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Abstract—In this review paper, we present a development of tion property (AEP). Suppose we want to (losslessly) compress
parts of rate-distortion theory and pattern-matching algorithms g messag&!* = (X1, X», ..., X,,) generated by a stationary
for lossy data compression, centered around a lossy version of the memoryless sourc&® = {X,;n > 1} where each¥; takes

- ny - T

asymptotic equipartition property (AEP). This treatment closely . . . .
parallels the corresponding development in lossless compression, values in the finite alphabet (much more general situations

p0|nt of view that was advanced in an |mp0rtant paper of Wyner W|” be COﬂSIdered Iater) FOf thIS Source, the AEP StateS that as
and Ziv in 1989. In the lossless case, we review how the AEP un-n — oo
derlies the analysis of the Lempel-Ziv algorithm by viewing it as a

random code and reducing it to the idealized Shannon code. This

also provides information about the redundancy of the Lempel-Ziv

algorithm and about the asymptotic behavior of several relevant

quantities. In the lossy case, we give various versions of the state-yhere P is the common distribution of the independent and

ment of the generalized AEP and we outline the general method- jyo niically distributed (i.i.d.) random variablég, P™ denotes
ology of its proof via large deviations. Its relationship with Barron

and Orey’s generalized AEP is also discussed. The lossy AEP is ap-the (product) joint distribution oX}', and
plied to i) prove strengthened versions of Shannon’s direct source-
coding theorem and universal coding theorems; ii) characterize the H = E[_ log, P(Xl)]
performance of “mismatched” codebooks in lossy data compres-

sion; iii) analyze the performance of pattern-matching algorithms . h fh sh , iqinal
for lossy compression (including Lempel-Ziv schemes): and iv) de- IS tN€ €ntropy rate of the source—see Shannon’s original paper

termine the first-order asymptotic of waiting times between sta- [74, Theorem 3] or Cover and Thomas' text [24, Ch. 4]. [Here,
tionary processes. A refinement to the lossy AEP is then presented, and throughout the papdng, denotes the logarithm taken to
and it is used to i) prove second-order (direct and converse) lossy hase2, andlog denotes the natural logarithm.] From (1), we
source-coding theorems, including universal coding theorems; i) 5 immediately extract some useful information. Itimplies that

characterize which sources are quantitatively easier to compress; h is | th " will t likelv h b
iii) determine the second-order asymptotic of waiting times be- WNenn is large, the message;” will most likely have proba-

tween stationary processes; and iv) determine the precise asymp-bility at least as high ag="(#+<)

totic behavior of longest match-lengths between stationary pro-

cessles. Final:jy, wef_ dligcuss extensions of the above framework and Pr(XT) > 2 nlH+e) with high probability. ~ (2)
results to random fields. -

'”dﬁx Termsd—_Data} CoﬂqpreSSiO“v large deviations, pattern- Byt there cannot be many high-probability messages. In fact,
matching, rate-distortion theory. there can be at mogt*/+<) messages with

1 log, P*(X7)— H in probability ()
n

I. INTRODUCTION P (X7 > 27 (H+)

A. Lossless Data Compression : I ,
) ) ) so we need approximateB** representative messages from
I Tis probably only a slight exaggeration to say that the cefle sourceX in order to cover our bets (with high probability).
tral piece of mathematics in the proof of almost any l0S$ e |et 7, be the set of high-probability strings} € A"
less coding theorem is provided by the asymptotic equiparﬁa\,ingpn(x?) > 2-n(H+9) then we can correctly represent
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is about2—"# . Suppose that instead of using the stringg,in Instead of looking for the first match in an infinitely long data-

above as our representatives for the source, we decided tolase, in practice, the encoder looks for the longest match in a

dependently generate a collection of random striFifisfrom database of fixed length. The analysis in [84] of the idealized

the distributionP™; how many would we need? Given a sourcecheme described above was the first step in providing a proba-

string X7, the probability that any one of thE™ matches it bilistic justification for the optimality of the actual practical al-

is ~ 2~"H so in order to have high probability of success igorithms. Subsequently, in [85] and [86], Wyner and Ziv estab-

representing{* without error we should choose approximateljyished the asymptotic optimality of the sliding-window (SWLZ)

2n(H+¢) random stringd;*. Therefore, whether we choose thend the fixed-database (FDLZ) versions of the algorithm.

set of representatives systematically or randomly, we always )

need aboug” strings in order to be able to encodg" loss- B. Lossy Data Compression

lessly with high probability. Note that the randomly generated A similar development to the one outlined above can be given

set7, is nothing but Shannon’s random codebook [75] speciah the case of lossy data compression, this time centered around

ized to the case of lossless compression. a lossy analog of the AEP [52]; see also [60], [88]. To motivate
Idealized Lempel-Ziv Codingtn 1989, in a very influen- this discussion we look at Shannon’s original random coding

tial paper [84], Wyner and Ziv took the above argument segroof of the (direct) lossy source-coding theorem [75].

eral steps further. Aiming to “obtain insight into the workings Shannon’s Random CodeSuppose we want to describe the

of [...] the Lempel-Ziv data compression algorithm,” they coneutput X* of a memoryless source, with distortidn or less

sidered the following coding scenario. Suppose that an encodgth respect to a family of single-letter distortion measures

and a decoder both have available to them a long database, §ay}. Let Q7 be the optimum reproduction distribution on

an infinitely long stringY™ = (Y1, Y2, ...) that is indepen- A", where A is the reproduction alphabet. Shannon’s random

dently generated from the same distribution as the source. Givgitling argument says that we should construct a codeBok

a source string({' to be transmitted, the encoder looks for thef 22(7(P)+<) codewordsY;* generated i.i.d. fron®, where

first appearance ok in the database (assuming, for now, thak(D) is the rate-distortion function of the source (in bits). The

it does appear somewhere). Liét denote the position of this proof that2*(Z(”)+<) codewords indeed suffice is based on the

first appearance, that is, I8t be the smallest integer for whichfollowing result [75, Lemma 1].

Y‘/“//‘f-i-n—l = (YVV, YVV—i—la . YVV—I—n—l) is equal tOX{L Then

all the encoder has to do is it to tell the decoder the valu& pf

the decoder can read off the strig}! 7"~ and recoverX?

perfectly. This description can be given using (cf. [32], [86]) n

more than

Shannon’s “Lemma 1": Forz7 € A™ let B(z}, D) denote
the distortion-ball of radiu® aroundz?, i.e., the collection of
8II reproduction stringgy* € A™ with on(x?, ¥7) < D.When
n IS large

* a0 —n(R(D)+€) \pi ; R
H(XT) = logy W + Olog, log, W) bits. 3) Qr(B(X{, D)) >2 with high probability. (4)

How good is this scheme? First note that, for any given sourceln the proof of the coding theorem this lemma plays the same
string X7, the random variabl& records the first “success” in role that the AEP played in the lossless case; notice the simi-
a sequence of trials (“I87* = X7?,”“Is Y, = X7?,”and larity between (4) and its analog (2) in the lossless case. Let us
so on), each of which has probability of succgss P*(X7). fix a source stringX7* to be encoded. The probability that’
Although these trials are not independent, for langehey are matches any one of the codewords in 7, is
almost independent (in a sense that will be made precise below{5
so the distribution of¥ is close to a geometric with parameter Prirn(XT; Y1") < D|XT} = Pr{Y]" € B(XT', D)|XT'}

p = P"(X7). ForlongstringsX7, p is small and/¥ is typically =Qr(B(XT, D))
close to its expected value, which is approximately equal to the
mean of a geometric random variable with paramgteamely, and by the lemma this probability is atleast'(#(”)+<) There-
1/p. But the AEP tells us that, whenis largep = P*(X") ~  fore, with 27(#(P)+) independent codewords to choose from,
2-"H sowe expedt to be typically aroun@™ . Hence, from We have a good chance for finding a match with distortidor
(3), the description lengtf X7*) of X7 will be, to first order ~ less.
The Generalized AEPA stronger and more general version
(XT) ~ —log, P"(X7) ~ nH bits, with high probability. of Lemma 1 will be our starting point in this paper. In the
following section, we will prove aeneralized AEPFor any
This shows that the above scheme is asymptotically optimal,afeduct measur&™ on A™
that its limiting compression ratio is equal to the entropy. 1

Practical Lempel-Ziv Coding:The Lempel-Ziv algorithm —=logQ"(B(X{", D)) — R (P, Q,D) wp.1l (5

[98], [99] and its many variants (see, e.g., [7, Ch. 8]) are some of

the most successful data compression algorithms used in praé'[he notation in Shannon’s statement is slightly different, and he considers
the more general case of ergodic sources. For the sake of clarity, we restrict our

tice. Roughly speaking, the main idea behind these algomhm%t'l%ntion here to the i.i.d. case. It is also worth mentioning that the outline of the
to use the message’s own past as a database for future encodéingom coding argument s already given in Shannon’s 1948 paper [74, Sec. 28],
where the content of Lemma 1 is described in words. Paraphrasing that passage
Iwe should also mention that around the same time a similar connection beeur present notation: “A calculation [...] shows that with largalmost all
tween data compression and waiting times was made by Willems in [81].  of the X'}*.s are covered within distortioP by [...] the chose¥}*’s.”
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whereR; (P, @, D) is a (nonrandom) function of the distribu-the most general versions using techniques from large devia-
tions P and @ and of the distortion leveD. Note that in the tiontheory (cf. [88], [27], [20], [21] and Bucklew’s earlier work
case of lossless compression (with= ¢ andD = 0), the [16], [17]). We also discuss the relationship of the generalized
generalized AEP in (5) reduces to the classical AEP in (1). IXEP with the classical extensions of the AEP (due to [6], [66])
fact, in our subsequent development of lossy data compressienprocesses with densities. We establish a formal connection
the generalized AEP will play essentially the same role that thetween these two by looking at the limit of the distortion level
AEP played in the lossless case. D |o.

But also there is an essential difference between the two. Al-in Section I1l, we develop applications of the generalized
though the natural abstract formulation of the classical AEP isAEP to a number of related problems. We show how the gen-
an ergodic theorem [13], [14], the natural mathematical framegralized AEP can be used to determine the asymptotic behavior
work for understanding and proving the generalized AEP is tia¢ Shannon’s random coding scheme, and we discuss the role
theory of large deviations. To see this, let us fix a realizatipn of mismatch in lossy data compression. We also determine the
of the random variableX', and suppose that distortion is meafirst-order asymptotic behavior of waiting times and longest
sured with respect to a single-letter distortion meagre y). match-lengths between stationary processes. The main ideas
Then, the™-probability of the ballB(x7, D) can be written ysed here are strong approximation [51] and duality [84]. We

as present strengthened versions of Shannon’s direct lossy source-
Q™(B(z7, D)) = Pr{Y? € B(a}, D)} coding theorem (and of a corresponding universal coding the-
n orem), showing thaalmost allrandom codebooks achieve es-
= Pr {l Z plxi, ;) < D} sentially the same compression performance. A lossy version of
n = the Lempel-Ziv algorithm is recalled, which achieves optimal
whereYp = (¥, Ya, ..., Y,) denoten i.id. random vari- compression performance (asymptotically) as well as polyno

mial complexity at the encoder. We also briefly mention how the
classical source-coding problem can be generalized to a ques-
tion about weighted sphere-covering. The answer to this ques-
0?’on gives, as corollaries, Shannon’s coding theorems, Stein’s
lemma in hypothesis testing, and some converse concentration
inequalities.

Section IV is devoted to second-order refinements of the
%P and the generalized AEP. It is shown, for example, that
BJer certain conditions; log Q™ (B(X7, D)) are asymptoti-

ables with distribution?). As we will see, the range of inter-
esting distortion values is whel is smaller than the average
distortion E[p(X, Y], in which caseQ™(B(z}, D)) can be
thought of as large deviations probability for the lower tail
the partial sum3~""_, Z; of the independent (but not identically
distributed) random variables; = p(x;, Y;). Therefore, it is

proving this exponential convergence (i.e., the generalized AE ) D . , ;
in (5)) will come from large deviations. For example, the prooﬁ‘a”y Gaussian. The main idea is to refine the generalized AEP

of (5) in Theorem 1 is a direct application of the Gartner—Eli (5) by showing that the quantitieslog @™ (B(XT', D)) are

theorem. Similarly, more elaborate large deviations techniqu¥yMptotically very close to a sequence of partial sums of i.i.d.

will be employed to prove several variants of (5) under mudRndom variables, namely,
weaker assumptions. n
Aaron Wyner's Influence.Like the AEP in the lossless case, 108 @"(B(X{', D)) ~ nRi(P, Q. D)+ Y g(X;)
the generalized AEP and its refinements find numerous appli- i=1
cations in data compression, universal data compression, and/lrerex: denotes asymptotic equality with probability one up to
general pattern matching questions. Many of these applicatidagms of ordeO(log »), andg is an explicitly defined function
were inspired by the treatment in Wyner and Ziv's 1989 papeiith Ep[g(X)] = 0; see Corollary 17 for more details.
[84]. A (very incomplete) sample of subsequent work in the These refinements are used in Section V to provide
Wyner-Ziv spirit includes the work in [69], [78] elaborating orcorresponding second-order results (such as central limit
the Wyner—Ziv results, the papers [77], [60], [88], [53] on losstheorems) for the applications considered in Section Ill. We
data compression, and [60], [27], [3], [91] on pattern matchingrove second-order asymptotic results for waiting times and
see also the recent text [79]. longest match-lengths. Precise redundancy rates are given
Aaron Wyner himself remained active in this field for the folfor Shannon’s random code, and converse coding theorems
lowing ten years, and his last paper [87], coauthored with show that the random code achieves the optimal pointwise
Ziv and A. J. Wyner, was a review paper on this subject. In thedundancy, up to terms of ordéxlogn). For i.i.d. sources,
present paper, we review the corresponding developments infhe pointwise redundancy is typically of ordey/n, wheres is
lossy case, and in the process we add new results (and some figninimal coding variance of the source. Whee= 0, these
proofs of recentresults) in an attempt to present a more complgtgtuations disappear, and the best pointwise redundancy is of
picture. orderO(logn). The question of exactly whes can be equal
to zero is briefly discussed.
Finally, Sections VI and VIl contain generalizations of some
In Section Il, we give an extensive discussion of the genestthe above results to random fields. All the results stated there
alized AEP. By now there are numerous different proofs undare new, although most of them are straightforward generaliza-
different assumptions, and we offer a streamlined approachtians of corresponding one-dimensional results.

C. Central Themes, Paper Outline
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Il. THE GENERALIZED AEP of Shannon’s “Lemma 1" and, more generally, by statements of

A. Notation and Definitions the form

We begin by introducing some basic definitions and notation 1 Q.(B(XT, D)) — R(P, Q, D) w.p.1
that will remain in effect for the rest of the paper. We will "
consider a stationary-ergodic proceXs = {X,;n € Z} forsome nonrandom “rate-functio®(P, @, D).
taking values in a general alphahét® When talking about  First, we consider the simplest case whEris assumed to be
data compressionX will be our source andA will be ani.i.d. process. We writ@ = @ for its first-order marginal,
called the source alphabet. We wrif€/ for the vector of so thatQ, = Q, forn > 1. Similarly, we write P = P for

random variablest! = (X;, Xi41, ..., X;), and similarly the first-order marginal o . Let
z = (@4, Tip1, ..., ¥;) € AT for a realization of these A _
random variables-co < i < j < co. We let P, denote Dinin = EP[6§SN13fP(X7 Y] (1)

the marginal distribution o7 on A™ (n > 1), and writeP A
for the distribution of the whole process. Similarly, we take Day = Epxqlp(X, Y] (®)

Y = {Yu;n € Z} to be a stationary-ergodic process takingzecql that the essential infimum of a functiof(Y) of
values in the (possibly different) alphab#(see footnote 2). In o random variabley” with distribution  is defined as
the context of data compressiofijs the reproduction alphabet . infy g g(Y) = sup{t € R: Q{g(Y) > t} = 1}.]

andY has the “codebook” distribution. We writ@,, for the Clearly,0 < Duin < D.,. To avoid the trivial case when

marginal distribution oftT" on A", n > 1, and@ for the .. " yig essentially constant foltalmost) allx € A, we as-

distribution of the whole procesk. We will always assume g me that with positivé’-probability p(«, %) is not essentially
that the procesy¥ is independent oX . constant iny, that is

Letp: Ax A — [0, o0) be an arbitrary nonnegative (measur-
able) function, and define a sequence of single-letter distortion Din < D, (9)

measureg,: A* x A® — [0, oo) by 3
Note also that forD greater thanD,,, the probability

Al . Q" (B(X{, D)) — 1asn — oo (this is easy to see by the er-
prlzl, yi) = = (s, 4i), zi € A", 3y € A™. godic theorem), so we restrict our attention to distortion levels
n =1 D < Dav-
GivenD > 0 andz? € A™, we write B(z}, D) for the distor- ~ Theorem 1:Generalized AEP whelf is i.i.d.: LetX be a
tion-ball of radiusD aroundz? stationary-ergodic process akdbe i.i.d. with marginal distri-
bution@ on A. Assume thaD,, = Epyg[p(X, Y)] is finite.
Blaf, D) = {sf € A" pa(al, f) < D}. Then for anyD € (Dinin, D)
1 n n
Throughout the papelpg denotes the natural logarithm and s log Q"(B(XT, D)) — Ru(P, Q, D) w.p. L

log, the logarithm to bas@. Unless otherwise mentioned, all . . )

familiar information-theoretic quantities (such as the entropgl—,he rate-function?; (P, @, D) is defined as
mutual information, and so on) are assume to be defined interms Ri(P, Q, D) =inf HW|P x Q)
of natural logarithms (and are therefore given in nats). w

whereH (W ||V') denotes the relative entropy between two dis-

B. Generalized AEP Whé&i Is i.i.d. tributions W andV
In the case when is finite, the classical AEP, also known as dW ; o dW
' ' A | Ew |log %=1, if the density%~- exists
the Shannon-McMillan—Breiman theorem (see [24, Ch. 15] off (W[|V) = {OOW [log ] otherwise Yav

the original papers [74], [62], [13], [14]), states thatass co X
and the infimum is taken over all joint distributioig on A x A

1 log Po(XT) — H(P) w.p.1 (6) Such thatthe first marginal 0¥ is P and Ey [p(X, Y)] < D.
" Note that Theorem 1, as well as most of our subsequent re-
where sults, is only stated for distortion levelsthat arestrictly greater
1 than D,,;,. This means that, despite the fact that we think of
H(P) 2 lim - H(XD) Theorem 1 as a generalization of the AEP in the lossless case,

here the lossless case (correspondindte= D,,;,, = 0) is

is the entropy rate of the procek’s(in nats, since we are taking ex_cluded. There are two reasons for this. First, the large devi-
logarithms to base). As we saw in the Introduction, in lossyations techniques used to prove many of our main results do

data compression the role of the AEP is taken up by the resi@t immediately yield any information on what happens at the
boundary pointD = D,,;,. And second, the results themselves

3To avoid uninteresting technicalities, we will assume throughout4hiata do not a|WayS remain valid in that case: for example although
complete, separable metric space, equipped with its associatecBibetd .A. ! !

Similarly, we take( A, A) to be the Borel measurable space corresponding t0f31 (P, @, D) is finite for _a” D > Dy, it may be i_nﬁn_ite at
complete, separable metric spate D = D,,;, as Example lillustrates. A more dramatic difference
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between the lossleg® = 0) and lossy D > 0) case is the re- Then for anyA < 0, by the ergodic theorem we have that
sult of Theorem 15, where the terfh/2)(logn) disappears in

1 1<
the lossless case. “An(nX) = 3" log g (6)\/7(39{73/7')> — AN
Example 1:The rate-functionR:(P, @, D) when @ is i=1
Gaussian: Although in general the rate-functi®n(P, Q, D) 2Ep [1Og Eo (e/\ﬂ(X, Y))} (10)

cannot be evaluated explicitly, here we show that it is possible

to obtain an exact expression & (P, 2, D) in the special for P-almost any realization°. Now we would like to apply
case wherp(z, y) = (x — y)?, X is a real-valued process,the Gartner—Ellis theorem, but first we need to check some
and @ is a Gaussian measure dh Specifically, assume simple properties of the function()). Note thatA()\) < 0
that X is a zero-mean, stationary-ergodic process with finigend also (by Jensen’s inequalityff\) > AD,, > —oo, for all
variances? = Var (X1) < oo, and take to be a zero-mean A < 0. Moreover,A()) is twice differentiable i\ with

Gaussian measure with varianeg, i.e., @ ~ N(0, 72).

Under these assumptions, it is easy to see fhat, = 0 and NN =E (X,Y) M)

D., = o2 + 72. Moreover, with the help of Theorem 2 that Px@ | A% Eq [eM(X. Y]

follows, R; (P, ), D) can be explicitly evaluated as

and
00, D=0
2 Ap(X,Y)
v v—D)(v—0o c
R(P, @, D) = | 3108 (B) — =, ') = Ep EQ{”"(X’ Y>W}
) ) 2 2
0<D§0 —|;'r 1 )
0, DZU +7 _<EQ {p(X, Y)m})
where QL
02 % [72 + /it 4D02} ) (this differentiability is easily verified by an application of the

dominated convergence theorem). By the Cauchy—Schwarz in-
We will come back to this example when considering misgquality A”()) > 0 for all A < 0, and in factA” () is strictly
matched rate-distortion codebooks in Section I1I-B. positive due to assumption (9). Also it is not hard to verify that

— . ) li A(X) = D,, and
Remark 1: In more familiar information-theoretic terms, thelmATO ) &

rate-functionR; (P, (), D) can equivalently be defined as (cf. lim A’(A) = Duin. (11)
[88]) ALmeo
. ) SinceD € (Dyin, Day), there exists a uniqua* < 0 with
R{(P, D)= f [[(X;Y H ’
(P Q, D) ()l(I,lY)[ (X5 Y) + H@Qr[|Q)] A (X\*) = D, and, therefore, the Fenchel-Legendre transform

where I(X; Y') denotes the mutual information (in nats) be(—)f A(%) evaluated ab) is

tween the random variables andY’, and the infimum is over % A * *
' A*(D) = AD — A(N)] = XD — A(Q).
all jointly distributed random variablesY, ') with values in D) i‘;fé[ W] ()
A x A such thatX has distribution?, E[p(X, Y)] < D, and . )
Oy denotes the distribution df. Now we can apply the Gartner—Ellis theorem [29, The-

orem 2.3.6] to deduce from (10) that wikhkprobability one
Remark 2: The assumption that is i.i.d. is clearly restric-

tive and it will be relaxed below. On the other hand, the assump- 1 log Q"(B(X}, D)) — A*(D).
tions on the distortion measupeseem to be minimal; we simply n
assume that has finite expectation (in the more general resultshe proof is complete upon noticing that (D) is nothing

below p is assumed to be bounded). In this form, the result @it R, (P, Q, D). This is stated and proved in the following
Theorem 1 is new. theorem. U

Proof Outline: As discussed in the Introduction, The- Theorem 2—Characterization of the Rate Functidn:the
orem 1 will be proved by an application of the Gartner—Elligotation of the proof of Theorem 1,
theorem from large deviations; see [29, Theorem 2.3.6]. Choose
and fix a realization:s° of X and define the random variables ~ A*(D) = Ri(P, Q, D), for D € (Dpin, Day).
Z; = p(z;, Y;). Let . " . .
Proof Outline: Under additional assumptions on the dis-
- tortion measure this has appeared in various papers (see, e.g.,

Z Zi [27], [90]). For completeness, we offer a proof sketch here.

In the notation of the above proof, consider the meastire
and define the log-moment generating functions of the normaln 4 x A defined by
ized partial sum$1/n)S,, by

1
Sp=">
n <

1=1

dW(z,y) e r(@y)
An(N) £ log Egn(e*5n/™), A<0. d(Px Q) Eg[eXNrE]’
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Obviously, the first marginal ofV is P and it is easy to check strong mixing condition. We say that the stationary prodss
that Ew [p(X, Y)] = A’(\*) = D. Therefore, by the defini- is 1»*-mixing, if for all d large enough there is a finite constant

tions of R, (P, @, D) andW, and by the choice o}* cq such that
Ri(P,Q, D) <H(W|Px Q) c3 ' QA)Q(B) < QAN B) < caQ(A)Q(B)
=\*D — A(\*) = A*(D). (12)

for all eventsA € #(Y°.) andB € o(Y;®), whereo(Y;)
To prove the corresponding lower bound we first claim that fatenotes ther-field generated by’. Recall the usual defini-
any measurable functiopr A — (—o0, 0], and any probability tion according to whiclY is calledy-mixingif in fact the con-
measurey’ on A stantsc; — 1 asd — oo; see [12] for more details. Clearly,

O B v Lo () 13 ®-mixing is weaker tham-mixing

(@1Q) 2 Bq (¢(1)) — log Eqle ) (13) Theorem 3—Generalized AEP WHgris «»*-Mixing [20]:
Let @, denote the probability measure oA such that Let X andY be stationary-ergodic processes. Assume ¥at
dQg/dQ = Czt)/EQ(Czb(Y)). Clearly, it suffices to prove (13) in iS 1*-mixing, and that the distortion measysds essentially
cased()’ /dQ exists, in which case the difference between theoundedDy,.x < oo. Then for allD € (Duyin, Day)

left- and right-hand sides is 1
- log Q,(B(X7, D)) — R(P, Q, D) w.p.1 (15)

/ @
Eqy {log dQ }—EQ’ {108‘ <67¢>}=H(Ql||Q¢)ZO-
dQ Eq(e?) whereR(P, @, D) is the rate-function defined by

Given an arbitrary candidaté¥ as in the definition of
Ri(P, @, D) and anyx € A, we take@)’ = W(-|z) and
dy) = XN p(z, y) in (13) to get that

R(P, Q, D) = lim R,(P, Qu, D) (16)

where, forn > 1

HW(|)[|Q()) 2 X Ew (o [p(w, ¥)]~log Eq(c #*:7)). a

R,(P,, Qn, D) inf n"rH(V, || P x Q)
SubstitutingX for z, taking expectations of both sides with re- "
spect toP, and recalling thak* < 0 and Ew [p(X, Y)] < D, and the infimum is taken over all joint distributioh§ on A™ x

we get A™ such that thed™-marginal ofV,, is F,, and
HWI[IPx Q) 2 X*D — AX") = A*(D). By, [pn(XT, Y1) < D.

SinceW was arbitrary, it follows thaRk; (P, @, D) > A*(D), ] ] ) ]
and together with (12) this completes the proof. 0 As_, we discussed in t_he previous se_ctlon, the proof of _most
versions of the generalized AEP consists of two steps. First, a
C. Generalized AEP Wh& Is Not i.i.d. “conditional large deviations” result is proved for the random
i . i n ny. > o0 1 i _
Next we present two versions of the generalized AEP thv?”ables{p"(xl’ Y{"); n 2 1}, wheres® is gﬂxed realiza
: . ion of the processX. Second, the rate-functioR(P, Q, D)
hold whenY is a stationary dependent process, under some a . T PR .
g o IS characterized as the limit of a sequence of minimizations in
ditional conditions. terms of relative entropy.
Throughout th|§ section we will assume that the distortior] In a subsequent paper, Chi [21] showed that the first of these
measure igssentially bounded.e., L . . )
steps (the large deviations part) remains valid under a condi-
Dy 2 esssup  p(X1, Vi) < oo (14) tion weaker than) mixing, condmon(S). of [15]. In the fol .
(X1, Y1)~PL X Q1 lowing theorem, we give a general version of the second step;
_ _ we prove that the generalized AEP (15) and the formula (16)
We let D,y be defined as earliel)a, = Ep xq, [p(X1, Y1),  for the rate-function remain valid as long as the random vari-

and forn > 1 we let ables{p,(z7, Y7"); n > 1} satisfy a large deviations principle
(LDP) with somedeterministi¢ convex rate-function (see [29]
i r. | gssin pa(XT, Y| for the precise meaning of this statement).
1 ~Man

Theorem 4:Let X andY be stationary processes. Assume

It is easy to see thathfizl is a finite, superadditive sequencethat p is essentially bounded, i.€Q),,.x < oo, and that with
and therefore we can also define P-probability one, conditional oX & = z$°, the random vari-
) ) ables{p, (7, Y*); n > 1} satisfy a large deviations principle
min = 51D Doin: with some deterministic, convex rate-function. Then, both (15)

B and (16) hold for anyD € (Dyin, Dav), €Xcept possibly at the
As before, we will assume that the distortion measuignot point D = ngfg, where
essentially constant, that i8),,;, < Day.

We first state a version of the generalized AEP that was re- (c) A . )

cently proved by Chi [20], for process#s satisfying a rather Duin = int {D = 05 sup By (B, Qn, D) < OO} - (A0

Dyin = lim D
n—oo

n>1
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Since Theorem 4 has an exact analog in the case of randonQuantization Condition:For eachD > 0, there is a “quan-
fields, we postpone its proof until the proof of the correspondirtgzer” ¢: A — B for some countable (finite or infinite) subset
result (Theorem 25) in Section VI. B C A, such that

As will be seen in the proof, the rate-functidP, Q, D) = .

o L o) 2 i , < D for all A;
oo for D < D and it is finite forD > D). Recall that, _,) Pz, a(@)) < ve
i) the entropyH (g(X1)) < oo.

similarly, eacth.n(Pn, Qn, D) is finite Whenll) > Diia, but

without additional assumptions @hit is now possible that there The f0||owing was |mp||c|t|y proved in [48], see also [56] for
are distortion valued such thatR,(P,, Q., D) < oo for details.

all n, but R(P, Q, D) = oco. Note that this difficulty was not

present in Theorem 3, where the mixing propert@ofias used 1 neorem 5—Generalized AEP for Optimal Lossy Compres-
to show that indeed.. .. — D sion [48]: Let X be a stationary-ergodic process. Assume that

min the distortion measugesatisfies the quantization condition, that
Remark 3: Suppose that the joint proce$X, Y') is sta- a reference letter exists, and that for each 1 the infimum of

tionary, and that it satisfies a “process-level large deviations

principle” (see Remark 6 in Section VI for a somewhat more Ep, [-log Qn(B(XT, D))]

detailed statement) on the space of stationary probability . . .

measures 0AA™ x Aoo) equipped with the topology of weakover all probability measureg,, on A™ is achieved by some

convergence. Assume, moreover, that this LDP holds with:- Then foranyD > 0

a convex, good rate-functiofi(-). (See [26], [30, Sec. 5.3, 1 . .

5.4], [29, Sec. 6.5.3], [15] for a general discussion as well as Y log @n(B(XT', D)) — R(D) w.p.1 (18)

specific examples of processes for which the above conditions ) ) ) )

hold. Apart from the i.i.d. case, these examples also include WitereR(D) is the rate-distortion function of the proceXs

ergodic finite-state Markov chains, among many others.) Historical Remarks:The relevance of the quantities
It is easy to check that, whemis bounded and continuous_og (,,(B(X7, D)) to information theory was first sug-
onA x A, then withP-probability one, conditional omi”, the  gested implicitly by Kieffer [48] and more explicitly by tuczak
random variablegp, (7, Y1")} satisfy the LDP upper bound and Szpankowski [60]. Since then, many papers have appeared
with respect to the deterministic, convex rate-functifd)) =  proving the generalized AEP under different conditions; we
inf I(r), where the infimum is over all stationary probabilitymention here a subset of those proving some of the more
measures on A* x A such that thel*>*-marginal ofv isP  general results. The case of finite alphabet processes was
andE, [p(X1, Y1)] = D. Indeed, Comets [23] provides such agonsidered by Yang and Kieffer [88]. The generalized AEP
argument wheX andY are bothi.i.d. Moreover, he shows thator processes with genera| a|phabets and.i.d. was proved
in that case, the corresponding LDP lower bound also holds, ai{d Dembo and Kontoyiannis [27] and by Yang and Zhang
hence Theorem 4 applies. Unfortunately, the conditional LOB0). Finally, the case whel is not i.i.d. was (Theorem 3)
lower bound has to be verified on a case-by-case basis.  treated by Chi [20], [21]. The observations of Theorem 4 about
Remark 4: Although quite strong, the/-mixing condition the rate—functio_nR([P’, Q, D) are new. Theorem 5 ess_entially
of Theorem 3, and théS)-mixing condition of [21], probably comes from Kieffer's work [48]; see also [56]. A different
cannot be significantly relaxed. For example, in the special cagsion of the generalized AEP (based on fixed-composition
when X is a constant process taking on just a single valug9debooks) was recently utilized in [96] in the context of
if Theorem 3 were to hold (for any bounded distortion me#daptive lossy compression. We should also mention that, in a
sure) with a strictly monotone rate-function, then necessarily tf@mewhat different context, the intimate relationship between
empirical measures df;* would satisfy the LDP in the Spacethe AEP and large deviations is discussed in some detail by
P.(A) (see [15] for details). But [15, Example 1] illustrates thaP"eY in [67].
this LDP may fail even whel’ is a stationary-ergodic Markov

chain with discrete alphabét In particular, the example in [15] E. Densities Versus Balls

has an exponentigl-mixing rate. Let us recall the classical generalization of the AEP, due to
Barron [6] and Orey [66], to processes with values in general
D. Generalized AEP for Optimal Lossy Compression alphabets. Supposk as above is a general stationary-ergodic

process with marginal$ P, } that are absolutely continuous

Here we present a version of the generalized AEP thatv!ﬁth respect to the sequence of meastves: { M, }.

useful in proving direct coding theorems. L¥tbe a stationary-

ergodic process. For the distortion measyprave adopt two ~ Theorem 6—AEP for Processes With Densities [6], [66pt
simple regularity conditions. We assume the existenceref-a X be a stationary-ergodic process whose margidalshave
erence letteri.e., ana € A such that densitiesf,, = dF,,/dM,, with respect to ther-finite measures
M,, n > 1. Assume that the sequenis®of dominating mea-
sures is Markov of finite order, with a stationary transition mea-
sure, and that the relative entropies

Epl [p(Xl, &)] < 00,

Also, following [48], we require that for any distortion level

. . e > 2
D > 0there is a scalar quantizer f&F with finite rate. "

H, 2 Ep, {log
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haveH,, > —oc eventually. Then with first-order marginal distributiod) = @, on the same al-
phabetd = A. Similarly, we write P = P; for the first-order

b (X7) = —H(P|M) w.p.1 (19) marginal ofX. In Theorem 7, we justify the above calculation

dM, by showing that the limits a® | 0 and as» — oo can indeed

be taken together in any fashion. We show that the double limit

of the central expression

1
—— log
n
where H(P||M) is the relative entropy rate defined as

HP|M) = lim H, = lIéfl H,.

n—oo

P (B(XT, D))

alis
~n ®QuB(X7, D)

ro(X{, D) % 1 (20)
The AEP for processes with densities is also know to ho’g equal toH
when the reference measuréd,, do not form a Markov
sequence, under some additional mixing conditions (see [6
whereM,, are taken to be non-Markov measures satisfying an Theorem 7—Densities Versus Balls in the Discrete Cdsat:
additional mixing condition, and the more recent extension i§ be a stationary-ergodic process dide i.i.d., both on the
[18] where the)M,, are taken to be discrete Gibbs measuredinite alphabetd. Assume thap(z, ) = Oifand only ifz =y,
Moreover, Kieffer [46], [47] has given counterexamples illusand@(z) > 0 for all z. Then the following double limit exists:
trating that without some mixing conditions ¢4, } the AEP n
(19) faills to hold. i 2 log LB D))
There is a tempting analogy between the generalized AEP  "pi5° »  Q@(B(XT, D))
(15) and the AEP for processes with densities (19). The formal ) ) ) _
similarity between the two suggests that, if we identify the me# Particular, the repeated limitm,, limp exists with proba-
suresQ,, with the reference measurég,,, corresponding re- Pility one and is equal td (P||Q).
sults should hold in the two cases. Indeed, this does in generap) Continuous CaseHere we state aweaker version of The-
appear to be the case, as is illustrated by the various genegaém 7 in the case wheth= A = R¢ for somed > 1, and when
ized AEPs stated above. Moreover, we can interpret the resylis anR<-valued, stationary-ergodic process. Suppose that the
of Theorem 5 as the natural analog of the classical discrete ARRrginals{ P, } of X are absolutely continuous with respect to
(6) to the case of lossy data compression. As we argued in fi€equence of reference measuf@s, }. Throughout this sec-
Introduction, the generalized AEPs of the previous sections plgyn we take the,, to be product measur€, = Q™ for some
analogous roles in the proofs of the corresponding direct codifiged Borel probability measuré) on R¥. A typical example
theorems. to keep in mind is wher) a Gaussian measure éhand X
Taking this analogy further indicates that there might be a rgyeal-valued stationary-ergodic process all of whose marginals
lationship between these two different generalizations. In pge- have continuous densities with respect to Lebesgue measure.
ticular, whenn is large and the distortion levé? is small, the  For simplicity, we takep to be squared-error distortion
following heuristic calculation seems compelling. Assuming foy(,. ) = (x — 5)2, although the proof of Theorem 8, given

(P||@) with probability 1, independently of how
%iows andD decreases to zero. Its proof is given in Appendix A.

= H(P||Q) w.p.1.

a moment that and A are the same in Appendix B, may easily be adapted to apply for somewhat
@ 1 dp, more general difference distortion measures.
~H(P|Q) =~ log 2o (X]) ) _ | |
n Q. Theorem 8—Densities Versus Balls in the Continuous Case:
@ 1 log P, (B(X}, D)) Let X be anR?-valued stationary-ergodic process, whose
T8 Q,.(B(X7, D)) marginalsP,, have densitieg,, = dP,/dQ, with respect to a
1 N 1 N sequence of product measu@s = Q™, n > 1, for a given
i log P (B(XT, D))‘Fg log Qn(B(XT', D)) probability measur€) onR¢. Let p(x, i) = (z — y)? for any

(<) x, y € R
~R(P, P, D)-R(P, Q, D) a) The following repeated limit holds:
(D)
~—H(P|Q) n

lim lim 1 log Pu(B(XT, D))

n—oo D0 N m =H(P|Q) w.p.l

where(a) holds in the limitass — oo by Theorem 6(b) should
hold whenD is small by the assumption th#&, has a density
with respect ta?,,, (¢) would follow in the limit asn — oo

by an application of the generalized AEP, and it is natural to
conjecture thatd) holds in the limits ag> | 0 by reading the
above calculation backward.

We next formalize this heuristic argument in two special
cases. First, wheX is a discrete process taking values in a
finite alphabet, and second whe¥i is a continuous process
taking values irfR<.

1) Discrete Case:Here we takeX to be a stationary-ergodic
process taking values in a finite alphabg&tandY to be i.i.d.

b) Assume, moreover, th& is i.i.d. with marginal distribu-
tion P, = P onR¢, and that the following conditions are
satisfied. BothEp,.g[p(X, Y)|andEpyx p[p(X, Y)] are
finite and nonzero, the expectation

Ep[-log Q(B(X, D))] isfinite forall D > 0

and aé > 0 exists for which

PED)]

o8 5 (B(x, D)) =1

Ep [ sup
0<D<6
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Then, the reverse repeated limit also holds: with the convention that the infimum of the empty set equals
+o0. If a match is found, then the encoder describes to the de-

.. 1. P(B(X},D)) coder the position, using Elias’ code for the integers [32]. This

lim lim = log ———"—2%-=H(P w.p. 1. '

DLO nroo 1 O Q.(B(X!, D)) Pl P takes no more than

It is easy to check that all conditions of the theorem hold logs iy + 2log, log, ¢, + const.  bits (22)

when( is a Gaussian measure &hand P has finite variance
and a probability density functiogn (with respect to Lebesgue
measure) such th#p(sup|,_ v <s |logg(y)|) < oc for some

6 > 0. For example, this is the case when batrand (2 are Let/4,(X[") denote the overall description length of the algo-

Gaussian distributions dR. . . X . . :
As will be seen from the proof of the theorem, although Wréthmjust described. In view of (22), in order to understand its

are primarily interested in the case when the relative entropy r %:;Vr; Srsolf(zn g?rrlfori:nsi?f?fe';rlg:rs]afr:tr;?]zrfgznbde:]h:vs)sr%rpfht:t'C
H(P||Q) is finite, the result remains true whéfi(P||Q) = oo, n(X1),

If no match is found (something that asymptotically writht
happen, with probability one), then the encoder describgs
with distortion D or less using some other default scheme.

and in that case assumption (21) can be relaxed to quantity
E Q(B(X,D)) log, in, for largen.
p| sup log ————0| < oo
o<p<s  P(B(X,D)) Suppose that the probabilit,,(B(X}, D)) of finding a D-

. . ) close match forX}* in the codebook is nonzero. Then, condi-
Finally, we note that, in _the context of ergodic theo_rytional on the source string’’, the distribution ofi,, is geo-
Feldman [34] dgveloped a d|ﬁerept version of the generahz%tric with paramete®,.(B(XI*, D)). From this observation,
AEP, and also discussed the relationship between the two tyR§Seasy to deduce that the behaviof pfs closely related to the

of asymptotics (a8 — oo, and asD | 0). behavior of the quantity/Q,,(B(X7, D)). The next theorem
is an easy consequence of this fact so it is stated here without
Ill. APPLICATIONS OF THEGENERALIZED AEP proof; see the corresponding arguments in [54], [56].

As outlined in the Introduction, the generalized AEP can Theorem 9—Strong Approximatién Let X be an arbitrary
be applied to a number of problems in data compression api@cess and IefQ,, } be a given sequence of codebook distribu-
pattern matching. Following along the lines of the corrdions. If @,(B(XT, D)) > 0 eventually with probability one,
sponding applications in the lossless case, in the following Ween for anye > 0
present applications of the results of the previous section to: 1
Shannon’s random coding schemes; 2) mismatched codebookegz in < —logy Qn(B(XT', D)) + log,logy n + 3
in lossy data compression; 3) waiting times between stationary eventually, w.pl
processes (corresponding to idealized Lempel-Ziv coding); 4)q
practical lossy Lempel-Ziv coding for memoryless sources;, . ) n )
and 5) weighted codebooks in rate-distortion theory. logz in 2 —logz @n(B(XY, D)) — logy n

— (1+€)logy logy n eventually, w.pl.

A. Shannon’s Random Codes ) ) )
The above estimates can now be combined with the results

Shannon’s well-known construction of optimal codes fOg¢ e generalized AEP in the previous section to determine the
lossy data compression is based on the idea of generatingegc,mance of codes based on random codebooks with respect
rancjom codebolok. We review herg a slightly modified versiq the “optimal” measureg),,. To illustrate this approach, we
of his construction [75] and describe how the performance f \siger the special case of memoryless sources and finite re-
Fhe resulting random code can be analyzed using the genefﬂ)’duction alphabets, and show that the random code with re-
|zed_AEP. e N spect to (almost) any random codebook realization is asymp-

Given a sequence of probability distributio}s onA™, n > qtically optimal, with probability one. Note that corresponding
1, we generate gandom codebook according to the measurgg,gits can be proved, in exactly the same way, under much more
Qr as an infinite sequence of i.i.d. random vectors general assumptions. For example, utilizing Theorem 5 instead
of Theorem 1 we can prove the analog of Theorem 10 below for
arbitrary stationary-ergodic sources.

. . ) S a Let X be an i.i.d. source with marginal distributid =
with eachYy* (i) having distribution?,, on A™. Suppose that, p gn 4, and take the reproduction alphabéto be finite. It
for a fixed n, this codebook is available to both the encodgg 55sumed throughout this section thitis known to both
and decoder. Given a source string’ to be described with the encoder and the decoder (note that it is not necessarily as-
distortion D or less, the encoder looks foria-close match of gmed to be the optimal reproduction alphabet). For simplicity,
X7 into the codebooK Y7 (¢); ¢« > 1}. Let4, be the position
of the first such match 4The name “strong approximation” comes from the probabilistic terminology

where the adjective “strong” often refers to asymptotic results with probability

A one (such as the strong law of large numbers), as opposed to results about con-
in, = inf{i > 1: p, (X7, Y*(¥)) < D} vergence in probability or in distribution.

VG, iz
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we will assume that the distortion measyrés bounded, i.e., according to an asymptotically dense set of probability mea-
sup,, , p(z, y) < oo, and we also make the customary assumpgures. Specifically, given a fixed block lengthwe consider the

tion that collection of alln-types on4, namely, all distributions; of the
_ formQ(a) = j/n,0 < j < n,fora € A. Instead of generating
sup wmin p(z, y) = 0. (23)  asingle random codebook according to the optimal distribution
A Y

»» We generate a different codebook for each product measure
[See the remark at the end of Section V-A1 for a discussion @f* corresponding to an-type ¢ on A. Then we (as the en-
this condition and when it can be relaxed.] As usual, we defig@der) adopt a greedy coding strategy. We find the firstlose

the rate-distortion function of the memoryless soukcéy match for XT' in each of the codebooks, and pick the one in
which the match appears the earliest. To deschiligo the de-
R(D) = ()i(n}f/) I(X;Y) coder with distortionD or less we then describe two things:

a) the index of the codebook in which the earliest match was
where the infimum is over all jointly distributed random varifound, and b) the positiop, of this earliest match. Since there
ables( X, Y) with values in4 x A, such thatX has distribution are at most polynomially many-types (cf. [25], [24]), the rate

PandE[p(X,Y)] < D. Let of the description of a) is asymptotically negligible. Moreover,
since the set ofi-types is asymptotically dense among proba-
D2 in Ep[p(X, )] (24) bility measures omi, we eventually do as well as if we were
yEA ; using the optimum codebook distributicyy,.

and note thatR(D) = 0 for D > D. To avoid the trivial _ Theorem 1l—Pointwise = Universal Coding Theorem
case wherR(D) = 0 for all D, we assume thaD > 0 and [4]: Let X be an arbitrary i.i.d. source with distributiaf
we restrict our attention to the interesting range of valles  ONn <, let (D) be the rate-distortion function of this source
(0, D). Recall [90], [54] that for any suclk, R(D) can alter- at distortion levelD € (0, D), and let R(D) denote its

natively be written as rate-distortion function in bits. The codes based on almost any
realization of the universal Shannon random codebooks have
R(D) = igf Ry(P, Q, D) code lengthg,, (X7") satisfying
.1 " .
where the infimum is over all probability distributioggon A. Jim £(XT) = R(D) bits per symbol, w.pl.

Since we taked to be finite, this infimum is always achieved

(see [54]) by a probability distributioy = Q*, althoughQ* )

may not be unique. To avoid cumbersome notation in the stafe- Mismatched Codebooks

ments of the coding theorems given next and also in later partdn the preceding subsection we described how, for memory-
of the paper, we also writB(D) for the rate-distortion function less sources, the Shannon random codebooks with respect to

of the sourceX expressed imits rather than in nats the optimal reproduction distributions can be used to achieve
R asymptotically optimal compression performance. In this sub-
R(D) = (log, e)R(D). section, we briefly consider the question of determining the rate

achieved when an arbitrary (stationary-ergodic) sol¥de en-
Finally, we write@;, for the product measurég®)*)" and, al- coded using a random codebook according to the i.i.d. distribu-
though as mentione@* may not be unique, with a slight abus&ions Q™ for an arbitrary distributior) on A. For further dis-
of terminology we cal{@;, } theoptimal reproduction distribu- cussion of the problem of mismatched codebooks see [72], [73],
tions at distortion leveD. [58], [43], [44], and the references therein. Also see [94] for an

Combining Theorem 9 with the generalized AEP of Theoreapplication of the generalized AEP to a different version of the
1 implies the following strengthened direct coding theorem. mismatched-codebooks problem.

Theorem 10—Pointwise Coding Theorem for i.i.d SourcesThe following theorem is an immediate consequence of com-
[54]: Let X be an i.i.d. source with distributio? on A and Dining Theorem 1 with Theorem 9 and the discussion in Sec-

let Q* denote the optimal reproduction distributions at distof" !!l-A (See also Example 1 in Section I1-B).

tion level D € (0, D). Then the codes based on almost any Theorem 12—Mismatched Coding Rateet X be a sta-
realization of the Shannon random codebooks according to Highary-ergodic process with marginal distributi&h = P on

measureg @y, } have code lengthé, (XT') satisfying A, letQ be an arbitrary distribution oA, and defineD,y;, and
1 D,, as in Section II-B.
lim —¢,(X7") =R(D) bits per symbol, w.pl. a) Arbitrary i.i.d. CodebooksFor any distortion leveD €
n—oo 1,

(Dumin, Day), the codes based on almost any realization
of the Shannon random codebooks according to the mea-

A simple modification of the above scheme can be used to sures{Q} have code length&, (XT') satisfying

obtainuniversalcodebooks that achieve optimal compression
for any memoryless source. When the source distribution is not .1 n
known so that we have no way of knowiagpriori the optimal A= £, (A7) = (logy ) Fa (P, Q. D)

reproduction distributiorf)*, we generatenultiple codebooks bits per symbol, w.pl.
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b) i.i.d. Gaussian CodebookSuppose(z, v) = (x — »)? compress, among sources with afixed variance. In fact, the above
andX is a real-valued process with finite variange = result is a natural fixed-distortion analog of [58, Theorem 3].

SN
Var(X,). Let( be theN(0, 7<) distribution onik. Then Example 3—Gaussian Codebook With Mismatched Vari-

H i 2 2
forany distortion Ie_veD € (0, o477, the codes based ance: Here we consider a differenttype of mismatch. As before,
on almost any realization of the Gaussian codebooks ac-

. " »  We are prepared to encode an i.i.d. Gaussian source, but we have
gg[i(ilfr;?ntg the measurds." } have code lengtht, (') an incorrect estimate of its variance, s&yinstead of the true

variances2. So we are using a random codebook with respect
i lg (X7 = 1 log (3) to the optimal reproduction distributio®: = (Q*)", where
nooo VL 2 %2\ p Q* is the N(0, 6% — D) distribution, but the actual source is
(v —D)(v —o?) i.i.d. N(0, 02). In this case, the rate achieved by the random
)T codebooks according to the distributiofs; is given by the
expression in Theorem 12 b), withf replaced bys? — D. Al-
though the resulting expression is somewhat long and not easy to
alr, 1 2 manipulate analytically, it is straightforward to evaluate numer-
——|:T+ T+4DO:|. . ; . .
2 ically. For example, Fig. 1 shows the asymptotic rate achieved,
as a function of the errar = 2 — 42 in the estimate of the
Lossless Versus Lossy MismatcRecall that, in the case of true variance. As expected, the best rate is achieved when the
lossless data compression, if instead of the true source distribgdebook distribution is matched to the source (corresponding
tion P a different coding distribution) is used, then the code-to ¢ = 0), and it is equal to the rate- distortion function of the
rate achieved is source. Moreover, as one might expect, it is more harmful to
H(P) + H(P|Q). (25) underestimate the variance than to overestimate it.

Similarly, in the current setting of lossy data compression, & Waiting Times and Idealized Lempel-Ziv Coding

instead of the optimal reproduction distributi@pi* we use GivenD > 0 and two independent realizations from the sta-
a different codebook distributio), the rate we achieve is tionary-ergodic processe¥ andY’, our main quantity of in-
R.(P, Q, D). Anupper bound foR, (P, @, D) is obtained by terest here is thevaiting timeW,, = W,,(D) until a D-close
taking (X, Y) in the expression of Remark 1 to be the jointlwersion of the initial stringX}* first appears ir;™°. Formally
distributed random variables that achieve the infimum in the )

definition of the rate-distortion function aP. Then the (mis- W, =inf{i > 1: p, (X7, Y;*"71) < D} (27)
matched) rate of the random code based)instead of()* is

—(logy e bits per symbol, w.pl

where

v

with the convention, as before, that the infimum of the empty
R(P, Q, D)< R(D)+ H(Q"||Q). (26) set equalst-co.
The motivation for studying the asymptotic behaviorl#f,
Equations (25) and (26) illustrate the analogy between th& |argen is twofold.
penalty terms in the lossless and lossy case due to mismatch. |dealized Lempel-Ziv CodingThe natural extension of the
Next we discuss two special cases of part b) of the theorggigalized scenario described in the Introduction is to consider a
that are of particular interest. messageX 7 that is to be encoded with the help of a database

Example 2—Gaussian Codebook With Mismatched Distribtit - The source and the database are assumed to be indepen-
tion: Consider the following coding scenario. We want to erff€nt, and the database distribution may or may not be the same

code data generated by an i.i.d. Gaussian processWitho2) as that of the source. In order to communicatp to the de-
distribution, with squared-error distortidnor less. In this case, €0der with distortionD or less, the encoder simply describes
it is well known [9], [24] that for anyD € (0, &%) the optimal "V»» USing no more than

reproduction distributior* is the N (0, o2 — D) distribution, ) L :

so we construct random codebooks according to the i.i.d. distri- logy Wn + O(log, log, W) - bits.

butions@;, = (Q")". Therefore, the asymptotic performance of this idealized scheme

But suppose that, inst(_aad of an ii.d. GauSSia”_, the sougcg, e completely understood in terms of the asymptotic of
turns out to be some arbitrary stationary-ergoMiavith zero log W,,, for largen.
mean and variance”. Theorem 12 b) implies that the asymp- "pa pattern Matching: Here we imagine thaX ' represents
totic rate achieved by our i.i.d. Gaussian codebook is equal tg pnA or protein “template,” and we want to see whether it ap-

1 | < 2 ) pears, either exactly or approximately, as a contiguous substring
2

D bits per symbol. of a database DNA sequentg°. We are interested in quanti-

fying the “degree of surprise” in the fact that’aclose match
Since this is exactly the rate-distortion function of the i.i.dwvas found at positiodV,,. Specifically, was the match found
N(0, 0?) source, we conclude that the rate achieved is tHatypically” early, or is the value of¥,, consistent with the hy-
same as what we would have obtained on the Gaussian soyrathesis that the template and the database are independent? For
we originally expected. This offers yet another justification od detailed discussion, see, e.qg., [29, Sec. 3.2], [45], [3], [2], [4],
the folk theorem that the Gaussian source is the hardest onana the references therein.
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Fig. 1. This graph shows the rate achieved by an i.i.d. Gaussian codebook of vafiané&when applied to i.i.dN (0. ¢2) data. The rate is shown as a function
of the errore = ¢2 — 42 in the variance estimate. In this particular exampfé,= 2, D = 1, the errore ranges from-1/2 to 1/2, and the rate-distortion

function of the source equals 0.5 bit/symbol.

If for a moment we consider the case when bAtrandY
are i.i.d., we see that the waiting tinfig, is, at least intuitively,
closely related to the index of Section IlI-A. As the following
result shows, although the distributionidf, is not exactly geo-

metric, I¥,, behaves very much likg,, at least in the exponent.

That is, the difference

is “small,” eventually with probability one.
Recall the definition ofy-mixing from Section 1I-C, and also
the definition of thep-mixing coefficients ofY’

P(k) = sup{|Q(B|4) — Q(B)]:
Bea(Y), Aca(Y', ), Q(A) >0}

where, as beforer(Y7) denotes ther-field generated by’; .
The proces¥ is calledg-mixingif ¢(k) — 0 ask — oo; see
[12] for an extensive discussion ¢fmixing and related mixing
conditions.

Theorem 13—Strong Approximation [51], [27]-et X and
Y be stationary-ergodic processes, and assumé&thateither
1-mixing or ¢-mixing with summablep-mixing coefficients,
Yot k) < oo If Qu(B(XT, D)) > 0 eventually with
probability one, then for any > 0

—(1+¢)logn < log[W,Qn(B(XT', D))]
<(2+¢)logn eventually, w.pl.
Theorem 13, of course, implies that

logW,, = —log Q.(B(X7, D)) +O(logn) w.p.1 (28)

and combining this with the generalized AEP statements of
Theorems 1 and 4 we immediately obtain the first-order (or
strong-law-of-large-numbers, SLLN) asymptotic behavior of
the waiting timed#¥,,:

Theorem 14—SLLN for Waiting Timetet X andY be sta-
tionary-ergodic processes.
a) IfY isi.i.d. and the average distortidn,, is finite, then
for anyD € (Dmirn Dav)

L os W, = Ri(PL, Q1. D) wp.1. (29)
n

b) If Y is ¢y=-mixing and the distortion measuyeis es-
sentially bounded, i.eD,,.x < oo, then for anyD €
(Dmirn Dav)

L iosW, — R(P, @, D) wp.1. (30)
n

Note that similar results can be obtained under different as-
sumptions on the proced$, using Theorems 3 and 5 in place
of Theorems 1 and 4 as done above. WERers taken to be an
arbitrary stationary-ergodic process, it is natural to expect that
the mixing conditions fo¥” in Theorem 14 b) cannot be sub-
stantially relaxed. In fact, even in the case of exact matching
between finite-alphabet processes, Shields [76] has produced a
counterexample demonstrating that the analog of Theorem 13
does not hold for arbitrary stationary-ergodic

Historical Remarks: Waiting times in the context of lossy
data compression were studied by Steinberg and Gutman [77]
and tuczak and Szpankowski [60]. Yang and Kieffer [88] identi-
fied the limiting rate-function for a wide range of finite alphabet
sources, and Dembo and Kontoyiannis [27] and Chi [20] gener-
alized these results to processes with general alphabets.



1602 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

The strong approximation idea was introduced in [51] innce the behavior of the waiting times is understood, the first
the case of exact matching. For proceskewith summable implicationin (33)immediately yields asymptotawver bounds
¢-mixing coefficients, Theorem 13 was proved in [27], andn the behavior of the match lengths. This is significant for
whenY is-mixing it was proved, for the case of no distortiongdata compression since long match lengths usually mean good
in [51]. Examining the latter proof, Chi [20] observed that itompression performance. Indeed, this observation allowed
immediately generalizes to the statement of Theorem 13.  Kontoyiannis [53] to introduce a new lossy version of the

Related results were obtained by Kanaya and Muramatsempel-Ziv algorithm that achieves asymptotically optimal
[42], who extended some of the results of [77] to processesmpression performance for memoryless sources. The key
with general alphabets, and by Koga and Arimoto [49] whoharacteristics of the algorithm are that it has polynomial
considerednonoverlappingwaiting times between finite-al- implementation complexity, while at the same time it achieves
phabet processes and Gaussian processes. Finally, Shieddsindancy comparable to that of its lossless counterpart, the
[76] and Marton and Shields [61] considered waiting timeSDLZ [85]. Note that the main issue of practical interest here
with respect to Hamming distortion and f& andY having is not simply the encoding complexity, but rather the tradeoff
the same distribution over a finite alphabet. For the case loftween complexity and redundancy. For example, the encoding
small distortion they showed, under some conditions, thedmplexity can be made arbitrarily small by using a very slowly
approximate matching results like (29) and (30) reduce to thgirowing (yet asymptotically dense) set of database distributions,

natural exact matching analogs 2s— 0. but in that case, the redundancy rate of the algorithm would also
_ _ _ be extremely slow.
D. Match Lengths and Practical Lempel-Ziv Coding In terms of practical algorithms, the utility of pattern-

In the idealized coding scenario of the preceding subsectidRatching-base methods has been extensively studied; see
we considered the case where a fixed-length mes&gyis to  [5]; [1], and the references therein. A different approach to
be compressed using an infinitely long datab&ge. But, in  UsSIiNg pattern matching for adaptive lossy compression was
practice, the reverse situation is much more common. We typtroduced in [95], [96]. _
ically have a “long” messageX;, X, - - -) to be compressed, We also mentloq that, before [53], seyeral p(act|cal (ye_t sub-
and only a finite-length databasg™ is available to the encoder OPtimal) lossy versions of the Lempel-Ziv algorithm were intro-
and decoder. It is therefore natural (following the correspondifiiced, perhaps most notably by Steinberg and Gutman [77] and
development in the case of lossless compression) to try dd¢fzakand Szpankowski[60]. Roughly speaking, the reason for
match “as much as possible” from the messalje, X,, ---) their suboptimal compression performance was that the coding
into the databas#;™. With this in mind we define thenatch- Was done with respect to a database that had the same distri-

lengthL,, as the lengtf of the longest prefix({ that matches bution as the source. In view of the discussion in the previous

somewhere in the database with distortioror less section, it is clear that the asymptotic code-rate of these algo-
' rithms is Ry (P, P, D), which is typically significantly larger
Ly, = sup{l > L: p(X{, Y77 < D, than the optimaRR(D) = info Ri(P, Q, D); see [88] or [53]
forsomej=1,2 ..., m}. (31) for more detailed discussions.

Intuitively, there is a connection between match lengths aiid Sphere-Covering and Weighted Codebooks
waiting times. Long matches should mean short waiting times'FinaIIy, we briefly describe a related question that was re-

andvice versan the case of exact matching, this connectiopgqy, considered in [55]. In the classical rate-distortion prob-
was precisely _forrnallzer Py Wyner and Ziv [84], whq observelgm’ one is interested in finding “efficient” codebooks for de-
that the following “duality” relationship always holds: scribing the outputX} of some random sourc¥ — {X,}
W, <me L, > n. (32) to Wltr_un some tolerab_le dlstqrtlon Ieve!. In terms of dqta com-
pression, a codebook is efficient when it contains relatively few
This is almost identical to the standard relationship in renewaddewords. Here, we are interested in the more general problem
theory between the number of events by a certain time and tfefinding codebooks with small “mass.” Lét: A — (0, o)
time of thenth event (see, e.g., [35]). Wyner and Ziv [84] utibe an arbitrary nonnegative function assigning magyC,,)
lized (32) to translate their first-order asymptotic results abotd subsets”,, of A™
W,, to corresponding results aballf,, . "
Unfortunately, this simple relationship no longer holds in the n a niny 2 ‘
case ofapproximatematching, when a distortion measure is in- M™(Cn) = Z M (i) = Z H M(gs)-
troduced. Instead, the following modified duality was observed
in [60] and employed in [27] to obtain corresponding results ikhe question of interest can be stated as follows. Cgtbe
approximate matching and lossy data compression: a subsetA™ (we think of C,, as the codebook) that nearly
D-covers all ofA™, i.e., with high probability, every string({*
Wo<m= Ly 2nand L, >2n= £1>1£ Wi, <m. (33) generated by the source will match at least one eleme6,of

o with distortion D or less
In[27], itis shown that (33) can be used to deduce the asymptotic

behavior of L,, from that of W,,, but this translation is not Pr{thereis an € C,, suchthap, (X7, 47') < D} =~ 1.
straightforward anymore. In fact, as we discuss in Section V-B, (34)
a more delicate analysis is needed in this case. Neverthelds§34) holds, how small can the mass@f, be?

yrec, Yl eC, i=1
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This question is motivated, in part, by the fact that a number of In this and the following sections, we will carry out a
important statistical problems can be restated in this framewoskmilar program in the lossy case. The main idea will be to
For example, takingl{ identically equal to one, this problemshow that, in analogy with the lossless case, the quantities
reduces to the rate-distortion question. Takigto be a dif- —log Q™(B(X7, D)) are asymptotically close to the partial
ferent probability measur@, it reduces to the classical hypoth-sums of a function of th&(;, i.e.,
esis testing question, whereds = P (the source distribution) "
yields “converses” to some measure-concentration inequalities,l log Q"(B(X", D)) ~ Ry (P, Q, D) + 1

A precise answer to this question is offered in [55], where " n =
a smgle—lgtter charactgrlzatlon is given for the best achlevalgge Corollary 17 for the precise statement.
exponential rate at which/™(C,,) can grow, among all code-

booksC,, satisfying (34). With different choices fdv/ and the Throughout this sgctlon, we will adopt the notation z_;md
. ) . . . _ assumptions of Section II-B. LeX be a stationary-ergodic
distortion measure od, this result gives various corollaries

. ) . . . ) rocess with first-order marginéh = P on A, and let( be an
as special cases, including the classical rate-distortion theorg gindh @

X ; 7 . Atbitrary probability measure aA. Define Dy and D , as
Stein’s lemma in hypothesis testing, and a new converseto s yp y i &
measure-concentration inequalities on discrete spaces.

D&fore (asin (7) and (8)), and assume that,, < D,, so that
Once again, the main ingredient in the proof of the corr

ér_le distortion measurg X, Y') is not essentially constant ¥
sponding direct coding theorem in [55] is provided by yet ar¥\-"th pos!tlve probab|l|ty_. We a_lso impose here the additional
) . assumption thagt has a finite third moment
other version of the generalized AEP.

a(Xi).

A
D3 = Epxqlp®(X, Y)] < 0. (36)
IV. REFINEMENTS OF THEGENERALIZED AEP
. . . The first result of this section refines Theorem 1 by giving a
As we saw in Sgcﬂon lll, the gener.ahzed AI.EP can be us‘?‘rqore precise asymptotic estimate of the quantity
to determine the first-order asymptotic behavior of a number
of interesting objects arising in applications. For example, the —log Q"(B(X}, D))

generalized AEP of Theorem 1 ) _ .
in terms of the rate-functio®; (P, (), D) and the empirical

1 log Q"(B(XT, D)) — Ry(P, Q, D) w.p.1 measuref, induced byX{* on A"
n
immediately translated (via the strong approximation of The- b, 2 1 Z Ox,
orem 13) to an SLLN result for the waiting times [

1 whered, denotes the measure assigning unit mass4oA.
—logW,, — Ri(P, Q, D) w.p.1l.
n Theorem 15 [90]: Let X be a stationary-ergodic process
In this section, we will prove refinements to the generalizegith marginal 7 on A, and let@ be an arbitrary probability
AEP of Section II-B, and in Section V we will revisit the ap-measure oM. Assume thatDz = Ep.q[p*(X, Y)] is finite.
plications of the previous section and use these refinementsTteen, for anyD € (Dpin, Day)
prove corresponding second-order asymptotic results. " " A
To get some motivation, let us consider for a moment thTalOgQ (B(XY, D)) = nky(Fn, @, D)
simplest version of the classical AEP, for ani.i.d. proc¥ssith +1 logn +O(1) w.p.1. (37)
distribution P on the finite alphabeti. The AEP here follows 2

by a simple application of the law of large numbers Next we show that the most significant term in (37) can be

approximated by the partial sum of a weakly dependent random

1 n
— log P*(X7) = [-log P(X;)] = H  (35) process. Recall the definition of themixing coefficients ofX
=1

SN

K2

a(k) = sup{|P(ANB) — P(A)P(B)|:

whereH is the entropy ofP. But (35) contains more informa-
by (35) Aca(X ), Beo(XF)

tion than that: it says that log P*(X}) is, in fact, equal to
the partial sums,, = "I | Z; of the i.i.d. random variables whereo(X7) is the o-field generated byX?. The processt

Z;i = —log P(X;). Therefore, we can apply the central limitig ¢5|jeqq-mixingif a(k) — 0 ask — oo; see [12] for more
theorem (CLT) or the law of the iterated logarithm (LIL) to ge}yet4ils.

more precise information on the convergence of the AEP. We also need to recall some of the notation from the proof of
The same strategy can be carried out for non-i.i.d. prenaorem 1 in Section 11-B. Far € Aand) € R, let A,(N)

cesses. Initially, Ibragimov [40] and then Philipp and Stoygnqte the log-moment generating function of the random vari-
[71] showed that even wheX is a Markov chain, or, more ablep(z, Y)

generally, a weakly dependent random process, the quantities

—log P*(X7}) can be approximated by the partial sums of Az(N) a log Eq (CAp(m,V))

an associated weakly dependent process. These results have

found a number of applications in lossless data compress@amd note that the function\(\) defined in (10) can be
and related areas [51], [50]. written asA(A) = Ep[Ax()\)]. Also, recall that for any
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D € (Dpin, Day) there exists a uniqua* < 0 such that and by Fatou's lemma and the continuity of the mtap—
AN(3*) = D. AZ(X* + 0) it follows that

Theorem 16 [27]: Let X be a stationaryx-mixing process ] v "o .
with marginalP on A, and let be an arbitrary probability mea- hlﬁ})nf Ep L;&f& Ax (A +9)} > Ep[Ax(A")]=A"(A")>0.
sure onA. Assume that ther-mixing coefficients ofX satisfy

o This implies that (40) holds onee> 0 is made small enough.
Z al (k) < oo, for somet € (0, 1/3) (38) (Notethatthe above argumentalso avoids anincorrect—butalso

unnecessary—application of the uniform ergodic theorem in the

k=1
and that derivation of [27, eq. (26)].)
Turning to (41), since* < 0, it follows by the convexity of
D3 = Epyolp®(X, Y)] A, (X that foranyz € A

is finite. Then for anyD € (Duyin, Day) 0 < AL(X) < AL(0) = Eglp(z, V).

nRy(P,, Q, D) Consequently, Hoélder’s inequality and assumption (36) imply
" that the random variable

=nRi (P, Q, D)+ Z g(X;) + O(log logn) w.p.1

=t |G| £ EQlo(Xk, Y)|Xi] + D

where

has a finite third moment. Recall [64] that the LIL holds for the
g(x) 2 AN) — Az(A), xz € A. (39) partial sum4,, of a zero-mean, stationary procegg } with a
finite third moment, as soon as themixing coefficients of ¢;. }
Theorem 16 is a small generalization of [27, Theorem 3]. BEliSTy (38). The observation that is a deterministic function
fore giving its proof outline, we combine Theorems 15 and 1@ X for all k completes the proof. -
to show that, as promised; log Q" (B(X}, D)) can be accu-
rately approximated as the partial sum of the weakly dependent V. APPLICATIONS SECOND-ORDER RESULTS
random proces$g(X.,)}. Here we revisit the applications considered in Section Ill, and
Corollary 17—Second-Order Generalized AEPet X be using the “second-order generalized AEP” of Corollary 17 we
a stationarya-mixing process with marginaP on 4, and let Prove second—orde_r refinements for_ many of the results from
Q be an arbitrary probability measure oh Assume that the Section lll. In Section V-A, we consider the problem of lossy

a-mixing coefficients ofX satisfy (38) and that data compression in the same set_ting asin Seption II-A. er use
s the second-order AEP to determine the precise asymptotic be-
D3 = Epxqlp*(X, Y)] havior of the Shannon random codebooks, and show that, with

is finite. Then for anyD € (Duin, Day), and withg(z) defined probability one, they achieve optimal compression performance
as in (?;9) Ry e up to terms of ordeflog ») bits. Moreover, essentially the same

compression performance can be achieved universally. For ar-
—log Q" (B(XT, D)) =nR(P, Q, D) bitrary variable-length codes operating at a fixed rate level, we
n 1 show that the rate at which they can achieve the optimal rate
+> 9(Xi) + 5 logn+O(loglogn) W.p.1. of nR(D) bits is at best of ordeD(,/n) bits. This is the best
=1 possible redundancy rate as long as the “minimal coding vari-
Proof Outline for Theorem 16Adapting the argument ance” ofthe_sogrce_ is s_trictly positive. Fordi_scretei.i.d. sources,
leading from [27, egs. (22)—(24)], one easily checks that trelxecharactt_arlzatlon is given of whe.n. th|s.var|ance can be zero.
result of Theorem 16 holds as soon as In Section VB we look at waiting times, .and we prove a
second-order refinement to Theorem 14, and in Section V-C, we
liminf inf B,(f) >0 w.p.1 (40) consider the problem of determining the asymptotic behavior
noee [6)<s of longest match lengths. As discussed briefly in Section I11-D,
z2 their asymptotic can be deduced from the corresponding
lim sup N <oo w.p.l (41) Wwaiting-times results via duality.
n—oo loglogn
whered,, = n~! 37_, ¢, isthe empirical mean of the centered®. Lossy Data Compression
random variablegs = A’y (\*) — D, andB,,(#) is the empir- 1) Random Codes and Second-Order Converdésre we
ical mean of the nonnegative random variabls (A" + ¢). consider the exact same setup as in Section IlI-A. An i.i.d.
By the ergodic theorem we have, with probability one sourceX with distribution P on A is to be compressed with
T distortion D or less with respect to a bounded distortion mea-
liminf inf B,(8) > liminf — Z inf A% (A" +6) sure p, satisfying, as before, the usual assumption (23)—see
nee lel<s noee mog D lelse the remark at the end of this section for its implications. We
take the reproduction alphabét to be finite, defineD as in
(24), and assume th@t > 0.

and

_ : 1"oyk
=FEp |:|éf1<f§ AL (N + 9)}
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ForD € (0, D), letQ;,n > 1, denote the optimal reproduc- Theorems 18 and 19 are next combined to yield “second-
tion distributions at distortion levdb. Combining the strong ap- order” refinements to Shannon’s classical source-coding the-
proximation Theorem 9 with the second-order generalized ABEPem. For a sourcX as in Theorem 19 and B € (0, D),
of Corollary 17 and the discussion in Section IlI-A yields théhe minimal coding variancer® = o%(P, D) of sourceP at
following. distortion levelD is

Theorem 18—Pointwise Redundancy for i.i.d. Sources [54]: o = (,—Q(P7 D) 2 Var[h(X})] (42)
SupposeX is an i.i.d. source with distributioR on 4, and with .
rate-distortion functiorR(D) (in bits). LetQ’ denote the op- With 2(x) as in Theorem 18.

timal reproduction distributions at distortion lewBl € (0, D), Theorem 20—Second-Order Source-Coding Theorems [54]:
and define the functiof(z) = (log, ¢)g(x), # € A, Withg | et X be an i.i.d. source with distributiof? on A and with
defined as in (39). Then we get the following. rate-distortion functioR(D) (in bits). ForD € (0, D)

a) The codes based on almost any realization of the Shannon (CLT) There is a sequence of random variablgs =
random codebooks acc.ord?ng to the meas{€gs} have G, (P, D) such that, for any sequence of code,, £, }
code lengthd,, (X7") satisfying operating at distortion leveD, we have

£a(X7) < nR(D) + > h(X;) +4logn bits, £n(X]) = nR(D) 2 V/nG,, bits,
i=1 eventually, w.pl (43)

eventually, w.p1.
and the(,, converge in distribution to a Gaussian random

b) The codes based on almost any realization of the universal variable
Shannon random codebooks have code-length& ) > )
satisfying G, — N(0, 07)

X 2 o . - . .
(X < ”R(D)+Z h(X:) + (44 |A]) log n, bits whereo”® = ¢°(P, D) is the minimal coding variance.

(LIL) With 2 as above, for any sequence of codes

=1

eventually, w.p1. {Cy, £, } operating at distortion leveD
Wi k that th fficients of tiilpg n) t ina) and limsup XL = nRD) w.p. 1
e remark that the coefficients of tiilng n) terms in a) an msup — >0 W.p.

b) are not the best possible, and can be significantly improved,; e ¢ ”;Z log 107%”1)
see [56] for more details. liminf (&) — nR(D) >—o w.p.1.

Perhaps somewhat surprisingly, it turns out that the perfor- n—oo y/2nloglogn
mance of the above random codes is optimal up to terms of order (=) Moreover, there exist codd¥’,,, 4,,} operating at
(log ) bits. Recall that @odeC, operating at distortion level distortion level D, that asymptotically achieve equality
D = 0Ois defined by a triple{B,., ¢», 1) where universallyin all these lower bounds.

a) B, is a subset ofi", called thecodebook Remark on Assumption (23)Vhen the distortion measure

b) ¢,.: A" — B, is theencoder does not satisfy assumption (23) [as, for example, when

p(z,y) = (z —y)2 with A = R and A a finite subset of],
we can modifyp to

Pz, y) = plx, y) — fz)

with f(z) = min .5 p(z, y), so thaty’ satisfies (23). Then,
to generate codes operating at distortion lelelith respect
£,(x7) = length of [1),, (¢, (27]))] bits. to p, we can construct random codebooks for as before but do
Theorem 19—~Pointwise Converse for i.i.d. Sources [54t the enCO(ﬂng with respect W(x.’ y) at therandomdistortion
Xb i th distributioR on A. and let!C level D,, = D — Ej, (f(X)). Itis not hard to check that [27,

€ an 1.1.d. source with distribution on A4, and e { _"} Theorem 2] can be extended to apply wheis replaced by the
be an arbitrary sequence of codes operating at distortion Iegg uencé D, }. SinceD,, — D — Ep(f(X)) asn — oo, this
D € (0, D), with associated code lengthé, }. Then results with the first-order approximation

¢) ¥n: B, — {0, 1}* is a uniquely decodable map;
such that
on(xl, dn(2l)) < D, forall =7 € A™.

The code lengthé,(X7") achieved by such a code are simply

0. (XT) = nR(D) + Zh(Xi) — logn bits, _1 log Q% (B(XT, Dy)) ~ Rf,(ﬁ)m 0", D,).
i=1 n

eventually, w.pl  Simple algebra then shows that

whereh(z) is defined as in Theorem 18. Rp’(p O*, D,) = R{(P,, Q*, D)

The proof of Theorem 19 in [54] uses techniques quite dif- LAy e Lo e
ferent to those developed in this paper. In particular, the key steplying that all the results of Section V-Al remain valid [de-
in the proof is established by an application of the generalizegite the fact that does not satisfy (23)], with the functidr(-)
Kuhn—Tucker conditions of Bell and Cover [8]. taken in terms of the log-moment generating functiop(X)
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of the original distortion measurg (and not that of the modi-  For discrete sources, the next result gives conditions under

fied p'). which the characterization suggested by these two examples re-
2) Critical Behavior: In view of Theorems 18 and 19 abovemains valid. Supposé = A = {a1, ag, ..., ai }isafinite set,
the code lengthg),(X7*) of the best code operating at distortiorwrite p;; for p(a;, a;), and assume thatis symmetric and that
level D have pi; = 0ifand only if i = j. We call p a permutation distortion
n measureif all rows of the matrix(p;;); j=1, .. & are permuta-
(X)) = nR(D) + Z R(X;) +O(logn) bits. tions of one another.
=1

Theorem 21—Variance Characterization [28l.et X be a
This reveals an interesting dichotomy in the behavior of thiliscrete source with distributioft and rate-distortion function
“pointwise” redundancy of the best code: R(D). Assume thaf( D) is strictly convex ovef0, D). There
are exactly two possibilities:

L] I ini i I 2 i
either the minimal coding variance* (recall (42)) is a) eithero? = o2(P, D) is only zero for finitely manyD

nonzero, in which case the best rate at which optimality

can be achieved is of ordefr bits by the CLT; 0, D); _ )
_ b) ore? = o2(P, D) = 0forall D € (0, D), in which case
» oro” = 0, and the best redundancy rate is of ordeg n) P is the uniform distribution oot andp is a permutation
bits (cf. [97]). distortion measure.

Under certain conditions, in this section we give a precise A general discussion of this problem, including the case of
characterization of when each of these two cases can oc@@ntinuous sources, is given in [28]. Also, in the lossless case,
Before stating it, we briefly discuss two examples to gain sonige problem of characterizing wher? = 0 for sources with
intuition. memory is dealt with in [50].

Example 4—Lossless Compressidrossless data compres-  Before moving on to waiting times and match lengths we
sion can be considered as an extreme case of lossy compggéntion that, in a somewhat similar vain, the problem of under-
Slon whereX is an i.i.d. source with distributio®’ on a finite Stand|ng the begxpected’edundancy rate in |Ossy data com-

setA = A, and the distortion leveD is set to zero. Here it pression has also been recently considered in [97], [92], [89],
is well known that (ignoring the integer length constraints) thaz).

best code is given by the idealized Shannon cOde(y) =
—log, P*(X7). In agreement with the upper and lower boundB. Waiting Times
of Theorems 19 and 20, here it is trivial to see that the codey oyt we turn to waiting times. Recall that, givéh > 0 and

lengths of the Shannon code in fact satisfy two independent realizations of the stationary ergodic processes

n X andY, the waiting timelV,, was defined as the time of the
£, (XT) =nH(P) + Z MX;) first appearance ak7* in Y with distortionD or less (see (27)
i=1 for the precise definition). In Theorem 14, we gave conditions

that identified the first-order limiting behavior &¥,,. In partic-

ular, whenY is i.i.d., it was shown in Theorem 14 a) that, for

h(z) 2 —log, P(z) — H(P), =€ A. D € (Dwin, Dav)

log W,
n

whereH(P) is the entropy of” in bits, and with

When iso? = 0? By its definition (42) 2 is zero if and only if — Ri(P,Q, D) wp.1 (44)
the functionk(z) is constant ovet, which, in this case, can only ) )
happen ifP(z) is constant over € A. Therefore, here? = 0 where P and @ are the first-order marginals & andY’, re-

if and only if the source has a uniform distribution owér spectively.
, , ) i . The next result gives conditions under which the SLLN-type
Example 5S—Binary Source With Hamming DistortioBon-  statement of (44) can be refined to a CLT and a LIL.
sider the simplest nontrivial lossy example. L¥tbe an i.i.d.

source with Bernoulp) distribution (for somey € (0, 1/2]), ~ Theorem 22—CLT and LIL for Waiting Timeet X be a
let A = A = {0, 1}, and takep to be Hamming distortion: stationarya-mixing process and” be an i.i.d. process, with
p(z, ) = |z —y|. ForD € (0, p), itis not hard to evaluate all marginal distributions” and, on A and A, respectively. As-
the relevant quantities epr|C|tIy (see, e.g., [9, Example 2.7.1] §#me that thex-mixing coefficients ofX satisfy (38) and that
[24, Theorem 13.3.1]). In particular, the optimal reproductiofs = Erxq[p*(X, Y)]is finite. Then for anyD € (Diin, Dav)
distribution@* is Bernoullig), with ¢ = (p — D)/(1 — 2D), the following series converges:

and our function of interest is R

) = 1oz, (15 )~ £ [ 1om (T2 )] o' S Erly’ (X0l + 25:2 Erlg(X0)g(X)]  (45)

Recalling that th | codi it and IW|th g(z) defined as in (39), and, moreover
ecalling that the minimal coding variance is zero if and only (CLT) With R, = R.(P, Q, D)

if h(x) is constant, from the above expression we see that, sim-
ilarly to the previous example, also heré = 0 if and only if logW,, —nRky p N(0. o2
the source has a uniform distribution N — N0, o%).
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(LIL') The set of limit points of the sequence whereR; = Ry(P, @, D). If, moreover, thex-mixing coeffi-
cients ofX satisfy (38) and the variane in (45) is nonzero,
{M} n>3 then, withr2 2 ¢2R; 3, we have
Vanloglogn [© 77 T TR
logm
coincides with—a, o], with probability one. (CLT) L — "5 D, N(0, 72)
Proof Outline: For a bounded distortion measyreThe- Viegm ’
orem 22 was proved in [27]. To obtain the more general state- L,, — lam
ment of the theorem, combine the strong approximation of ThéLIL) limsup ToTos S =7 wp.l.
. ) m—00 ogm logloglogm
orem 13 with the second-order AEP in Corollary 17 to get
n The results of Theorem 23 were proved in [27] for any
logW, =nR (P, Q, D) + Z 9(X;) 4+ O(logn) w.p.1. bounded distortion measurg. The slightly more general
i=1 version stated above is proved in exactly the same way, using

(46) . .
Since X satisfies the mixing assumption (38), so does tr;cge results of Section IV in place of Theorems 2 and 3 of [27].

process{g(X,,)}. Also, sinceA* < 0, the functionA,(A*)

is bounded above by zero, and by Jensen’s inequality it is VI. RANDOM FIELDS: FIRST-ORDER RESULTS

bounded below by* Eq[p(x, Y)]. Therefore, This and the following sections are devoted to generalizations
. . of the results of Sections |-V to the case of random fields.
|Ae (X)) < [N Eglp(z, Y)] Specifically, the role of the process@s andY will now be

cj?Iayed by stationary ergodic random fieldfs= {X; v € 74}
andY = {Y,; v € 7¢}. As we will see, many of the problems
that we considered have natural analogs in this case, and the
overall theme carries over. The generalized AEP and its refine-
¥nent can be extended to random fields, and the corresponding
questions in data compression and pattern matching can be an-
swered following the same path as before.

and this, together with Holder’s inequality and the definition
g(z), imply that Ep[|g(X1)|?] < cc. Therefore, we can apply
the CLT of [70, Theorem 1.7] to the procegg X,,)} in order
to deduce the CLT part of the theorem from (46). Similarl
applying the LIL of [64] to{g(X,,)}, from (46) we get the LIL
part of the theorem.

Remark 5: When the variance? in (45) is positive, then the
functionalversions of the above CLT and LIL given in [27] stillA. Notation and Definitions
hold, under exactly the conditions of Theorem 22. (This follows The following definitions and notation will remain in effect
by applying the functional CLT of [70, Theorem 1.7] and th‘t’nroughout Sections VI and VIL.

functional LIL of [65, Theorem 1 (IV)].) We consider two random fields

C. Match Lengths and Duality X={X,;uecz? and Y ={Y,;uec 7%, d>2

~We turn to our last application, match lengths. Recall thahying values in4 and A, respectively, and indexed by points
given a distortion leveD > 0 and two independent realizations, _ (w1, uz, ..., ug) ON the integer lattic@?. As before,A

of the processeX andY’, the ma’ich lengttL,,, is defined as 5nq 4 are complete, separable metric spaces, equipped with
the length? of the longest prefix(; that appears (with distor- yhejr gorelo-fields A and.A, respectively. LeP andQ denote

tion D or less) starting somewhere in the “datababg”. See e (infinite-dimensional) measures of the entire random fields
(31) for the precise definition. As we briefly mentioned in Secy andy". Unless explicitly stated otherwise, we always assume
tion 111-D, there is a duality relationship between match lengthf 5t x andY are independent of each other.

and waiting times. Roughly speaking, long matches mean Shortl’hroughoutthe rest of the paper we will assume KandY

waiting times, and/ice versasee (33). ~_are stationary and ergodic. To be precise, by that we mean that
Although the relation (33) is not as simple as the duality (32)e Apelian group of translation&l’,: € Z¢} acts on both

for exact matching, it is still possible to use (33) to translaieAzd7 Azd, P) and (121247 Azd’ Q) in a measure-preserving,

the asympto_tic re;ults fawv,, to correspond!ng results_ fdr,,. ergodic manner; see [57] for a detailed exposition.
These are given in Theorem 23 below. This translation, carrie Foru, w € 2%, the distance betweenandw is defined by

out in [27], is more delicate than in the case of exact matching.

For example, in order to prove the CLT for the match lengths d(v, w) 2 max |vi — w;|
L., one invokes the functional CLT for the waiting times (see 1<izd

Remark 5 and [27, proof of Theorem 4]).

Theorem 23—Match Lengths Asymptotlet X be a sta- A
tionary process andf” be an i.i.d. process, with marginal dis- (v, W) =
tributions P and @, on A and 4, respectively. Assume that
D3 =Epyq[p*(X, Y)]isfinite. ThenforanyD € ( Dy, Day) GiVenv, w € 74, we let
we have

and the distance between two subdét$t’ c 7¢ is

inf .
L d(v, w)

[v, w] = {u € 7% v; < u; < w;forall j}

Ly, 1
— — W.p.1

(LLN) logm Ry where[v, w] is empty in case; > w; for somej.
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We write C'(n) for thed-dimensional cube of side > 1 marginal distributiong” and@ on A and A, respectively. As-
sume thatD,, = Epxg[p(X, Y)] is finite. Then for anyD €
C(n) ={ue 7% 1 < u; <nforall j} (Dumins Day)
and[0, oo) for the “infinite cube _Eloand (B (Xctmy, D)) = Ru(P, Q, D) w.p.1
[0, 00) = {u € Z% w; > Oforall j}. with the (one-dimensional) rate-functigh (P, @, D) defined

. o as in Theorem 1.
For an arbitrary subséf C Z¢ we let|U| denote its size; for

example|C(n)| = n?. Also, forU c 7¢ we write Y isnotii.d. LetX andY be stationary random fields and
define D,, and D, exactly as in the one-dimensional case
Xy 2 {Xy; we U} (recall (8) and (14)). We assume that the distortion meagsige

essentially bounded, i.el},,,,« < oo, and define
so that, in particular

Dinin i Sup Dl(lll)n hln Dl(lll)n (47)
X0, 00) = {Xu; u; > 0forall 5}. >
where
ForV C 7¢ andw € 7% we letw + V denote the translate s
pW 2 essinf  pn (Xcon, Yo | - 48
ut+V={ut+uv:veV} min = Hl | O P (Xem, Yom) (48)

To see that the limit in (47) exists and equals the supremum,

For eachn > 1, let P, denote the marginal distribution Offlrst note that{ndDmm} is an increasing sequence, and that

- nd . . P -
écm) intA A an(jléismna(;ly W”LeQ" for ;hte distribution ?f Df;’:l) > ffl)n foralln, £ > 1. Now fix & > 1 arbitrary. Given
c(n)- Letp: A x A — [0, co) be an arbitrary nonnegative, 3% o\t k4 for someo <r<k-1,sothat
(measurable) function, and deflne a sequence of single- letter

distortion measures,: A™ x A" — [0, o), n > 1 by nD) > (mk)* D) > (mk)? D)

min min —_ min”

Pr(TCnys Vo)) Sincen/mk — 1 asn — oo, this implies that

Al ‘ o (n) - pk)
é W Z p(-Tu; yu)7 -TC(n) c Anl, yC(n) S Ani. hr}r_l)lcgf Dnun = Dnun

ucc(n) Sincek was arbitrary we are done.

Finally, we assume once again that the distortion measure
p is not essentially constant, that iB,,,;u < D,,. Our next
result is the random fields analog of Theorem 4; it is proved in

B(zcmy, D) = {yC(n) e A" Pr(Tcnys Yom)) < D} . Appendix C.

Theorem 25—Generalized AEP Rate Functidmet X
andY be stationary random fields. Assume thats essen-
tially bounded, i.e.,.D..x < oo, and that withP-probability

GivenD > 0 andzc () € A" we write B(x ¢y, D) for the
distortion-ball of radiusD

B. Generalized AEP

It is well known that the classical AEP one, conditional onXjy o) = 7o, ), the random variables
1 {pn(zcm), Yomy)} satisfy a large deviations principle with
- log P,(X]") — H(P) w.p.1 some deterministic, convex rate-function. Then for Bll €

(Dmin, Dav), except possibly ab = Dfnm
generalizes to the case of finite-alphabet random field&%as 1
well as to other amenable group actions [68]. In this subsection}im —— logQn (B (Xc(m), D)) = (P, @, D) w.p.1
we give two versions of the generalized AEP of Theorems { ne (49)
and 4 to the case of random fields .
Y isi.i.d. In the notation of Section VI-A, we tak& to Wherengf’n) and the rate-functio®(P, Q, D) are defined as
be a stationary ergodic random field with first-order marginaih the one-dimensional case, by (17) and (16), respectively, and
P, = P, andY to be i.i.d. with first-order marginal); = @. the rate-functionsz,(F,, Q,, D) are now defined as
We defineD,,;, and D,, as in the one-dimensional case (recall 1
(7) and (8)), and assume thatz, y) is not essentially constant Ry (Pn, Qn, D) = inf 5 H(\V,[[Po x Qrn)  (50)
for (P-almost) allz € A, thatis,Din < Doy
A simple examination of the proof of Theorem 1 shows that With the infimum taken over all joint distributiorig, on A
extends/erbatimto the case of random fields, with the only dif-A™" such that thet*-marginal ofV,, is P, and
ference that instead of the usual ergodic theorem we now need
to invoke the ergodic theorem fa@ actions; see [57, Ch. 6]. By, [on(Xc(ny, Yom)) £ D.

We thus obtain the following. Note Added in ProofAfter this work was submitted, we re-

Theorem 24—Generalized AEP WHEns i.i.d.: Let X be ceived an interesting preprint from Chi [19] written in response
a stationary ergodic random field & andY be i.i.d., with to some questions raised in the earlier version of this paper. In
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[19], Chi verifies the assumptions of Theorem 25 for the casel) Lossy Data Compressioridere we very briefly discuss
whenY is a Gibbs field. In [19, Theorem 1], it is shown thathe problem of data compression, when the data is in the form of
if X is a stationary-ergodic random field with a finite alphabet two- or more generally &dimensional array. In this case, the
andY is a stationary Gibbs field also with a finite alphabet,nderlying data source is naturally modeled ascimensional
then the LDP assumption of Theorem 25 is satisfied. Thereforandom field. Extensive discussions of the general information-
the generalized AEP also holds in this case with the rate furtbeoretic problems on random fields are given in [10] and the
tion R(P, Q, D) defined as in (49) and (50). We will discussrecent monograph [93]; see also [36].

the further implications of this result for data compression on First we discuss the results given in Section IlI-A. The con-
random fields in subsequent work. struction of the random codebooks described there generalizes
to random fields in an obvious fashion, and the statement as
well as the proof of Theorem 9 remain unchanged. Following
%he notation exactly as developed for i.i.d. sources, the strength-
ened coding theorems given in Theorems 10 and 11 follow by
combining (the obvious generalization of) Theorem 9 with the
generalized AEP of Theorem 24.

Remark 6: Suppose thatX, Y') is a stationary random field
satisfying a “process-level LDP” with a convex, good rate-fun
tion. To be precise, givenc(,,) € A" write (™ for the peri-
odic extension of:¢(,,) to an infinite realization in4!% > and
let X (™) andY () denote the periodic extensionsXf.(,,, and

Yo(n), respectively. The process-AIeveI er'np|r|c.al meaglyen- Similarly, the mismatched-codebook results of Section I11-B
duced byX andY on (A% x Al%)) is defined by only rely on Theorem 9 and the generalized AEP of Theorem 1,
oA 1 5 and therefore immediately generalize to the random field case.
n T Z (X ey Y ) 2) Waiting Times:Here we consider the naturatdimen-
sional analogs of the waiting times questions considered in Sec-
whereé, .- denotes the measure assigning unit mass to the joiigin 111-C. Given two independent realizations of the random
realization fields X andY’, our main quantity of interest here is how “far”
, [0,00) o 2[0,00) we have to look irf¥” until we find a match for the pattetkic(,,)
(s,8) €A x A with distortion D or less. Givern > 1 and a distortion level
andx™ (ory™ ) denotesy ™) (respectivelyy ™) D > 0, we define thewaiting time}¥,, as the smallest length

uweC(n)

~ [0, 00) [0, ) e ¢ such that a copy of the pattefti(,, appears somewhere in
shifted by [i.e., ;[h)e value otXuHO’ 20) at positionw |s(th)e same Ye(i4m_1), With distortionD or less. Formally,
as the value o™ at positionu + v; similarly, for Y’ i[o )]. .
X . (71 , OO — y > : ! <
By assuming thatX, Y) satisfy a “process-level LDP” we W = inf{i 2 1: pn(Xoe), Yirow) < D o
mean that the sequence of measuf€s} satisfies the LDP for somew € [0, i — 1]°}

in the space of stationary probability measures(@#>*) x \ith the convention that the infimum of the empty set equals

Al )} equipped with the topology of weak convergence, WittLOO_

some convex, good rate-functidif-). These assumptions are |, the one-dimensional case, our main tool in investigating
satisfied by many of the random field models used in applicge 45ymptotic behavior of the waiting times was the strong
tions, and in particular by a large class of Gibbs fields (see, €-Gpproximation in Theorem 13. Roughly speaking, Theorem 13
[22], [37], [63] for general theory and [39], [82] for examplegiateq that the waiting tim#/,, for a D-close match ofX 7 in
in the areas of image processing and image analysis). Y is inversely proportional to the probabilitg,,(B(X?, D))

As in the one-dimensional case, suppose that the processsych a match. In Theorem 26 we generalize this result to the

level LDP condition holds, and thatAthe distortion Measur yimensional case by showing that tiielimensional volume
p is bounded and continuous ofi x A. Then withP-prob-

> - (W,,)* we have to search i¥f in order to find aD-close match
ability one, conditional on¥jp, o) = 0,0, the sequence g, Xeny is, roughly, inversely proportional to the probability
{pn(zcm), Yom))} satisfies the LDP upper bound with respect) (B(X¢(m), D)) of finding such a match.

to the deterministic, convex rate-functiolf-) as in Remark 3.~ gatore stating Theorem 26, we need to recall the following

Moreover, assuming sufficiently strong mixing properties¥or yefinition. Dobrushin’shonuniforme-mixing coefficientf a
one may also verify the corresponding lower bound (forexampﬁationary random field are
by adapting the stochastic subadditivity approach of [21]).
o pe(k) = sup{|Q(B|4) — Q(B)|: B € o(Yy), A € o(Yy),
C. Applications Q(A) > 0 U] < 4, |V] < o0, d(U, V) >k}
In Sections VI-C1 and VI-C2 we consider the random field

analogs of the problems discussed in Section Ill in the contex eres(¥y) denotes the-field generated by the random vari-

d . : i
of one-dimensional processes. In the instances when our al‘%l-eSYU’ U C 7. See [59, Ch. 6] or [31] for detailed discus

ysis was restricted to i.i.d. processes, the extension to randdm’'> of the coefiicienté¢.(k)} and their properties.

fields is trivial—an i.i.d. random field is no different from an Theorem 26—Strong Approximatiomet X andY be sta-
i.i.d. process. For that reason, we only give the full statemenisnary ergodic random fields, and assume that the nonuniform
of corresponding random fields results when the generalizatigmmixing coefficients ofY” satisfy

fromd = 1tod > 2 does involve some modifications. Oth- oo

erwise, only a brief description of the corresponding results is lim sup Z (5 + 1)‘1_1%4 (jn) < 0. (51)
mentioned. oo S
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If Q.(B(X¢my, D)) > 0eventually with probability one, then Z¢ actions [57, Ch. 6] immediately yields the following gen-
foranye > 0 eralization. As long as condition (52) is satisfied, for Bll ¢
J (Dxmin, Day) We have
—(1+¢)logn < log[W;Qn(B(Xc(ny, D))] . d
< (d+ 1+ ¢)logn eventually, w.pl. —logQ™ (B(X¢(my, D)=n'Ry(P,,Q, D)—i—5 logn+0O(1)
w.p.1 (53)
The proof of Theorem 26 is a straightforward modification of

the corresponding one-dimensional argument in [27]; it is givei{1€reE, is now the empirical measure inducedky:,,) on A.
in Appendix D. In order to generalize Theorem 1646 we need to introduce

a measure of dependence analogous-mixing in the one-
Remark 7: The mixing condition (51) is satisfied by a rathejimensional case. For a stationary random fi¥lcon Z¢ we

large class of stationary random fields. For example, in the cagsfine theuniform a-mixing coefficientf X by

of Markov random fields, it is easy to check that under Do-

brushin’s uniqueness condition (D) the limit in (51) is finite(%) = sup{|P(A N B) —P(A)P(B)]: A € o(Xv),

see [38, Sec. 8.2] or [31] for more details. B e o(Xy), d(U, V) > k}

Next we combine the above strong approximation result withhere, as befores(X;;) denotes ther-field generated by the
the generalized AEPs of Theorems 24 and 25, to read off tkehdom variable¥?;. See [59], [31] for more details.
first-order asymptotic behavior of the waiting times. Theorem Apart from ergodicity, the main technical ingredient in the
27 generalizes Theorem 14 to the random field case. proof of Theorem 16 (see also the proof of [27, Theorem 3])

Theorem 27—SLLN for Waiting Timetet X andY be sta- is the LIL for X. Similarly to the one-dimensional case, the
tionary ergodic random fields LIL for arandom fieldX holds as soon as the following mixing

L . . e condition is satisfied:
a) IfY isi.i.d. and the average distortidn,, is finite, then
forany D € (Dpin, Dav) a(k) < CE™2449  for somee > 0 andC' < co. (54)

[This follows from the almost sure invariance principle in [11,

Theorem 1].]

N ~Assuming that (54) and the third-moment condition (52) both

b) Suppose that the conditions of Theorem 25 are satisfiggh|g, we get the following generalization of Theorem 16. For all
and thatY also satisfies the mixing assumption (51)p, (Dynins Dav)

Then, for anyD € (D', D)

min ?

1
W 108Wr(11 - Rl(P17 Q17 D) Wp]—

nde(pnv Q7 D) = nde(Pv Q7 D)

1
WlogW,‘feR([F", Q, D) w.p.1. + E: 9(X.) +O(loglogn) w.p.1 (55)
ueC(n)

with ¢g(x) defined exactly as in the one-dimensional case (39).
Combining (53) and (55) gives the following generalization
We turn to the random field extensions of the second-ordef Corollary 17.

results of Sections IV and V. In Section VII-A, we state the )

8—Second-Order Generalized AERt X be

random field analog of the second-order generalized AEP, andl "€0rem 2

in Section VII-B we discuss its application to the problems ¢t Stationary ergodic random field with marginal distribution
lossy data compression and pattern matching. P on A, and let@ be an arbitrary probability measure oh
Assume that the uniforna-mixing coefficients ofX satisfy

A. Refinements of Generalized AEP (54) and thatDs = Epyxq[p*(X, Y)] is finite. Then for any
mins Dav), and withg(z) defined as in (39)

VII. RANDOM FIELDS: SECOND-ORDER RESULTS

. . ' . . D
Let X be a stationary ergodic random field with margmap €
distribution P’ on A, and let@ be a fixed probability measure — log Q"d(B(Xf7 D)) =n“Ri(P, Q, D)

on A. We will assume throughout that the distortion meagure . d
has a finite third moment + > e+ 5 logn+ O(log logn)  w.p. 1.
uCC(n)
D3 2 Epyqlo®(X, Y)] < o0 (52)

and that it is not essentially constant, i.Buim < Da., with B+ Applications

D, and D, defined as before (cf. (7) and (8)). Next we discuss applications of the second-order generalized
The goal of this section is to give the random field analogs &fEP to thed-dimensional analogs of the data compression and

Theorems 15 and 16 and of Corollary 17 from the one-dimepattern matching problems of Section IV. As in Section VI-C,

sional case. the only results stated explicitly are those whose extensions to
An examination of the proof of Theorem 15 in [90] showZ¢ require modifications.

that its proof only depends on the ergodicityXfand the i.i.d. = As mentioned in Section VI-C1, the one-dimensional con-

structure of the product measu@$. Simply replacing the ap- struction of the random codes, as well as the main tool used in

plication of the ergodic theorem by the ergodic theorem faoheir analysis, Theorem 9, immediately generalize to the random
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field case. And since all the second-order results of Section Vwthere R(D) is the rate-distortion function of the sour&e(in
(Theorems 18-21) are stated for i.i.d. sources, their statemamss). From (57) and (58) we get
as well as proofs carry oveerbatimto this case. . ) "

For the problem of waiting times, we can use the secondl—lrllriso%p (X1, D)
order generalized AEP of Theorem 28 to refine the SLLN of bio
Theorem 27 < H(P) + H(PHQ) - R(D)
< H(P)+H(P||Q) - H(P) + H(P) - Ry(D) w.p.1

where R, (D) denotes the first-order rate-distortion function

to a corresponding CLT and LIL as in the one-dimensional cas¥. X, H(P) is the entropy rate o (both in nats), and the
These refinements are stated in Theorem 29. Its proof is id&&cond inequality follows from the Wyner—Ziv bound; see [83,
tical to that of Theorem 22 in the one-dimensional case. THemark 4]. The assumption thatz, y) = 0 if and only if
only difference here is that we need to invoke the CLT and LIt = v implies thallimp .o E:1(D) = H(P), so lettingD | 0

for the partial sums of the random fielgy(X,); v € z4}. the above right-hand side becomié¢r) + H(P||Q) — H(P)
Under the conditions of the theorem, these follow from the a&nd it is an easy calculation to verify that this is indeed the

most sure invariance principle of [11, Theorem 1]. same agi(P||@). This gives the required upped bound.
For the lower bound, we proceed similarly by noting that

1
—~ logW¢ — Ry (P, Q, D) w.p.1

Theorem 29:Let X be a stationary ergodic random field and 1 1
Y be i.i.d., with marginal distribution$” and@ on A and A, (X7, D) > = log P,(X7) — = logQ™"(B(X], D))
respectively. Assume that the uniformmixing coefficients of ] n n )
X satisfy (54) and thaDs = Epyq[p*(X, Y)] is finite. Then where the first term converges teH([_P’) by the classical AEP
for any D € (Dyin, Day) the following series is absolutely (8Sn — o). Since the second term is decreasinginfor any

convergent: fixed D € (0, D,,) we have with probability one
0?2 3 Ep[g(Xo)g(X.)] (56) h%%})f (X, D)z _H(P)_hills;ip - log@™(B(XT, D))
uezZ4

:_H(P)+R1(P7Q7D)

where the last step follows from the generalized AEP in The-
orem 1 (note thaD,,;;, = 0 here). By the characterization of
the rate-function in Theorem 2 we know that

R(P,Q, D)= sup [ND — A(N)] =2 [AD — A(V)]

with g(z) defined as in (39), and, moreover
(CLT) With R, = R(P, Q, D)

logW,‘f - nR; p
T ——>N(0, 02).

(LIL) The set of limit points of the sequence
=-Ep [IogEQ (e)‘(p(X’ Y)_D)ﬂ

logW¢e —n¢R;
=, 023 for any fixed A < 0. Therefore, for anyD € (0, D,,) and
V2ndloglogn A < 0, we have
lim inf r,, (X7, D)
I)

APPENDIX A > _H(P) — Ep |log E, (XX Y)=D) w.p. 1.
PROOF OFTHEOREM 7 - () r [ she ( )} P

coincides with[—o, o], with probability one.

We prove the upper and lower bounds separately. For tlﬁgttingD — Oandthem — —oc, by the dominated conver-
upper bound, recalling the definition of (X7, D) in (20) we gence theorem (and the assumpiign, y) = 01iff z = y) the

right-hand side above converges to
observe that
—HP)+ H(P|Q)+ H(P) = H(P||Q)

proving the lower bound.

where the second term converges B{P) + H(P||Q) as  Finally, since for each fixech the limit asD | 0 of
n — oo, by the ergodic theorem. Since the first term is increag» (X1, D) exists, it follows that the repeated lintitn,, lim,

1 1

ing in D, for any fixedD > 0 we have withP-probability one ~ also exists and is equal to the double lifi{P||Q). O
limsup (X7, D) < H(P) + H(P||Q) APPENDIX B
Do PROOF OFTHEOREM 8
1 . .
+ lim sup - log P,(B(X7, D)). (57) Part a): Fixingn, let f,, = dP,/dQ,, and consider the set

Now the pointwise source-coding theorem (see [56, Theoremsi} 2 {x’f: Qn(B(zl, D)) >0VD >0, f,(«})
and 5]) implies that

L = limsup w = liminf M
liminf —- log P (B(XT, D)) 2 R(D) wp.1  (58) plo. Qu(B(a?, D)) Dplo Qu(B(zt, D))
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By the Lebesgue—Besicovitch differentiation theorem (cf. [38hereg,(r) = P(B(z, r)) andk,(r) = Q(B(x, r)) are non-
Theorems 1.6.1, 1.6.2]), we know th@f,(4,,) = 1, hence also negative, nondecreasing and bounded above i3onsidering
P,(A4,) = 1. With P(U, AS) = 0, we conclude the proof of separately: < 2n andu > 27, it is easy to check that for any
part a) by applying Theorem 6 favf,, = Q™ (in which case 1 > 0

Part b): AsQ(A;1) = 1, in particularQ(B(xz, D)) > 0 for sup iad + a2 = ha(z) > inf 927 =
all D > 0 andQ-almost everyr € R? (hence also fol? =  0<r=27 ka (1) o<r<2n k(1) 1+%ae
P;-almost everyr € R%), implying thatD,.,;, of (7) is zero. (60)

The same argument yields also thatB(z, D)) > 0 for all
D > 0 and P-almost everyz, henceD,,;, is still zero if we
replace by P. Thus, for all

where
A an e du 1

< .
jgn eNky (u) du ~ NIAlkz(n)

”(/))\7 x (61)

D < Inin{EPXQ[p(Xv Y)]7 EPXP[p(X7 Y)]}
) ) Fix # € A; of part a), in which casé,(r) > 0forall » > 0
applying Theorem 1 twice we get andg, () /k,(r) — fi(x) asr — 0. Letting A | —oo and then

lim (X7, D) = Ri(P, Q, D)— Ri(P, P, D) wip.1. n — 0, it follows by (60) and (61) that

T - lim hx(z) = f1(z).
For any probability measure and any\ < 0, let Al—oo

A0 ) = [ [1og [ 9 aute)| apto)

Fixing D > 0 small enough, we have by Theorem 2 that

Recall thatP(A;) = 1 and our assumption that

/. log k,,(n)dP(z) > —o0

for anyn > 0. By our integrability conditions, the function

Ry (P, P, D) = AD — A(A; P) min{0, infy>; log ha(z)} is P-integrable, hence, by Fatou's
for the uniqueh = A(D) < 0 suchthat\’(\; P) = D, whereas lemma
Ri(P. Q. D) > \D - AL O). tinint [ log () dP(2)> [ log u(2) dP() = HPJQ).
SinceEpxp[p(X, Y)] > 0, we have also that(D) | —oc as Moreover, in caseH(PHQ) < oo, our assumptions_imply that
D | 0 (see (11)). Consequently, sup,>; |logha(z)| is P-integrable, hence by dominated con-
vergence

h%lfélf{Rl(Pa Qa D) _Rl(Pa Pa D)}

> 11)\1}1}11f {A(\; P)— A(x; Q)). /10g ha(z) dP(z) — /log Ji(z) dP(z)

for A | —oo, as required to complete the proof of (59). O
Similarly, by Theorem 2 we have

APPENDIX C
PROOF OFTHEOREM 25
such thatA’(\; Q) = D, R(P, P, D) > AD — A(\; P), Recall our assumption that, fBa.e.z, ), conditional on
and with Epxq[p(X, Y)] > 0, alsoA | —oowhenD | 0. Xjg o) = [, o) the random variable$p, (xc (), Yo(n))}

Ri(P,Q,D)=AD—A(\; Q), forA<o0

Therefore, it suffices to show that satisfy the LDP with adeterministicconvex good rate-func-
_ tion denoted hereafteR(P, @, -). Since p is bounded, by
Alfiréo {AN P) = A Q) = H(P(Q). (59)  varadhan’s lemma and convex duality, this implies that
To this end, for any\ < 0 andz € R, let R(P,Q, D)= iug[)\D — Ase(N)] = AL(D) (62)
<
ha(x) abr (=) where for any\ € R, the finite, deterministic limit

" Eq (M)

Ay 1 )‘E N CIN TS
AN E lim = log | ¢ &onec 4O (vern
noting that (W)= lim — g/ Qn(Yc(n))

exists for?-a.e.r, o (cf. [29, Theorem 4.5.10]). By bounded
AN P) = A\ Q) = / log ha(z) dP(x). convergencel..(\) is also the limit of

Using the change of variablé = p(x, Y) > 0 followed by A, ()) 2 ! / |:1Og/e)\2ue(f(n) (e, yu)

integration by parts, we see that ~ond
oS Au
ha() = Jo_ < ge(w) du AQu(yerm) | dPa(zom))-
Jo o eMke(u) du
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By stationarity Since, by its definition\,, is always greater than or equal to
one, this inequality trivially holds also fak € (0, 1]. Setting
Day = Ep,xq, (Pn(Xcw), Yew)) Va1 (83) g — [ +<Qn(B(zcmy, D))~ above gives, for alk > m,

so replacingP;, Q1, andp(x, y) of Theorem 2 byP,, @, and p, {1Og [W;an (B ( oy, D))]

n?pn(Tciny, Yom)), respectively, we see that 1

A —(1+)logn|Xee) = 2o} S

R, (P, Qn, D) =sup[A\D — A, (V)] = A5(D). (64) ] . )
ACR Since this bound is uniform ovet,« € G,, and summable, the

Note that|A,(\) — An(X)| < ¢|A — X[ for somec < oo and Borel-Cantelli lemma and assumption (66) imply that

all n, A, A € R, hence, the convergence &f,(-) t0 Awo(-)  log [(WeQ, (B (Xemy, D))]

is uniform on compact subsets Bf In particular, the convex,

continuous functiong\,,(-) converge infimally toA..(-), and, ~(1+c)logn eventually, w.pl. (67)

consequently, by [80, Theorem 5], the convex functidri$-) For the upper bound we choose and fix:an> 1 and a
converge infimally toA”_(-), that is, realizationzz« € G,,, and takek > (n 4 1)*. Note that
* . * /T d
AL(D) = Jim limsup i AL(D) Pr{W¢ > K|Xc(m) = zem) }
= lim liminf inf A} D). (65) ) _
6—=0 n—oo |H_p|<s ( ) < Pr Z [I{leu+C'(7l)€B(mC'(7z)7D)} =0
u€lo, M]¢

It follows from (63) and Jensen’s inequality that,(\) >
AD,, for all n and\, hence, forD < D,, suffices to consider where the sum is over th@¥ + 1)¢ integer positionsu €
A < 0in (62) and in (64). Thus, foi < n < oo, A% are [0, M]¢ C Z¢, nu denotes the poinnuy, nua, ..., nuy) €
nonnegative, convex, and monotone nonincreasing.of.,], Z¢, and
with A*(D,,) = 0. Forl < n < oo, let

A | KMV -1
o= lim ———= n
nun )\L—oo )\
50 thatA* (D) = oo for D < Dfﬁl, while A% (D) < oo for Let X,, denote the sum in the above probability
D > D) Note that forn < oo this coincides with the defi- Y= Z I ()
nition of folﬁl given in (48). It is easy to check then that (65) uclo, M]*

implies the pointwise convergence &f (-) = R,.(P, Q, -) to
A () = R(P, Q, -)atanyD for whichAZ_(D—6) lA* ( )
that is, for allD # D In particular, necessanIXD

[Dimin, Dav], and D> may also be defined via (17). The con]n this notation

min

tinuity of R(P, @, D) atD € (Duyin, Day), D # D im-

wherel,, (u) is the indicator function of the event

{Y;I,'u,—l—c(n) € B(‘Tc(n)v D)}

min

plies the equality in (49) for sucP, thus, completmglﬁlwne proof Pr {W > K| X —l’c(n)}<Q{E —0}< Varg(Zn )2
of the theorem. O [Eg(Zn )](68)
APPENDIX D By stationarity
PROOF OFTHEOREM 26 4

For eachm > 1, let GG, be the collection of “good” realiza-
tionsxza € AL and by the definition of the-mixing coefficients, ifu # v

G = {xzd € AT": Qu(B(xc(ny, D)) > 0foralin > m} Eq{li(w) . (v)} £ Qu(B(zc(n), D))

so that the assumption th@¥,(B(X (.., D)) > 0 eventually, [pna(nd(u, v) —n+1) + Qn(B(zcmy, D))

with probability one translates to Using the last two estimates we can bound the variance as
VarQ{En} = COVQ(In(U’)v In(v))
m>1

w, vE[0, M4, ustv

. [Qn (B (a:c(n), D)) Pra(nd(u, v) —n+ 1)]

To prove the lower bound we choose and fixrar® 1 and a
realizationzz« € G,,. Then for anyK > 1

d
Pri{W; < K|Xcwm) = wcom } < M +1Qu(B(wc(ny, D))
< Z Qn {YLH—C(n) € B($C(n)a D)} M
uclo, LK 1/4)—1]d N1 e ppalng —n+ 1) (70)

< KQn(B(xC(n)7 Dy). j=1
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wherec,j4~ bounds the number of possible pointshat can
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be at a distance exactjyffrom a given point; (for some constant
cq). By assumption (51) we can find a finite consté@guch that

the expression in square brackets in (70) is bounded above by
&, uniformly inn. Substituting this bound, together with (69)

and (70), in (68), gives
Pl‘{Wn > K|XC(n) = xc(n)}
& - [15]
< . (711
[M +114Qn (B (zc(), D))
Let ¢ > 0 arbitrary, taken large enough so that1+<)/¢ > 2,
and letk’ = n?*t1%</Q,.(B(zc(n), D)). Simple algebra shows
that with this choice of{’ we have
1
[M + 1]dQn (B (xC(n)v D)) Z 5 7’Ll+€
and substituting this in (71) yields
Pr {log [W1Qn (B (Xcm), D))]
> (d+1+)logn| Xe) = 2o} <
This bound is uniform ovetz. € G, and summable, so the
Borel-Cantelli lemma and (66) imply that

(14]

[24]

log [WlQy (B (Xc(ny, D))]

<(d+1+¢)logn eventually, wpl. (72)

(26]

Combining (72) and (67) completes the proof. O
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