

www.astesj.com 1502

Source Code Vulnerabilities in IoT Software Systems

Saleh Mohamed Alnaeli*,1, Melissa Sarnowski2, Md Sayedul Aman3, Ahmed Abdelgawad3, Kumar Yelamarthi3

1CSEPA, University of Wisconsin-Colleges, 53715, USA

2Computer Science, University of Wisconsin-Fox Valley, 54952, USA

3College of Science and Engineering, Central Michigan University, 48859, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 02 June, 2017
Accepted: 21 July, 2017
Online: 15 August, 2017

 An empirical study that examines the usage of known vulnerable statements in software
systems developed in C/C++ and used for IoT is presented. The study is conducted on 18
open source systems comprised of millions of lines of code and containing thousands of
files. Static analysis methods are applied to each system to determine the number of unsafe
commands (e.g., strcpy, strcmp, and strlen) that are well-known among research
communities to cause potential risks and security concerns, thereby decreasing a system’s
robustness and quality. These unsafe statements are banned by many companies (e.g.,
Microsoft). The use of these commands should be avoided from the start when writing code
and should be removed from legacy code over time as recommended by new C/C++
language standards. Each system is analyzed and the distribution of the known unsafe
commands is presented. Historical trends in the usage of the unsafe commands of 7 of the
systems are presented to show how the studied systems evolved over time with respect to
the vulnerable code. The results show that the most prevalent unsafe command used for
most systems is memcpy, followed by strlen. These results can be used to help train software
developers on secure coding practices so that they can write higher quality software
systems.

Keywords:
unsafe commands
vulnerable software
scientific
security
static analysis
historical trends

1. Introduction

This paper was originally presented in 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT) [1]. Additional research
has been done to extend the research to examine the security of a
much larger group of IoT software systems. While the IoT
continues to grow to billions of devices running a huge variety of
software systems, both open source and proprietary, security
becomes a major concern for individuals and organizations who
use the IoT in both academia and industry. The security of every
software system becomes vital as each software system and device
could be a target or an access point to hackers, or lawbreakers [2-
4]. Most of the software and embedded systems used for IoT
applications are currently available as open source systems and are
therefore developed by programmers from varying disciplines and

with different backgrounds. Many of those programmers have
little to no background on security challenges imposed by the
usage of vulnerable source code in some programming languages
(e.g., C/C++) caused by commands that are well known to the
research community as being unsafe and are banned by companies
such as Microsoft.

According to [5, 6], most of the detected security threats are
due to vulnerabilities in the code. Thus, minimizing usage of
insecure commands can play an important role in protecting the
software systems from any potential attacks. In order to minimize
the use of unsafe commands at the source code level, developers
need to be made aware of those unsafe commands and the security
issues their usage can cause. Educating developers and ensuring
that they follow good programming practices can minimize the
time and effort spent on finding and fixing them in later stages, as
well as lessen the expense of fixing a security issue if it’s exploited

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Saleh Mohamed Alnaeli, 1478 Midway Rd, Menasha
Wisconsin 54952, (920) 832-2615, USA | Email: saleh.alnaeli@uwc.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1502-1507 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj0203188

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0203188

S. M. Alnaeli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1502-1507 (2017)

www.astesj.com 1503

by an attacker. For example, C/C++ programming languages are
preferred by developers because of the level of performance,
flexibility, and efficiency that they offer. However, security
vulnerabilities (e.g., integer vulnerability, buffer overflow, and
string vulnerability) need to be addressed and avoided from the
beginning when writing the source code to save the time and
expense that comes with having to refactor the system at a later
date to remove those security vulnerabilities. Additionally,
programmers also need to make sure that they do not use
commands that are known to cause security concerns (e.g.,
memcpy, strlen, and strcmp).

As an example, the standard C library includes a function
called gets() that is used primarily for reading strings input by the
user. This function accepts a pointer from data type char as a
parameter and reads a string of characters from the standard input,
placing the first character in the location specified by that pointer
and subsequent data consecutively in memory. The gets() function
will continue reading until a newline is detected, at which point the
buffer is terminated with a null character. The issue is that the
developer cannot determine the size or length of the buffer passed
to gets() prior to runtime. Because of this, when the buffer is size
bytes, an attacker trying to write size + extra bytes into the buffer
will always succeed if the data excludes newlines [5].
Consequently, memory locations that are adjacent to the buffer in
the memory may be overwritten, which could lead to sensitive data
being modified if it is stored in those adjacent memory locations.
Additionally, an attacker could even overflow the stack and lead
the program to run into an arbitrary or unexpected status. A safe
alternative to gets() is fgets(), which, unlike gets(), also accepts an
integer number as a parameter that acts as the limit of characters
copied into the string, including the null-character at the end.

The process of protecting software systems from vulnerability
issues at the source code level is done by either completely
removing known unsafe commands and functions, or by replacing
them with safer replacements (e.g., strncpy, strncmp, strncat etc.).
Here, we have extended a previous empirical examination of some
of the open source software systems used for IoT to better
understand how well IoT developers do when it comes to the usage
of vulnerable code by studying a larger group of IoT systems and
the history of some of those systems to analyze the change in the
usage of unsafe commands over time. We are particularly
interested in determining the most prevalent unsafe statements that
occur in a wide variety of IoT software applications and if there
are general trends, and are interested in seeing if the trends stay the
same or change among a larger group of systems, as well as if there
are historical trends for the group of systems whose history was
also examined. While this work does not directly address the
problem of removing unsafe source code from the systems, it does
serve as a foundation for understanding the problem requirements
in the context of a broad set of applications. Moreover, the focus
of this research is on unsafe statement detection and identifying
their distribution over time.

In this study, several software systems used for IoT and
developed in C/C++ are analyzed and evaluated with respect to the
usage of vulnerable commands that can affect the quality of IoT
systems. Each of the studied systems are written in C/C++. For
each system, the source code is analyzed a count is created for each
of the unsafe functions as well as the safer replacement functions.

These counts are compared against the counts of each other system
to uncover trends and make observations about the usage of unsafe
functions. Furthermore, the history of some of the systems, if it
was available and of a sufficient length, is examined and the
number of detected unsafe functions is calculated for each release.

This work focuses on addressing the following questions: how
many unsafe functions are used in these systems, which of those
are the most frequent, and what are their respective distributions?
Are the numbers or distributions of unsafe functions changing over
the history/versions of a software system? When a larger group of
systems is studied, do the trends uncovered in the original study
remain the same, or do new trends emerge?

 This work contributes by extending one of the only studies on
the usage of vulnerable functions in IoT software applications. We
found that the functions memcpy and strlen represent most of the
unsafe functions occurring in these systems, in both the original
systems and the additional systems studied in this extension.
Moreover, the findings show that, for the most part, the systems
reviewed have become more vulnerable to attacks over time due to
the increase in the number of the unsafe functions used over time.
This knowledge will assist researchers in formulating and directing
their work to efficiently address this problem when refactoring and
designing new systems.

The remainder of this paper is organized as follows. Section 2
gives background information and related work on the topic of
source code vulnerabilities and security of IoT and its challenges.
Section 3 describes the methodology used in the study along with
how we performed the analysis to create counts for each unsafe
function. Section 4 presents the findings of our study of 18 open
source software systems used for IoT. There is a discussion of
results in the same section as well. The historical trends of 7 of the
systems found are explained in section 5, followed by threats to
validity and future enhancement in 6 and 7. Finally, conclusions
are found in section 8.

2. Background and Related Work

Most of the previous research conducted on IoT security has
focused on identifying security concerns related to the
communication processes and authentication methods used with
IoT. Some other studies have examined data privacy within
various levels. To the best of our knowledge, no study has
examined the usage or distribution of vulnerable code in IoT
systems that are developed in C/C++.

A study has been conducted by VERACODE [7] to investigate
a selection of always-on consumer IoT devices to understand the
security posture of each product. They found that product
manufacturers prioritized design instead of security and privacy,
putting consumers at risk for an attack or physical intrusion. Their
team performed a set of uniform tests across all devices and
organized the findings into four different domains: user-facing
cloud services, back-end cloud services, mobile application
interface, and device debugging interfaces. The results showed that
most of the tested devices exhibited vulnerabilities across most
categories. The findings prove that there is a need to perform
security reviews on device architecture and accompanying
applications to minimize the risk to users.

http://www.astesj.com/

S. M. Alnaeli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1502-1507 (2017)

www.astesj.com 1504

 Hui Suo, Jiafu Wan, Caifeng Zou, and Liu in [2] reviewed
security in the IoT and analyzed security characteristics and
requirements from four layers: perceptual layer, network layer,
support layer, and application layer. They discussed the research
status in this field from encryption mechanism, communication
security, protecting sensor data, and encryption algorithm. While
they confirmed the need to develop technologies and
methodologies that meet the IoT needs for meeting the higher
requirements of security and privacy, they did not discuss security
concerns that can be caused by programming standards or by using
vulnerable code.

A research group from George Mason University and National
Institute of Standards and Technology in [3] presented a set of use
cases that leverage commercial off-the-shelf services and products
to raise awareness of security challenges in current practices and
prove that there is a need for IoT security standards to be
developed, as well as their possible implications. They
recommended that experts begin formulating suitable guidance
and identifying the right security and privacy primitives for more
secure and reliable IoT products. However, the study has not
discussed any security issues related to vulnerabilities at the source
code level and possible security risks that might be caused by the
usage of unsafe statements.

Although literature is rich with studies that focus on the
methods and tools used for detecting vulnerable source code [5],
no studies have been conducted specifically in the domain of IoT
that evaluate the usage and the distribution of vulnerable source
code in IoT software systems and applications prior to the study of
which this is an extension.

This work extends a previous work on IoT security in which
we conducted an empirical study of unsafe functions on the source
code level. We empirically examined 18 systems to determine
how many unsafe functions are used and their distributions to help
software engineers develop better software systems for IoT and to
show how these systems evolve over time in terms of secure
programming standards based on the usage of unsafe versus safe
replacement functions. We extended the work by examining a
larger group of IoT systems, adding 15 more to the original group
of software systems studied.

3. Methodology for detecting unsafe functions

A function is considered unsafe if it is one of the functions well-
known to both the research community and industry to cause
security concerns. Some of those unsafe functions and commands
are already banned by compiler producers (e.g., Microsoft).
Literature is abundant with lists of unsafe C/C++ commands. We
used a tool, UnsafeFunsDetector, developed by one of the main
authors, to analyze source code files and, if they contain any unsafe
function calls, create a count for each unsafe function. First, we
collected all files with C/C++ source-code extensions (i.e., c, cc,
cpp, cxx, h, and hpp). For the systems whose history was analyzed,
the last version of the system for each year was used. Then, we
used the srcML (www.srcML.org) toolkit [1,11] to parse and
analyze each file. The srcML format wraps the statements and
structures of the source code syntax with XML elements, allowing
tools, such as UnsafeFunsDetector, to use XML APIs to locate
pieces of code, such as unsafe functions, and to analyze
expressions in a quick and efficient manner. Once the system is

converted into XML, UnsafeFunsDetector iteratively parses every
source code unit to find each call of the unsafe functions and safe
replacement functions and adjusts the counters. That is, a count of
each unsafe function was recorded. Finally, all calls of unsafe
functions were counted and their distributions determined.
Table 1. The 18 studied systems along with the total unsafe functions used in them

and the most prevalent unsafe function.

The systems chosen in this study were carefully selected to
represent a variety of open source systems developed in C/C++ and
used for IoT and well-known to both academia and research IoT
communities. Our findings are presented and discussed later in this
paper, along with the limitations of our approach.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar.

4. Findings, results and discussion

We now study the usage of unsafe functions in the studied
systems and with their distributions, along with the historical
trends of their distributions of for 7 of the studied systems.

 OpenWSN is an open source project that provides open-source
implementations of a complete protocol stack based on Internet of
Things standards, for a variety of software and hardware platforms.
This implementation can help both academia and industry verify
the applicability of these standards to the Internet of Things for
those networks to become truly ubiquitous [8].

The TinyOS is an open source, operating system designed for
low-power wireless devices, such as those used in sensor networks,
ubiquitous computing, smart buildings, and smart meters [9].
Contiki is a lightweight and flexible operating system for tiny
networked sensors [10]. These were the original 3 IoT systems
studied in the original paper, but this paper has extended the work

System Total
Unsafe

Functions

Most Prevalent
Unsafe Function

ApacheMyNewtOS 1,524 memcpy
AtomThreads 62 strlen
Contiki 1,859 memcpy
DistortOS 3 memcpy
Embox 10,286 memcpy
FemtoOS 0 N/A
FreeOSEK 48 memcpy
Lepton 3,928 memcpy
nOS 4 memcpy
OpenTag 58 memcpy
openWSN 220 memcpy
PicoOS 12 free
POK 49 memcpy
TinyOS 772 memcpy
Tneo 1 memcpy
Trampoline 637 free
uOS-Embedded 15,556 puts
Zephyr 3,340 memcpy

http://www.astesj.com/

S. M. Alnaeli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1502-1507 (2017)

www.astesj.com 1505

to analyze 18 total systems, along with the most recent 5-year
history of 7 of those systems.

4.1. Design of the Empirical Study

This study focuses on three aspects regarding the security of
software systems used for IoT in terms of unsafe function and
vulnerable code usage. First, we examine the number of calls to
known unsafe functions. This gives an idea of how much of the
system needs to be refactored to remove or replace the vulnerable
code and, therefore, increase its security and quality. Next, we
examine which unsafe functions are the most prevalent. This can
give the developers of IoT software an idea about the most
prevalent unsafe function to they should make a priority, if they
plan on refactoring for the purpose of improving their system’s
security and quality, so that they can increase their system’s
security in the most efficient way possible. Finally, we examine
how the presence of unsafe commands (as opposed to some safer
replacements functions) changes over the lifetime of a software
system.

The following is our study defined by a set of formal research:

RQ1: What is the total number of unsafe functions called in
each system?

RQ2: Of those called, which unsafe functions are the most
prevalent?

RQ3: Over the history of a system, is the presence of unsafe
functions, and the use of safe replacement functions, increasing or
decreasing?

We now examine our findings within the context of these research
questions.

4.2. Number of Detected Unsafe Function and their distribution

In the original study, Contiki had the largest number of unsafe
functions. In this extension, uOS-Embedded has the largest
number of unsafe functions at 15556 total unsafe functions, as
opposed to Contiki’s 1859 unsafe functions. The smallest number
of unsafe functions was 0 for FemtoOS. To address RQ1, Table 1
shows the total number of unsafe functions for each of the 18
systems studied. For the systems whose history was also studied,
Table 1 shows the number of unsafe functions of the most recent
version. Some of the systems had very few unsafe functions
called, while others had thousands of calls to unsafe functions.

 In this study, snprintf is considered an unsafe function. Some
compliers consider it as a safe replacement function, but it was
considered unsafe in this study as it is banned by Microsoft.

For most of the systems, memcpy was the most called unsafe
function. In some of the systems, memcpy was the only unsafe
function called (e.g., DistortOS, nOS, and Tneo). This trend
matches the trend for the original study on only Contiki, TinyOS,
and openWSN. Even when a much larger group of IoT systems is
studied, mempy remained the most prevalent unsafe function for
the majority of the systems, which could allow us to start making
better generalizations about the IoT domain when it comes to
security than we could when a smaller group was studied.

To address RQ2, Table 2 shows the top 3 most prevalent unsafe
functions called across the 18 IoT systems studied. When the top
3 most prevalent for each system was analyzed, memcpy appeared

Table 2. The top three most prevalent unsafe functions across most of the
systems

in the top 3 most prevalent functions of 15 systems, strlen appeared
in the top 3 most prevalent functions of 10 systems, and strcmp
appeared in the top 3 most prevalent functions of 6 systems. The
rest of the functions were in the top 3 most prevalent functions of
2 or 3 systems, or they were not present in the top 3 most prevalent
functions of any system. The difficulty in generalizing the top 3
most prevalent unsafe functions was that many of the systems
varied in the unsafe functions that they called the most, and for
some systems, the only unsafe function called was memcpy.
While memcpy was the most prevalent unsafe function for the
majority of the systems, it was not the most prevalent for all of the
systems. The most prevalent for uOS-Embedded was puts, which
was not in the top 3 most prevalent unsafe functions for any of the
other systems studied.

Clearly, there is still a noticeably presence of well-known
unsafe functions in most of the studied systems, which complicates
security concerns when it comes to systems used for IoT. But no
matter how we present the data, it is apparent that unsafe functions
present one of the most serious security issues that need to be
addressed through refactoring systems to remove the unsafe
functions. While literature is rich with studies focusing on
addressing the problems of how to remove those unsafe functions
from software systems, it appears that software developers are
underestimating, or lack understanding of, the real threats imposed
by the use of unsafe functions.

5. Historical Change of unsafe function frequency

In order to address RQ3, we looked at the most recent 5-year
history for 4 additional systems to the original 3 studied. We
examined the most recent version of each year and recorded the
number of unsafe functions used, along with the number of safe
replacement functions used. We are interested in knowing whether

System memcpy strcmp strlen
ApacheMyNewtOS 771 221 220
AtomThreads 12 0 24
Contiki 712 90 343
DistortOS 3 0 0
Embox 2,363 1,726 1,720
FemtoOS 0 0 0
FreeOSEK 17 10 9
Lepton 766 398 662
nOS 4 0 0
OpenTag 42 0 0
openWSN 211 0 2
PicoOS 0 0 0
POK 28 4 6
TinyOS 236 133 94
Tneo 1 0 0
Trampoline 78 40 135
uOS-Embedded 1,500 2,016 1,790
Zephyr 1,778 404 616

http://www.astesj.com/

S. M. Alnaeli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1502-1507 (2017)

www.astesj.com 1506

the number of unsafe functions is increasing over time and the
security risks are becoming more prevalent, or if the number is

Figure. 1. The change in use of unsafe functions over time for the original three

systems studied previously.

Figure. 2. The change in use of unsafe functions for the additional four systems
studied.

Figure. 3. The change in use of safe alternatives for the four additional systems

studied.
lowering, possibly that the developers worked on removing the
unsafe functions to increase the security and quality of their
system. Figure. 1. shows the change in number of unsafe functions
used for the original study [1]. Figure. 2. shows the change in
number of unsafe functions for the 4 additional systems studied.

It can be seen that in the original 3 systems, the trends for two
systems were relatively flat, while the trend for one system showed
an increase in the use of unsafe functions over the 5-year period.
We can also see in Figure. 2. that in the 4 additional systems, 3 of
them showed very flat trends with 2 of those not having any change
in the number of unsafe functions or safe replacements, shown in

Figure. 3., beyond the first few years, over the 5-year period. The
system, Trampoline, that did not show a flat trend instead showed
a decreasing trend in the use of both unsafe functions and safe
replacement functions. In 2012, Trampoline had 3265 unsafe
functions. In 2017, that number had decreased to 637, although
there had been a flat trend for the years 2012-2014.

While most of the systems don’t show an increasing trend, as
in they are not becoming more vulnerable to security risks, they
are also not showing a decreasing trend, which can be seen as
equally bad. The presence of unsafe functions remains the same,
and the developers are not removing those functions in order to
increase the security and quality of their systems. This could be
that the developers of those systems are unaware of the risks
imposed by the use of well-known unsafe functions, which leads
to the need for better education on the topic of software security at
the source code level to help those developers create higher quality
systems.

6. Threats to Validity

The tools we developed and used for this study only work with
languages supported by srcML (C/C++). Because of this
limitation, we were unable to include systems written in languages
such as Python and Java for this study.

Another limitation is that the tool we used is unable to
differentiate between unsafe functions used in dead code, which
means that some of the unsafe functions counted may never be
called during the system’s runtime. This might affect the accuracy
of the results we present in terms of the systems’ security and
vulnerability. Additionally, the calls to unsafe functions that are
included in wrappers are not excluded.

7. Future Enhancement

In the future, we are planning to improve the tool so that it only
includes active code and exclude the calls to the unsafe functions
that are protected with wrappers. We would also like to be able to
include more systems written in different programming languages.

In this study, all calls to unsafe functions were counted
including regardless the potential wrappers. We are planning to
improve the tool so that it excludes the calls that are protected by
proper wrappers.

8. Conclusion

This study empirically examined the usage of known unsafe
functions and commands in eighteen open source software
systems. The systems are all IoT applications written in C/C++
specifically for IoT architectures. There are no other studies of this
type currently in the literature. The results show that usage of
vulnerable functions is still common for most of the systems,
although some systems had very few or even no calls to unsafe
functions. Of the eighteen systems studied, memcpy was the most
prevalent for the majority of the systems followed by strlen, free
and strcmp. The historical trend, for selected systems, shows that
developers are not working to improve a problem that still exists.

The vast majority of literature, concerning IoT security,
focused on the security issues in the communication layer rather
than vulnerabilities at the source code level. As such, more
attention needs to be placed on dealing with source vulnerability,

http://www.astesj.com/

S. M. Alnaeli et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1502-1507 (2017)

www.astesj.com 1507

reduce the usage of unsafe statements, especially the most
prevalent statements to improve IoT platforms in terms of security,
and educate developers on ways to both refactor their systems and
to avoid the use of unsafe functions from the beginning when
writing code, thus enhancing performance.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work was supported in part by a grant from the US National
Science Foundation (NSF) Grant no. 1542368.

References

[1] S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and K.
Yelamarthi, "Vulnerable C/C++ code usage in IoT software systems," in 2016
IEEE 3rd World Forum on Internet of Things (WF-IoT), 2016, pp. 348-352.

[2] H. Suo, J. Wan, C. Zou, and J. Liu, "Security in the Internet of Things: A
Review," in Computer Science and Electronics Engineering (ICCSEE), 2012
International Conference on, 2012, pp. 648-651.

[3] C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, "Learning Internet-
of-Things Security; ‘Hands-On’," IEEE Security & Privacy, vol. 14, pp. 37-
46, 2016.

[4] A. M. Gamundani, "An impact review on internet of things attacks," in
Emerging Trends in Networks and Computer Communications (ETNCC),
2015 International Conference on, 2015, pp. 114-118.

[5] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, "ITS4: a static vulnerability
scanner for C and C++ code," in Computer Security Applications, 2000.
ACSAC '00. 16th Annual Conference, 2000, pp. 257-267.

[6] R. K. McLean, "Comparing Static Security Analysis Tools Using Open
Source Software," in Software Security and Reliability Companion (SERE-
C), 2012 IEEE Sixth International Conference on, 2012, pp. 68-74.

[7] Veracode, “The Internet of Things: Security Research Study”. (2015).
https://www.veracode.com/sites/default/files/Resources/Whitepapers/interne
t-of-things-whitepaper.pdf

[8] The University of California. (2016). openWSN
https://openwsn.atlassian.net/wiki/pages/viewpage.action?pageId=688187

[9] The TinyOS Working Group, (2013), TinyOS. http://www.tinyos.net/
[10] A. Dunkels, B. Gronvall, and T. Voigt, "Contiki - a lightweight and flexible

operating system for tiny networked sensors" in 29th Annual IEEE
International Conference on Local Computer Networks, 2004.

[11] S. M. Alnaeli, A. A. Taha, and T. Timm, "On the Prevalence of Function Side
Effects in General Purpose Open Source Software Systems," in Software
Engineering Research, Management and Applications, R. Lee, Ed., ed Cham:
Springer International Publishing, 2016, pp. 115-131.

http://www.astesj.com/

	2. Background and Related Work
	3. Methodology for detecting unsafe functions
	4. Findings, results and discussion
	4.1. Design of the Empirical Study
	4.2. Number of Detected Unsafe Function and their distribution

	5. Historical Change of unsafe function frequency
	6. Threats to Validity
	7. Future Enhancement
	8. Conclusion
	Conflict of Interest
	Acknowledgment
	References

