
Source Localization
and Beamforming

D
istributed sensor networks have been pro-
posed for a wide range of applications. The
main purpose of a sensor network is to moni-
tor an area, including detecting, identifying,

localizing, and tracking one or more objects of interest.
These networks may be used by the military in surveil-
lance, reconnaissance, and combat scenarios or around the
perimeter of a manufacturing plant for
intrusion detection. In other applica-
tions such as hearing aids and multime-
dia, microphone networks are capable
of enhancing audio signals under noisy conditions for im-
proved intelligibility, recognition, and cuing for camera
aiming. Recent developments in integrated circuit tech-
nology have allowed the construction of low-cost minia-
ture sensor nodes with signal processing and wireless
communication capabilities. These technological ad-
vances not only open up many possibilities but also intro-
duce challenging issues for the collaborative processing of
wideband acoustic and seismic signals for source localiza-
tion and beamforming in an energy-constrained distrib-
uted sensor network. The purpose of this article is to

provide an overview of these issues. Some prior systems
include: WINS at RSC/UCLA [1], AWAIRS at
UCLA/RSC [2]-[4], Smart Dust at UC Berkeley [5],
USC-ISI network [6], MIT network [7], SensIT sys-
tems/networks [8], and ARL Federated Laboratory Ad-
vanced Sensor Program systems/networks [9].

In the first section, we consider the physical features of
the sources and their propagation prop-
erties and discuss the system features of
the sensor network. The next section in-
troduces some early works in source lo-

calization, DOA estimation, and beamforming. Other
topics discussed include the closed-form least-squares
source localization problem, iterative ML source localiza-
tion, and DOA estimation.

Microsensor Networks
Physical Features
We first characterize the basic physical characteristics and
features of the sources and their propagation properties as
shown in Table 1. These features are outside the control of
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the designer of the architecture and algorithm for the sen-
sor network. In this article, we will deal with these fea-
tures in terms of acoustic or seismic (i.e., vibrational)
sources. While these two sources have some common fea-
tures, they also have some distinct differences. Radio fre-
quency (RF), visual, infrared, and magnetic sources have
other distinct features but will not be considered here.
The movement of personnel, car, truck, wheeled/tracked
vehicle, as well as vibrating machinery can all generate
acoustic or seismic waveforms. These waveforms are re-
ferred to as wideband signals since the ratio of highest to
lowest frequency component is quite large. For audio
waveforms (i.e., 30 Hz-15 kHz), the ratio is about 500,
and these waveforms are wideband. Dominant acoustical
waveforms generated from wheeled and tracked vehicles
may range from 20 Hz-2 kHz, resulting in a ratio of
about 100. Similarly, dominant seismic waveforms gen-
erated from wheeled vehicles may range from 5 Hz-500
Hz, also resulting in a ratio of about 100. Thus, the acous-
tic and seismic signals of interest are generally wideband.
On the other hand, most propagated RF waveforms are
narrowband, since the ratio of the highest frequency f

H

to the lowest frequency f
L

is usually very close to unity
(e.g., for the 802.11b ISM wireless LAN system, the ratio
is 2.4835 GHz/2.GHz = 1.03). Narrowband signals
have a well-defined nominal wavelength, and time delay
can be compensated by a simple phase shift. For
wideband signals there is no characteristic wavelength
and time delays must be obtained by interpolation of the
waveform.

When an acoustic or seismic source is located close to
the sensors, the wavefront of the received signal is curved,
and the curvature depends on the distance, then the
source is in the near-field. As the distance becomes large,
the wavefront becomes planar and parallel, then the
source is in the far-field. For a far-field source, only the di-
rection-of-arrival (DOA) in the coordinate system of the
sensors is observable. A simple example is when the sen-
sors are placed on a line with uniform intersensor spacing,
then all adjacent sensors have the same time delay, and the
DOA of the far-field source can be estimated readily from
the time delay. For a near-field source, the collection of all
relative time-delays of the source can be used to deter-
mine the source location.

For an acoustic source, the propagation speed in air is a
known constant of approximately 345 m/s. Measurable
atmospheric parameters such as the temperature and the
component of the wind velocity along the direction of
propagation from the source to the sensors have only sec-
ond-order effects, but can be used to determine a more ac-
curate propagation speed. It is also known that turbulent
atmospheric conditions can cause loss of coherency of
acoustical wavefronts [10] and degrade coherent process-
ing of these wavefronts beyond distances of few tens of
feet [11]. On the other hand, for a seismic source, the
propagation speed is unknown and depends strongly on
the propagation medium. The propagation speed of the

Rayleigh surface wave, over a medium (e.g., from dry
sand to hard rocks), can be from 0.7 to 15 times the
speed of sound in air [12]. In most practical situations,
the seismic propagation medium is highly variable.
Thus, there appears to be no simple model for the esti-
mation of seismic propagation speed over an outdoor
field based on physically measurable quantities such as
characterizing the medium type (e.g., sandstone, lime-
stone, etc.) or mechanical properties of the medium
(e.g., Young’s modulus, bulk modulus, density, etc.).
Least squares (LS) estimation techniques based on col-
lected sensor data can be used to estimate the unknown
seismic propagation speed.

Another related issue is that of free space versus rever-
berant propagation. Most indoor rooms are fairly rever-
berant, and the reflection of sound wave energy upon
striking a surface may vary from 10-90% depending on
the material. In an ideal empty outdoor field, there is no
sound reverberation. Then the generated sound energy
decreases ideally as the inverse of the distance squared.
For outdoor open fields, reflection of sound from nearby
walls, hills, and large objects can result in some reverbera-
tions. On the other hand, for seismic propagation, the
inhomogeneity of the medium with different medium
densities results in considerable reverberation and a
highly frequency-dependent source to sensor(s) transfer
function(s). These reverberation phenomena make the
estimation of DOA and location of a single physical
source appear to be like multiple sources. This makes
these localization problems much more difficult since a
false DOA estimate can be in the direction of the domi-
nant reflected path instead of the direct path. To effec-
tively remove the reverberation effect, the acoustic
channel impulse response needs to be estimated and in-
verted [13]. Studies have shown a frequency-dependent
loss of seismic energy and the received seismic energy
which may decrease much more rapidly than distance
squared [12], [14]. This means a seismic sensor is gener-
ally only sensitive to a nearby source. This leads to the
need for a high density of seismic sensors to characterize
the movement of a seismic source. Nevertheless, the rapid
attenuation with range may provide a simplification in
that among a large number of seismic sensors, only a
very small set of sensors near the seismic source is acti-
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Table 1. Physical Features.

1) Acoustic versus seismic source

2) Narrowband versus wideband signal

3) Far-field versus near-field source

4) Known versus unknown propagation speed

5) Free-space versus reverberant space propagation

6) Single versus multiple source



vated. This small effective seismic propagated region
may provide a simple way to tackle the multiple source
detection, identification, and tracking problem based
upon simple spatial separation of these propagated re-
gions [14].

Basic System Features
Given the physical characteristics and features of the
sources and their propagation properties considered
above, we want to discuss the various system concepts
and features under the control of the system designer.
The list in Table 2 includes power source, sensing, data
transmission, processing, and decision features used to
perform source localization and beamforming. In many
fixed-site sensor network scenarios, power lines and data
cable interconnections are available at all the nodes. Thus,
there is essentially unlimited energy for sensing, process-
ing, and decision, and reliable data transmission capabil-
ity is also available. In this article, however, the sensor
network is assumed to be ad hoc and has to work in an ar-
bitrary physical environment. Thus, all operations are as-
sumed to be powered by batteries of limited energy, and
all data communications among the nodes are provided
by low-power and low-data rate wireless RF links. For
low-cost and low-energy consumption, we assume pas-
sive sensors. These sensors only operate on the received
acoustic and seismic waveforms from the noncooperative
source. This is in contrast to a complex active radar or so-
nar system in which a very sophisticated receiver is used
to find some information of interest from the reflected
target return.

An important system issue is whether the sensors in
the network perform collaborative sensing of the ob-
served waveforms. By this we mean information collected
by one sensor is used together with information collected
by other sensors. Clearly, this approach is more effective

than each sensor working independent of others. In this
article, we will assume and discuss various challenges and
costs of collaborative sensing and processing. We note
there are many degrees of collaboration. Furthermore,
we can also consider whether the sensors perform syn-
chronous or nonsynchronous sensing. By synchronous
sensing, we mean the sensor data are collected with time
tags and thus some common features at a given time in-
stant can be exploited. Synchronous sensing implies tim-
ing errors must be controlled. Coherent processing must
be performed with precise synchronization. For instance,
a group of sensors may perform spatial (coherent) pro-
cessing to provide the source location or DOA estimate.
The synchronous data must be shared within the group,
but may not need to be transmitted synchronously to
other parts of the network. On the contrary, noncoherent
processing techniques may not need to share data with
other sensors; thus, the synchronization requirement is
relaxed. A fully synchronous sensing system imposes con-
siderable precision at the network control level as well as
great demand on the network data transmission require-
ment. The use of synchronous subarray sensing without
requiring full synchronous sensing of all the sensors is a
practical way to attack this issue.

Another issue is whether the sensor spatial gain re-
sponse is known or needs to be calibrated. Still another
sensor issue is whether the sensor locations are known.
There are situations in which some of the sensor locations
are known (or estimated), other unknown sensor loca-
tions can be estimated from all the sensor data [15]. All of
these issues have great practical sensor network implica-
tions with respect to collaboration.

In general, not to suffer significant degradation, com-
plicated wideband array processing, beamformation, and
equalization algorithms must be used to process the
wideband acoustic and seismic signals of interest (see Fig.
6). This means the simpler one-tap equalizer and
beamformer commonly used for narrowband RF com-
munication/avionic system processing is not generally ap-
plicable here. Another important system issue is whether
the processing can be distributed to each node (or at least
at some nearby nodes) or performed at a central processor
node. In the model of [16], a radio transmitting 1 kb of
data over a distance of 100 m operating at 1 GHz using a
binary phase-shift keying modulation with an error prob-
ability of 10−6 and fourth-power distance loss with Ray-
leigh fading, requires approximately 3 joules of energy.
The same energy can then perform 300 millions instruc-
tions for a 100 MIPS/watt general processor. This results
in a ratio of 30,000 processing instructions per transmis-
sion bit with equal energy consumption. Other practical
sensor networks [17] have yielded ratios in the
1,000-2,000 values. These results show if the application
and the sensor architecture permit, it is much more en-
ergy efficient to perform distributed local processing then
to do central processing that requires extensive communi-
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Table 2. System Features.

1) Power-line versus battery power supply

2) Wired versus wireless RF links

3) Passive versus active sensor

4) Collaborative versus noncollaborative sensing

5) Coherent versus noncoherent processing

6) Synchronous versus nonsynch. sensing

7) Known versus unknown sensor response

8) Known versus unknown sensor location

9) Wideband versus narrowband processing

10) Distributed versus central processing



cations. Of course, not all algorithms can use distributed
processing as shown in Table 2.

Self-Organization and Ad Hoc Sensor Network
Traditional computer/communication LAN has a fixed
network topology and number of nodes. These networks
are usually designed to maximize the throughput rate of
the data. On the other hand, the purpose of most sensor
networks as already mentioned earlier is to detect, iden-
tify, localize, beamform, and track one or more stationary
or moving sources in unknown environments. Thus, tra-
ditional computer/communication network design rules
are generally not applicable here. A node is defined to
consist of one or more sensor(s) of the same type or dif-
ferent types (e.g., acoustic or seismic), an associated pro-
cessor, and a transceiver. These nodes can be distributed
in various manners. They may be placed around the per-
imeter of a plant or near the intersection of several roads
(as shown in Fig. 1) in some controlled manner. They
may be rapidly deployed by the users near the paths of
their travel, or maybe even scattered randomly out of a
truck or airplane.

Clearly to use such a sensor system, we need to have
these nodes self-organize into a usable ad hoc network in
minimum time and minimum energy from some initially
given near-arbitrary placements [18]-[19]. After proper
organization, the network should be able to pass data
packets from various nodes of the network to the
next-level user. Since the transmission and reception dis-
tances of these transceivers are low, energy efficient
multihop routing needs to be used [20]. As part of the
multihop routing procedure, the concept of adjacent
nodes must be determined [18]. Furthermore, since the
energy used by the receiver is almost as much as that used
by the transmitter, these transceivers should be off for as
long as possible. The receiver initially listens only in some
low time duty factor manner [14]. However, when a
node enters into more demanding roles, the transceiver
may transmit, receive, and relay information packets in
multihop stages needing higher time duty factors.

Layered Architecture for Energy
Constraint Communication and Processing
In many sensor networks (e.g., AWAIRS [2]), the node
operates in different modes to perform different tasks,
and these tasks require different power consumptions.
Distinct operations of the nodes that depend on their
roles result in a layered architecture for the sensor net-
work [14]. Normally, the relatively low-power sensors
and the associated electronics are always on and have their
thresholds set above some nominal ambient background
noise level. When a source of sufficient strength enters the
sensor network, one or more of these nodes may be trig-
gered. If a sensor of a different type in the node was also
activated, then their combined result increases the true
detection and decreases a false detection. The processor of

these nodes may also perform the source identification
task. Furthermore, if two or more sensors of the same
type are in the same node, then we may be able to perform
DOA estimation of the source from that node. We should
note that all these operations mentioned above are done
at the individual node level. There is no need to transmit
the raw data collected by the sensor(s) in a node to an-
other node or to the next-level user. Of course, the detec-
tion of a source (possibly with some information on the
confidence of the detection), the possible identification of
the source, the DOA estimation of the source, and the
time of occurrence of these events need to be transmitted
from each active node to the next-level user. In this case,
the amount of information transmitted over the sensor
network is relatively low. In Fig. 2, these operations are
shown at the lower levels of the layered architecture la-
beled intranode collaboration sensing and processing.

Various higher levels of collaborations with other
nodes are possible. An activated node may inform adja-
cent nodes of a recent detection to possibly lower their
thresholds to investigate the disturbing event. If the origi-
nal event is not a false alarm, then other nearby sensors
should have also detected that source. The next-level user
can then have a quite crude estimation of the location of
the source assuming some information about the loca-
tions (even if approximate) of the sensors is known. Rele-
vant features extracted from sensor(s) in each node may
be sent to the next-level-user for fusion purpose to en-
hance detection. One simple form of fusion is to compare
the amplitude values of different sensors (of the same
type). By using the closest-point-of-approach (CPA),
which is one type of noncoherent processing, one may
provide an estimation of the source location [21]. An-
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▲ 1. A generic scenario of sources and sensors in a sensor network.

In many sensor networks, the
node operates in different modes
to perform different tasks, and
these tasks require different
power consumptions.



other form of fusion is to use the DOA estimate from
each subarray of sensors of similar type. Then the
triangulation process of determining the intersection of
these cross bearing DOA angles can be used to estimate
the source location (see the generic scenario of Fig. 1).
We note in both the CPA and the DOA triangulation
methods, processing is performed locally and only small
amount of information from each node needs to be trans-
mitted to the next-level user for processing. On the other
hand, for full coherent processing and beamforming ap-
plications, data from selected dominant frequency bands
of interest or the whole raw data from the sensors in vari-
ous relevant nodes need to be sent to other nodes or to the
next-level-user. All of these collaborations among the
sensors require varying amount of costly data transmis-
sion in the sensor network. These operations are shown in
the upper levels of Fig. 2 labeled internode collaborative
sensing, processing, and communication.

Source Localization, DOA Estimation,
and Beamforming
The earliest development of space-time processing was
spatial filtering or beamforming dating back to World
War II. Advances in radar, sonar, and wireless communi-
cations followed using arrays of sensors. In radar and
wireless communications, the information signal is mod-

ulated on the RF waveform at the transmitter and then
demodulated to a complex envelope at the receiving sen-
sor. This is the narrowband signal model where the DOA
information is contained in the phase differences among
the sensors. The conventional beamformer is merely a
spatial extension of the matched filter [22]. In classical
time-domain filtering, the time-domain signal is linearly
combined with f i l ter ing weight to achieve
high/low/bandpass filtering. A beamformer combines
the spatially distributed sensor collected array data lin-
early with the beamforming weight to achieve spatial fil-
tering. Beamforming enhances the signal from the
desired spatial direction and reduces the signal(s) from
other direction(s) in addition to possible time/frequency
filtering. The beamformer output is a coherently en-
hanced estimate of the transmitted signal, with one set of
weights for each source. In many cases, the desired signal
direction may need to be estimated.

In [22], Krim and Viberg have provided an excellent re-
view and comparison of many classical and advanced para-
metric narrowband techniques up to 1996. Early work in
DOA estimation includes the early version of maxi-
mum-likelihood (ML) solution, but it did not become
popular due to its high computational cost. Concurrently,
a variety of suboptimal techniques with reduced computa-
tions have dominated the field. The more well-known
techniques include the minimum variance method of Ca-
pon [23], the multiple signal classification (MUSIC)
method of Schmidt [24], and the minimum norm of
Reddi [25]. The MUSIC algorithm is perhaps one of the
most popular suboptimal techniques. It provides super
resolution DOA estimation in a spatial pseudospectral plot
by utilizing the orthogonality between the signal and noise
subspaces. However, a well-known problem with some of
these suboptimal techniques occurs when two or more
sources are highly correlated. This may be caused by
multipath or intentional jamming, and most of the

suboptimal techniques have difficul-
ties without reverting to advanced
processing or constraints. Many vari-
ants of the MUSIC algorithm have
been proposed to combat signal cor-
relation and to improve performance.

Closed-Form Least Squares
Source Localization
For various acoustic/seismic sensor
array problems, a wideband signal
model may be more appropriate.
Since acoustic and seismic signals are
unmodulated and may contain a
wider bandwidth, the array data is
real valued and hence the
beamforming weights are also real.
In many cases we are interested in lo-
cating the source in the near-field. As
the source approaches the array, both
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▲ 2. Layered architecture showing increasing communication, computation, and energy cost.

The purpose of a sensor network
is to monitor an area, including
detecting, identifying, localizing,
and tracking one or more objects
of interest.



the angle and range become parameters of interest. Note
that unlike the radar and communications problems
where the signal may be a random process with known
statistics or drawn from a known finite alphabet, the
acoustic/seismic source signals are most likely to be deter-
ministic but unknown (e.g., waveform generated by a
passing vehicle). An additional factor that arises in the
near-field scenario is that each sensor may have a different
gain as opposed to equal gain in the far-field case. The
sensors are assumed to be omnidirectional, and the gain
variation is due to differences in the propagation paths in
the near-field geometry. For a randomly distributed array
of R sensors, the data collected by the pth sensor at time n
can be given by

( )x n a s n t w np p

m

m

M
m

p

m

p( ) ( ),( ) ( ) ( )= − +
=

∑
1

0 (1)

for n L p R= − =0 1 1, , , , , ,K K and m M=1, ,K , where M is
the number of sources ( M R< ), a p

m( ) is the signal gain
level of the mth source at the pth sensor (assumed to be
constant within the block of data), s m

0

( ) is the source sig-
nal, t p

m( ) is the fractional time-delay in samples (which is
allowed to be any real-valued number), and w p is
zero-mean white Gaussian noise with variance σ2 . The
time-delay is defined by t vp

m

s pm

( ) / ,= −r r where r s m
is

the mth source location, r p is the pth sensor location, and
v is the speed of propagation in length unit per sample.
Define the relative time-delay between the pth and the qth
sensors by

( )t t t vpq

m

p

m

q

m

s p s qm m

( ) ( ) ( ) / .= − = − − −r r r r

Note, in the wideband problem, time delays are exploited
as opposed to phase differences in the
narrowband case.

One class of near-field source localization al-
gorithm is based first on using time-delay tech-
niques. These algorithms provide closed-form
solutions to estimate the location of a single
source based on spherical intersection [26], hy-
perbolic intersection [27], or linear intersection
[28], from the measured relative time-delays.
Nevertheless, these algorithms require known
speed of propagation. In [4] and [29], a
closed-form LS and constrained least-squares
(CLS) solutions are derived for unknown speed
of propagation. The CLS solution improves the
location estimate from that of the LS solution
by forcing an equality constraint on two compo-
nents of the solution. The closed-form source
location estimate is given by the solution of a set
of linear equations [29], expressed as

Ay b= , (2)

where the system matrix A contains the sensor
locations and relative time delays, the un-

known vector y contains the source location, source
range, and the speed of propagation, and the vector b is a
function of sensor locations. An overdetermined LS solu-
tion can be given by evaluating the pseudoinverse A † of
the matrix A in the case of six or more sensors (for
three-dimensional (3-D) localization) resulting in
y A b= † . The earliest time-delay estimation is based on
maximizing the cross-correlation between sensor data
[30]. Other phase transform (PHAT) methods [31] or
second-order subspace methods [4] have been proposed
to improve time-delay estimation under Gaussian noise
assumption. Other robust time-delay estimation meth-
ods have been proposed for impulsive noise with
“heavy-tailed” distribution [32], and higher-order statis-
tics have even been exploited to estimate time-delays of
multiple sources [33].

Iterative Maximum-Likelihood Source

Localization and DOA Estimation

Another class of source localization algorithm is based on
parameter estimation, where only iterative solutions are
available. Despite the possible increase in computational
complexity, this class of algorithms generally offers
greater estimation accuracy. The fundamental difference
between the parametric and closed-form solutions de-
pends on the use of the optimization criterion. The
closed-form solution is indeed optimized in two inde-
pendent steps, namely, estimating relative time delays be-
tween sensor data and then source location based on the
time-delay estimates. On the other hand, the parametric
solution, which is based on the maximum-likelihood cri-
terion, is optimized in a single step directly from the data
without needing time-delay estimation. The parametric
ML method has been shown to outperform the closed-
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form methods [15] for the single source case. In the case
of multiple sources, using even more advanced time-delay
estimation techniques, the closed-form methods do not
seem to guarantee solutions in all cases. Thus, the
closed-form methods in general cannot estimate multiple
source locations, while the parametric method can do so
by expanding the parameter space.

To obtain the parametric solution, it is best to trans-
form the wideband data to the frequency-domain, where
a narrowband signal model can be given for each fre-
quency bin. A block of L samples is collected from each
sensor and transformed to the frequency-domain by a dis-
crete Fourier transform of length N. In the frequency do-
main, the array signal spectrum vector is given by X( )k ,
which contains the phase-shifted (a function of source lo-
cation or DOA) version of the source signal spectrum
plus the noise spectrum vector, for k N= −0 1, ,K . The
noise spectrum vector is zero-mean complex white
Gaussian distributed with variance Lσ

2 . By combining
the data spectrum vectors in the positive frequency bins,
the ML solution can be given by

arg max ( , ) ( )
/

Θ

ΘP k X k
k

N
2

1

2

=

∑ ,
(3)

where Θ is the unknown parameter vector which may ei-
ther be the source locations or the DOAs, and P k( , )Θ is an
orthogonal projection matrix [15]. An efficient alternat-
ing projection (AP) procedure was proposed in [15] for
the ML method to avoid a multidimensional search by se-
quentially estimating the location of one source while fix-
ing the estimates of other source locations from the
previous iteration. Once the source locations are esti-
mated, the ML estimate of the source signals (ML
beamformer output) can be obtained. It is interesting to
note that in the near-field case, the ML beamformer out-
put is the result of forming a focused spot (or area) on the
source location rather than a beam since range is also con-
sidered. Another possible parametric solution is the
wideband extension of the MUSIC algorithm; however,
it has been shown to be highly suboptimal in the
near-field case [15].

Cramér-Rao Bound Analysis
Besides the development of the estimation algorithms, it
is useful to consider their theoretical performance limits.
The Cramér-Rao bound (CRB) is a well-known statisti-
cal method to obtain the theoretical lower bound of the
estimation variance for the performance of any unbiased
estimator [34]. The CRBs for DOA and source localiza-
tion are derived based on the time-delay model in [35],
and the CRBs based on the data model of (1) are given in
[15]. More physical properties of the problem can be
found from the CRBs based on the data model. In partic-
ular, the source localization variance, denoted as the vari-
ance matrix Σ, is lower bounded by the CRB, i.e.,
Σ≥G / S, which can be broken down into two separate
parts, a scalar factor S that depends only on the signal and
a matrix G that depends only on the array geometry. This
suggests separate performance dependence of the signal
and the geometry. Thus, for any given signal, the CRB
can provide the theoretical performance of a particular
geometry and helps the design of an array configuration
for a particular scenario of interest. The signal depend-
ence part shows that theoretically the source location
RMS error is linearly proportional to the noise level and
speed of propagation and inversely proportional to the
source spectrum and frequency. Thus, better source loca-
tion estimates can be obtained for high frequency signals
than low frequency signals. In further sensitivity analysis,
large range estimation error is found when the source sig-
nal is unknown, but such unknown parameter does not
affect the angle estimation.

Simulation and Experimental Results
Consider the simulation of a moving source on a straight
line near a circular array of five sensors as shown in Fig.
3(a). At each position, the array data is simulated using an
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acoustic waveform of a measured vehicle signature. The
speed of propagation is assumed to be 345 m/s. In Fig.
3(b), the source localization RMS errors are plotted us-
ing the wideband MUSIC, LS, and ML algorithms and
the CRB. Both the LS and ML algorithms are shown to
approach the CRB asymptotically, but the ML algorithm
uniformly outperforms the LS algorithm. However, the
wideband MUSIC yields much worse estimates than
those of the LS and ML methods, especially when the
source is far from the array.

To demonstrate the usefulness of the localization algo-
rithms, an experiment was conducted inside a
semi-anechoic chamber where six microphones simulta-
neously collect the sound (prerecorded moving light
wheeled vehicle) driven by an omni-directional loud
speaker placed in the middle of the room. As depicted in
Fig. 4, the location of the sound source can be estimated
with high accuracy (RMS error of 127 cm) using the LS
algorithm under 12 dB SNR. For the same data set, the
ML algorithm can even improve the accuracy to an RMS
error of 73 cm. Then, another experiment was conducted
outdoor with two linear arrays collecting the sound (two
distinct prerecorded moving light wheeled vehicles) si-
multaneously coming from two different omni-direc-
tional loud speakers placed between the two arrays. The
DOAs of the two sources are separately estimated for the
two arrays using the ML alternating projection algo-
rithm. The source locations are then estimated via the tri-
angulation of bearing crossings of the DOAs. In Fig. 5,
accurate location estimates (RMS error of 36 cm for
source 1 and RMS error of 45 cm for source 2) are shown
for the dataset with 11 dB SNR. In this case, the closed-
form methods have difficulties separating the time-delays of
the two sources.

Blind Beamforming
Despite the existence of many calibrating tech-
niques, another approach in array signal process-
ing is blind beamforming. In general, blind
beamforming is an operation similar to conven-
tional beamforming except without the knowl-
edge of sensor responses and locations. In other
words, blind beamforming enhances the signal
by processing only the array data without much
information about the array. A cumulant-based
blind beamforming algorithm was proposed in
[36] for the narrowband problem. The
cumulant, or the higher order statistics (HOS),
of the data is utilized to estimate the steering vec-
tor of the source up to a scale factor. This can be
viewed as a form of online calibration using
HOS, which often requires longer data lengths.
In some practical scenarios, the data length needs
to be quite short for a moving source.

Another blind beamforming that uses the sec-
ond-order statistic (SOS) was proposed in [4]
for wideband signals. A tap delay line of weights

is applied to each sensor to perform space-time process-
ing as depicted in Fig. 6. The blind maximum power
(MP) beamformer in [4] obtains array weights from the
dominant eigenvector (or singular vector) associated
with the largest eigenvalue (or singular value) of the
space-time sample correlation (or data) matrix. This ap-
proach not only collects the maximum power of the dom-
inant source, but also provides some rejection of other
interferences and noise. Theoretical justification of this
approach uses a generalization of Szegö theory of the as-
ymptotic distribution of eigenvalue of the Toeplitz form.
The relative phase information among the weights yields
the relative propagation time delays from the dominant
source to the array sensors. We should also mention con-
siderable blind beamforming, source localization, and
tracking results from measured seismic sources requiring
internode collaboration have also been reported [37].

Conclusions
Research in distributed sensor network requires integrat-
ing multidisciplinary concepts and technologies from
many areas. In signal processing, various sensor array
processing algorithms and concepts have been adopted,
but must be further tailored to match the communication
and computational constraints. With advances in inte-
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In many sensor networks, the
node operates in different modes
to perform different tasks and
these tasks require different
power consumptions.
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grated cuircuit technology, the processing power of the
node constantly improves, thus allowing the use of more
computationally demanding optimal signal processing al-
gorithms. With advances in wireless radio hardware and
software network protocol and control, reliably move-
ment of sensor data for demanding processing algorithms
becomes feasible. However, concerns of instantaneous
power and total energy for computations and communi-
cations of battery-driven sensor network are always pres-
ent. These factors influence greatly the intra- and
internode collaboration and the relevant signal and array
processing algorithms and architectures. Active research
problems remain for the design of sensor array algo-
rithms that are robust and adaptive to environmental
changes and under demanding weather, wind, reverbera-
tion, impulsive noise, and strong interference conditions.
While analytical algorithmic development and verifica-
tion by simulations are important, reliable measured sen-
sor array data taken over realistic field conditions under
appropriate applications are crucially needed to truly ver-
ify and test these concepts and algorithms. It is only
through alternating series of designs, tests, and verifica-
tions can the full potentials of the sensor network arrays
be realized.
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