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In this paper we discuss two closely related problems arising in environmental monitoring. The first is the source localization
problem linked to the question How can one find an unknown “contamination source”? The second is an associated sensor
placement problem: Where should we place sensors that are capable of providing the necessary “adequate data” for
that? Our approach is based on some concepts and ideas developed in mathematical control theory of partial differential
equations.
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1. Introduction

A typical problem associated with environmental monito-
ring of hazardous materials can, in general terms, be de-
scribed as follows.

Let us assume that a certain area (it may be a water
or groundwater basin or the atmosphere) is monitored by a
number of sensors located in various sites. The sensors are
used to evaluate the level of pollution in the area. Suppo-
se that the incoming signals (measurement data) begin to
inform one of an unexpected increase in the concentration
of the pollutant, for example, owing to an unregistered ac-
cident, spill, etc. In a situation like this, one is interested in
localizing as quickly as possible the new unknown source
of contamination. We will further regard this problem as
the source localization problem.

Clearly, one cannot succeed in solving the source lo-
calization problem if the measurement data are insuffi-
cient. This gives rise to the question on where to place
sensors so that they can provide the necessary “adequate”
data. This problem is further regarded as the sensor pla-
cement problem.

In this paper we discuss the theoretic foundations for
the source localization and sensor placement problems,
making use of the formalization involving diffusion sys-
tem modeling, see, e.g., the works of Seinfeld (1986);
Shukla et al. (1987); Dagan (1989); Demetriou (2009);
Kurzhanski and Khapalov (1990) or Devooght and Smidts

(1996), and the references therein, as well as suitable con-
cepts and ideas developed in mathematical controllabi-
lity theory along the approach introduced by Khapalov
(1994b). The focus of our findings is specifically on the
issue of localization of the unknown sources (i.e., not on
their precise description as, say, unknown initial condi-
tions or forcing terms for the associated PDE as is nor-
mally required in a typical inverse problem).

A rather similar control-theoretic approach, namely,
connecting the source identification (i.e., not necessarily
localization) problem to controllability theory via duality,
was used by Puel and Yamamoto (1995; 2005), Yamamo-
to (1995), Komornik and Yamamoto (2002), Nicaise and
Zair (2004), Wang (2007) or Alvez et al. (2009) for the so-
urces which are modeled as a partially unknown additive
point or locally distributed controls of a particular form
λ(t)f(x), where the source intensity λ(t) is assumed to
be known, while its spatial distribution f(x) is to be de-
termined. The latter can be a δ-function (point source) or,
say, an element of a L2(Ω) or H1

0 (Ω). In particular, such
problems for the wave equation were considered in the
works of Puel and Yamamoto (1995), Yamamoto (1995),
and by Komornik and Yamamoto (2002; 2005), who al-
so considered the heat equation; for the beam equation by
Nicaise and Zair (2004), and for the plate equations by
Wang (2007) and Alves et al. (2009). The main results of
the above-cited works deal with establishing a one-to-one
correspondence (and its stability) between the available
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data (typically infinite dimensional in these works such
as, e.g., a trace of solution on the boundary) and the spa-
tial distribution of the unknown source f(x).

Contrary to the above, as in the work of Khapalov
(1994b), in this paper we assume that the unknown source
is the initial datum of special form for the process descri-
bed by the parabolic PDE, in general, with time-dependent
coefficients. The intensity of this source is assumed to be
known as in the above-cited works. (A discussion on time-
dependent sources is given in Section 5 below as well.)

In a 1-D setup we consider the point models for unk-
nown sources and for static and mobile sensors. We wo-
uld like to emphasize that the point sensors provide finite-
dimensional (i.e., “practical” in real world applications)
measurement data. We particularly exploit the advantages
of the mobile point sensors whose data were proven to
be stable to small errors in their locations—unlike their
static counterparts (Khapalov, 2001; 1994a; 1995; 1998).
Among early references on mobile point actuators and
sensors, we refer the reader to the work of Butkovskii and
Pustylnikov (1987) and the early references therein, and
(Dolecki, 1973).

In the case of several dimensions, we consider the
so-called “zone” (space-averaging) models of sources and
sensors whose spatial distributions are described by the
characteristic functions of some “small neighborhoods.”
(In other words, we assume that unknown sources were
initiated in such neighborhoods.) Note that the zone sen-
sors provide finite dimensional output as well.

Our approach is specifically designed for the afore-
mentioned types of sources’ supports (see, e.g., an exam-
ple in Subsection 2.5 below). Our main interest is not as
much in just establishing the aforementioned one-to-one
correspondence between the data and source location. It
is rather in finding out how one can set up a suitable prac-
tical strategy to find those sources as quickly as possible.
To this end, our approach centers around the method of the
so-called test-functions, introduced by Khapalov (1994b).
In the framework of this method, we intend to derive cer-
tain algebraic equations of type γ(x0) = A, where x0 is
the location of an unknown source, γ(·) is a suitable “easy
test-function” and the value of A is (“easily”) determined
by the actual measurement data. In a 1-D case, we will at-
tempt, for example, to construct a monotonic (at least on
some interval of interest) test function, based solely on the
structure of the PDE at hand and the location of the availa-
ble point sensor(s). Thus, this method allows one to sepa-
rate the “off-line” and “on-line” calculations, which can
be critical in real world applications. (It should be noted
along these lines that the numerical aspects of these cal-
culation may pose a challenging related problem on the-
ir own.) The crux of this approach is in establishing the
fact that one is able to construct a “good” suitable set of
test functions, needed to identify the location of the unk-
nown source, regardless of the measurement data that may

occur. Of course, this will lead us to the aforementioned
sensor placement problem.

Note that the goal of the source localization problem
in our setup is to determine the position x0 of the unknown
source’s support within the given bounded space domain.
It is a nonlinear problem and therefore the standard con-
trollability/observability duality approach does not apply
directly in this case. (In this respect, in the above-cited
works the unknown source was treated as an additive con-
trol from a suitable linear (i.e., unbounded) function spa-
ce, and, thus, not always of “small” support.)

The above-outlined source localization problem can
also be viewed as an inverse problem for partial differen-
tial equations with the goal to determine an unknown ini-
tial datum or a forcing term, see, e.g., the work of Isakov
(2009) and the references therein. For other approaches to
this issue, again with sources acting in time as unknown
additive controls, we refer, e.g., to the research by Afifi
(2000; 2001), dealing with the source identification pro-
blem within a given subdomain or on the boundary (the re-
gional detection); to the work of Demetriou (2009), where
the author considered a closed loop system which simulta-
neously detects and suppresses the effect of unknown so-
urces; and to the research of Matthes et al. (2005), dealing
with numerical aspects of source localization problem in
the case when the emitted substance is transported by ad-
vection caused by a known homogeneous wind field and
by isotropic diffusion; and the references therein. For the
probabilistic setting, we refer the reader to the research
of Uciński (2000; 2005), who addresses a wider parame-
ter identification problem, as well as Tzanos and Zefran
(2006), and to the references therein.

We also refer to the interesting paper by Sivergina et
al. (2003), where regularization procedures and recursive
estimation algorithms were developed to estimate the lo-
cation and the intensity of the source in systems modeled
by parabolic equations.

The article is organized as follows. In Section 2 we
consider a very simple model described by the standard
diffusion/heat equation, assuming that we have just one
point source acting at one instant of time only. We give a
rigorous mathematical formulation of source localization
and sensor placement problems, and describe our method
of test-functions in great detail.

In Section 3 we extend the discussion to a rather ge-
neral one dimensional reaction-diffusion-convection equ-
ation and focus on the principal difficulties arising in this
case. These will lead us to the concepts of controllability
and observability, which are introduced (or rather recal-
led) in Section 4. In Section 5, on a simple example we
show how the method of test-functions can be applied to
the models of sources which act continuously in time (i.e.,
with point sources) as in the works of Puel and Yamamo-
to (1995), Yamamoto (1995), Komornik and Yamamoto
(2002; 2005), Nicaise and Zair (2004), Wang (2007) and
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Alvez et al., (2009). In Section 6 we extend the previous
results to general multidimensional models.

2. “Very simple” 1-D linear model with one
point source and one point sensor

2.1. Heat equation equation. Let us consider a diffu-
sion process generated in the space-interval (0, 1) by a sin-
gle point source of unit intensity (see Remark 1 for other-
wise) located at an unknown point x0 ∈ (0, 1). Suppose
that the evolution of this process during the time-interval
(0, T ) is described by the following homogeneous Diri-
chlet boundary problem for the standard heat equation:

ut = uxx in (0, 1) × (0, T ) = QT , (1)

u|x=0,1 = 0, u(x, 0) = u0(x) = δ(x− x0).

Here u(x, t) is the concentration of a substance at point x
at time t.

Clearly, the solution to the boundary problem (1) is
“very” discontinuous at t = 0. We define it in the genera-
lized sense as an element of the space L2(0, T ;L2(0, 1))
satisfying the following identity for all ϕ ∈ H2,1

0 (QT ):

1∫

0

u(x, t)ϕ(x, t) dx −
T∫

0

1∫

0

u(x, t)ϕt(x, t) dxdt

=

T∫

0

1∫

0

u(x, t)ϕxx dxdt +

T∫

0

ϕ(x0, t) dt, (2)

where

H2,1
0 (QT )

= {ϕ | ϕ,ϕx, ϕxx, ϕt ∈ L2(QT ), ϕ |x=0,1= 0}.
It is readily seen that

u(x, t) =
∞∑

i=1

2e−(πi)2t sinπix0 sinπix (3)

and

u ∈ L2(0, T ;L2(0, 1)) ∩C∞([0, 1] × (0, T ]). (4)

The linearity of (1) and (2) yields that this solution is uni-
que.

2.2. Stationary point sensor. Suppose that we need to
find the point x0, based solely on the measurement data
obtained from a sensor located at a given point r ∈ (0, 1)
(see also Remark 2 below). In other words, we assume that
we know the values of the function

y(t) = u(r, t), t ∈ [0, T ]. (5)

Note that (4) implies that u(r, ·) ∈ L1(0, T )∩C(0, T ] for
any r, x0 ∈ (0, 1) and, given the sensor’s position r ∈
(0, 1), u(r, ·) ∈ L2(0, T ) for a.a. x0 ∈ (0, 1) (and vice-
versa).

Given the location r for a sensor and data y(t), t ∈
(0, T ), a solution to this source localization problem can,
in general, be set valued, in which case we cannot pinpoint
the exact position of the unknown source. The way out
here we see in a very careful choice of the site for our
sensor which we link to the following problem.

Identifiability/sensor placement problem: Find a loca-
tion r for a sensor in (5) which can guarantee the uni-
queness of the solution to the source localization problem
at hand, regardless of any possible realization of measu-
rement data. (Remember that we “do not know” y(·) in
advance.)

2.3. Method of test-functions. Our further plan is to
try to solve the source localization problem first. While
doing it, we will try to distinguish conditions on the site
r for a sensor which solves the sensor placement problem.

Combining (3) and (5) provides us with the following
functional equation in x0:

∞∑
i=1

e−(πi)2t2 sinπix0 sinπir = y(t), t ∈ (0, T ),

(6)
which in turn is equivalent to the infinite system of alge-
braic equations, namely,

T∫

0

λ(t)

( ∞∑
i=1

e−(πi)2t2 sinπix0 sinπirdt

)

=

T∫

0

λ(t) y(t) dt, λ ∈ L2(0, T ), (7)

where, given r, the integration is well defined for a.a. x0 ∈
(0, 1) (see also (9) below).

In fact, to make (7) equivalent to (6), it is sufficient to
consider λ’s only from L∞(0, 1), in which case the inte-
gration in (7) is always well defined. However, we prefer
to deal with a “simpler” Hilbert space L2(0, 1) below.

Given any sensor’s position r ∈ (0, 1), for any λ ∈
L2(0, T ) write

γλ(x) =
∞∑

i=1

2

⎛
⎝

T∫

0

λ(t)e−(πi)2t sinπir dt

⎞
⎠ sinπix.

(8)
Note that γλ ∈ L2(0, 1), and (7) becomes

γλ(x0) =

T∫

0

λ(t) y(t) dt, ∀λ ∈ L2(0, T ), (9)
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where, as in (7), the left-hand side and the right-hand side
are equal as two elements from L2(0, 1) with respect to
x0 ∈ (0, 1).

Denote by Γ the set of all possible functions {γλ |
λ ∈ L2(0, T )}. We will further refer to them as the test-
functions.

Remark 1. In (1) we assumed that the intensity of the
source is one unit. Suppose now that it is any (positive)
number ν. Then in place of (9) we will have

νγλ(x0) = ν

T∫

0

λ(t) y(t) dt, ∀λ ∈ L2(0, T ),

where y(·) is from (9). Cancelling ν gives us (9). Thus,
the magnitude of intensity does not affect the process of
finding x0.

Assume now that it is possible to select λ(t) so that
the corresponding function γλ is continuous and monoto-
ne in x on some interval (α, β) ⊂ (0, 1) . Then, if our
source localization problem has a solution x0 in (α, β), it
will be the only point

x0 = γ−1
λ

⎛
⎝

T∫

0

λ(t) y(t) dt

⎞
⎠ ∈ (α, β). (10)

Furthermore, if we manage to find two functions λ1

and λ2 such that the corresponding functions γλ1 and
γλ2 are continuous and strictly monotone on, respective-
ly, (0, b) and (c, 1), where b > c, then our localization
problem has at most two solutions,

x0
1 = γ−1

λ1

⎛
⎝

T∫

0

λ1(t) y(t) dt

⎞
⎠ ∈ (0, b) (11)

and

x0
2 = γ−1

λ2

⎛
⎝

T∫

0

λ2(t) y(t) dt

⎞
⎠ ∈ (c, 1). (12)

Now, if we can find the third function λ3 such that
the corresponding functions γλ3 is continuous and strictly
monotone on [x0

1, x
0
2], then our source localization pro-

blem will not have more than one solution in (0, 1).

Let us discuss now the role of the site a for the sensor
in the above argument and which of the associated calcu-
lations can be made “off-line.”

• Provided that the given site a for the sensor permits
that, the functions λi, γλi , i = 1, 2, can be “prepa-
red” in advance (“off line”). They do not require the
knowledge of the data y(t), t ∈ (0, T ).

• On the contrary, in order to construct γλ3 , one ne-
eds to know the exact locations of x0

1 and x0
2 in (0,1),

which can only be found by using the “actual” me-
asurement data. Thus, the latter requires “on-line”
calculations.

• Moreover, we need such sensor placement that will
allow us to find a suitable function γλ3 regardless
of the unknown, in advance, realization of the actual
measurement data. (Otherwise, it will be “too late.”)

Hence, if we want to be able to solve the source lo-
calization problem at hand uniquely following the above
argument, we should place our sensor at such a place that
the corresponding set Γ is “sufficiently rich,” namely,

• Γ should contain at least two functions γλi , i = 1, 2,
that are continuous and strictly monotone, respecti-
vely, on some intervals (0, b) and (c, 1), 0 < c <
b < 1.

• It should also contain infinitely many functions
γλ(k) , k = 1, . . . , which are continuous and stric-
tly monotone, respectively, on some sequence of in-
tervals (ck, bk), where ck → 0+ and bk → 1− as
k → ∞.

As a matter of fact, the second of the above condi-
tions is sufficient to solve the source localization problem
uniquely. Indeed, if there are two possible distinct solu-
tions x0

1 and x0
2 in (0, 1), then they have to lie in one of

the intervals (ck, bk), which contradicts the fact that the
equation

γλ(k)(x
0) =

T∫

0

λ(k)(t) y(t) dt

admits only a unique solution x0 in (ck, bk).
The question of the richness of the set Γ leads us to

the so-called controllability problem, which plays one of
the central roles in mathematical control theory.

2.4. Source identifiability and the dual controllability
problem. Let us note that the set of all γλ(x) is the set
of all the states of the following boundary problem at time
T :

zt = zxx + λ(T−t)δ(x−r) in (0, 1)×(0, T ) = QT ,

z |x=0,1 = 0, z(x, 0) = 0, (13)

that is,

Γ = {z(x, T ) = γλ(x) | λ ∈ L2(0, T )} ⊂ L2(0, 1).
(14)

Indeed, it was shown, e.g., by Ladyzhenskaja et
al. (1968) that solutions to (13) (understood in the
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generalized sense analogous to (2)) lie in the space
C([0, T ];L2(0, 1))∩H1,0

0 (QT ), where H1,0
0 (QT ) = {ϕ |

ϕ,ϕx ∈ L2(QT ), ϕ |x=0,1= 0}. Then the method of se-
paration of variables yields that z(x, T ) has the represen-
tation (8). We stress, in particular, that some of the test-
functions γλ can be discontinuous.

The following definition, classical in control theory,
(Dolecki and Russell, 1977), describes the “richness” of
the set Γ.

Definition 1. The system (1) is approximately controlla-
ble in a space H at time T if the set of all its states at time
t = T , that is, the set Γ is dense in H .

We have the following approximate controllability
result in H = H2(0, 1) ∩ H1

0 (0, 1) (see, e.g., the work
of Khapalov (1994) where

H1
0 (0, 1) = {ϕ | ϕ,ϕx,∈ L2(QT ), ϕ |x=0,1= 0},

H2(0, 1) = {ϕ | ϕ,ϕx, ϕxx ∈ L2(QT }.
Proposition 1. Let the sensor position r be any irratio-
nal number from (0, 1). Then, for any T > 0, the set Γ
is dense in the space H2(0, 1) ∩H1

0 (0, 1).

The proof is based on the fact (see, e.g., the work of
Fattorini and Russell (1974) that {e−(πi)2t, i = 1, . . .}
form a Riesz basis in L2(0, T ). In other words, for any
T > 0, there is a (biorthogonal) sequence {qi(t)}∞i=0

such that

T∫

0

e−(πi)2tqk(t) dt =
{

1 if i = k,
0 if i �= k.

This implies, in particular, that Γ contains all the functions
represented by finite sums like

K∑
k=1

αk sinπkx, K = 1, . . . , (15)

which are dense in H2(0, 1) ∩H1
0 (0, 1). �

Now we are in a position to prove the following iden-
tifiability result.

Theorem 1. Let the sensor position r be any irrational
number from (0, 1). Then, for any T > 0 and any reali-
zation of measurement data y(t), t ∈ (0, T ), the source
localization problem admits a unique solution only.

Proof. Consider any interval [0, b] ⊂ [0, 1) and any conti-
nuously differentiable function g on [0, 1] which vanishes
at x = 0, 1 and whose derivative on [0, b] is equal to 1.
It follows from Proposition 1 that this function can be ap-
proximated by functions from Γ arbitrarily closely in the

norm of the space C1[0, 1]. Hence, we can find a function
in Γ which has the form (14) and whose derivative is stric-
tly positive on (0, b), and select it as γλ1 in the argument of
Subsection 2.3. Analogously, we can construct functions
γλ2 and γλ(k) , k = 1, . . ., which will allow us to solve the
localization problem at hand uniquely. This completes the
proof of Theorem 1. �

2.5. Discussion of 1-D results and further plans. An
immediate drawback of Proposition 1 and Theorem 1 is
that one has to place a point sensor at an “irrational” si-
te. Clearly, this creates a serious problem in applications.
We emphasize that this difficulty is not due to our me-
thod of test-functions but is an intrinsic property of this
physical phenomenon (that is, as described by the model
(1)). Indeed, if the sensor is placed at a “rational” point
r , then the set of test functions Γ does not have in the-
ir representation (8) infinitely many terms, namely, those
that contain the functions sinπkx vanishing at r. In other
words, such a sensor is unable to “detect” the contribution
of these terms.

On the other hand, for any given sensor site r and
any λ ∈ L2(0, T ), the corresponding function γλ can be
used to uniquely identify a possible location of an unk-
nown source x0 within any subinterval of (0, 1), where it
is strictly monotone and continuous, see (11)–(12). This
opens a good perspective for “numerical experiments” in
applications.

Remark 2. (Finitely many point sensors.) Let us note
that, if, instead of one stationary point sensor, we take any
finite number of them, it does not principally change the
situation here. Indeed, if all the sensor are at “rational” si-
tes, say, {p1/q1, . . . , pN/qN}, then in the expression (8)
all terms which are multiple with the number q1 · . . . · qN
vanish.

Example 1. One practical problem. A practical situation
is the case when all the “potential” locations of an unk-
nown source are known in advance. They can, e.g., be the
sites where the canisters filled with waste are stored in a
pool or underground, which at some moment of time can
start “leaking.” This type of storage is supposed to be mo-
nitored by a reasonably secure system of sensors in order
to timely reveal possible contamination.

For example, suppose that a potential source can
emerge only within one of the given N subintervals
Ωi, i = 1, . . . , N of the space domain (0, 1). Then, to ma-
ke a conclusion in what subinterval Ωi the unknown so-
urce actually lies, it is sufficient to find N test-functions,
each of which is “principally distinct” from others only on
one of the above-mentioned intervals.

We may choose, e.g.,

γλi(x) =
{

1, x ∈ Ωi,
0, x ∈ (0, 1)\Ωi.
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Then, if the source emerged, say, in Ωi∗, then (as
Eqns. (11)–(12) imply)

∫ T

0

λi(x)y(t) dt =
{

1, if i = i∗,
0, if i �= i∗.

Note that the corresponding λi’s can be found “off-line.”
�

3. General 1-D model with mobile point
sensors

Let us consider now the following, rather general, boun-
dary problem:

ut = uxx + b(x, t)ux + a(x, t)u in QT , (16)

u |x=0,1 = 0, u |t=0 = u0,

a ∈ C(Q̄T ), b ∈ C0,1(Q̄T ).

Assume first that (as in Section 2) this process is excited
by a pointwise source u0(x) = δ(x−x0), whose location
is to be found, based on data obtained from a stationary
pointwise sensor located at the given site r.

We immediately see that those techniques of the pre-
vious section that are based on the Fourier series approach
do not apply to (16).

• Firstly, the formula (6) makes use of the explicit Fo-
urier series representation of solutions to (1), while
the concept of eigenvalues and eigenfunctions does
not apply to the time-varying system (16).

• Secondly, due to the same reason, the arguments of
Proposition 1 and Theorem 1, involving the series of
exponential functions, do not apply either.

Nonetheless, we intend to show that the method of the test-
function is still perfectly applicable to the system (16) in
the form of Eqn. (9) and the formula (14), which link the
solution of the source localization problem to the control-
lability property of the dual control problem.

Also, to cope with the difficulties arising in addition
due to a more general time-varying nature of (16), we will
make two changes in the models for sensors and sources.

Two mobile sensors. We now assume that we have two
point sensors that can move along the given trajectories
x = sl(t), t ∈ (0, T ), l = 1, 2 and the measurement data
are respectively represented by the functions

y(t) = (y1(t), y2(t)), yl(t) = u(sl(t), t),
t ∈ [0, T ], l = 1, 2.

Note that this two-sensor model includes, of course, our
previous one-sensor model as a particular case (to see that,

assume, e.g., that s1(t) ≡ 0). However, we intend to show
below that the use of two mobile sensors may provide us
with somewhat more versatile results (though not princi-
pally different).

“Zone” model for a source. Alternatively we can consi-
der the case when the unknown source is modeled as

u0(x) = u0(x, x0)

=
1

meas {Sh(x0) ∩ (0, 1)}χSh(x0)

=
1

meas {Sh(x0) ∩ (0, 1)}
·
{

1 if x ∈ Sh(x0) ∩ (0, 1),
0 if x ∈ (0, 1)\Sh(x0),

(17)

where x0 is to be found and Sh(x0) = (x0 − h, x0 + h)
is the “effective” zone of the source of a given radius h ∈
(0, 1). We assume that the intensity of the source does not
change over (0, T ) and is equal to one unit (see Remark 1).
This type of sources will be considered in Section 6.

Dual control model. Introduce the controlled boundary
problem dual of (16) as follows:

zt = zxx − (b(x, T − t)z)x + a(x, T − t)z
+ λ1(T − t)δ(x − s1(T − t))
+ λ2(T − t)δ(x − s2(T − t)) inQT ,

(18)

z |x=0,1= 0, z |t=0 = 0.

Following the terminology of control theory, we regard
λl(T − t), t ∈ (0, T ), l = 1, 2 in (18) as “controls”.

Multiplying (16) with any u0 in L2(0, 1) by z(x, T −
t) and further integrating by parts overQT yields the clas-
sical duality relation:

1∫

0

z(x, T )u0(x) dx

=

T∫

0

λ1(t)u(s1(t), t) dt+

T∫

0

λ2(t)u(s2(t), t) dt,

∀λ ∈ L2(0, T ).

(19)

Test-functions. Now, for u0(·) = u0(·, x0) as in (17) we
introduce the test-functions following (14):

γλ(x) = z(x, T ), λ = (λ1, λ2) ∈ [L2(0, T )]2), (20)

where λ = (λ1, λ2) is the pair of controls “producing”
z(·, T ) as the state of the system (18) at time T . Respec-
tively, we will use the following version of Eqn. (19) (in
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place of (9)) to find x0:

1∫

0

γλ(x)u0(x, x0) dx

=

T∫

0

λ1(t)y1(t) dt+

T∫

0

λ2(t)y2(t) dt,

∀λl ∈ L2(0, T ), l = 1, 2.

(21)

Throughout this paper we assume the following con-
ditions on the curves sl, l = 1, 2, which are to ensure both
the mathematical well-posedness of the system at hand
and to preserve their physical meaning as the trajectories
for the point sensors.

Assumption 1.

• We assume that the functions s1 and s2 are conti-
nuous on [0, T ] with values in [0, 1], although the-
se functions may be defined/introduced only on some
subsegment(s) of [0, T ]. (The latter means that the
associated sensors “act” only where si are defined
and are “inactive” at other times.)

• We also assume that any horizontal line {(x, t) | t =
t∗} can cross either of the trajectories si at most
at one point. (Indeed, if si, i = 1, 2, represent the
paths of point sensors, then at every moment of time
they can be supported only at single points.)

It is known that the systems (16) and (18) (see, e.g.,
the results of Ladyzhenskaja et al. (1968) and Khapalov
(2001)) possess unique solutions in the Banach space B =
C([0, T ];L2(0, 1))∩H1,0

0 (QT ). In the work of Khapalov
(2001) it was also shown that the traces of solutions to (16)
on the curves sl(·), l = 1, 2 are well defined as elements
of L2(0, T ).

We have the following identifiability result.

Theorem 2. Let the set Γ of all test-functions (20) be den-
se in L2(0, 1) or, which is the same, the system (18) be
approximately controllable in L2(0, 1) at time T .

• Then for every possible realization of data y(t), t ∈
(0, T ) the source localization problem for the system
(16) admits only a unique solution in (0, 1).

• For an arbitrary ε > 0 there exists a test-function
γλε such that for any realization of data y(t), t ∈
(0, T ) all possible solutions x0 from (0, 1) to
Eqn. (21) with γλε in place of γλ, including, in par-
ticular, the actual location of the unknown source,
lie within an interval whose length does not exceed
ε+ h2.

We regard the second of the above results as the
εh-identifiability of x0. It states that if we can “afford”

an error of “size” ε + h2, then, under the assumptions of
Theorem 2, the infinite system of equations (21) can be
reduced to just one equation with a carefully chosen test-
function.

Proof. In fact, uniqueness follows from the observability
property, which is tantamount to the approximate control-
lability assumption of Theorem 2, see Definition 2 and
Remark 3 in the next section.

Fix any δ > 0. Since Γ is dense in L2(0, 1), we can
select λ so that

γλ(x) = x+ g(x), (22)

where ⎛
⎝

1∫

0

g2(x) dx

⎞
⎠

1/2

≤ δ.

Then, owing to (17),

1∫

0

γλ(x)u0(x, x0) dx

=

1∫

0

(x + g(x))u0(x, x0) dx

=
1

meas {Sh(x0) ∩ (0, 1)}x
0

+
1

meas {Sh(x0) ∩ (0, 1)}
∫

{τ |τ + x0∈Sh(x0)∩(0,1)}

τ dτ

+
1

meas {Sh(x0) ∩ (0, 1)}
∫

{Sh(x0)∩(0,1)}

g(x) dx,

where

meas {Sh(x0) ∩ (0, 1)} ∈ (h, 2h] for x0 ∈ (0, 1).

Hence

1∫

0

γλ(x)u0(x, x0) dx

=
1

meas {Sh(x0) ∩ (0, 1)}x
0 + ρ(x0, h),

where

| ρ(x0, h) | ≤ h

4
+

δ√
2h
.

Respectively, (21) yields

x0 = meas {Sh(x0) ∩ (0, 1)}

×
⎛
⎝ 2∑

l=1

T∫

0

λl(t)yl(t) dt − ρ(x0, h)

⎞
⎠ . (23)
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Hence
c1 ≤ x0 ≤ c2,

where

c1 = meas {Sh(x0) ∩ (0, 1)}
2∑

l=1

T∫

0

λl(t)yl(t) dt

− h2

2
− δ

√
2h,

c2 = meas {Sh(x0) ∩ (0, 1)}
2∑

l=1

T∫

0

λl(t)yl(t) dt

+
h2

2
+ δ

√
2h.

This provides the conclusion of Theorem 2 with any δ <
ε/2

√
2h. �

4. Controllability and observability

In Theorem 2 the crucial technical condition is the appro-
ximate controllability of (18) at time T > 0 in the phase-
space L2(0, 1), which is linked to the “right” choice of the
trajectories for mobile sensors. In turn, it is well known
(Dolecki and Russell, 1977) that the approximate control-
lability of (18) is tantamount to the so-called observability
property of (16) at time T > 0 with u0 ∈ L2(0, 1).

Definition 2. The system (16) with u0 ∈ L2(0, 1) is said
to be observable at time T > 0 if the mapping

Measurement Data → State

is one-to-one. In other words, the following implication
holds:

u(sl(t), t) = 0 t ∈ (0, T ), l = 1, 2
=⇒ u ≡ 0 in QT . (24)

Remark 3. Note that (24), in particular, implies the uni-
que identification of the source function (17) as an element
of L2(0, 1) as well. In this respect, we would like to em-
phasize that Theorem 2 in the form of the formula (23)
provides us also with a tool for calculating x0.

The equivalence of the approximate controllability of
(18) in L2(0, 1) at time T and the observability of (16)
with u0 ∈ L2(0, 1) at time T follows from the duality
relation (19).

Indeed, if, for example, the linear manifold of all
z(·, T ) is not dense in L2(0, 1), then there is a u0 �= 0
such that

1∫

0

z(x, T )u0(x) dx = 0, ∀λl ∈ L2(0, T ), l = 1, 2.

Owing to (19), this yields u(sl(·), ·) ≡ 0, l = 1, 2,
which implies that u0 = 0, whenever (16) is observable
(and vice-versa).

Thus, to establish controllability (and, in particular,
source identifiability), it is sufficient to establish the obse-
rvability of (16) with u0 ∈ L2(0, 1).

We now intend to show that for any non-degenerate
ω = (l1, l2) ⊆ (0, 1) one can select two curves s1 and
s2 lying in ω × (0, T ) which ensure (24). Our results
are linked to the geometric Assumptions 2 and 3 on these
curves given below.

We start with the following.

Assumption 2. (“The same starting point.”) There is an
interval [t1, t2] ⊂ (0, T ] such that the functions x =
s1(t) and x = s2(t), t ∈ [t1, t2] are continuous and
one-to-one on it with values in [0, 1] and

s1(t1) = s2(t1), s1(t) < s2(t), ∀t ∈ (t1, t2].

This condition means that the curves s1 and s2
have a common point at time t1.

We start with the following immediate result.

Theorem 3. Let T > 0 be given, Assumptions 1 and 2
hold, and a(x, t) ≤ 0 in the horizontal strip A(·) =
{(x, t) | x ∈ [0, 1], t ∈ [t1, t2]}. Then the system (16),
(17) is εh-identifiablle.

Proof. It is sufficient to show that (16) is observable in
the sense of (24). Indeed, let solution u to (16) with u0 ∈
L2(0, 1) vanish on the curves s1(t) and s2(t), t ∈ [t1, t2]
“emitted” from the point (s1(t1) = s2(t1), t1). Then, due
to the maximum principle (Friedman, 1964), u vanishes
everywhere in the set

A1(·) = {(x, t) | s1(t) ≤ x ≤ s2(t), t ∈ [t1, t2]}.

Hence, by the unique continuation property (Saut and
Scheurer, 1987), u vanishes in the horizontal layer A(·).
By backward (and forward) uniqueness, this solution va-
nishes in QT . Thus, we have (24) and hence the approxi-
mate controllability of dual (18), which allows us to apply
Theorem 2. �

Remark 4. The maximum principle we used in the above
was shown by Friedman (1964) for the classical solutions
to (16). Due to the smoothing effect, it can be applied di-
rectly to (16) on any [t1, t2], 0 < t1 < t2 ≤ T when
a = b = 0, i.e., when (16) is the standard heat equation.
We can extend this result to the general case described in
Theorem 3 dealing with (continuous in A(·)) solutions to
(16) by the density argument (see also the results of Kha-
palov (2001)).

The case of a single sensor. Due to the zero boundary
condition in (16), any solution u vanishes on the lines
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x = 0 and x = 1. Hence, if we assume that we have an
“imaginary” stationary sensor located on either of the bo-
undaries of (0, 1), it will always provide us with the zero
“measurement data.” Therefore, in the argument of The-
orem 3 we can assume, for example, that trajectory s1 is
the boundary {(x, t) | x = 0, t ∈ (0, T )}. Then, the ar-
gument of Theorem 3 will work just for any single sensor
with a trajectory s2(t), t ∈ (0, T ) such that s2(t1) = 0
and s2(t) is strictly monotone on some (t1, t2) ⊂ (0, T ].
In other words, the sensor should move during some time
interval from the boundary of the space interval towards
its interior.

Let us consider now the general case of (16), that is,
not assuming that a(x, t) ≤ 0 as in Theorem 3.

Assumption 3.

• In addition to Assumptions 1 and 2, assume that on
the interval [t1, t2] ⊂ [0, T ] (that is, t1 can also be
the initial moment) the functions s1 and s2 are
respectively strictly monotone decreasing and incre-
asing.

• Assume that the connected (by Assumption 2) geome-
tric curve s in Q̄T ⊂ R2, composed of the curves
s1 and s2 on the interval [t1, t2], admits the follo-
wing representation:

s(·) = {(x, t) | (x, t) ∈ A(·), F (x, t) = 0},
where F is an element of C2,1(A(·)) and

Ft(x, t) − bx(x, t)F (x, t) − b(x, t)Fx(x, t)

+ Fxx(x, t) ≤ 0, ∀(x, t) ∈ A1(·), (25)

F (x, t) > 0 ∀(x, t) ∈ int {A1(·)},
F (x, t) ≤ 0 ∀(x, t) ∈ A2(·) = A(·)\A1(·).

(26)

Our main result here is based on the following lemma
(proven in detail by Khapalov (2001)).

Lemma 1. Let T > 0 be given and Assumptions 1–3 hold.
Then for any solution to the system (16) the following ob-
servability estimate holds:

‖u(·, T )‖L2(0,1)

≤ C

⎛
⎝

t2∫

t1

(u2(s1(t), t) + u2(s2(t), t)) dt

⎞
⎠

1/2

, (27)

where C is some positive constant.
Note that (27) implies the uniqueness property (24)

due to the backward uniqueness of solutions to (16). Its
direct consequence is the approximate controllability of
(18) inL2(Ω) at time T , which, being combined with The-
orem 2, yields the following result.

Theorem 4. Let T > 0 be given and Assumptions 1–3
hold. Then the system (16), (17) is εh-identifiable.

Both Lemma 1 and Theorem 4 can be extended to the
case of a single sensor as discussed after Theorem 3.

Example 2. Convection-diffusion equation and a sensor
moving at constant speed. Let (16) have the form

ut = uxx + bux in QT , (28)

u |x=0,1= 0, u |t=0= u0,

where the velocity of convection b is assumed to be con-
stant. For this model let us consider a sensor that moves
also at a constant speed α > 0 across (0, 1) from the point
x = 0 to the point x = α(T − t1) during the time-interval
(t1, T ), 0 < t1 < T .

Theorem 3 immediately yields that (28) is εh-
identifiable, regardless of the value of b. However, to ap-
ply Theorem 3, we need to assume that t1 > 0, i.e., that
the sensor initiates its motion after the process has begun.
(Recall that we need the continuity of solutions to (28) on
[t1, T ] in Theorem 3.)

Let us now compare this result with Lemma 1 and
Theorem 4, which in addition to εh-identifiability provide
the estimate (27) ensuring the well-posedness of the iden-
tification process with respect to measurement data.

Note that in Theorem 2 we can also choose t1 = 0,
in which case the above-mentioned sensor trajectory will
be described by the equation

F (x, t) = −x+ αt = 0

and
A1(·) = {(x, t) ∈ Q̄T | x ≤ αt}.

If 0 < T < 1/α, then our sensor moves between the
points x = 0 and x = αT < 1. For α > 0, the condition
(25) gives

0 < α ≤ −b.
Hence, to make Theorem 4 and the estimate (27) work, we
need to assume that the velocity of convection is negative
and its magnitude is greater that the speed of the sensor.

�
Example 3. The case with no convection. In Example 1,
we can also consider a parabolic curve like

F (x, t) = −(x− 0.5)2 + αt = 0,

whose two branches, on the left and on the right of the line
x = 0.5, are assigned to be the trajectories for two point
sensors:

s1(t) = 0.5 −√
αt, s2(t) = 0.5 +

√
αt, t ∈ [0, T ].

To satisfy Theorem 4, one may select, for example, α ∈
(0, 2], T < 0.25/α, while setting b = 0, i.e., omitting
convection. Note that our point controls move within the
interval [0.5 −√

αT , 0.5 +
√
αT ]. (For instance, for α =

0.4, T = 0.1 this interval will be [0.3, 0.7].) �
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Example 4. The general case. The parabolic trajecto-
ries as in Example 2 will satisfy any a and b described in
Eqn. (16). Indeed, in this case, (26) holds as before, and
(25) is as follows:

α − b(x, t)(−2(x− 0.5))

− bx(x, t)(−(x − 0.5)2 + αt) − 2 ≤ 0,

−√
αt ≤ x− 0.5 ≤ √

αt, t ∈ (t1, t2).

It will hold if, e.g., t1 = 0, while α ∈ (0, 2) and t2 is
sufficiently small. �

5. Source acting in time

In the above, we considered the case when the unknown
source acted as a “one-time event” at the initial moment
of time only. In this section we analyze the sources that
are active continuously in time. They are relevant, in par-
ticular, to modeling “leaks” of hazardous materials.

Example 5. We refer, for example, to the problem of
risk assessment of a radioactive waste repository in de-
ep geological layers. It is associated with the transport of
radionuclides by groundwater, see, e.g., the works of Da-
gan (1987; 1989), Devooght and Smidts (1996), PAGIS
(1989), Williams (1992; 1993). In particular, the following
model, described by the advective-dispersal equation in
one or two-dimensional media (compare it with (16) and
(34) below), was considered by Dagan (1987; 1989):

(mR
∂

∂t
+ ∇(q(x, t)·) −mDm(x, t)Δ

−∇(Dl∇·) + λmR)ψ(x, t) = Q(t)δ(x− x0), (29)

where ψ(x, t) constitutes the radionuclide concentration
at position x and time t, Q(t) stands for the intensity
of the source located at the position x0 at time t, and
m,R, q,Dm, Dl are the parameters, which are functions
of position and time. In particular, Dm is the “molecular”
diffusion coefficient due to a Brownian motion at the po-
re scale, Dl is the local “mechanical” dispersion tensor,
representing the effect of the groundwater flow passing
through the tortuous structure of the geological medium
and causing a dispersion of the concentration cloud. The
retardation factor R models the reversible exchange be-
tween the solution and the matrix, e.g., by adsorption and
desorption; and λ is the decay constant of the radionucli-
de. (Other examples relevant to the mathematical models
analyzed in this paper can also be found, e.g., in the pu-
blications of Dagan (1987; 1989), Devooght and Smidts
(1996), PAGIS (1989), Williams (1992; 1993), see also
the bibliography therein.) �

Consider now the following very simple one dimen-
sional model:

ut(x, t) = uxx(x, t) + δ(x− x0), (x, t) ∈ QT , (30)

u|x=0,1 = 0, u(x, 0) = 0,

which describes the process generated by a source acting
continuously-in-time at the unknown site x0. We assu-
me that the intensity of the source is constant during a
(“small”) time-interval (0, T ). As noticed in Remark 1,
without loss of generality we may assume that it is equal
to one unit.

Using the methods of Sections 2 and 3, we can ob-
tain that the solution to (30) is an element of the space
L2(0, T ;L2(0, 1)) ∩H1,0

0 (QT ), represented by the follo-
wing formula:

u(x, t) =
∞∑

k=1

2

t∫

0

e−(πk)2(t−τ) sinπkx0 dτ sinπkx

= 2
∞∑

k=1

1 − e−(πk)2t

(πk)2
sinπkx0 sinπkx.

(31)

Suppose that we need to find the point x0, based on
the measurement data y(t), t ∈ (0, T ) obtained from a
sensor located at a given point r ∈ (0, 1) as described in
(5). Then, instead of Eqns. (8) and (9), we have

γλ(x0) =

T∫

0

λ(t) y(t) dt, ∀λ ∈ L2(0, T ), (32)

where

γλ(x) =

T∫

0

λ(t)u(x0)(r, t) dt

= 2
∞∑

k=1

T∫

0

λ(t)
1 − e−(πk)2t

(πk)2
dt sinπkr sinπkx,

(33)

and u(x0)(x, t) represents the solution to (30).
The following result is very similar to Theorem 1.

Theorem 5. Let the position of sensor r be any irra-
tional number from (0, 1). Then, for any T > 0 and any
realization of measurement data y(t), t ∈ (0, T ) the so-
urce localization problem for Eqn. (30) admits a unique
solution only.

Indeed, based on the formulas (31)–(33), we can ap-
ply the argument of Proposition 1 almost identically, while
using now the sequence {q∗k, k = 1, . . .} biorthogonal to
the sequence of {1, e−π2t, . . . , e−(πk)2t, . . .} in place of
{e−π2t, . . . , e−(πk)2t, . . .}.

Theorem 5 have the same drawback as Proposition 1.
Namely, its proof is heavily based on the explicit formula
for solutions to (30) and involves the “irrational” sites for
sensor placement.
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To get results more general than Theorem 5, one ne-
eds to study the set of test-functions given by (33) in the
fashion of Section 4.

6. Multidimensional models

Let Ω be a bounded, open, connected set in R
n with

boundary ∂Ω. In Ω we consider the following homoge-
neous Dirichlet problem for the parabolic equation:

∂u

∂t
= A(x, t)u

=
n∑

i,j=1

∂

∂xi
(aij(x, t)

∂u

∂xj
) +

n∑
i=1

bi(x, t)
∂u

∂xi

+ a(x, t)u in QT = Ω × (0, T ),

(34)

u |ΣT = 0 in ΣT = ∂Ω×(0, T ), u |t=0= u0 ∈ L2(Ω).

We assume that for all ξi ∈ R a.e. in Q:

μ

n∑
i=1

ξ2i ≤
n∑

i,j=1

aij (x, t)ξiξj , μ > 0,

where
aij = aji, aij , bi, a ∈ L∞(QT );

∂aij

∂t
∈ L1(0, T ;L∞(Ω)), i, j, k = 1, . . . , n. (35)

It is known that the system (34), (35) admits a unique
solution in C([0, T ];L2(Ω)) ∩H0,1QT Ladyzhenskaja et
al. (1968). Such regularity of solutions is not consistent
with point models for sensors and sources involving δ-
functions. For example, the former require the existence
of traces of the corresponding solutions on the trajectories
in R

n+1. On the contrary, no such difficulty will arise if
one uses zone models.

Let us assume that the distributed process (34), (35)
is excited at time t = 0 by a single source u0(x, x0)
of unit intensity (see Remark 1) concentrated within some
neighborhood of an unknown point x0,

u0(x, x0)

= meas−1{Sh(x0) ∩ Ω}
{

1 if x ∈ Sh(x0) ∩ Ω,
0 if x �∈ Sh(x0) ∩ Ω,

(36)

where h > 0 is given and characterizes the effective
zone Sh(x0) of the source,

Sh(x0) = {x | ‖ x− x0 ‖Rn < h}.

As in the above, the source localization problem is to
find x0, based on the available m-dimensional measure-
ment data y(t) ∈ R

m, t ∈ (0, T ), provided by m given

sensors,

y(t) =

⎛
⎜⎝
∫

Ω
χ(x, S1(t))u(x, t) dx

...∫
Ω
χ(x, Sm(t))u(x, t) dx

⎞
⎟⎠ , t ∈ (0, T ),

(37)
where

χ(x, Sj(t)) = meas−1{Sj(t)}
{

1 if x ∈ Sj(t),
0 if x �∈ Sj(t),

(38)
and Sj(t) ⊂ Ω, j = 1, . . . , r are the given effective
sensing regions at the instant t. We assume that the set-
valued maps t → Sj(t) are continuous in time with re-
spect to the Lebesgue measure. When Sj(t) = Sj , j =
1, . . . ,m, we have stationary zone observations, otherwi-
se they are mobile.

The method of test functions described in the abo-
ve for the one dimensional boundary problem (16) applies
along the lines of Theorem 2 to a general system like (34)
as well. Respectively, we need to introduce a control pro-
blem dual of (34) as follows (compare it with (18)):

∂z

∂t
=

n∑
i,j=1

∂

∂xi
(aij(x, T − t)

∂z

∂xj
)

−
n∑

i=1

∂

∂xi
(bi(x, T − t)z) + a(x, t)z

+
m∑

j=1

λj(T − t)χ(x, Sj(T − t)) in QT ,

(39)

z |ΣT = 0 u |t=0= 0.

Let us introduce the set of test-functions Γ by the
formula (20), that is,

Γ = {γλ = z(·, T ) | λ = (λ1, . . . , λm) ∈ [L2(0, T )]m}.
(40)

Then, exactly as in Sections 3 and 4 (see, e.g., (19)), we
have the following system of equations to find x0:

∫

Ω

γλ(x)u0(x, x0) dx =

T∫

0

λ′y(t) dt,

∀λ ∈ [L2(0, T )]m. (41)

Theorem 6. Let the set of Γ defined in (40) be den-
se in L2(0, 1) or, which is the same, the system (39) is
approximately controllable in L2(0, 1) at time T . Then
the system (34)–(38) is εh-identifiable at time T . Name-
ly, for an arbitrary ε > 0 there exist n test-functions
{γλi , i = 1, . . . , n} such that for any possible output
y(t), t ∈ (0, T ) all solutions x0 ∈ Ω to the system (41)
lie in some ball of radius ε+ 2h.
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Let us note here that the approximate controllability
of the system (39) in L2(0, 1) was studied by Khapalov
(1994(a); 1998; 2001) (see the work of Khapalov (2010)
and the references therein for the case of multiplicative
controls), with an algorithm on how one can construct su-
itable mobile supports Sj(t), t ∈ (0, T ), j = 1, . . . ,m for
sensors given.

Proof. Let C = {cij}, i, j = 1, . . . , n be an arbitrary
non-degenerate [n× n]-matrix. Write

vi(x) =
n∑

j=1

cijxj , i = 1, . . . , n,

x = (x1, . . . , xn) ∈ R
n. (42)

Case 1. Assume first that all the functions {vi(·)} belong
to the set Γ, that is, there exist {λ(i)(·)}n

i=1 for which

vi(x) = γλ(i)(x), i = 1, . . . , n.

Then, (41) and (36) yield

∫

Ω

u0(x, x0) γλ(i)(x) dx

=
n∑

j=1

cijx
0
j + bi(x0), i = 1, . . . , n, (43)

where x0 = (x0
1, . . . , x

0
n) and the functions bi, i =

1, . . . , n are uniformly bounded in Ω,

| bi(x) | ≤ h‖C‖, ∀x ∈ Ω, i = 1, . . . , n.

Indeed,

∫

Ω

u0(z, x)

⎛
⎜⎜⎜⎝

γλ(1)(z))
γλ(2)(z))

...
γλ(n)(z))

⎞
⎟⎟⎟⎠ dz

=
1

meas {Sh(x)
⋂

Ω}
∫

(Sh(x)∩Ω)−x

C(z + x) dz,

∀ x ∈ Ω.

Hence,

‖(b1(x), . . . , bn(x))‖Rn

≤ sup
z∈Sh(0)

‖Cz‖Rn ≤ h ‖C‖, ∀x ∈ Ω̄. (44)

By virtue of (41) and (43), the unknown point x0

satisfies the following system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = C−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫ T

0 λ
(1)′(t) y(t) dt − b1(x0)

∫ T

0
λ(2)′(t) y(t) dt − b2(x0)

...
∫ T

0
λ(n)′(t) y(t) dt − bn(x0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

x0 ∈ Ω.
(45)

Let x01, x02 be two different solutions of (45) (if
such exist, otherwise we skip the next step of the argu-
ment). Applying the estimate (44) to (45) yields

‖ x01 − x02 ‖Rn

≤ sup
x01,x02∈Ω

‖ C−1((b1(x01), . . . , bn(x01))′

− (b1(x02), . . . , bn(x02))′) ‖Rn

≤ 2h ‖C−1‖ ‖C‖.

(46)

The conclusion of Theorem 6 follows by choosing C to
be the identity matrix.

Case 2. In the general case we may not have (43). Howe-
ver, the assumptions of Theorem 6 provide us with such
a sequence {λk = (λ(1)

k , . . . , λ
(n)
k ), k = 1, . . .} that

the corresponding functions {γ
λ
(i)
k

, i = 1, . . . , n; k =

1, . . . ,∞} converge in the norm of [L2(Ω)]m to
(v1, . . . , vn) as in (42).

Select any ρ > 0. Then for some k = k∗ we have

∣∣
∫

Ω

u0(z, x)γλ
(i)
k∗

dz −
∫

Ω

u0(z, x)vi(z) dz
∣∣ ≤ ρ

i = 1, . . . , n, ∀x ∈ Ω.

From here, along the lines (43)–(45), we obtain the system
{
x0 = C−1A,
x0 ∈ Ω

}
, (47)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c
∫ T

0 λ
(1)′
k∗ (t) y(t) dt − b1(x0) + ρ1(x0)

∫ T

0 λ
(2)′
k∗ (t) y(t) dt − b2(x0) + ρ2(x0)

...
∫ T

0
λ

(n)′
k∗ (t) y(t) dt − bn(x0) + ρn(x0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for the unknown location point x0, where

| ρi(x) | ≤ ρ, ∀x ∈ Ω, i = 1, . . . , n.

Thus, similarly to (46),

‖ x01 − x02 ‖Rn ≤ 2h ‖C−1‖ ‖C‖ + ε‖C−1‖ (48)
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with
ε = 2

√
nρ.

In order to ensure that x01 and x02 lie in a ball of radius
2h+ ε (as required in Theorem 6), it is sufficient to select
C to be the identity matrix . This completes the proof of
Theorem 6. �

Remark 5.

• Theorem 6 provides the formula (47) and the estima-
te (48) on the basis of linear test-functions. It seems
plausible that this estimate can somewhat be refined
by taking into account the particular shape of Ω at
hand when selecting test-functions.

• Similarly to the discussion in Section 5, we can
extend the results of this section to the case when the
unknown source acts continuously in time.
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