accuracy for B−

MAP (Imp.) P@1 P@5 R@5 R@10 |B−|

SCP 0.0901 (-51%) 0.0495 0.0554 0.0988 0.1833
101

Baseline 0.1850 0.1683 0.1149 0.2247 0.3140

RM 0.0932 (-38%) 0.0306 0.0510 0.1061 0.2318
98

Baseline 0.1508 0.0816 0.1061 0.2032 0.3053

ROCC 0.1397 (-30%) 0.0988 0.0914 0.1874 0.2928
81

Baseline 0.1988 0.2222 0.1259 0.2466 0.3230

Retrieval Accuracy for Bo

MAP P@1 P@5 R@5 R@10 |Bo|

SCP 0.1426 0.1313 0.0343 0.1616 0.1667 99

RM 0.1857 0.1538 0.0558 0.2468 0.2548 104

ROCC 0.1622 0.1349 0.0524 0.2090 0.2460 126
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6.5.4 Retrieval Results & Discussions

Table 6.3 and 6.4 present the average performance of the three QR methods. The

baseline retrieval accuracy without QR is presented in the last row of the tables. The

best retrieval accuracy in each column is given in bold. The column “p-value” gives

the p-value of the pairwise significance testing with respect to the baseline accuracy.

Table 6.5 and 6.6, on the other hand, present the retrieval accuracies on the sets

B+, B− and Bo. For each QR method, we present the baseline performance (with

the original queries in each set) and the performance of the reformulated queries

along with the size of the corresponding query set. All of the differences between

the baselines and the performances of the respective QR methods in this table are

statistically significant at α = 0.01.

It is obvious from the results presented in Table 6.3 and 6.4 that the queries

for the Eclipse project perform much better than the queries for the Chrome project,

indicating that there is a higher correlation between the terms used in the bug reports

and the source code of Eclipse in comparison to Chrome. This could be due to the

differences in the naming conventions of the respective programming languages. In

the rest of this section, we will now provide answers to the four questions listed at

the end of Introduction.

Answer to RQ1

Based on the results in Table 6.3 and 6.4, we conclude that QR, in general, leads

to significant improvements over the baseline retrieval accuracy for BL. Even more

significantly, the improvements obtained with the new SCP approach are noticeably

higher than those obtained by the other QR methods. While all three QR methods

lead to large improvements for the Eclipse project at a significance level of α = 0.01,

only the proposed SCP method achieves a significant improvement on the Chrome

project at this confidence level.
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Looking at the sizes of the query sets B+, B− and Bo, as presented in Table 6.5

and 6.6, we observe that SCP either preserves or improves the performance for 76%

of the 4,393 queries for the analyzed projects. Additionally, Table 6.5 and 6.6 show

that the SCP method improves a larger number of queries in comparison to the other

two QR methods. Notice that the amount of improvement is also very large for the

positive queries with SCP, becoming as large as 66% for the Eclipse project and 90%

for the Chrome project in terms of MAP.

Answer to RQ2

This question is regarding the effectiveness of the two natural-language based

approaches to QR, the one based on Relevance Model (RM) and the other based

on using the Rocchio’s formula (ROCC). Based on the results presented in Table

Table 6.3 and 6.4, we conclude that these do improve the retrieval results for BL.

Of the two, RM is a robust performer; it achieves a significantly superior retrieval

accuracy over the baseline for both projects. However, the improvements obtained

via ROCC are not significant on the Chrome project. The main difference between

these two methods is that RM incorporates the ranking scores of the files in the first

pass retrieval into the QR process. With the help of these scores, the higher the rank

of a file in the first pass retrieval, the higher the weights of the terms in these files for

QR. Note that because of this weighting, the performance of RM is also less sensitive

to the number of feedback files X.

Answer to RQ3

In order to answer this question, we analyze the sets B+, B− and Bo for their

differences in terms of the retrieval performance. As shown in Table 6.5 and 6.6, the

initial retrieval performance has a significant correlation with the QR performance.

Note that the baseline retrieval accuracy for the B+ queries is significantly lower

compared to that of the B− queries for all QR methods. From these results, we may
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Table 6.7 Query Statistics on the query sets as constructed by the SCP method on
Eclipse

|Q| avgICTF avgIDF QS SCS #RF

B+ 5.80 10.19†† 3.94††† 0.49†† 7.78††† 3.09

B− 5.90∗∗ 10.02††∗∗∗ 3.80†††∗∗ 0.51†† 7.57†††∗∗∗∗ 3.69∗∗∗∗

Bo 5.72∗∗ 10.20∗∗∗ 3.91∗∗ 0.50 7.83∗∗∗∗ 1.73∗∗∗∗

Table 6.8 Query Statistics on the query sets as constructed by the SCP method on
Chrome

|Q| avgICTF avgIDF QS SCS #RF

B+ 6.35 11.38 4.03 0.53 8.84 5.17††

B− 6.14 11.22∗ 3.98∗ 0.51 8.73 3.13††∗

Bo 6.44 11.61∗ 4.27∗ 0.50 9.10 2.36∗

conclude that QR improves poorly performing queries, while it may lead to retrieval

degradation for the queries that are performing relatively well to begin with. Also

note that a large number of queries preserve their initial performance and the average

retrieval accuracies of those queries are also high. Especially, P@1 for Eclipse is

significantly high for these sets.

Answer to RQ4

With regard to this question, Table 6.7 and 6.8 present the mean values for the

QPP metrics together with the average query lengths (|Q|) and the average number

of Relevant Files (#RF) per bug for the respective query sets. We only present these

metrics for the query sets as obtained via the new SCP method for lack of space.

However, we obtained similar results for all three methods. We use the ‘†’ symbol

to indicate the statistical significance in the differences between the sets B+ and B−,
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and the ‘∗’ symbol for the same purpose between the sets B− and Bo. The number

of symbols indicates the level of significance at 10%, 5%, 1% and 0.1% respectively.

That is, one such symbol indicates a 10% level of significance, two symbols indicate

5%, and so on. Additionally, Fig. 6.5 shows the significance levels of the differences

for a pairwise comparison on the query sets. The heights of the bars in these plots

give the significance level i.e. the number of symbols. We do not show the significance

levels for the pairwise comparison of the sets B+ and Bo in Table 6.7 and 6.8 in order

to keep the table uncluttered. See Fig. 6.5 for these differences.

Comparing the queries in B+ and B− for Eclipse, we see that the differences in

query lengths and the number of relevant files are not significant while the differences

between the other metrics are. Based on these differences, we conclude that refor-

mulating non-discriminatory queries that consist primarily of generic terms leads to

query degradation for this project. These results are not surprising since the terms

extracted by SCP become unpredictable when there is no pattern in the term distri-

bution of the first pass retrieval results.

The number of relevant files (#RF) has a prominent effect on SCP based QR for

both projects. Note that the bug fixes for Chrome touch a relatively higher number of

files in comparison with Eclipse and this nature of the bug fixes is the most important

factor that distinguishes the three query sets for this project. We observe that #RF

for B+ queries are significantly higher than those for the other sets for Chrome,

indicating that our SCP based QR is more likely to improve the retrieval accuracy

for the bugs for which the fixes have to touch a high number of files on this project.

For Bo queries, on the other hand, #RF is the lowest among the three sets for both

projects. Therefore, we conclude that our SCP based QR is more likely to preserve

the query performance than to decrease it when the number of relevant files are lower

than the average for the analyzed projects.
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Fig. 6.5. Significance levels on the differences between the query sets obtained with
the new SCP method. The heights of the bars indicate how significant the difference
is: Longer bars mean more significant at the significance levels of 10%, 5%, 1% and
0.1%.
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Remarks

The retrieval results for the query sets B+, B− and Bo reveal many important

characteristics of QR for BL. These results clearly show that QR with the evaluated

methods improves poorly performing queries. Obviously, then, we can claim that the

presented QR framework helps out when it is most needed by a user. Additionally,

looking at Table 6.5 and 6.5, we observe that if the original query is already performing

well, QR is likely to just preserve the accuracy rather than to decrease it on average.

This is evident from the fact that compared to the negative queries, the number of

the neutral queries is larger and the average retrieval accuracies of those queries are

also high. Based on the differences presented in Table 6.7 and 6.8, we may conclude

that these properties of QR are more likely to occur as the discriminatory power of

the queries increases.
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7. EXPLOITING SOURCE CODE PROXIMITY AND

ORDER WITH MARKOV RANDOM FIELDS

This chapter focuses on query representation especially when long queries such as bug

reports are directly used for automatic Bug Localization (BL). In the widely used

bag-of-words representations for both the queries and the source code documents, all

positional and ordering relationships between the terms are lost [16, 37, 39]. This is

tantamount to a serious loss of information considering that bug reports, in general,

are a composition of structured and unstructured textual data that frequently includes

(a) patches; (b) stack traces when the software fault throws an exception; (c) snippets

of code; (d) natural language sentences; and so on [20,21]. Patches and stack traces,

especially, contain vital proximity and ordering relationships between the terms that

ought to be exploited for the purpose of retrieval. Say, if two terms are proximal to

each other in a query patch or stack trace, you’d want a source code file containing

similar code to have the same two terms in a similar proximal relationship. It therefore

stands to reason that the quality of retrieval for BL would improve if these structural

elements could be taken into account when searching for the most relevant files.

As to how to incorporate ordering and positional relationships in a retrieval frame-

work, we have several possibilities at our disposal that have been examined in the past

mostly in the context of retrieval from natural language corpora. At one end of the

spectrum, we have ad hoc approaches such as those that compute term co-occurrence

frequencies and proximity-based term-term dependencies. And, at the other end of

the spectrum, we have more principled approaches, such as those based on Markov

Random Fields (MRF) [15] that are based on modeling the term-term dependencies

by graphs whose arcs capture the inter-term relationships in the queries vis-a-vis the

same in the documents.
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With regard to the investigation of such approaches in retrieval from software

libraries, in Chapter 6 we presented an ad hoc approach that demonstrated how the

inter-term proximities can be used to reformulate the queries in order to improve the

quality of retrievals. We now show that even more significant improvement in retrieval

precision can be obtained by using a more principled alternative to ad hoc approaches.

In particular, we will show that when an MRF is used to model the ordering and the

positional dependencies between the query terms vis-a-vis the documents, we end up

with a framework that not only yields a higher retrieval precision with the simplest

of the ordering and proximity constraints, but that can also be generalized to the

investigation of more general such constraints. In the MRF based approach, certain

subsets of the terms in a bug report are used for scoring the software artifacts while

taking into account term-term proximity and order. This approach exploits the fact

that the software artifacts that contain the query terms in the same order and/or

in similar proximities as in the query itself are more likely to be relevant to a given

query.

While, as demonstrated by our results, MRF is a powerful approach to the mod-

eling of query-document relationships, to fully exploit its potential it must be used

in conjunction with what we refer to as Query Conditioning (QC). The goal of QC is

to recognize the fact that a bug report constitutes a highly structured query whose

various parts consist, as we mentioned previously, of a textual narrative, a stack trace,

etc [20]. These different parts are disparate in the sense that the inter-term relation-

ships do not carry the same weight in them. For example, the proximity of the terms

used in the stack trace portions of a bug report carries far more weight than in the

textual narrative. Therefore, the ordering and proximity constraints are likely to be

far more discriminative in those portions of bug report that contain structural ele-

ments. To further underscore the importance of these structured portions of the bug

reports, past studies have shown that stack traces and patches are the most valuable

source of information to pinpoint the location of the bugs [102,103].
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Note that whereas Terrier+ applies MRF modeling to all queries, QC becomes an

important factor only when structural elements are present in the queries. In general,

detecting the structural elements in bug reports is a difficult task as they may have

different formats and they are usually surrounded by other types of textual data [20].

It is also not uncommon for these constructs to undergo unexpected format changes,

such as those caused by accidental line breaks, when they are copied into a bug report.

In order to overcome these challenges, Terrier+ employs several regular expressions

to detect and extract these structural elements from bug reports.

7.1 Research Questions

Our empirical evaluation on large open-source software projects shows that the

proposed retrieval framework leads to significant improvements in automatic BL accu-

racy. We compare the performance of Terrier+ to the other IR approaches developed

for the retrieval of the buggy source files. Among them is the Spatial Code Proximity

(SCP) based Query Reformulation (QR) which is presented in Chapter 6. Another

important class of IR tools developed for automatic BL leverage the past development

efforts for superior accuracies [16,39]. Our Bayesian retrieval framework presented in

Chapter 5 is such an approach that has been also shown to improve the BL accuracy

significantly [16].

For the evaluation of Terrier+, we conducted extensive validation tests with the

following Research Questions (RQ) at hand:

RQ1: Does including code proximity and order improve the retrieval accuracy for

BL. If so, to what extend?

RQ2: Is QC effective on improving the query representation vis-a-vis source code?

RQ3: Does including stack traces and/or patches in the bug reports improve the

accuracy of the BL?

RQ4: How does the MRF-based retrieval framework compare to the Query Refor-

mulation (QR) based retrieval frameworks for BL?
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Fig. 7.1. Markov Networks for Dependence Assumptions for a file and a query with
three terms.

RQ5: How does the MRF-based retrieval framework compare to the other BL

frameworks that leverage the past development efforts?

7.2 Markov Random Fields

Over the years, researchers in the machine learning community have devoted much

energy to the investigation of methods for the probabilistic modeling of arbitrary de-

pendencies amongst a collection of variables. The methods that have been developed

are all based on graphs. The nodes of such graphs represent the variables and the arcs

the pairwise dependencies between the variables. The graphs may either be directed,

as in Bayesian Belief Networks [104], or undirected, as in the networks derived from

Markov Random Fields [15,104]. In both these methods, the set of variables that any

given variable directly depends on is determined by the node connectivity patterns.

In a Bayesian Belief Network, the probability distribution at a node q is conditioned

on only those nodes that are at the tail ends of the arcs incident on q, taking the
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causality into account. In a Markov Network, on the other hand, the probability

distribution at a node q depends on the nodes that are immediate neighbors of q

without considering any directionality. In the context of retrieval from natural lan-

guage corpora, the work of Metzler and Croft [15] has shown that Markov Networks

are particularly appropriate for the modeling of inter-term dependencies vis-a-vis the

documents.

In general, given a graph G whose arcs express pairwise dependencies between the

variables, MRF modeling of the probabilistic dependencies amongst a collection A of

variables is based on the assumption that the joint distribution over all the variables

in the collection can be expressed as product of non-negative potential functions over

the cliques in the graph:

P (A) =
1

Z

K
∏

k=1

φ(Ck) (7.1)

where {C1, C2, . . . , CK} represents the set of all cliques in the graph G, and φ(Ck)

a non-negative potential function associated with the clique Ck. In the expression

above, Z is merely for the purpose of normalization since we want the sum of P (A)

over all possible values that can be taken by the variables in A to add up to unity.

Our end goal with MRF is to rank the files in the code base according to the

probability of a file f in the software library to be relevant to a given query Q. As

mentioned in Chapter 5, we denote this probability by P (f |Q). Using the definition

of the conditional probability, we can write

P (f |Q) =
P (Q, f)

P (Q)
. (7.2)

As we are only interested in ranking the files and the denominator in Eq. 7.2 does

not depend on files, it can be ignored. Hence P (f |Q)
rank
= P (Q, f). In order to

separate out the roles played by the variables that stand for the query terms (since

we are interested in the inter-term dependencies in the queries) vis-a-vis the contents

of a source file f , as suggested by Metzler and Croft [15], we will use the following

variation of the general form expressed in Eq. 7.1 to compute this joint probability:
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P (Q, f) =
1

Z

K
∏

k=1

φ(Ck)
rank
=

K
∑

k=1

log(φ(Ck)) (7.3)

where Q is assumed to consist of the terms q1, q2, ..., q|Q|. The nodes of the graph G

in this case consist of the query terms, with one node for each term. G also contains

a node that is reserved for the file f whose relevancy to the query is in question. As

before, we assume that this graph contains the cliques {C1, C2, . . . , CK}. As shown

in the formula, for computational ease it is traditional to express the potential ψ(Ck)

through its logarithmic form, that is through ψ(Ck) = log(φ(Ck)).

The fact that a fundamental property of any Markov network is that probability

distribution at any node q is a function of only the nodes that are directly connected

to q may now be expressed as

P (qi|f, qj 6=i ∈ Q) = P (qi|f, qj ∈ neig(qi)) (7.4)

where neig(qi) denotes the terms whose nodes are directly connected to the node for qi.

As observed in [15], this fact allows arbitrary inter-term relationships to be encoded

through appropriate arc connections amongst the nodes that represent the query

terms in the graphG. At one end of the spectrum, we can assume that the query terms

are all independent of one another by the absence of any arcs between them. This

assumption, known as the usual bag-of-words assumption in information retrieval, is

referred to as the Full Independence (FI). And at the other end of the spectrum, we

may assume a fully connected graph in which the probability distribution at each

node representing a query term depends on all the other query terms (besides being

dependent on the file f). This is referred to as the Full Dependence (FD). Fig. 7.1(a)

and 7.1(c) depict the graph G for FI and FD assumptions for the case when a query

Q consists of exactly three terms.

What makes MRF modeling particularly elegant is that it gives us a framework

to conceptualize any number of other “intermediate” forms of dependencies that are

between the two extremes of the FI and the FD assumptions. This we can do by

simply choosing graphs G of different connectivity patterns. Whereas FI is based on
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the absence of any inter-term arcs in G and FD on there being an arc between each

query term and every other term, we may now think of more specialized dependencies

such as the one depicted in Fig. 7.1(b). This dependency model, referred to as the

Sequential Dependency (SD) model in [15], incorporates both order and proximity

between a sequence (q1, q2, . . . , q|Q|) of query terms.

At this point, the reader may wonder as to how one would know in advance as

to which connectivity pattern to use for the graph G. The connectivity pattern is

obviously induced by the software library itself. Suppose a phrase level analysis of

the files in the library indicates that the phrase “interrupt sig handler” occurs in the

files and can be used to discriminate between them, you would want the nodes for

the terms “interrupt,” “sig,” and “handler” to be connected in the manner shown

in Fig. 7.1(b). This is because the SD model shown in that figure would only

allow for pairwise (but ordered) occurrences of the words “interrupt,” “sig,” and

“handler” to be matched in the files. The frequencies with which these ordered terms

appear in the files may also carry discriminatory power. The relative importance of

the words occurring individually or in ordered pairs would be determined by their

relative frequencies in the files. In contrast to the case depicted in Fig. 7.1(b), should

it happen that the queries and the relevant files contain the three terms “interrupt,”

“sig,” and “handler” in all possible orders, you would want to use the FD assumption

depicted in Fig. 7.1(c). In this case, the number of times these terms occur together

within a window of a certain size would carry discriminatory power for choosing the

files relevant to a query. Finally, should it happen, that the three terms occur in the

relevant files without there being a phrasal sense to their appearance in the files, you

would want to use the bag-of-words, FI, assumption.

We are particularly interested in the graph connectivity induced by the notion of

Spatial Code Proximity (SCP) that we introduced in Chapter 6 [19]. SCP consist of

first associating a positional index with each term in a query and in the documents

as shown in Fig. 7.2. Our goal is to translate the values of the positional indexes

into graph models based on the FI, SD, and FD assumptions. In the next three
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Fig. 7.2. An illustration of indexing the positions of the terms in an Eclipse Class: Sys-
temBrowerDescriptor.java. The ‘x’ symbol indicates the stop-words that are dropped
from the index.

subsections, we will present formulas that show how these models can be derived

from SCP based indexes.

7.2.1 Full Independence (FI)

As already stated, the FI assumption reduces an MRF model to the usual bag-of-

words model that has now been extensively investigated for automatic BL [16,37,39].

As should be clear from the graph representation of this model depicted in Fig. 7.1(a)

for the case of a query with exactly three terms, FI modeling involves only 2-node

cliques. Therefore, under MRF modeling, the probability of a query given a file is

simply computed by summing over the 2-node cliques: PFI(f |Q)
rank
=

∑|Q|
i=1 ψFI(qi, f).

The choice of the potential function, obviously critical in computing this probability,

should be in accord with the fact that MRF under FI assumption amount to the

bag-of-words modeling. Therefore, a good choice for the potential ψFI(qi, f) is the

Dirichlet Language Modeling (DLM) as explained in Chapter 4. Shown below is a

formula for the potential ψFI(qi, f) that includes Dirichlet smoothing:

ψFI(qi, f) = λFI log
(tf(qi, f) + µP (qi|C)

|f |+ µ

)

(7.5)

where P (qi|C) denotes the probability of the term in the whole collection, tf(qi, f)

is the term frequency of qi in a file f , |f | denotes the length of the file and µ is

the Dirichlet smoothing parameter. The model constant λFI has no impact on the
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rankings with this model. However, we keep it in the formulation as we will use it

later in SD and FD modeling.

The probability expression shown above for the relevance of a term to a file is

exactly the same as it appears in the widely used bag-of-words model known as the

Smoothed Unigram Model (SUM) whose usefulness in automatic bug localization has

been demonstrated in [16, 37, 39]. We will use the retrieval results obtained with FI

as the baseline in order to determine the extent of improvements one can obtain with

the other two models, SD and FD.

7.2.2 Sequential Dependence (SD)

The SD model takes the order and the proximity of the terms into account in such

a way that the probability law for a query term qi given a file f obeys P (qi|f, qj ∈

{q1, . . . , qi−1, qi+1, . . . , q|Q|}) = P (qi|f, qi−1, qi+1).

To see how a software library can be processed to induce the SD model, note from

the example shown in Fig. 7.1(b) that we now have 3-node cliques in addition to the

2-node cliques of the FI model. Therefore, we must now count the frequencies with

which pairs of terms occur together, with one following the other (without necessarily

being adjacent) in a specific order, in addition to counting the frequencies for the terms

occurring singly as in the FI model [105]. Again incorporating Dirichlet smoothing,

we employ the following potential function for the 3-node cliques corresponding to a

file f and two consecutive query terms qi−1 and qi:

ψSD(qi−1, qi, f) = λSDlog
(tfW (qi−1qi, f) + µP (qi−1qi|C)

|f |+ µ

)

(7.6)

where tfW (qi−1qi, f) is the number of times the terms qi−1 and qi appear in the same

order as in the query within a window length of W ≥ 2 in the file. For W > 2, the

terms do not have to be adjacent in the file and the windows may also contain other

query terms. The smoothing increment P (qi−1qi|C) is the probability associated with

the pair (qi−1qi) in the entire software library. To the potential function shown above,
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we must now add the potential function for 2-node cliques the reader has already seen

for the FI model:

PSD(f |Q)
rank
=

|Q|
∑

i=2

ψSD(qi−1, qi, f) +

|Q|
∑

i=1

ψFI(qi, f). (7.7)

As the reader would expect, the ranking of the files with the potential function

shown in Eq. 7.7 is only sensitive to the relative weights expressed by the model

parameters λFI and λSD, the overall scaling of these weights being inconsequential

on account of the unit summation constraints on probabilities. We therefore set

λFI +λSD = 1. We can think of λSD as an interpolation or a mixture parameter that

controls the relative importance of the 3-node cliques vis-a-vis the 2-node cliques.

7.2.3 Full Dependence (FD)

As demonstrated previously by Fig. 7.1(c), the FD assumption implies a fully

connected graph G whose nodes correspond to the individual query terms, with one

node being reserved for the file f under consideration. The graph being fully con-

nected allows for a file f to be considered relevant to a query regardless of the order

in which the query terms occur in the file. (Compare this to the SD case where, for

a file f to be considered relevant to a query, it must contain the query terms in the

same order as in the query.) Therefore, the FD assumption provides a more flexible

matching mechanism for retrievals.

The price to be paid for the generality achieved by FD is the combinatorics of

matching all possible ordering of the query terms with the contents of a file. To keep

this combinatorial explosion under control, following [105], we again limit ourselves

to just 2-node and 3-node cliques. While this may sound the same as for the SD

assumption, note that the 3-node cliques are now allowed for a pair of query terms

for both ordering of the terms. Therefore, for any two terms qi and qj of the query,

the potential function takes the following form for the 3-node cliques:
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ψFD(qi, qj, f) = λFDlog
(tfW (qiqj, f) + µP (qiqj|C)

|f |+ µ

)

(7.8)

where λFD again works as a mixture parameter similar to λSD, i.e. λFI + λFD = 1;

µ is the smoothing parameter and tfW (qiqj, f) is the frequency for the pair qiqj in f .

Summing over the cliques, we obtain the ranking score of a file by

PFD(f |Q)
rank
=

|Q|
∑

i=1

|Q|
∑

j=1,j 6=i

ψFD(qi, qj, f) +

|Q|
∑

i=1

ψFI(qi, f). (7.9)

7.2.4 A Motivating Example

We will now use a simple example to compare the retrieval effectiveness of the

three models, FI, SD, and FD. We will limit our example to the simplest of the bug

reports, one that only contains a one-line text narrative which corresponds to the

title of the bug report.

The Bug 989951 filed for Eclipse v3.1 has a title that reads: “Monitor Memory

Dialog needs to accept empty expression”. The target source files that were eventually

modified to fix this bug are:

1. org.eclipse.debug.ui/.../ui/views/memory/MonitorMemoryBlockDialog.java

2. org.eclipse.debug.ui/.../ui/views/memory/AddMemoryBlockAction.java

3. org.eclipse.debug.ui/.../ui/DebugUIMessages.java.

After removing the stop-words from the title, the final query consists of seven unique

terms. Table 7.1 presents the retrieval accuracies obtained for this query, along with

the number of cliques utilized for each dependency assumption. In the table, the

column “Rank” gives the ranks of the three relevant files in the ranked lists retrieved.

AP is the resulting Average Precision.

Investigating the ranked lists returned for the three models, we see that FI ranks

several irrelevant files above the relevant ones. One such file is ASTFlattener.java.

1https://bugs.eclipse.org/bugs/show bug.cgi?id=98995
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Table 7.1 Retrieval accuracies for the Bug 98995 with three different MRF models.

Method 2-node cliques 3-node cliques Ranks AP

FD 7 42 1-3-2 1.0000

SD 7 6 2-3-4 0.6389

FI 7 0 6-5-10 0.2778

monitor memory dialog need accept . . .. . .

Clique #1

Clique #2

Clique #3

Clique #4

Fig. 7.3. Clique creation for the Bug 98995. The figure shows the first 4 query term
blocks for the 3-node cliques utilized by the SD modeling.

Although this file does not contain any of the terms “monitor”, “memory” and “dia-

log”; it is retrieved at the top rank by this model because, as a file related to parsing

the Abstract Syntax Trees (AST), it contains the terms “accept”, “empty” and “ex-

pression” with very high frequencies. Clearly, the model misses the context of the

query.

In comparison to FI, SD is able to retrieve the relevant files at higher ranks,

as shown in Table 7.1. The improvement obtained with SD is a consequence of

the discriminations achieved by requiring that the query terms, when they appear

together in a source file, do so in a specific order. The creation of the 3-node cliques

with the query terms is illustrated in Fig. 7.3. A 3-node clique is formed by the

two words depicted together with an under-bracket and the node corresponding to a

file. Since the relevant files contain these term blocks in close proximity with high

frequencies; with this model, they receive higher ranking scores in comparison to the

irrelevant files.

Despite the improvements, SD still ranks one irrelevant file, ASTRewriteFlat-

tener.java, above all the relevant ones. This file also does not contain any of the
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terms “monitor”, “memory” and “dialog”. However, it contains in close proximity

the term pairs from the 2 of the 3-node cliques: “accept empty” and “empty ex-

pression”. The file manages to receive a high ranking score with these term pairs in

addition to the AST related terms.

FD captures the context of the query better than the other two models by consid-

ering all the term pairs in the query regardless of their position and order. It assumes

that any pair of query terms can depend on one another, hence the number of cliques

it uses is higher. This modeling approach ranks the three relevant files at the top

ranks above any irrelevant files and reaches a perfect average precision of 1.0.

7.3 Query Conditioning

When a bug report contains highly structured components, such as a stack trace

and/or a source code patch [20], such information can be crucial to locating the files

relevant to the bug [103]. Being highly structured, these components must first be

identified as such and subsequently processed to yield the terms that can then be

used to form a query for IR based retrieval. The processing steps needed for that

purpose will be different for the two different types of components we consider: stack

traces and source code patches. We refer to the collection of these steps as Query

Conditioning (QC). QC is carried out with a set of regular expressions that, while

custom designed for the different types of structured components encountered, are

sufficiently flexible to accommodate small variations in the structures.2

As already stated, our retrieval framework has been packaged as an enhancement

to the popular research IR retrieval engine Terrier and we refer to our enhancement

as Terrier+. With regard to the flow of processing related to QC in Terrier+, it uses

regular expressions to first identify the patches and the stack traces from a given

bug report if any of these elements are available in the report. Then, it processes

2Our QC only takes into account the stack traces and source code patches when they can be identified
in a bug report. Note that a bug report may also contain additional source code snippets that are
not meant to be patches [20]. QC treats any additional such code on par with the main textual part
of the report.
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java.util.EmptyStackException

    at java.lang.Throwable.<init>(Throwable.java)

    at java.util.Stack.peek(Stack.java)

    at java.util.Stack.pop(Stack.java)

    at org.eclipse.jdt.internal.debug.eval.ast.engine.Interpreter.pop(Interpreter.java:89)

    at org.eclipse.jdt.internal.debug.eval.ast.instructions.Instruction.popValue(Instruction.java:111)

    at org.eclipse.jdt.internal.debug.eval.ast.instructions.PushFieldVariable.execute(PushFieldVariable.java:54)

    at org.eclipse.jdt.internal.debug.eval.ast.engine.Interpreter.execute(Interpreter.java:50) 

⁞ 
    at org.eclipse.core.internal.jobs.Worker.run(Worker.java:66)

Fig. 7.4. The stack trace that was included in the report for Bug 77190 filed for
Eclipse. With QC, the trace is first detected in the report with regular expression
based processing. Subsequently, the highlighted lines are extracted as the most likely
locations of the bug and fed into the MRF framework.

them separately to sift out the most relevant source code identifiers to be used in the

retrievals. The final query is composed from the terms extracted from the stack traces

and the patches if one or both of these components are available. If these structured

components are not available, Terrier+ makes do with the entire bug report such as

it is and feeds it into the MRF framework.

Stack Traces

When Terrier+ detects the stack traces in a bug report, it automatically extracts

the most likely locations of the bug by identifying the methods in the trace. As the

call sequence in a stack trace starts from the most recent method call,3 we extract

only the topmost T methods while discarding the rest of the trace since the methods

down in the trace have a very little chance of containing any relevant terms and

they are likely to introduce noise into the retrieval process. Fig. 7.4 illustrates the

stack trace that was included in the report for Bug 77190 filed for Eclipse4. The bug

caused the EmptyStackException to be thrown by the code in PushFieldVariable.java

and was subsequently fixed in a revised version of this code. The figure highlights

3We do realize that for some languages the methods in a stack trace are in the opposite order. That
is, the most recent method call appears as the last entry in the trace. The logic of identifying the
methods most relevant to a bug would obviously need to be reversed for such languages.
4https://bugs.eclipse.org/bugs/show bug.cgi?id=77190
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the extracted portion of the stack trace that is used in forming the final query. Note

that we only extract the methods that are present in the code base to which the bug

report applies. That is, we skip the methods from the libraries belonging to the Java

platform itself, as illustrated in the figure. During the experiments, we empirically set

T = 3, as this setting resulted in the best retrieval accuracies on the average. As we

show in our experimental evaluation, this filtering approach increases the precision of

the retrievals significantly.

Patches

Source code patches are included in a bug report when a developer wishes to also

contribute a possible (and perhaps partial) fix to the bug. When contributed by an

experienced developer, these components of a bug report can be directly used for

pinpointing the files relevant to a bug.

A patch for a given bug is usually created with the Unified Format to indicate the

differences between the original and the modified versions of a file in a single construct.

With this format, the textual content of the patch contains the lines that would be

removed or added in addition to the contextual lines that would remain unchanged

in the file after the patch is applied. For term extraction from the patches, Terrier+

does not use the lines that would be added after the suggested patches are applied to

the files as those lines are not yet present in the code base.

Obviously, the files mentioned by a developer in a patch may not correspond to

the actual location of the bug. And, there may be additional files in the code base

that may require modifications in the final fix for the bug. While the importance of

information in such source code patches cannot be overstated, it is important to bear

in mind that their inclusion in the bug reports is more the exception than the rule.

Out of the 4,035 bug reports we analyzed for Eclipse v3.1, only 8 contained a patch.

Along the same lines, out of the 291 bug reports we analyzed for the AspectJ project,

only 4 contained a patch. Nonetheless, considering the importance of the information
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Fig. 7.5. An illustration of the data flow in the proposed retrieval framework.
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Table 7.2 Evaluated Projects

Project Language |B| |RF | |QT itle|

AspectJ Java 291 3.09 5.78

Eclipse v3.1 Java 4,035 2.76 5.80

Chrome v4.0 C/C++ 358 3.82 6.21

contained in the patches when they are included in a bug report, Terrier+ takes

advantage of that information whenever it can.

Fig 7.5 illustrates the data flow in the retrieval framework with QC and MRF.

7.4 Experimental Evaluation

We evaluate the effect of incorporating term dependencies on the retrievals for BL

on three large software projects, namely Eclipse IDE5, AspectJ6 and Google Chrome7.

We evaluate Query Conditioning (QC) on only Eclipse and AspectJ as the bug reports

for Chrome do not contain stack traces or patches. Table 7.2 and 7.3 present the

evaluated projects from these datasets and some of their statistics. In Table 7.2,

|B| gives the number of bug reports used in querying the code base of each project,

|RF | denotes the average number of relevant files per bug and |QT itle| gives the

average lengths of the bug report titles that are used in the retrievals. Table 7.3,

on the other hand, presents the statistics of the bug reports used in the evaluation

of the MRF framework along with QC. In the table, #Patches and #Stack Traces

show the number of bug reports containing patches and stack traces respectively and

|QT itle+Desc| is the average lengths of the bug reports, including both the title and

the description parts without any filtering, in terms of the number of tokens used in

querying the code base.

5www.eclipse.org
6http://eclipse.org/aspectj/
7www.google.com/chrome
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Table 7.3 Statistics of the bug reports used in the experiments for MRF and QC.

Project #Patches #Stack Traces |QT itle+Desc|

AspectJ 4 81 56.77

Eclipse v3.1 8 519 44.11
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Fig. 7.6. The effects of varying model parameters on MAP for Eclipse. The figure on
the left shows the MAP values as the mixture parameters (λSD for SD assumption
and λFD for FD assumption) are varied while the window length parameter is fixed
as W = 2. The figure on the right shows the MAP values as W is varied while the
mixture parameters are fixed at 0.2.
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7.6



98

7.4.1 Bug Localization Experiments

For an in-depth analysis of the retrievals, we divide each bug report into two parts,

namely Title and Description. We first conduct two sets of experiments using these

two parts for each bug report without Query Conditioning (QC): (1) Retrievals with

MRF modeling using only the titles of the bug reports. The queries used for these

retrieval are denoted “title-only”. And (2) Retrieval with MRF modeling using the

complete bug reports, that is, including both the titles and the descriptions for the

bug reports. The queries used for these retrievals are denoted “title+desc”. Then,

we incorporate QC in the second category of retrievals and analyze the usefulness

of including stack traces and patches in queries by comparing the overall retrieval

accuracy for the set of bug reports that contain these elements to the remaining set

of the bug reports in our query sets.

Parameter Sensitivity Analysis

The model parameters that affect the quality of the retrievals in our retrieval

framework are: (1) The window length parameter (W ). (2) The mixture parameters

of the respective dependency models (λSD, λFD). And (3) The Dirichlet smoothing

parameter (µ). While W sets the upper bound for the number of intervening terms

between the terms of the 3-node cliques, λSD and λFD simply adjust the amount

of interpolation of the scores obtained with the 2-node cliques with those obtained

with the 3-node cliques as explained in Section 7.2. As the ranking is invariant to a

constant scaling in the mixture parameters, we enforce the constraints λFI +λSD = 1

and λFI +λFD = 1 for the SD and the FD modeling, respectively. In all experiments,

we empirically set the Dirichlet smoothing parameter as µ = 4000. Note that the

retrieval accuracy is not very sensitive to the variations on this parameter [16].

Fig. 7.6 and 7.7 plot the retrieval accuracies for bug localization in terms of

MAP as the window length and the mixture parameters are varied for the “title-

only” and the “title+desc” queries. As shown in Fig. 7.6(a) and 7.7(a), a value of
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Table 7.4 Retrieval accuracy with the “title-only” queries on Eclipse.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.2564 (+24.83%) 0.2198 0.1110 0.3199 0.4070 2,100

SD 0.2466 (+20.06%) 0.2116 0.1069 0.3083 0.3934 2,042

FI 0.2054 0.1710 0.0883 0.2556 0.3417 1,805

Table 7.5 Retrieval accuracy with the “title-only” queries on AspectJ.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.1410 (+12.89%) 0.1409 0.0832 0.1794 0.2420 124

SD 0.1348 (+7.93%) 0.1340 0.0790 0.1675 0.2382 125

FI 0.1249 0.1375 0.0708 0.1498 0.2079 111

0.2 consistently works well for the mixture parameters in general. Note that when

λSD = λFD = 0.0, SD and FD use only the 2-node cliques hence they reduce to

FI, the Smoothed Unigram Model (SUM). As for the window length, Fig. 7.6(b)

and 7.7(b) illustrate the effect of varying this parameter for λSD = λFD = 0.2. On

average, W = 8 results in the best retrieval accuracies for the analyzed projects for

both types of queries.

As shown in Fig. 7.6(a) and 7.7(a), when the window length is set as W = 2, SD

performs better than FD in all experiments across the projects. This is because the

terms are required to be adjacent to be matched in the code base when we use this

setting and therefore the order of the terms becomes more important. Interestingly,

as the window length increases, FD catches up with SD. Overall, SD is less sensitive

to the window length parameter, achieving high retrieval accuracies.
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Table 7.6 Retrieval accuracy for the “title+desc” queries on Eclipse.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.2778 (+16.87%) 0.2496 0.1201 0.3427 0.4317 2,249

SD 0.2840 (+19.48%) 0.2543 0.1232 0.3530 0.4391 2,268

FI 0.2377 0.2020 0.1060 0.3046 0.3859 2,044

Table 7.7 Retrieval accuracy for the “title+desc” queries on AspectJ.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.1945 (+14.08%) 0.2131 0.0997 0.2322 0.2996 142

SD 0.1794 (+5.22%) 0.1856 0.0990 0.2203 0.3096 148

FI 0.1705 0.1856 0.0880 0.2003 0.2693 126

Table 7.8 Retrieval accuracy for the “title+desc” queries with Query Conditioning
(QC) on Eclipse.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.3019 (+17.93%) 0.2696 0.1274 0.3709 0.4640 2,386

SD 0.3014 (+17.74%) 0.2704 0.1290 0.3749 0.4599 2,354

FI 0.2560 0.2186 0.1114 0.3263 0.4102 2,147

Table 7.9 Retrieval accuracy for the “title+desc” queries with Query Conditioning
(QC) on AspectJ.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.2307 (+8.31%) 0.2715 0.1155 0.2703 0.3400 161

SD 0.2263 (+6.24%) 0.2646 0.1148 0.2658 0.3554 167

FI 0.2130 0.2440 0.1052 0.2438 0.3215 147
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Retrieval Results

In this section, we compare the retrieval performances of the dependence models

(SD and FD) to the Full Independence (FI) model. We fix the interpolation parame-

ters as λSD = λFD = 0.2 and the window lengths as W = 8 in all of the experiments

presented in the remainder of this Chapter.

Table 7.4 and 7.5 present the BL accuracies on the evaluated projects for the “title-

only” queries. With these experiments we explore the retrieval accuracy of Terrier+

for short queries comprising only a few terms and no patches or stack traces. The

last row of the table shows the “baseline” accuracy which is obtained with the FI

assumption or the Smoothed Unigram Model (SUM) [16,37,39]. The highest score in

each column is given in bold. All the improvements reported in this table obtained

with the dependency models over FI are statistically significant at α = 0.05. Note

that incorporating the term dependencies into the retrievals improves the accuracy

of BL substantially in terms of the 6 metrics presented in the table.

Table 7.6 and 7.7 present the BL accuracies for the “title+desc” queries without

QC. That is, the whole textual content of the bug reports are used in querying the

code base. The reported improvements obtained with FD and SD over FI are also

statistically significant at α = 0.05 in this table. Note that the retrieval accuracies

improves greatly when the description part of the bug reports are also included in

retrievals even without QC. While SD and FD perform comparably well in these

experiment on the Eclipse project, FD outperforms SD on AspectJ on average in

terms of MAP.

We are now in a position to answer the first of the five Research Questions (RQ)

formulated in Section 7.1 of this chapter. For convenience, here is the question again:

RQ1: Does including code proximity and order improve the retrieval accuracy for

BL. If so, to what extend?

Based on the results presented in Tables 7.4, 7.5, 7.6, 7.7, 7.8 and 7.9, we conclude

that incorporating the spatial code proximity and order into the retrievals improves
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the accuracy of automatic BL significantly. On average, for both short and long

queries which may contain stack traces and/or patches, SD and FD modeling con-

sistently enhance the retrieval performance of Terrier+ over FI across the projects.

The improvements are up to 24.83% for the Eclipse project and up to 14.08% for the

AspectJ project in terms of MAP.

The effect of QC on Retrievals

The retrieval accuracies obtained with QC on the “title+desc” queries are pre-

sented in Table 7.8 and in 7.9, where each bug report is first probed for stack traces

and patches in order to extract the most useful source code identifiers to be used in

BL. The results shown in these tables help us answer the following research question

that was presented in Section 7.1.

RQ2: Is QC effective on improving the query representation vis-a-vis source

code?

Comparing the results presented in Table 7.6, 7.7, 7.8 and 7.9, we conclude that

QC indeed leads to a better query formulation for source code retrieval. For all of the

dependency assumptions, we obtained significant improvements with QC in terms of

the 6 evaluation metrics mentioned in the tables.

The main contribution of QC comes with the bug reports containing stack traces.

This is because patches are included only in a few bug reports. Fig. 7.8 presents the

retrieval accuracies of Terrier+ obtained specifically with the bug reports that contain

stack traces. The figure shows that accuracy of the retrievals doubles on average with

QC for both projects in term of MAP, reaching values above the 0.3 threshold.

Fig. 7.8 also demonstrates the effect of the MRF modeling with stack traces.

Comparing the results obtained with the dependency models, we observe that FD

and SD outperform FI consistently when QC is used in retrievals with the stack

traces. The main reason for these results is that the order and the proximity of the

terms in stack traces are extremely important in locating the relevant source files.
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As we also mentioned in Section 7.2, the likelihood of a file to be relevant to a query

increases when it contains longer phrases from the stack trace with the same order

and proximity relationships. Interestingly, when the queries are not processed with

QC, the average retrieval accuracy with FD on the Eclipse project is slightly lower

than FI. This is clearly due to the noise in the lengthy stack traces that contain

many method signatures most of which are irrelevant to the bug. The QC framework

effectively removes the irrelevant method signatures from the trace for a better query

representation.

The Role of Stack Traces in Automatic Bug Localization

Studies showed that, in bug reports, developers look for stack traces, steps to

reproduce the bug, and test cases since these are the most useful structural elements

for comprehending the underlying cause of the bugs and fixing them [102,103]. Among

these structural elements, stack traces are very important for the work we report in

this paper. They are not only frequently included in bug reports but also a good

source of discriminative source code identifiers for automatic BL. Fig. 7.9 presents

the retrieval accuracies obtained with the bug reports containing different types of

structural elements. In the figure, “remaining” denotes the bug reports that do not

contain any stack traces or patches.

That sets us up to answer the research question RQ3 that was previously articu-

lated in Section 7.1:

RQ3: Does including stack traces and/or patches in the bug reports improve the

accuracy of the BL?

As demonstrated in Fig. 7.9, bug reports with patches lead to the highest accu-

racies as expected. After the patches, stack traces hold the second position in terms

of their usefulness in locating the relevant source code. The retrieval results for the

remaining bug reports that do not contain any stack traces or patches are the worst.

Based on these results, we conclude that including stack traces and/or patches in the
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bug reports does improve the BL accuracy. Note that the retrieval accuracies we ob-

tained with the stack traces are consistently above the 0.3 threshold for the analyzed

projects and the retrieval accuracies obtained with the patches are consistently above

the 0.6 threshold in terms of MAP.

7.4.2 Comparison to Automatic Query Reformulation (QR)

In Chapter 6, we proposed an automatic Query Reformulation (QR) framework to

improve the query representation for BL [19]. For experimental evaluation, we used

the title of a bug report as an initial query which is reformulated via Pseudo Relevance

Feedback based on the retrieval results obtained with the initial query. We showed

that the proposed Spatial Code Proximity (SCP) based QR model outperforms the

state-of-the-art QR models [19]. In order to compare the effectiveness of QR to MRF-

based modeling, we pose the following question that was originally given in Section

7.1.

RQ4: How does the MRF-based retrieval framework compare to the QR-based

retrieval framework for BL?

Comparing the retrieval accuracies presented in Table 7.10 and Table 7.11 to the

retrieval accuracies of the QR models described in Chapter 6, we observe that MRF

framework outperforms the SCP-based QR on average. For the Chrome project, while

the differences between the average precisions obtained with the respective models

are not statistically significant at α = 0.05, the differences in terms of the presented

recall metrics are. Additionally, H@10 values obtained with the MRF framework

are considerably higher than the values obtained with the SCP-QR. For the Eclipse

project, both SD and FD performs better than SCP-based QR in terms of the reported

metrics. The differences are statistically significant at α = 0.05.
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Table 7.10 QR vs. MRF on Eclipse with the “title-only” queries.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.2564 0.2198 0.1110 0.3199 0.4070 2,100

SD 0.2466 0.2116 0.1069 0.3083 0.3934 2,042

SCP-QR 0.2296 0.1906 0.1014 0.2853 0.3746 1,915

Table 7.11 QR vs. MRF on Chrome with the “title-only” queries.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.1951 0.1844 0.1061 0.2394 0.3159 178

SD 0.1814 0.1760 0.1039 0.2288 0.3137 177

SCP-QR 0.1820 0.1788 0.0933 0.2021 0.2775 151

7.4.3 Comparison to Bug Localization Techniques that use Prior Devel-

opment Efforts

In [39], Zhou et al. proposed BugLocator, a retrieval tool that uses the textual

similarities between a given bug report and the prior bug reports to enhance the BL

accuracy. The main motivation behind BugLocator is that the same files tend to get

fixed for similar bug reports during the life-cycle of a software project. In Chapter

5, we also described another approach that leverages the past development efforts

for BL. Our experimental study on iBugs dataset showed that the TFIDF8 retrieval

model incorporating Defect History based Prior with decay (DHbPd) performs the

best among other composite models. This brief review of this class of approaches to

bug localization takes us to the last of the research questions stated in 7.1:

RQ5: How does the MRF-based retrieval framework compare to the BL frame-

works that leverage the past development efforts?

8TFIDF stands for Term Frequency Inverse Document Frequency.
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The accuracy of BugLocator is also evaluated on Eclipse v3.1 and iBugs datasets.

The evaluations on the Eclipse project are performed using 3,075 bug reports filed

for version 3.1 while our experiments with Terrier+ were performed using 4,035 bug

reports filed for the same version. In order to compare the performance of Terrier+

to that of BugLocator, we repeated the experiments using only the bug reports with

which the BugLocator was evaluated. Fig. 7.10 plots the accuracy of the proposed

framework along with the BugLocator in terms of MAP. In the figure, we also included

the accuracies obtained with the revised Vector Space Model (rVSM) [39] which is

reported to perform better than the classical Vector Space Model (VSM). As can be

seen on the figure, FD+QC and SD+QC outperform BugLocator with MAP values

above 0.32 threshold for the Eclipse project. In comparison, BugLocator performs

better than the FI modeling i.e. SUM and SUM+QC with a MAP value of 0.3. The

comparison results are similar for the AspectJ project. In addition to these results,

in Chapter 5, we showed that TFIDF+DHbPd reaches a MAP value of 0.2258 on the

AspectJ project.

Based on these results, we conclude that Terrier+ performs better than these BL

techniques without leveraging the past development efforts.
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8. A RETRIEVAL ENGINE FOR BUG LOCALIZATION:

TERRIER+

In order to address the issues that arise in code search for Bug Localization (BL), as

mentioned earlier, we present a new source code search engine developed by extending

Terrier1, a flexible open source IR platform written in Java [106]. This new platform,

named Terrier+, extends the functionalities of Terrier for the following components:

• Indexing: In the indexing phase, the source code artifacts are first parsed and

tokenized. Then they are stored for fast access during retrieval time. The

queries posed to the retrieval engine are also subject to the same parsing and

tokenization procedures as the source code artifacts.

• Document Score Modifiers: This component computes additional scores for each

artifact in the code base after the first round of term matching takes place and

it is responsible for the incorporation of version histories and leveraging Spatial

Code Proximity (SCP) in the retrieval process.

• Querying: This component has been extended to implement the proposed SCP-

based Query Expansion/Reformulation framework with Pseudo Relevance Feed-

back. This component is also responsible for Query Conditioning (QC).

8.1 Indexing

A vital component of any scalable retrieval framework that is expected work on

very large databases is indexing. This component enables fast access to the features

associated with each document and term in the corpus of a document collection via

1http://terrier.org
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Fig. 8.1. Indexing the corpus of a document collection with Terrier.

compression and search algorithms. Before storing the documents and the terms in

an index, each document in the corpus goes through three steps for term extraction:

(1) Tokenization (2) Stop-word removal and (3) Stemming. In comparison to Nat-

ural Language (NL) document retrieval, these three stages demonstrate significant

differences when the code base of a software library is the target corpus for index-

ing. Firstly, while the terms in NL documents are simply separated with spacing, the

textual content of software libraries are created by using abbreviations and/or con-

catenation of several terms via punctuation characters or camel casing. Recognizing

the constituent tokens in these composite phrases is crucial for accurate document

representation for BL.

After the terms are extracted via tokenization, the next step in the indexing

process is the stop-word removal [16, 19]. In this step, the nondiscriminatory terms

are dropped from the index as these terms add noise into the retrievals. Different from

NL corpora, source code collections contain Programming Language (PL) specific
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terms, definition and declaration of software elements, comments and so on. Due to

this composite nature of source code, the set of stop-words to be used in indexing

should contain both PL specific terms and NL terms.

The final step in indexing is stemming [90]. The stemming method which is used

to reduce the tokens into their common root forms also has a significant impact on

BL as it leads to a smaller vocabulary to index and a better document representation

that increase the chance of term matching [107].

Fig. 8.1 shows the indexing framework and Fig. 8.2 shows the retrieval compo-

nents of Terrier.

8.2 Document Score Modifiers (DSM)

Document Score Modifiers (DSM) assign secondary scores to the source code ele-

ments after the initial term matching takes place. In order to incorporate the version

histories of the software artifacts in the retrieval process, we generate a separate in-

dex that stores the change history of each document in the code base. After scoring

the documents based on the terms present in the query and in the software arti-

facts, a DSM is created and it uses this index to compute the prior bug/modification

likelihoods of each artifact and updates the document rankings accordingly. This

component is also responsible for taking into account the term proximity and order

in the scoring phase. In order to exploit SCP for an improved retrieval accuracy,

DSM employs Markov Random Fields (MRF) in the matching phase.

8.3 Querying

DSM phase completes the retrieval process with respect to the original query. If

the query is to be reformulated then the initial set of retrieval results obtained via the

original query are fed into the Post-processing unit. Automatic Query Reformulation

(QR) is performed by this unit where the original query and the initial (first-pass)

retrieval results are analyzed for QR using the notion of Pseudo Relevance Feedback
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Fig. 8.2. Retrieval components of Terrier.

[19]. During the reformulation, the original query is enriched with certain additional

informative terms drawn from the first-pass retrieval results. Our proposed Query

Reformulation framework uses the positional proximities of the terms in the first-

pass retrieval results vis-a-vis the query terms for QR [19]. After the initial query is

reformulated, the new query is used to perform a second run of retrieval to obtain

the final set of results.

Fig. 8.3 presents the overall data flow in the proposed retrieval framework with

Terrier+.
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Fig. 8.3. The overall retrieval framework with Terrier+ for BL.
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9. CONCLUSIONS

In this dissertation, we advance the state-of-the-art in Information Retrieval (IR)

based Bug Localization (BL). To achieve accurate BL in large, ever-changing soft-

ware systems, we presented methods to address the issues that arise when IR al-

gorithms are applied in source code retrieval. On the one hand, the proposed IR

framework exploits the prior development efforts to support BL. On the other hand,

our retrieval mechanism leverages the spatial features in the textual content of the

software either through automatic Query Reformulation (QR) or more directly with

a well-principled Markov Random Field (MRF) based approach. The functionalities

in this BL framework, implemented as an IR tool named Terrier+, are utilized via

a GUI. Based on the nature of the information need, the developer can easily turn

on/off these functionalities during BL.

In order to exploit the prior software development and maintenance history, our

retrieval framework offers a theoretically well-principled approach for incorporating

version histories of software files for BL. Our approach uses the information stored in

software versioning tools regarding the frequency with which a file is associated with

defects and its modifications in order to construct estimates for the prior probability

of any given file to be the source of a bug. Incorporating these priors in an IR based

retrieval framework, as we have done, significantly improves the retrieval performance

for bug localization. What is even more remarkable is that when we associate a time

decay factor with the priors, the improvement in BL goes up even more dramatically.

For the retrieval itself, our work used two different algorithms, one based on Bayesian

reasoning and other on the Divergence from Randomness principle.

The automatic QR framework we propose for BL becomes essential in assisting

inexperienced users for constructing high quality queries. This is mainly because

designing a query that can accurately retrieve the source files from a software library
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is particularly challenging for a novice user on account of the fact that developers use

made-up words as identifiers for variables, method names, class names, etc. A user

not already familiar with the library would have a difficult time conjuring up these

names. Our QR approach uses what is likely to be a weak initial query as a jumping

off point for a stronger query.

Our novel QR framework exploits spatial proximity between the terms in source

code files in order to decide how to reformulate a given query to increase retrieval

effectiveness. The proposed method examines the files retrieved for the initial query

supplied by a user and then selects from these files only those additional terms that

are in close proximity to the terms in the initial query. Our experimental evaluation

showed that the proposed approach leads to significant improvements for BL and out-

performs the well-known QR methods in the literature. As is true of all information

retrieval methods based on statistical modeling of underlying database, on occasion a

query that yields good results as originally formulated may lead to not-so-good results

after it has been reformulated by our QR approach. Nonetheless, on the average, a

user interacting with a retrieval engine fitted with our query reformulation framework

would be much better with our QR approach than without it.

With regard to exploiting the spatial features in software systems for an improved

BL accuracy, the proposed MRF framework focuses especially on long queries which

may be in the form of a bug report containing various structural elements such as stack

traces or patches. We showed that these structural elements in bug reports contain

vital proximity and order attributes that is not well represented via-a-vis the source

code with the widely used bag-of-words assumption. Our experimental validation

involving large open-source software projects and over 4 thousand bugs has established

that the retrieval performance improves significantly when both the proximity and

ordering relationships between the terms are taken into account. Our experimental

evaluation also demonstrated that in conjunction with the MRF model, the proposed

Query Conditioning (QC) approach is essential for exploiting the different types of

structural elements in bug reports.
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Comparing the retrieval accuracies obtained with Terrier+ to those obtained with

the other state-of-the-art IR tools, we conclude that, on average, Terrier+ reaches

higher bug localization accuracies.
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