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Abstract—In this review paper, we present a development of
parts of rate-distortion theory and pattern-matching algorithms
for lossy data compression, centered around a lossy version of the
asymptotic equipartition property (AEP). This treatment closely
parallels the corresponding development in lossless compression, a
point of view that was advanced in an important paper of Wyner
and Ziv in 1989. In the lossless case, we review how the AEP un-
derlies the analysis of the Lempel–Ziv algorithm by viewing it as a
random code and reducing it to the idealized Shannon code. This
also provides information about the redundancy of the Lempel–Ziv
algorithm and about the asymptotic behavior of several relevant
quantities. In the lossy case, we give various versions of the state-
ment of the generalized AEP and we outline the general method-
ology of its proof via large deviations. Its relationship with Barron
and Orey’s generalized AEP is also discussed. The lossy AEP is ap-
plied to i) prove strengthened versions of Shannon’s direct source-
coding theorem and universal coding theorems; ii) characterize the
performance of “mismatched” codebooks in lossy data compres-
sion; iii) analyze the performance of pattern-matching algorithms
for lossy compression (including Lempel–Ziv schemes); and iv) de-
termine the first-order asymptotic of waiting times between sta-
tionary processes. A refinement to the lossy AEP is then presented,
and it is used to i) prove second-order (direct and converse) lossy
source-coding theorems, including universal coding theorems; ii)
characterize which sources are quantitatively easier to compress;
iii) determine the second-order asymptotic of waiting times be-
tween stationary processes; and iv) determine the precise asymp-
totic behavior of longest match-lengths between stationary pro-
cesses. Finally, we discuss extensions of the above framework and
results to random fields.

Index Terms—Data compression, large deviations, pattern-
matching, rate-distortion theory.

I. INTRODUCTION

A. Lossless Data Compression

I T is probably only a slight exaggeration to say that the cen-
tral piece of mathematics in the proof of almost any loss-

less coding theorem is provided by the asymptotic equiparti-
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tion property (AEP). Suppose we want to (losslessly) compress
a message generated by a stationary
memoryless source where each takes
values in the finite alphabet (much more general situations
will be considered later). For this source, the AEP states that as

in probability (1)

where is the common distribution of the independent and
identically distributed (i.i.d.) random variables , denotes
the (product) joint distribution of , and

is the entropy rate of the source—see Shannon’s original paper
[74, Theorem 3] or Cover and Thomas’ text [24, Ch. 4]. [Here,
and throughout the paper, denotes the logarithm taken to
base , and denotes the natural logarithm.] From (1), we
can immediately extract some useful information. It implies that
when is large, the message will most likely have proba-
bility at least as high as

with high probability. (2)

But there cannot be many high-probability messages. In fact,
there can be at most messages with

so we need approximately representative messages from
the source in order to cover our bets (with high probability).
If we let be the set of high-probability strings
having , then we can correctly represent
the source output by an element of (with high proba-
bility). Since there are no more than of them, we need
no more than bits to encode .

Shannon’s Random Code:Another way to extract informa-
tion from (1) is as follows. The fact that for largewe typically
have also means that if we independently
generate another random string, say, from the same distri-
bution as the source, the probability that is the same as
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is about . Suppose that instead of using the strings in
above as our representatives for the source, we decided to in-
dependently generate a collection of random stringsfrom
the distribution ; how many would we need? Given a source
string , the probability that any one of the matches it
is , so in order to have high probability of success in
representing without error we should choose approximately

random strings . Therefore, whether we choose the
set of representatives systematically or randomly, we always
need about strings in order to be able to encode loss-
lessly with high probability. Note that the randomly generated
set is nothing but Shannon’s random codebook [75] special-
ized to the case of lossless compression.

Idealized Lempel–Ziv Coding:In 1989, in a very influen-
tial paper [84], Wyner and Ziv took the above argument sev-
eral steps further. Aiming to “obtain insight into the workings
of […] the Lempel–Ziv data compression algorithm,” they con-
sidered the following coding scenario. Suppose that an encoder
and a decoder both have available to them a long database, say
an infinitely long string that is indepen-
dently generated from the same distribution as the source. Given
a source string to be transmitted, the encoder looks for the
first appearance of in the database (assuming, for now, that
it does appear somewhere). Let denote the position of this
first appearance, that is, let be the smallest integer for which

is equal to . Then
all the encoder has to do is it to tell the decoder the value of;
the decoder can read off the string and recover
perfectly. This description can be given using (cf. [32], [86]) no
more than

bits. (3)

How good is this scheme? First note that, for any given source
string , the random variable records the first “success” in
a sequence of trials (“Is ?,” “Is ?,” and
so on), each of which has probability of success .
Although these trials are not independent, for largethey are
almost independent (in a sense that will be made precise below),
so the distribution of is close to a geometric with parameter

. For long strings , is small and is typically
close to its expected value, which is approximately equal to the
mean of a geometric random variable with parameter, namely,

. But the AEP tells us that, whenis large,
, so we expect to be typically around . Hence, from

(3), the description length of will be, to first order

bits, with high probability.

This shows that the above scheme is asymptotically optimal, in
that its limiting compression ratio is equal to the entropy.1

Practical Lempel–Ziv Coding:The Lempel–Ziv algorithm
[98], [99] and its many variants (see, e.g., [7, Ch. 8]) are some of
the most successful data compression algorithms used in prac-
tice. Roughly speaking, the main idea behind these algorithms is
to use the message’s own past as a database for future encoding.

1We should also mention that around the same time a similar connection be-
tween data compression and waiting times was made by Willems in [81].

Instead of looking for the first match in an infinitely long data-
base, in practice, the encoder looks for the longest match in a
database of fixed length. The analysis in [84] of the idealized
scheme described above was the first step in providing a proba-
bilistic justification for the optimality of the actual practical al-
gorithms. Subsequently, in [85] and [86], Wyner and Ziv estab-
lished the asymptotic optimality of the sliding-window (SWLZ)
and the fixed-database (FDLZ) versions of the algorithm.

B. Lossy Data Compression

A similar development to the one outlined above can be given
in the case of lossy data compression, this time centered around
a lossy analog of the AEP [52]; see also [60], [88]. To motivate
this discussion we look at Shannon’s original random coding
proof of the (direct) lossy source-coding theorem [75].

Shannon’s Random Code:Suppose we want to describe the
output of a memoryless source, with distortion or less
with respect to a family of single-letter distortion measures

. Let be the optimum reproduction distribution on
, where is the reproduction alphabet. Shannon’s random

coding argument says that we should construct a codebook
of codewords generated i.i.d. from , where

is the rate-distortion function of the source (in bits). The
proof that codewords indeed suffice is based on the
following result [75, Lemma 1].

Shannon’s “Lemma 1”: For let denote
the distortion-ball of radius around , i.e., the collection of
all reproduction strings with . When

is large2

with high probability. (4)

In the proof of the coding theorem this lemma plays the same
role that the AEP played in the lossless case; notice the simi-
larity between (4) and its analog (2) in the lossless case. Let us
fix a source string to be encoded. The probability that
matches any one of the codewords in is

and by the lemma this probability is at least . There-
fore, with independent codewords to choose from,
we have a good chance for finding a match with distortionor
less.

The Generalized AEP:A stronger and more general version
of Lemma 1 will be our starting point in this paper. In the
following section, we will prove ageneralized AEP. For any
product measure on

w.p. (5)

2The notation in Shannon’s statement is slightly different, and he considers
the more general case of ergodic sources. For the sake of clarity, we restrict our
attention here to the i.i.d. case. It is also worth mentioning that the outline of the
random coding argument is already given in Shannon’s 1948 paper [74, Sec. 28],
where the content of Lemma 1 is described in words. Paraphrasing that passage
in our present notation: “A calculation […] shows that with largen almost all
of theX .s are covered within distortionD by […] the chosenY ’s.”
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where is a (nonrandom) function of the distribu-
tions and and of the distortion level . Note that in the
case of lossless compression (with and ), the
generalized AEP in (5) reduces to the classical AEP in (1). In
fact, in our subsequent development of lossy data compression,
the generalized AEP will play essentially the same role that the
AEP played in the lossless case.

But also there is an essential difference between the two. Al-
though the natural abstract formulation of the classical AEP is as
an ergodic theorem [13], [14], the natural mathematical frame-
work for understanding and proving the generalized AEP is the
theory of large deviations. To see this, let us fix a realization
of the random variables , and suppose that distortion is mea-
sured with respect to a single-letter distortion measure .
Then, the -probability of the ball can be written
as

where denote i.i.d. random vari-
ables with distribution . As we will see, the range of inter-
esting distortion values is when is smaller than the average
distortion , in which case can be
thought of as large deviations probability for the lower tail of
the partial sums of the independent (but not identically
distributed) random variables . Therefore, it is
natural to expect that the probabilities will in-
deed decrease at some exponential rate, and the natural tools for
proving this exponential convergence (i.e., the generalized AEP
in (5)) will come from large deviations. For example, the proof
of (5) in Theorem 1 is a direct application of the Gärtner–Ellis
theorem. Similarly, more elaborate large deviations techniques
will be employed to prove several variants of (5) under much
weaker assumptions.

Aaron Wyner’s Influence:Like the AEP in the lossless case,
the generalized AEP and its refinements find numerous appli-
cations in data compression, universal data compression, and in
general pattern matching questions. Many of these applications
were inspired by the treatment in Wyner and Ziv’s 1989 paper
[84]. A (very incomplete) sample of subsequent work in the
Wyner–Ziv spirit includes the work in [69], [78] elaborating on
the Wyner–Ziv results, the papers [77], [60], [88], [53] on lossy
data compression, and [60], [27], [3], [91] on pattern matching;
see also the recent text [79].

Aaron Wyner himself remained active in this field for the fol-
lowing ten years, and his last paper [87], coauthored with J.
Ziv and A. J. Wyner, was a review paper on this subject. In the
present paper, we review the corresponding developments in the
lossy case, and in the process we add new results (and some new
proofs of recent results) in an attempt to present a more complete
picture.

C. Central Themes, Paper Outline

In Section II, we give an extensive discussion of the gener-
alized AEP. By now there are numerous different proofs under
different assumptions, and we offer a streamlined approach to

the most general versions using techniques from large devia-
tion theory (cf. [88], [27], [20], [21] and Bucklew’s earlier work
[16], [17]). We also discuss the relationship of the generalized
AEP with the classical extensions of the AEP (due to [6], [66])
to processes with densities. We establish a formal connection
between these two by looking at the limit of the distortion level

.
In Section III, we develop applications of the generalized

AEP to a number of related problems. We show how the gen-
eralized AEP can be used to determine the asymptotic behavior
of Shannon’s random coding scheme, and we discuss the role
of mismatch in lossy data compression. We also determine the
first-order asymptotic behavior of waiting times and longest
match-lengths between stationary processes. The main ideas
used here are strong approximation [51] and duality [84]. We
present strengthened versions of Shannon’s direct lossy source-
coding theorem (and of a corresponding universal coding the-
orem), showing thatalmost allrandom codebooks achieve es-
sentially the same compression performance. A lossy version of
the Lempel–Ziv algorithm is recalled, which achieves optimal
compression performance (asymptotically) as well as polyno-
mial complexity at the encoder. We also briefly mention how the
classical source-coding problem can be generalized to a ques-
tion about weighted sphere-covering. The answer to this ques-
tion gives, as corollaries, Shannon’s coding theorems, Stein’s
lemma in hypothesis testing, and some converse concentration
inequalities.

Section IV is devoted to second-order refinements of the
AEP and the generalized AEP. It is shown, for example, that
under certain conditions, are asymptoti-
cally Gaussian. The main idea is to refine the generalized AEP
in (5) by showing that the quantities are
asymptotically very close to a sequence of partial sums of i.i.d.
random variables, namely,

where denotes asymptotic equality with probability one up to
terms of order , and is an explicitly defined function
with ; see Corollary 17 for more details.

These refinements are used in Section V to provide
corresponding second-order results (such as central limit
theorems) for the applications considered in Section III. We
prove second-order asymptotic results for waiting times and
longest match-lengths. Precise redundancy rates are given
for Shannon’s random code, and converse coding theorems
show that the random code achieves the optimal pointwise
redundancy, up to terms of order . For i.i.d. sources,
the pointwise redundancy is typically of order , where is
the minimal coding variance of the source. When , these
fluctuations disappear, and the best pointwise redundancy is of
order . The question of exactly when can be equal
to zero is briefly discussed.

Finally, Sections VI and VII contain generalizations of some
of the above results to random fields. All the results stated there
are new, although most of them are straightforward generaliza-
tions of corresponding one-dimensional results.
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II. THE GENERALIZED AEP

A. Notation and Definitions

We begin by introducing some basic definitions and notation
that will remain in effect for the rest of the paper. We will
consider a stationary-ergodic process
taking values in a general alphabet.3 When talking about
data compression, will be our source and will be
called the source alphabet. We write for the vector of
random variables , and similarly

for a realization of these
random variables, . We let denote
the marginal distribution of on , and write
for the distribution of the whole process. Similarly, we take

to be a stationary-ergodic process taking
values in the (possibly different) alphabet(see footnote 2). In
the context of data compression,is the reproduction alphabet
and has the “codebook” distribution. We write for the
marginal distribution of on , , and for the
distribution of the whole process . We will always assume
that the process is independent of .

Let be an arbitrary nonnegative (measur-
able) function, and define a sequence of single-letter distortion
measures by

Given and , we write for the distor-
tion-ball of radius around

Throughout the paper, denotes the natural logarithm and
the logarithm to base. Unless otherwise mentioned, all

familiar information-theoretic quantities (such as the entropy,
mutual information, and so on) are assume to be defined in terms
of natural logarithms (and are therefore given in nats).

B. Generalized AEP When Is i.i.d.

In the case when is finite, the classical AEP, also known as
the Shannon–McMillan–Breiman theorem (see [24, Ch. 15] or
the original papers [74], [62], [13], [14]), states that as

w.p. (6)

where

is the entropy rate of the process(in nats, since we are taking
logarithms to base). As we saw in the Introduction, in lossy
data compression the role of the AEP is taken up by the result

3To avoid uninteresting technicalities, we will assume throughout thatA is a
complete, separable metric space, equipped with its associated Borel�-fieldA.
Similarly, we take(Â; Â) to be the Borel measurable space corresponding to a
complete, separable metric spaceÂ.

of Shannon’s “Lemma 1” and, more generally, by statements of
the form

w.p.

for some nonrandom “rate-function” .
First, we consider the simplest case whereis assumed to be

an i.i.d. process. We write for its first-order marginal,
so that , for . Similarly, we write for
the first-order marginal of . Let

(7)

(8)

[Recall that the essential infimum of a function of
the random variable with distribution is defined as

.]
Clearly, . To avoid the trivial case when

is essentially constant for (-almost) all , we as-
sume that with positive -probability is not essentially
constant in , that is,

(9)

Note also that for greater than , the probability
as (this is easy to see by the er-

godic theorem), so we restrict our attention to distortion levels
.

Theorem 1: Generalized AEP when is i.i.d.: Let be a
stationary-ergodic process andbe i.i.d. with marginal distri-
bution on . Assume that is finite.
Then for any

w.p.

The rate-function is defined as

where denotes the relative entropy between two dis-
tributions and

if the density exists
otherwise

and the infimum is taken over all joint distributions on
such that the first marginal of is and .

Note that Theorem 1, as well as most of our subsequent re-
sults, is only stated for distortion levelsthat arestrictlygreater
than . This means that, despite the fact that we think of
Theorem 1 as a generalization of the AEP in the lossless case,
here the lossless case (corresponding to ) is
excluded. There are two reasons for this. First, the large devi-
ations techniques used to prove many of our main results do
not immediately yield any information on what happens at the
boundary point . And second, the results themselves
do not always remain valid in that case; for example, although

is finite for all , it may be infinite at
as Example 1 illustrates. A more dramatic difference
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between the lossless and lossy case is the re-
sult of Theorem 15, where the term disappears in
the lossless case.

Example 1: The rate-function when is
Gaussian: Although in general the rate-function
cannot be evaluated explicitly, here we show that it is possible
to obtain an exact expression for in the special
case when , is a real-valued process,
and is a Gaussian measure on. Specifically, assume
that is a zero-mean, stationary-ergodic process with finite
variance , and take to be a zero-mean
Gaussian measure with variance, i.e., .
Under these assumptions, it is easy to see that and

. Moreover, with the help of Theorem 2 that
follows, can be explicitly evaluated as

where

We will come back to this example when considering mis-
matched rate-distortion codebooks in Section III-B.

Remark 1: In more familiar information-theoretic terms, the
rate-function can equivalently be defined as (cf.
[88])

where denotes the mutual information (in nats) be-
tween the random variables and , and the infimum is over
all jointly distributed random variables with values in

such that has distribution , , and
denotes the distribution of .

Remark 2: The assumption that is i.i.d. is clearly restric-
tive and it will be relaxed below. On the other hand, the assump-
tions on the distortion measureseem to be minimal; we simply
assume that has finite expectation (in the more general results
below is assumed to be bounded). In this form, the result of
Theorem 1 is new.

Proof Outline: As discussed in the Introduction, The-
orem 1 will be proved by an application of the Gärtner–Ellis
theorem from large deviations; see [29, Theorem 2.3.6]. Choose
and fix a realization of and define the random variables

. Let

and define the log-moment generating functions of the normal-
ized partial sums by

Then for any , by the ergodic theorem we have that

(10)

for -almost any realization . Now we would like to apply
the Gärtner–Ellis theorem, but first we need to check some
simple properties of the function . Note that
and also (by Jensen’s inequality) , for all

. Moreover, is twice differentiable in with

and

(this differentiability is easily verified by an application of the
dominated convergence theorem). By the Cauchy–Schwarz in-
equality for all , and in fact is strictly
positive due to assumption (9). Also it is not hard to verify that

and

(11)

Since , there exists a unique with
, and, therefore, the Fenchel–Legendre transform

of evaluated at is

Now we can apply the Gärtner–Ellis theorem [29, The-
orem 2.3.6] to deduce from (10) that with-probability one

The proof is complete upon noticing that is nothing
but . This is stated and proved in the following
theorem.

Theorem 2—Characterization of the Rate Function:In the
notation of the proof of Theorem 1,

for

Proof Outline: Under additional assumptions on the dis-
tortion measure this has appeared in various papers (see, e.g.,
[27], [90]). For completeness, we offer a proof sketch here.

In the notation of the above proof, consider the measure
on defined by
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Obviously, the first marginal of is and it is easy to check
that . Therefore, by the defini-
tions of and , and by the choice of

(12)

To prove the corresponding lower bound we first claim that for
any measurable function , and any probability
measure on

(13)

Let denote the probability measure on such that
. Clearly, it suffices to prove (13) in

case exists, in which case the difference between the
left- and right-hand sides is

Given an arbitrary candidate as in the definition of
and any , we take and

in (13) to get that

Substituting for , taking expectations of both sides with re-
spect to , and recalling that and ,
we get

Since was arbitrary, it follows that ,
and together with (12) this completes the proof.

C. Generalized AEP When Is Not i.i.d.

Next we present two versions of the generalized AEP that
hold when is a stationary dependent process, under some ad-
ditional conditions.

Throughout this section we will assume that the distortion
measure isessentially bounded, i.e.,

(14)

We let be defined as earlier, ,
and for we let

It is easy to see that is a finite, superadditive sequence,
and therefore we can also define

As before, we will assume that the distortion measureis not
essentially constant, that is, .

We first state a version of the generalized AEP that was re-
cently proved by Chi [20], for processessatisfying a rather

strong mixing condition. We say that the stationary process
is -mixing, if for all large enough there is a finite constant

such that

for all events and , where
denotes the -field generated by . Recall the usual defini-
tion according to which is called -mixing if in fact the con-
stants as ; see [12] for more details. Clearly,

-mixing is weaker than -mixing.

Theorem 3—Generalized AEP Whenis -Mixing [20]:
Let and be stationary-ergodic processes. Assume that
is -mixing, and that the distortion measureis essentially
bounded, . Then for all

w.p. (15)

where is the rate-function defined by

(16)

where, for

and the infimum is taken over all joint distributions on
such that the -marginal of is and

As we discussed in the previous section, the proof of most
versions of the generalized AEP consists of two steps. First, a
“conditional large deviations” result is proved for the random
variables , where is a fixed realiza-
tion of the process . Second, the rate-function
is characterized as the limit of a sequence of minimizations in
terms of relative entropy.

In a subsequent paper, Chi [21] showed that the first of these
steps (the large deviations part) remains valid under a condi-
tion weaker than -mixing, condition of [15]. In the fol-
lowing theorem, we give a general version of the second step;
we prove that the generalized AEP (15) and the formula (16)
for the rate-function remain valid as long as the random vari-
ables satisfy a large deviations principle
(LDP) with somedeterministic, convex rate-function (see [29]
for the precise meaning of this statement).

Theorem 4: Let and be stationary processes. Assume
that is essentially bounded, i.e., , and that with

-probability one, conditional on , the random vari-
ables satisfy a large deviations principle
with some deterministic, convex rate-function. Then, both (15)
and (16) hold for any , except possibly at the
point , where

(17)
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Since Theorem 4 has an exact analog in the case of random
fields, we postpone its proof until the proof of the corresponding
result (Theorem 25) in Section VI.

As will be seen in the proof, the rate-function
for and it is finite for . Recall that,

similarly, each is finite when , but
without additional assumptions onit is now possible that there
are distortion values such that for
all , but . Note that this difficulty was not
present in Theorem 3, where the mixing property ofwas used
to show that indeed .

Remark 3: Suppose that the joint process is sta-
tionary, and that it satisfies a “process-level large deviations
principle” (see Remark 6 in Section VI for a somewhat more
detailed statement) on the space of stationary probability
measures on equipped with the topology of weak
convergence. Assume, moreover, that this LDP holds with
a convex, good rate-function . (See [26], [30, Sec. 5.3,
5.4], [29, Sec. 6.5.3], [15] for a general discussion as well as
specific examples of processes for which the above conditions
hold. Apart from the i.i.d. case, these examples also include all
ergodic finite-state Markov chains, among many others.)

It is easy to check that, whenis bounded and continuous
on , then with -probability one, conditional on , the
random variables satisfy the LDP upper bound
with respect to the deterministic, convex rate-function

, where the infimum is over all stationary probability
measures on such that the -marginal of is
and . Indeed, Comets [23] provides such an
argument when and are both i.i.d. Moreover, he shows that
in that case, the corresponding LDP lower bound also holds, and
hence Theorem 4 applies. Unfortunately, the conditional LDP
lower bound has to be verified on a case-by-case basis.

Remark 4: Although quite strong, the -mixing condition
of Theorem 3, and the -mixing condition of [21], probably
cannot be significantly relaxed. For example, in the special case
when is a constant process taking on just a single value,
if Theorem 3 were to hold (for any bounded distortion mea-
sure) with a strictly monotone rate-function, then necessarily the
empirical measures of would satisfy the LDP in the space

(see [15] for details). But [15, Example 1] illustrates that
this LDP may fail even when is a stationary-ergodic Markov
chain with discrete alphabet. In particular, the example in [15]
has an exponential-mixing rate.

D. Generalized AEP for Optimal Lossy Compression

Here we present a version of the generalized AEP that is
useful in proving direct coding theorems. Letbe a stationary-
ergodic process. For the distortion measurewe adopt two
simple regularity conditions. We assume the existence of aref-
erence letter, i.e., an such that

Also, following [48], we require that for any distortion level
there is a scalar quantizer for with finite rate.

Quantization Condition:For each , there is a “quan-
tizer” for some countable (finite or infinite) subset

, such that

i) for all ;

ii) the entropy .

The following was implicitly proved in [48]; see also [56] for
details.

Theorem 5—Generalized AEP for Optimal Lossy Compres-
sion [48]: Let be a stationary-ergodic process. Assume that
the distortion measuresatisfies the quantization condition, that
a reference letter exists, and that for each the infimum of

over all probability measures on is achieved by some
. Then for any

w.p. (18)

where is the rate-distortion function of the process.

Historical Remarks:The relevance of the quantities
to information theory was first sug-

gested implicitly by Kieffer [48] and more explicitly by Łuczak
and Szpankowski [60]. Since then, many papers have appeared
proving the generalized AEP under different conditions; we
mention here a subset of those proving some of the more
general results. The case of finite alphabet processes was
considered by Yang and Kieffer [88]. The generalized AEP
for processes with general alphabets andi.i.d. was proved
by Dembo and Kontoyiannis [27] and by Yang and Zhang
[90]. Finally, the case when is not i.i.d. was (Theorem 3)
treated by Chi [20], [21]. The observations of Theorem 4 about
the rate-function are new. Theorem 5 essentially
comes from Kieffer’s work [48]; see also [56]. A different
version of the generalized AEP (based on fixed-composition
codebooks) was recently utilized in [96] in the context of
adaptive lossy compression. We should also mention that, in a
somewhat different context, the intimate relationship between
the AEP and large deviations is discussed in some detail by
Orey in [67].

E. Densities Versus Balls

Let us recall the classical generalization of the AEP, due to
Barron [6] and Orey [66], to processes with values in general
alphabets. Suppose as above is a general stationary-ergodic
process with marginals that are absolutely continuous
with respect to the sequence of measures .

Theorem 6—AEP for Processes With Densities [6], [66]:Let
be a stationary-ergodic process whose marginalshave

densities with respect to the -finite measures
, . Assume that the sequenceof dominating mea-

sures is Markov of finite order, with a stationary transition mea-
sure, and that the relative entropies
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have eventually. Then

w.p. (19)

where is the relative entropy rate defined as

The AEP for processes with densities is also know to hold
when the reference measures do not form a Markov
sequence, under some additional mixing conditions (see [66],
where are taken to be non-Markov measures satisfying an
additional mixing condition, and the more recent extension in
[18] where the are taken to be discrete Gibbs measures).
Moreover, Kieffer [46], [47] has given counterexamples illus-
trating that without some mixing conditions on the AEP
(19) fails to hold.

There is a tempting analogy between the generalized AEP
(15) and the AEP for processes with densities (19). The formal
similarity between the two suggests that, if we identify the mea-
sures with the reference measures , corresponding re-
sults should hold in the two cases. Indeed, this does in general
appear to be the case, as is illustrated by the various general-
ized AEPs stated above. Moreover, we can interpret the result
of Theorem 5 as the natural analog of the classical discrete AEP
(6) to the case of lossy data compression. As we argued in the
Introduction, the generalized AEPs of the previous sections play
analogous roles in the proofs of the corresponding direct coding
theorems.

Taking this analogy further indicates that there might be a re-
lationship between these two different generalizations. In par-
ticular, when is large and the distortion level is small, the
following heuristic calculation seems compelling. Assuming for
a moment that and are the same

where holds in the limit as by Theorem 6, should
hold when is small by the assumption that has a density
with respect to , would follow in the limit as
by an application of the generalized AEP, and it is natural to
conjecture that holds in the limits as by reading the
above calculation backward.

We next formalize this heuristic argument in two special
cases. First, when is a discrete process taking values in a
finite alphabet, and second when is a continuous process
taking values in .

1) Discrete Case:Here we take to be a stationary-ergodic
process taking values in a finite alphabet, and to be i.i.d.

with first-order marginal distribution on the same al-
phabet . Similarly, we write for the first-order
marginal of . In Theorem 7, we justify the above calculation
by showing that the limits as and as can indeed
be taken together in any fashion. We show that the double limit
of the central expression

(20)

is equal to with probability , independently of how
grows and decreases to zero. Its proof is given in Appendix A.

Theorem 7—Densities Versus Balls in the Discrete Case:Let
be a stationary-ergodic process andbe i.i.d., both on the

finite alphabet . Assume that if and only if ,
and for all . Then the following double limit exists:

w.p. .

In particular, the repeated limit exists with proba-
bility one and is equal to .

2) Continuous Case:Here we state a weaker version of The-
orem 7 in the case when for some , and when

is an -valued, stationary-ergodic process. Suppose that the
marginals of are absolutely continuous with respect to
a sequence of reference measures . Throughout this sec-
tion we take the to be product measures for some
fixed Borel probability measure on . A typical example
to keep in mind is when a Gaussian measure onand
a real-valued stationary-ergodic process all of whose marginals

have continuous densities with respect to Lebesgue measure.
For simplicity, we take to be squared-error distortion

, although the proof of Theorem 8, given
in Appendix B, may easily be adapted to apply for somewhat
more general difference distortion measures.

Theorem 8—Densities Versus Balls in the Continuous Case:
Let be an -valued stationary-ergodic process, whose
marginals have densities with respect to a
sequence of product measures , , for a given
probability measure on . Let for any

.
a) The following repeated limit holds:

w.p. .

b) Assume, moreover, that is i.i.d. with marginal distribu-
tion on , and that the following conditions are
satisfied. Both and are
finite and nonzero, the expectation

is finite for all

and a exists for which

(21)
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Then, the reverse repeated limit also holds:

w.p. .

It is easy to check that all conditions of the theorem hold
when is a Gaussian measure onand has finite variance
and a probability density function (with respect to Lebesgue
measure) such that for some

. For example, this is the case when bothand are
Gaussian distributions on.

As will be seen from the proof of the theorem, although we
are primarily interested in the case when the relative entropy rate

is finite, the result remains true when ,
and in that case assumption (21) can be relaxed to

Finally, we note that, in the context of ergodic theory,
Feldman [34] developed a different version of the generalized
AEP, and also discussed the relationship between the two types
of asymptotics (as , and as ).

III. A PPLICATIONS OF THEGENERALIZED AEP

As outlined in the Introduction, the generalized AEP can
be applied to a number of problems in data compression and
pattern matching. Following along the lines of the corre-
sponding applications in the lossless case, in the following we
present applications of the results of the previous section to: 1)
Shannon’s random coding schemes; 2) mismatched codebooks
in lossy data compression; 3) waiting times between stationary
processes (corresponding to idealized Lempel–Ziv coding); 4)
practical lossy Lempel–Ziv coding for memoryless sources;
and 5) weighted codebooks in rate-distortion theory.

A. Shannon’s Random Codes

Shannon’s well-known construction of optimal codes for
lossy data compression is based on the idea of generating a
random codebook. We review here a slightly modified version
of his construction [75] and describe how the performance of
the resulting random code can be analyzed using the general-
ized AEP.

Given a sequence of probability distributions on ,
, we generate arandom codebook according to the measures

as an infinite sequence of i.i.d. random vectors

with each having distribution on . Suppose that,
for a fixed , this codebook is available to both the encoder
and decoder. Given a source string to be described with
distortion or less, the encoder looks for a-close match of

into the codebook . Let be the position
of the first such match

with the convention that the infimum of the empty set equals
. If a match is found, then the encoder describes to the de-

coder the position using Elias’ code for the integers [32]. This
takes no more than

const. bits (22)

If no match is found (something that asymptotically willnot
happen, with probability one), then the encoder describes
with distortion or less using some other default scheme.

Let denote the overall description length of the algo-
rithm just described. In view of (22), in order to understand its
compression performance, that is, to understand the asymptotic
behavior of , it suffices to understand the behavior of the
quantity

for large

Suppose that the probability of finding a -
close match for in the codebook is nonzero. Then, condi-
tional on the source string , the distribution of is geo-
metric with parameter . From this observation,
it is easy to deduce that the behavior ofis closely related to the
behavior of the quantity . The next theorem
is an easy consequence of this fact so it is stated here without
proof; see the corresponding arguments in [54], [56].

Theorem 9—Strong Approximation4 : Let be an arbitrary
process and let be a given sequence of codebook distribu-
tions. If eventually with probability one,
then for any

eventually, w.p.

and

eventually, w.p. .

The above estimates can now be combined with the results
of the generalized AEP in the previous section to determine the
performance of codes based on random codebooks with respect
to the “optimal” measures . To illustrate this approach, we
consider the special case of memoryless sources and finite re-
production alphabets, and show that the random code with re-
spect to (almost) any random codebook realization is asymp-
totically optimal, with probability one. Note that corresponding
results can be proved, in exactly the same way, under much more
general assumptions. For example, utilizing Theorem 5 instead
of Theorem 1 we can prove the analog of Theorem 10 below for
arbitrary stationary-ergodic sources.

Let be an i.i.d. source with marginal distribution
on , and take the reproduction alphabetto be finite. It

is assumed throughout this section thatis known to both
the encoder and the decoder (note that it is not necessarily as-
sumed to be the optimal reproduction alphabet). For simplicity,

4The name “strong approximation” comes from the probabilistic terminology
where the adjective “strong” often refers to asymptotic results with probability
one (such as the strong law of large numbers), as opposed to results about con-
vergence in probability or in distribution.
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we will assume that the distortion measureis bounded, i.e.,
, and we also make the customary assump-

tion that

(23)

[See the remark at the end of Section V-A1 for a discussion of
this condition and when it can be relaxed.] As usual, we define
the rate-distortion function of the memoryless sourceby

where the infimum is over all jointly distributed random vari-
ables with values in , such that has distribution

and . Let

(24)

and note that for . To avoid the trivial
case when for all , we assume that and
we restrict our attention to the interesting range of values

. Recall [90], [54] that for any such , can alter-
natively be written as

where the infimum is over all probability distributionson .
Since we take to be finite, this infimum is always achieved
(see [54]) by a probability distribution , although
may not be unique. To avoid cumbersome notation in the state-
ments of the coding theorems given next and also in later parts
of the paper, we also write for the rate-distortion function
of the source expressed inbits rather than in nats

Finally, we write for the product measures and, al-
though as mentioned may not be unique, with a slight abuse
of terminology we call theoptimal reproduction distribu-
tions at distortion level .

Combining Theorem 9 with the generalized AEP of Theorem
1 implies the following strengthened direct coding theorem.

Theorem 10—Pointwise Coding Theorem for i.i.d. Sources
[54]: Let be an i.i.d. source with distribution on , and
let denote the optimal reproduction distributions at distor-
tion level . Then the codes based on almost any
realization of the Shannon random codebooks according to the
measures have code lengths satisfying

bits per symbol, w.p. .

A simple modification of the above scheme can be used to
obtainuniversalcodebooks that achieve optimal compression
for any memoryless source. When the source distribution is not
known so that we have no way of knowinga priori the optimal
reproduction distribution , we generatemultiple codebooks

according to an asymptotically dense set of probability mea-
sures. Specifically, given a fixed block length, we consider the
collection of all -types on , namely, all distributions of the
form , , for . Instead of generating
a single random codebook according to the optimal distribution

, we generate a different codebook for each product measure
corresponding to an-type on . Then we (as the en-

coder) adopt a greedy coding strategy. We find the first-close
match for in each of the codebooks, and pick the one in
which the match appears the earliest. To describeto the de-
coder with distortion or less we then describe two things:
a) the index of the codebook in which the earliest match was
found, and b) the position of this earliest match. Since there
are at most polynomially many-types (cf. [25], [24]), the rate
of the description of a) is asymptotically negligible. Moreover,
since the set of -types is asymptotically dense among proba-
bility measures on , we eventually do as well as if we were
using the optimum codebook distribution .

Theorem 11—Pointwise Universal Coding Theorem
[54]: Let be an arbitrary i.i.d. source with distribution
on , let be the rate-distortion function of this source
at distortion level , and let denote its
rate-distortion function in bits. The codes based on almost any
realization of the universal Shannon random codebooks have
code lengths satisfying

bits per symbol, w.p. .

B. Mismatched Codebooks

In the preceding subsection we described how, for memory-
less sources, the Shannon random codebooks with respect to
the optimal reproduction distributions can be used to achieve
asymptotically optimal compression performance. In this sub-
section, we briefly consider the question of determining the rate
achieved when an arbitrary (stationary-ergodic) sourceis en-
coded using a random codebook according to the i.i.d. distribu-
tions for an arbitrary distribution on . For further dis-
cussion of the problem of mismatched codebooks see [72], [73],
[58], [43], [44], and the references therein. Also see [94] for an
application of the generalized AEP to a different version of the
mismatched-codebooks problem.

The following theorem is an immediate consequence of com-
bining Theorem 1 with Theorem 9 and the discussion in Sec-
tion III-A (see also Example 1 in Section II-B).

Theorem 12—Mismatched Coding Rate:Let be a sta-
tionary-ergodic process with marginal distribution on

, let be an arbitrary distribution on, and define and
as in Section II-B.

a) Arbitrary i.i.d. Codebooks:For any distortion level
, the codes based on almost any realization

of the Shannon random codebooks according to the mea-
sures have code lengths satisfying

bits per symbol, w.p. .
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b) i.i.d. Gaussian Codebooks:Suppose
and is a real-valued process with finite variance

. Let be the distribution on . Then
for any distortion level , the codes based
on almost any realization of the Gaussian codebooks ac-
cording to the measures have code lengths
satisfying

bits per symbol, w.p.

where

Lossless Versus Lossy Mismatch:Recall that, in the case of
lossless data compression, if instead of the true source distribu-
tion a different coding distribution is used, then the code-
rate achieved is

(25)

Similarly, in the current setting of lossy data compression, if
instead of the optimal reproduction distribution we use
a different codebook distribution , the rate we achieve is

. An upper bound for is obtained by
taking in the expression of Remark 1 to be the jointly
distributed random variables that achieve the infimum in the
definition of the rate-distortion function of . Then the (mis-
matched) rate of the random code based oninstead of is

(26)

Equations (25) and (26) illustrate the analogy between the
penalty terms in the lossless and lossy case due to mismatch.

Next we discuss two special cases of part b) of the theorem
that are of particular interest.

Example 2—Gaussian Codebook With Mismatched Distribu-
tion: Consider the following coding scenario. We want to en-
code data generated by an i.i.d. Gaussian process with
distribution, with squared-error distortionor less. In this case,
it is well known [9], [24] that for any the optimal
reproduction distribution is the distribution,
so we construct random codebooks according to the i.i.d. distri-
butions .

But suppose that, instead of an i.i.d. Gaussian, the source
turns out to be some arbitrary stationary-ergodicwith zero
mean and variance . Theorem 12 b) implies that the asymp-
totic rate achieved by our i.i.d. Gaussian codebook is equal to

bits per symbol.

Since this is exactly the rate-distortion function of the i.i.d.
source, we conclude that the rate achieved is the

same as what we would have obtained on the Gaussian source
we originally expected. This offers yet another justification of
the folk theorem that the Gaussian source is the hardest one to

compress, among sources with a fixed variance. In fact, the above
result is a natural fixed-distortion analog of [58, Theorem 3].

Example 3—Gaussian Codebook With Mismatched Vari-
ance: Here we consider a different type of mismatch. As before,
we are prepared to encode an i.i.d. Gaussian source, but we have
an incorrect estimate of its variance, sayinstead of the true
variance . So we are using a random codebook with respect
to the optimal reproduction distribution , where

is the distribution, but the actual source is
i.i.d. . In this case, the rate achieved by the random
codebooks according to the distributions is given by the
expression in Theorem 12 b), with replaced by . Al-
though the resulting expression is somewhat long and not easy to
manipulate analytically, it is straightforward to evaluate numer-
ically. For example, Fig. 1 shows the asymptotic rate achieved,
as a function of the error in the estimate of the
true variance. As expected, the best rate is achieved when the
codebook distribution is matched to the source (corresponding
to ), and it is equal to the rate- distortion function of the
source. Moreover, as one might expect, it is more harmful to
underestimate the variance than to overestimate it.

C. Waiting Times and Idealized Lempel–Ziv Coding

Given and two independent realizations from the sta-
tionary-ergodic processes and , our main quantity of in-
terest here is thewaiting time until a -close
version of the initial string first appears in . Formally

(27)

with the convention, as before, that the infimum of the empty
set equals .

The motivation for studying the asymptotic behavior of
for large is twofold.

Idealized Lempel–Ziv Coding:The natural extension of the
idealized scenario described in the Introduction is to consider a
message that is to be encoded with the help of a database

. The source and the database are assumed to be indepen-
dent, and the database distribution may or may not be the same
as that of the source. In order to communicate to the de-
coder with distortion or less, the encoder simply describes

, using no more than

bits.

Therefore, the asymptotic performance of this idealized scheme
can be completely understood in terms of the asymptotic of

, for large .
DNA Pattern Matching:Here we imagine that represents

a DNA or protein “template,” and we want to see whether it ap-
pears, either exactly or approximately, as a contiguous substring
of a database DNA sequence . We are interested in quanti-
fying the “degree of surprise” in the fact that a-close match
was found at position . Specifically, was the match found
“atypically” early, or is the value of consistent with the hy-
pothesis that the template and the database are independent? For
a detailed discussion, see, e.g., [29, Sec. 3.2], [45], [3], [2], [4],
and the references therein.
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Fig. 1. This graph shows the rate achieved by an i.i.d. Gaussian codebook of variance�̂ �D when applied to i.i.d.N(0; � ) data. The rate is shown as a function
of the errore = � � �̂ in the variance estimate. In this particular example,� = 2, D = 1, the errore ranges from�1=2 to 1=2, and the rate-distortion
function of the source equals 0.5 bit/symbol.

If for a moment we consider the case when bothand
are i.i.d., we see that the waiting time is, at least intuitively,
closely related to the index of Section III-A. As the following
result shows, although the distribution of is not exactly geo-
metric, behaves very much like , at least in the exponent.
That is, the difference

is “small,” eventually with probability one.
Recall the definition of -mixing from Section II-C, and also

the definition of the -mixing coefficients of

where, as before, denotes the -field generated by .
The process is called -mixing if as ; see
[12] for an extensive discussion of-mixing and related mixing
conditions.

Theorem 13—Strong Approximation [51], [27]:Let and
be stationary-ergodic processes, and assume thatis either

-mixing or -mixing with summable -mixing coefficients,
. If eventually with

probability one, then for any

eventually, w.p. .

Theorem 13, of course, implies that

w.p. (28)

and combining this with the generalized AEP statements of
Theorems 1 and 4 we immediately obtain the first-order (or
strong-law-of-large-numbers, SLLN) asymptotic behavior of
the waiting times :

Theorem 14—SLLN for Waiting Times:Let and be sta-
tionary-ergodic processes.

a) If is i.i.d. and the average distortion is finite, then
for any

w.p. . (29)

b) If is -mixing and the distortion measureis es-
sentially bounded, i.e., , then for any

w.p. . (30)

Note that similar results can be obtained under different as-
sumptions on the process, using Theorems 3 and 5 in place
of Theorems 1 and 4 as done above. Whenis taken to be an
arbitrary stationary-ergodic process, it is natural to expect that
the mixing conditions for in Theorem 14 b) cannot be sub-
stantially relaxed. In fact, even in the case of exact matching
between finite-alphabet processes, Shields [76] has produced a
counterexample demonstrating that the analog of Theorem 13
does not hold for arbitrary stationary-ergodic.

Historical Remarks:Waiting times in the context of lossy
data compression were studied by Steinberg and Gutman [77]
and Łuczak and Szpankowski [60]. Yang and Kieffer [88] identi-
fied the limiting rate-function for a wide range of finite alphabet
sources, and Dembo and Kontoyiannis [27] and Chi [20] gener-
alized these results to processes with general alphabets.
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The strong approximation idea was introduced in [51] in
the case of exact matching. For processeswith summable

-mixing coefficients, Theorem 13 was proved in [27], and
when is -mixing it was proved, for the case of no distortion,
in [51]. Examining the latter proof, Chi [20] observed that it
immediately generalizes to the statement of Theorem 13.

Related results were obtained by Kanaya and Muramatsu
[42], who extended some of the results of [77] to processes
with general alphabets, and by Koga and Arimoto [49] who
considerednonoverlappingwaiting times between finite-al-
phabet processes and Gaussian processes. Finally, Shields
[76] and Marton and Shields [61] considered waiting times
with respect to Hamming distortion and for and having
the same distribution over a finite alphabet. For the case of
small distortion they showed, under some conditions, that
approximate matching results like (29) and (30) reduce to their
natural exact matching analogs as .

D. Match Lengths and Practical Lempel–Ziv Coding

In the idealized coding scenario of the preceding subsection,
we considered the case where a fixed-length messageis to
be compressed using an infinitely long database. But, in
practice, the reverse situation is much more common. We typ-
ically have a “long” message to be compressed,
and only a finite-length database is available to the encoder
and decoder. It is therefore natural (following the corresponding
development in the case of lossless compression) to try and
match “as much as possible” from the message
into the database . With this in mind we define thematch-
length as the length of the longest prefix that matches
somewhere in the database with distortionor less

for some (31)

Intuitively, there is a connection between match lengths and
waiting times. Long matches should mean short waiting times,
andvice versa. In the case of exact matching, this connection
was precisely formalized by Wyner and Ziv [84], who observed
that the following “duality” relationship always holds:

(32)

This is almost identical to the standard relationship in renewal
theory between the number of events by a certain time and the
time of the th event (see, e.g., [35]). Wyner and Ziv [84] uti-
lized (32) to translate their first-order asymptotic results about

to corresponding results about .
Unfortunately, this simple relationship no longer holds in the

case ofapproximatematching, when a distortion measure is in-
troduced. Instead, the following modified duality was observed
in [60] and employed in [27] to obtain corresponding results in
approximate matching and lossy data compression:

and (33)

In [27], it is shown that (33) can be used to deduce the asymptotic
behavior of from that of , but this translation is not
straightforward anymore. In fact, as we discuss in Section V-B,
a more delicate analysis is needed in this case. Nevertheless,

once the behavior of the waiting times is understood, the first
implication in (33) immediately yields asymptoticlower bounds
on the behavior of the match lengths. This is significant for
data compression since long match lengths usually mean good
compression performance. Indeed, this observation allowed
Kontoyiannis [53] to introduce a new lossy version of the
Lempel–Ziv algorithm that achieves asymptotically optimal
compression performance for memoryless sources. The key
characteristics of the algorithm are that it has polynomial
implementation complexity, while at the same time it achieves
redundancy comparable to that of its lossless counterpart, the
FDLZ [85]. Note that the main issue of practical interest here
is not simply the encoding complexity, but rather the tradeoff
between complexity and redundancy. For example, the encoding
complexity can be made arbitrarily small by using a very slowly
growing (yet asymptotically dense) set of database distributions,
but in that case, the redundancy rate of the algorithm would also
be extremely slow.

In terms of practical algorithms, the utility of pattern-
matching-base methods has been extensively studied; see
[5], [1], and the references therein. A different approach to
using pattern matching for adaptive lossy compression was
introduced in [95], [96].

We also mention that, before [53], several practical (yet sub-
optimal) lossy versions of the Lempel–Ziv algorithm were intro-
duced, perhaps most notably by Steinberg and Gutman [77] and
Łuczak and Szpankowski [60]. Roughly speaking, the reason for
their suboptimal compression performance was that the coding
was done with respect to a database that had the same distri-
bution as the source. In view of the discussion in the previous
section, it is clear that the asymptotic code-rate of these algo-
rithms is , which is typically significantly larger
than the optimal ; see [88] or [53]
for more detailed discussions.

E. Sphere-Covering and Weighted Codebooks

Finally, we briefly describe a related question that was re-
cently considered in [55]. In the classical rate-distortion prob-
lem, one is interested in finding “efficient” codebooks for de-
scribing the output of some random source
to within some tolerable distortion level. In terms of data com-
pression, a codebook is efficient when it contains relatively few
codewords. Here, we are interested in the more general problem
of finding codebooks with small “mass.” Let
be an arbitrary nonnegative function assigning mass
to subsets of

The question of interest can be stated as follows. Letbe
a subset (we think of as the codebook) that nearly

-covers all of , i.e., with high probability, every string
generated by the source will match at least one element of
with distortion or less

there is an such that
(34)

If (34) holds, how small can the mass of be?
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This question is motivated, in part, by the fact that a number of
important statistical problems can be restated in this framework.
For example, taking identically equal to one, this problem
reduces to the rate-distortion question. Takingto be a dif-
ferent probability measure, it reduces to the classical hypoth-
esis testing question, whereas (the source distribution)
yields “converses” to some measure-concentration inequalities.

A precise answer to this question is offered in [55], where
a single-letter characterization is given for the best achievable
exponential rate at which can grow, among all code-
books satisfying (34). With different choices for and the
distortion measure on , this result gives various corollaries
as special cases, including the classical rate-distortion theorem,
Stein’s lemma in hypothesis testing, and a new converse to some
measure-concentration inequalities on discrete spaces.

Once again, the main ingredient in the proof of the corre-
sponding direct coding theorem in [55] is provided by yet an-
other version of the generalized AEP.

IV. REFINEMENTS OF THEGENERALIZED AEP

As we saw in Section III, the generalized AEP can be used
to determine the first-order asymptotic behavior of a number
of interesting objects arising in applications. For example, the
generalized AEP of Theorem 1

w.p.

immediately translated (via the strong approximation of The-
orem 13) to an SLLN result for the waiting times

w.p. .

In this section, we will prove refinements to the generalized
AEP of Section II-B, and in Section V we will revisit the ap-
plications of the previous section and use these refinements to
prove corresponding second-order asymptotic results.

To get some motivation, let us consider for a moment the
simplest version of the classical AEP, for an i.i.d. processwith
distribution on the finite alphabet . The AEP here follows
by a simple application of the law of large numbers

(35)

where is the entropy of . But (35) contains more informa-
tion than that: it says that is, in fact, equal to
the partial sum of the i.i.d. random variables

. Therefore, we can apply the central limit
theorem (CLT) or the law of the iterated logarithm (LIL) to get
more precise information on the convergence of the AEP.

The same strategy can be carried out for non-i.i.d. pro-
cesses. Initially, Ibragimov [40] and then Philipp and Stout
[71] showed that even when is a Markov chain, or, more
generally, a weakly dependent random process, the quantities

can be approximated by the partial sums of
an associated weakly dependent process. These results have
found a number of applications in lossless data compression
and related areas [51], [50].

In this and the following sections, we will carry out a
similar program in the lossy case. The main idea will be to
show that, in analogy with the lossless case, the quantities

are asymptotically close to the partial
sums of a function of the , i.e.,

See Corollary 17 for the precise statement.
Throughout this section, we will adopt the notation and

assumptions of Section II-B. Let be a stationary-ergodic
process with first-order marginal on , and let be an
arbitrary probability measure on. Define and , as
before (as in (7) and (8)), and assume that so that
the distortion measure is not essentially constant in
with positive probability. We also impose here the additional
assumption that has a finite third moment

(36)

The first result of this section refines Theorem 1 by giving a
more precise asymptotic estimate of the quantity

in terms of the rate-function and the empirical
measure induced by on

where denotes the measure assigning unit mass to .

Theorem 15 [90]: Let be a stationary-ergodic process
with marginal on , and let be an arbitrary probability
measure on . Assume that is finite.
Then, for any

w.p. . (37)

Next we show that the most significant term in (37) can be
approximated by the partial sum of a weakly dependent random
process. Recall the definition of the-mixing coefficients of

where is the -field generated by . The process
is called -mixing if as ; see [12] for more
details.

We also need to recall some of the notation from the proof of
Theorem 1 in Section II-B. For and , let
denote the log-moment generating function of the random vari-
able

and note that the function defined in (10) can be
written as . Also, recall that for any
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there exists a unique such that
.

Theorem 16 [27]: Let be a stationary -mixing process
with marginal on , and let be an arbitrary probability mea-
sure on . Assume that the -mixing coefficients of satisfy

for some (38)

and that

is finite. Then for any

w.p.

where

(39)

Theorem 16 is a small generalization of [27, Theorem 3]. Be-
fore giving its proof outline, we combine Theorems 15 and 16
to show that, as promised, can be accu-
rately approximated as the partial sum of the weakly dependent
random process .

Corollary 17—Second-Order Generalized AEP:Let be
a stationary -mixing process with marginal on , and let

be an arbitrary probability measure on. Assume that the
-mixing coefficients of satisfy (38) and that

is finite. Then for any , and with defined
as in (39)

w.p. .

Proof Outline for Theorem 16:Adapting the argument
leading from [27, eqs. (22)–(24)], one easily checks that the
result of Theorem 16 holds as soon as

w.p. (40)

and

w.p. (41)

where is the empirical mean of the centered
random variables , and is the empir-
ical mean of the nonnegative random variables .
By the ergodic theorem we have, with probability one

and by Fatou’s lemma and the continuity of the map
it follows that

This implies that (40) holds once is made small enough.
(Note that the above argument also avoids an incorrect—but also
unnecessary—application of the uniform ergodic theorem in the
derivation of [27, eq. (26)].)

Turning to (41), since , it follows by the convexity of
that for any

Consequently, Hölder’s inequality and assumption (36) imply
that the random variable

has a finite third moment. Recall [64] that the LIL holds for the
partial sum of a zero-mean, stationary process with a
finite third moment, as soon as the-mixing coefficients of
satisfy (38). The observation that is a deterministic function
of for all completes the proof.

V. APPLICATIONS: SECOND-ORDER RESULTS

Here we revisit the applications considered in Section III, and
using the “second-order generalized AEP” of Corollary 17 we
prove second-order refinements for many of the results from
Section III. In Section V-A, we consider the problem of lossy
data compression in the same setting as in Section III-A. We use
the second-order AEP to determine the precise asymptotic be-
havior of the Shannon random codebooks, and show that, with
probability one, they achieve optimal compression performance
up to terms of order bits. Moreover, essentially the same
compression performance can be achieved universally. For ar-
bitrary variable-length codes operating at a fixed rate level, we
show that the rate at which they can achieve the optimal rate
of bits is at best of order bits. This is the best
possible redundancy rate as long as the “minimal coding vari-
ance” of the source is strictly positive. For discrete i.i.d. sources,
a characterization is given of when this variance can be zero.

In Section V-B, we look at waiting times, and we prove a
second-order refinement to Theorem 14, and in Section V-C, we
consider the problem of determining the asymptotic behavior
of longest match lengths. As discussed briefly in Section III-D,
their asymptotic can be deduced from the corresponding
waiting-times results via duality.

A. Lossy Data Compression

1) Random Codes and Second-Order Converses:Here we
consider the exact same setup as in Section III-A. An i.i.d.
source with distribution on is to be compressed with
distortion or less with respect to a bounded distortion mea-
sure , satisfying, as before, the usual assumption (23)—see
the remark at the end of this section for its implications. We
take the reproduction alphabet to be finite, define as in
(24), and assume that .
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For , let , , denote the optimal reproduc-
tion distributions at distortion level . Combining the strong ap-
proximation Theorem 9 with the second-order generalized AEP
of Corollary 17 and the discussion in Section III-A yields the
following.

Theorem 18—Pointwise Redundancy for i.i.d. Sources [54]:
Suppose is an i.i.d. source with distribution on , and with
rate-distortion function (in bits). Let denote the op-
timal reproduction distributions at distortion level ,
and define the function , , with
defined as in (39). Then we get the following.

a) The codes based on almost any realization of the Shannon
random codebooks according to the measures have
code lengths satisfying

bits,

eventually, w.p. .

b) The codes based on almost any realization of the universal
Shannon random codebooks have code-lengths
satisfying

bits

eventually, w.p. .

We remark that the coefficients of the terms in a) and
b) are not the best possible, and can be significantly improved;
see [56] for more details.

Perhaps somewhat surprisingly, it turns out that the perfor-
mance of the above random codes is optimal up to terms of order

bits. Recall that acode operating at distortion level
is defined by a triplet where

a) is a subset of , called thecodebook;

b) is theencoder;

c) is a uniquely decodable map;

such that

for all

The code lengths achieved by such a code are simply

length of bits

Theorem 19—Pointwise Converse for i.i.d. Sources [54]:Let
be an i.i.d. source with distribution on , and let

be an arbitrary sequence of codes operating at distortion level
, with associated code lengths . Then

bits,

eventually, w.p.

where is defined as in Theorem 18.
The proof of Theorem 19 in [54] uses techniques quite dif-

ferent to those developed in this paper. In particular, the key step
in the proof is established by an application of the generalized
Kuhn–Tucker conditions of Bell and Cover [8].

Theorems 18 and 19 are next combined to yield “second-
order” refinements to Shannon’s classical source-coding the-
orem. For a source as in Theorem 19 and a ,
the minimal coding variance of source at
distortion level is

(42)

with as in Theorem 18.

Theorem 20—Second-Order Source-Coding Theorems [54]:
Let be an i.i.d. source with distribution on and with
rate-distortion function (in bits). For

(CLT ) There is a sequence of random variables
such that, for any sequence of codes

operating at distortion level , we have

bits,

eventually, w.p. (43)

and the converge in distribution to a Gaussian random
variable

where is the minimal coding variance.

(LIL ) With as above, for any sequence of codes
operating at distortion level

w.p.

w.p. .

Moreover, there exist codes operating at
distortion level , that asymptotically achieve equality
universallyin all these lower bounds.

Remark on Assumption (23):When the distortion measure
does not satisfy assumption (23) [as, for example, when

with and a finite subset of ],
we can modify to

with , so that satisfies (23). Then,
to generate codes operating at distortion levelwith respect
to , we can construct random codebooks for as before but do
the encoding with respect to at therandomdistortion
level . It is not hard to check that [27,
Theorem 2] can be extended to apply whenis replaced by the
sequence . Since as , this
results with the first-order approximation

Simple algebra then shows that

implying that all the results of Section V-A1 remain valid [de-
spite the fact that does not satisfy (23)], with the function
taken in terms of the log-moment generating function
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of theoriginal distortion measure (and not that of the modi-
fied ).

2) Critical Behavior: In view of Theorems 18 and 19 above,
the code lengths of the best code operating at distortion
level have

bits

This reveals an interesting dichotomy in the behavior of the
“pointwise” redundancy of the best code:

• either the minimal coding variance (recall (42)) is
nonzero, in which case the best rate at which optimality
can be achieved is of order bits by the CLT;

• or , and the best redundancy rate is of order
bits (cf. [97]).

Under certain conditions, in this section we give a precise
characterization of when each of these two cases can occur.
Before stating it, we briefly discuss two examples to gain some
intuition.

Example 4—Lossless Compression:Lossless data compres-
sion can be considered as an extreme case of lossy compres-
sion, where is an i.i.d. source with distribution on a finite
set , and the distortion level is set to zero. Here it
is well known that (ignoring the integer length constraints) the
best code is given by the idealized Shannon code

. In agreement with the upper and lower bounds
of Theorems 19 and 20, here it is trivial to see that the code
lengths of the Shannon code in fact satisfy

where is the entropy of in bits, and with

When is ? By its definition (42), is zero if and only if
the function is constant over, which, in this case, can only
happen if is constant over . Therefore, here
if and only if the source has a uniform distribution over.

Example 5—Binary Source With Hamming Distortion:Con-
sider the simplest nontrivial lossy example. Letbe an i.i.d.
source with Bernoulli distribution (for some ),
let , and take to be Hamming distortion:

. For , it is not hard to evaluate all
the relevant quantities explicitly (see, e.g., [9, Example 2.7.1] or
[24, Theorem 13.3.1]). In particular, the optimal reproduction
distribution is Bernoulli , with ,
and our function of interest is

Recalling that the minimal coding variance is zero if and only
if is constant, from the above expression we see that, sim-
ilarly to the previous example, also here if and only if
the source has a uniform distribution.

For discrete sources, the next result gives conditions under
which the characterization suggested by these two examples re-
mains valid. Suppose is a finite set,
write for , and assume thatis symmetric and that

if and only if . We call a permutation distortion
measure, if all rows of the matrix are permuta-
tions of one another.

Theorem 21—Variance Characterization [28]:Let be a
discrete source with distribution and rate-distortion function

. Assume that is strictly convex over . There
are exactly two possibilities:

a) either is only zero for finitely many
;

b) or for all , in which case
is the uniform distribution on and is a permutation

distortion measure.

A general discussion of this problem, including the case of
continuous sources, is given in [28]. Also, in the lossless case,
the problem of characterizing when for sources with
memory is dealt with in [50].

Before moving on to waiting times and match lengths we
mention that, in a somewhat similar vain, the problem of under-
standing the bestexpectedredundancy rate in lossy data com-
pression has also been recently considered in [97], [92], [89],
[41].

B. Waiting Times

Next we turn to waiting times. Recall that, given and
two independent realizations of the stationary ergodic processes

and , the waiting time was defined as the time of the
first appearance of in with distortion or less (see (27)
for the precise definition). In Theorem 14, we gave conditions
that identified the first-order limiting behavior of . In partic-
ular, when is i.i.d., it was shown in Theorem 14 a) that, for

w.p. 1 (44)

where and are the first-order marginals of and , re-
spectively.

The next result gives conditions under which the SLLN-type
statement of (44) can be refined to a CLT and a LIL.

Theorem 22—CLT and LIL for Waiting Times:Let be a
stationary -mixing process and be an i.i.d. process, with
marginal distributions and , on and , respectively. As-
sume that the -mixing coefficients of satisfy (38) and that

is finite. Then for any
the following series converges:

(45)

with defined as in (39), and, moreover

(CLT ) With
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(LIL ) The set of limit points of the sequence

coincides with , with probability one.
Proof Outline: For a bounded distortion measure, The-

orem 22 was proved in [27]. To obtain the more general state-
ment of the theorem, combine the strong approximation of The-
orem 13 with the second-order AEP in Corollary 17 to get

w.p. .

(46)
Since satisfies the mixing assumption (38), so does the
process . Also, since , the function
is bounded above by zero, and by Jensen’s inequality it is
bounded below by . Therefore,

and this, together with Hölder’s inequality and the definition of
, imply that . Therefore, we can apply

the CLT of [70, Theorem 1.7] to the process in order
to deduce the CLT part of the theorem from (46). Similarly,
applying the LIL of [64] to , from (46) we get the LIL
part of the theorem.

Remark 5: When the variance in (45) is positive, then the
functionalversions of the above CLT and LIL given in [27] still
hold, under exactly the conditions of Theorem 22. (This follows
by applying the functional CLT of [70, Theorem 1.7] and the
functional LIL of [65, Theorem 1 (IV)].)

C. Match Lengths and Duality

We turn to our last application, match lengths. Recall that,
given a distortion level and two independent realizations
of the processes and , the match length is defined as
the length of the longest prefix that appears (with distor-
tion or less) starting somewhere in the “database”. See
(31) for the precise definition. As we briefly mentioned in Sec-
tion III-D, there is a duality relationship between match lengths
and waiting times. Roughly speaking, long matches mean short
waiting times, andvice versa; see (33).

Although the relation (33) is not as simple as the duality (32)
for exact matching, it is still possible to use (33) to translate
the asymptotic results for to corresponding results for .
These are given in Theorem 23 below. This translation, carried
out in [27], is more delicate than in the case of exact matching.
For example, in order to prove the CLT for the match lengths

one invokes the functional CLT for the waiting times (see
Remark 5 and [27, proof of Theorem 4]).

Theorem 23—Match Lengths Asymptotic:Let be a sta-
tionary process and be an i.i.d. process, with marginal dis-
tributions and , on and , respectively. Assume that

is finite. Then for any
we have

w.p.

where . If, moreover, the -mixing coeffi-
cients of satisfy (38) and the variance in (45) is nonzero,
then, with , we have

w.p. .

The results of Theorem 23 were proved in [27] for any
bounded distortion measure. The slightly more general
version stated above is proved in exactly the same way, using
the results of Section IV in place of Theorems 2 and 3 of [27].

VI. RANDOM FIELDS: FIRST-ORDER RESULTS

This and the following sections are devoted to generalizations
of the results of Sections II–V to the case of random fields.
Specifically, the role of the processes and will now be
played by stationary ergodic random fields
and . As we will see, many of the problems
that we considered have natural analogs in this case, and the
overall theme carries over. The generalized AEP and its refine-
ment can be extended to random fields, and the corresponding
questions in data compression and pattern matching can be an-
swered following the same path as before.

A. Notation and Definitions

The following definitions and notation will remain in effect
throughout Sections VI and VII.

We consider two random fields

and

taking values in and , respectively, and indexed by points
on the integer lattice . As before,

and are complete, separable metric spaces, equipped with
their Borel -fields and , respectively. Let and denote
the (infinite-dimensional) measures of the entire random fields

and . Unless explicitly stated otherwise, we always assume
that and are independent of each other.

Throughout the rest of the paper we will assume thatand
are stationary and ergodic. To be precise, by that we mean that
the Abelian group of translations acts on both

and in a measure-preserving,
ergodic manner; see [57] for a detailed exposition.

For , the distance betweenand is defined by

and the distance between two subsets is

Given , we let

for all

where is empty in case for some .
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We write for the -dimensional cube of side

for all

and for the “infinite cube”

for all

For an arbitrary subset we let denote its size; for
example, . Also, for we write

so that, in particular

for all

For and we let denote the translate

For each , let denote the marginal distribution of
on , and similarly write for the distribution of

. Let be an arbitrary nonnegative
(measurable) function, and define a sequence of single-letter
distortion measures , by

Given and , we write for the
distortion-ball of radius

B. Generalized AEP

It is well known that the classical AEP

w.p.

generalizes to the case of finite-alphabet random fields on, as
well as to other amenable group actions [68]. In this subsection,
we give two versions of the generalized AEP of Theorems 1
and 4 to the case of random fields on.

is i.i.d. In the notation of Section VI-A, we take to
be a stationary ergodic random field with first-order marginal

, and to be i.i.d. with first-order marginal .
We define and as in the one-dimensional case (recall
(7) and (8)), and assume that is not essentially constant
for ( -almost) all , that is, .

A simple examination of the proof of Theorem 1 shows that it
extendsverbatimto the case of random fields, with the only dif-
ference that instead of the usual ergodic theorem we now need
to invoke the ergodic theorem for actions; see [57, Ch. 6].
We thus obtain the following.

Theorem 24—Generalized AEP Whenis i.i.d.: Let be
a stationary ergodic random field on and be i.i.d., with

marginal distributions and on and , respectively. As-
sume that is finite. Then for any

w.p.

with the (one-dimensional) rate-function defined
as in Theorem 1.

is not i.i.d. Let and be stationary random fields and
define and exactly as in the one-dimensional case
(recall (8) and (14)). We assume that the distortion measureis
essentially bounded, i.e., , and define

(47)

where

(48)

To see that the limit in (47) exists and equals the supremum,
first note that is an increasing sequence, and that

for all . Now fix arbitrary. Given
we write for some , so that

Since as , this implies that

Since was arbitrary we are done.
Finally, we assume once again that the distortion measure
is not essentially constant, that is, . Our next

result is the random fields analog of Theorem 4; it is proved in
Appendix C.

Theorem 25—Generalized AEP Rate Function:Let
and be stationary random fields. Assume thatis essen-
tially bounded, i.e., , and that with -probability
one, conditional on , the random variables

satisfy a large deviations principle with
some deterministic, convex rate-function. Then for all

, except possibly at

w.p.

(49)

where and the rate-function are defined as
in the one-dimensional case, by (17) and (16), respectively, and
the rate-functions are now defined as

(50)

with the infimum taken over all joint distributions on
such that the -marginal of is and

Note Added in Proof:After this work was submitted, we re-
ceived an interesting preprint from Chi [19] written in response
to some questions raised in the earlier version of this paper. In



DEMBO AND KONTOYIANNIS: SOURCE CODING, LARGE DEVIATIONS, AND APPROXIMATE PATTERN MATCHING 1609

[19], Chi verifies the assumptions of Theorem 25 for the case
when is a Gibbs field. In [19, Theorem 1], it is shown that
if is a stationary-ergodic random field with a finite alphabet
and is a stationary Gibbs field also with a finite alphabet,
then the LDP assumption of Theorem 25 is satisfied. Therefore,
the generalized AEP also holds in this case with the rate func-
tion defined as in (49) and (50). We will discuss
the further implications of this result for data compression on
random fields in subsequent work.

Remark 6: Suppose that is a stationary random field
satisfying a “process-level LDP” with a convex, good rate-func-
tion. To be precise, given , write for the peri-
odic extension of to an infinite realization in and
let and denote the periodic extensions of and

, respectively. The process-level empirical measurein-
duced by and on is defined by

where denotes the measure assigning unit mass to the joint
realization

and (or ) denotes (respectively, )

shifted by [i.e., the value of at position is the same

as the value of at position ; similarly, for ].
By assuming that satisfy a “process-level LDP” we
mean that the sequence of measures satisfies the LDP
in the space of stationary probability measures on

equipped with the topology of weak convergence, with
some convex, good rate-function . These assumptions are
satisfied by many of the random field models used in applica-
tions, and in particular by a large class of Gibbs fields (see, e.g.,
[22], [37], [63] for general theory and [39], [82] for examples
in the areas of image processing and image analysis).

As in the one-dimensional case, suppose that the process-
level LDP condition holds, and that the distortion measure

is bounded and continuous on . Then with -prob-
ability one, conditional on , the sequence

satisfies the LDP upper bound with respect
to the deterministic, convex rate-function as in Remark 3.
Moreover, assuming sufficiently strong mixing properties for
one may also verify the corresponding lowerbound (for example,
by adapting the stochastic subadditivity approach of [21]).

C. Applications

In Sections VI-C1 and VI-C2 we consider the random field
analogs of the problems discussed in Section III in the context
of one-dimensional processes. In the instances when our anal-
ysis was restricted to i.i.d. processes, the extension to random
fields is trivial—an i.i.d. random field is no different from an
i.i.d. process. For that reason, we only give the full statements
of corresponding random fields results when the generalization
from to does involve some modifications. Oth-
erwise, only a brief description of the corresponding results is
mentioned.

1) Lossy Data Compression:Here we very briefly discuss
the problem of data compression, when the data is in the form of
a two- or more generally a-dimensional array. In this case, the
underlying data source is naturally modeled as a-dimensional
random field. Extensive discussions of the general information-
theoretic problems on random fields are given in [10] and the
recent monograph [93]; see also [36].

First we discuss the results given in Section III-A. The con-
struction of the random codebooks described there generalizes
to random fields in an obvious fashion, and the statement as
well as the proof of Theorem 9 remain unchanged. Following
the notation exactly as developed for i.i.d. sources, the strength-
ened coding theorems given in Theorems 10 and 11 follow by
combining (the obvious generalization of) Theorem 9 with the
generalized AEP of Theorem 24.

Similarly, the mismatched-codebook results of Section III-B
only rely on Theorem 9 and the generalized AEP of Theorem 1,
and therefore immediately generalize to the random field case.

2) Waiting Times:Here we consider the natural-dimen-
sional analogs of the waiting times questions considered in Sec-
tion III-C. Given two independent realizations of the random
fields and , our main quantity of interest here is how “far”
we have to look in until we find a match for the pattern
with distortion or less. Given and a distortion level

, we define thewaiting time as the smallest length
such that a copy of the pattern appears somewhere in

, with distortion or less. Formally,

for some

with the convention that the infimum of the empty set equals
.

In the one-dimensional case, our main tool in investigating
the asymptotic behavior of the waiting times was the strong
approximation in Theorem 13. Roughly speaking, Theorem 13
stated that the waiting time for a -close match of in

is inversely proportional to the probability
of such a match. In Theorem 26 we generalize this result to the
-dimensional case by showing that the-dimensional volume

we have to search in in order to find a -close match
for is, roughly, inversely proportional to the probability

of finding such a match.
Before stating Theorem 26, we need to recall the following

definition. Dobrushin’snonuniform -mixing coefficientsof a
stationary random field are

where denotes the -field generated by the random vari-
ables , . See [59, Ch. 6] or [31] for detailed discus-
sions of the coefficients and their properties.

Theorem 26—Strong Approximation:Let and be sta-
tionary ergodic random fields, and assume that the nonuniform

-mixing coefficients of satisfy

(51)
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If eventually with probability one, then
for any

eventually, w.p. .

The proof of Theorem 26 is a straightforward modification of
the corresponding one-dimensional argument in [27]; it is given
in Appendix D.

Remark 7: The mixing condition (51) is satisfied by a rather
large class of stationary random fields. For example, in the case
of Markov random fields, it is easy to check that under Do-
brushin’s uniqueness condition (D) the limit in (51) is finite;
see [38, Sec. 8.2] or [31] for more details.

Next we combine the above strong approximation result with
the generalized AEPs of Theorems 24 and 25, to read off the
first-order asymptotic behavior of the waiting times. Theorem
27 generalizes Theorem 14 to the random field case.

Theorem 27—SLLN for Waiting Times:Let and be sta-
tionary ergodic random fields.

a) If is i.i.d. and the average distortion is finite, then
for any

w.p. .

b) Suppose that the conditions of Theorem 25 are satisfied,
and that also satisfies the mixing assumption (51).
Then, for any

w.p. .

VII. RANDOM FIELDS: SECOND-ORDER RESULTS

We turn to the random field extensions of the second-order
results of Sections IV and V. In Section VII-A, we state the
random field analog of the second-order generalized AEP, and
in Section VII-B we discuss its application to the problems of
lossy data compression and pattern matching.

A. Refinements of Generalized AEP

Let be a stationary ergodic random field with marginal
distribution on , and let be a fixed probability measure
on . We will assume throughout that the distortion measure
has a finite third moment

(52)

and that it is not essentially constant, i.e., , with
and defined as before (cf. (7) and (8)).

The goal of this section is to give the random field analogs of
Theorems 15 and 16 and of Corollary 17 from the one-dimen-
sional case.

An examination of the proof of Theorem 15 in [90] shows
that its proof only depends on the ergodicity ofand the i.i.d.
structure of the product measures. Simply replacing the ap-
plication of the ergodic theorem by the ergodic theorem for

actions [57, Ch. 6] immediately yields the following gen-
eralization. As long as condition (52) is satisfied, for all

we have

w.p. (53)

where is now the empirical measure induced by on .
In order to generalize Theorem 16 to we need to introduce

a measure of dependence analogous to-mixing in the one-
dimensional case. For a stationary random fieldon we
define theuniform -mixing coefficientsof by

where, as before, denotes the -field generated by the
random variables . See [59], [31] for more details.

Apart from ergodicity, the main technical ingredient in the
proof of Theorem 16 (see also the proof of [27, Theorem 3])
is the LIL for . Similarly to the one-dimensional case, the
LIL for a random field holds as soon as the following mixing
condition is satisfied:

for some and (54)

[This follows from the almost sure invariance principle in [11,
Theorem 1].]

Assuming that (54) and the third-moment condition (52) both
hold, we get the following generalization of Theorem 16. For all

w.p. (55)

with defined exactly as in the one-dimensional case (39).
Combining (53) and (55) gives the following generalization

of Corollary 17.

Theorem 28—Second-Order Generalized AEP:Let be
a stationary ergodic random field with marginal distribution

on , and let be an arbitrary probability measure on.
Assume that the uniform -mixing coefficients of satisfy
(54) and that is finite. Then for any

, and with defined as in (39)

w.p. .

B. Applications

Next we discuss applications of the second-order generalized
AEP to the -dimensional analogs of the data compression and
pattern matching problems of Section IV. As in Section VI-C,
the only results stated explicitly are those whose extensions to

require modifications.
As mentioned in Section VI-C1, the one-dimensional con-

struction of the random codes, as well as the main tool used in
their analysis, Theorem 9, immediately generalize to the random
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field case. And since all the second-order results of Section V-A
(Theorems 18–21) are stated for i.i.d. sources, their statements
as well as proofs carry oververbatimto this case.

For the problem of waiting times, we can use the second-
order generalized AEP of Theorem 28 to refine the SLLN of
Theorem 27

w.p.

to a corresponding CLT and LIL as in the one-dimensional case.
These refinements are stated in Theorem 29. Its proof is iden-
tical to that of Theorem 22 in the one-dimensional case. The
only difference here is that we need to invoke the CLT and LIL
for the partial sums of the random field .
Under the conditions of the theorem, these follow from the al-
most sure invariance principle of [11, Theorem 1].

Theorem 29:Let be a stationary ergodic random field and
be i.i.d., with marginal distributions and on and ,

respectively. Assume that the uniform-mixing coefficients of
satisfy (54) and that is finite. Then

for any the following series is absolutely
convergent:

(56)

with defined as in (39), and, moreover

(CLT ) With

(LIL ) The set of limit points of the sequence

coincides with , with probability one.

APPENDIX A
PROOF OFTHEOREM 7

We prove the upper and lower bounds separately. For the
upper bound, recalling the definition of in (20) we
observe that

where the second term converges to as
, by the ergodic theorem. Since the first term is increas-

ing in , for any fixed we have with -probability one

(57)

Now the pointwise source-coding theorem (see [56, Theorems 1
and 5]) implies that

w.p. (58)

where is the rate-distortion function of the source(in
nats). From (57) and (58) we get

w.p.

where denotes the first-order rate-distortion function
of , is the entropy rate of (both in nats), and the
second inequality follows from the Wyner–Ziv bound; see [83,
Remark 4]. The assumption that if and only if

implies that , so letting
the above right-hand side becomes
and it is an easy calculation to verify that this is indeed the
same as . This gives the required upped bound.

For the lower bound, we proceed similarly by noting that

where the first term converges to by the classical AEP
(as ). Since the second term is decreasing in, for any
fixed we have with probability one

where the last step follows from the generalized AEP in The-
orem 1 (note that here). By the characterization of
the rate-function in Theorem 2 we know that

for any fixed . Therefore, for any and
, we have

w.p. .

Letting and then , by the dominated conver-
gence theorem (and the assumption iff ) the
right-hand side above converges to

proving the lower bound.
Finally, since for each fixed the limit as of

exists, it follows that the repeated limit ,
also exists and is equal to the double limit .

APPENDIX B
PROOF OFTHEOREM 8

Part a): Fixing , let and consider the set
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By the Lebesgue–Besicovitch differentiation theorem (cf. [33,
Theorems 1.6.1, 1.6.2]), we know that , hence also

. With , we conclude the proof of
part a) by applying Theorem 6 for (in which case

).
Part b): As , in particular for

all and -almost every (hence also for
-almost every ), implying that of (7) is zero.

The same argument yields also that for all
and -almost every , hence is still zero if we

replace by . Thus, for all

applying Theorem 1 twice we get

w.p. .

For any probability measureand any , let

Fixing small enough, we have by Theorem 2 that

for the unique such that , whereas

Since , we have also that as
(see (11)). Consequently,

Similarly, by Theorem 2 we have

for

such that , ,
and with , also when .
Therefore, it suffices to show that

(59)

To this end, for any and , let

noting that

Using the change of variable followed by
integration by parts, we see that

where and are non-
negative, nondecreasing and bounded above by. Considering
separately and , it is easy to check that for any

(60)

where

(61)

Fix of part a), in which case for all
and as . Letting and then

, it follows by (60) and (61) that

Recall that and our assumption that

for any By our integrability conditions, the function
is -integrable, hence, by Fatou’s

lemma

Moreover, in case , our assumptions imply that
is -integrable, hence by dominated con-

vergence

for , as required to complete the proof of (59).

APPENDIX C
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Recall our assumption that, for-a.e. , conditional on
the random variables

satisfy the LDP with adeterministicconvex good rate-func-
tion denoted hereafter . Since is bounded, by
Varadhan’s lemma and convex duality, this implies that

(62)

where for any , the finite, deterministic limit

exists for -a.e. (cf. [29, Theorem 4.5.10]). By bounded
convergence, is also the limit of
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By stationarity

(63)

so replacing , , and of Theorem 2 by , , and
, respectively, we see that

(64)

Note that for some and
all , , hence, the convergence of to
is uniform on compact subsets of. In particular, the convex,
continuous functions converge infimally to , and,
consequently, by [80, Theorem 5], the convex functions
converge infimally to , that is,

(65)

It follows from (63) and Jensen’s inequality that
for all and , hence, for suffices to consider

in (62) and in (64). Thus, for , are
nonnegative, convex, and monotone nonincreasing on ,
with . For , let

so that for , while for
. Note that for this coincides with the defi-

nition of given in (48). It is easy to check then that (65)
implies the pointwise convergence of to

at any for which ,
that is, for all . In particular, necessarily

, and may also be defined via (17). The con-
tinuity of at , im-
plies the equality in (49) for such , thus, completing the proof
of the theorem.

APPENDIX D
PROOF OFTHEOREM 26

For each , let be the collection of “good” realiza-
tions

for all

so that the assumption that eventually,
with probability one translates to

(66)

To prove the lower bound we choose and fix an and a
realization . Then for any

Since, by its definition, is always greater than or equal to
one, this inequality trivially holds also for . Setting

above gives, for all ,

Since this bound is uniform over and summable, the
Borel–Cantelli lemma and assumption (66) imply that

eventually, w.p. . (67)

For the upper bound we choose and fix an and a
realization , and take . Note that

where the sum is over the integer positions
, denotes the point

, and

Let denote the sum in the above probability

where is the indicator function of the event

In this notation

(68)

By stationarity

(69)

and by the definition of the -mixing coefficients, if

Using the last two estimates we can bound the variance as

(70)
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where bounds the number of possible pointsthat can
be at a distance exactlyfrom a given point (for some constant

). By assumption (51) we can find a finite constantsuch that
the expression in square brackets in (70) is bounded above by

, uniformly in . Substituting this bound, together with (69)
and (70), in (68), gives

(71)

Let arbitrary, take large enough so that ,
and let . Simple algebra shows
that with this choice of we have

and substituting this in (71) yields

This bound is uniform over and summable, so the
Borel–Cantelli lemma and (66) imply that

eventually, w.p. . (72)

Combining (72) and (67) completes the proof.
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