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Abstract

In this paper, we combine the matched-field method with the boundary integral equation
method from inverse scattering theory to study a sound source localization problem in a shallow
ocean with an unknown large inclusion. We assume that there is an unknown inclusion embedded
in a shallow water waveguide. To localize a continuous wave (CW) source, we send in a number
of “mode waves”, which scatter off the unidentified inclusion and are received by a hydrophone
array. Combining the information of these scattered waves and the signal from the point source,
we present an algorithm to estimate the location of the CW source. A numerical simulation
using this method is presented.

1 Introduction

The “Matched-field processing” method for the localization of acoustic sources in waveguides has
been studied by many authors in recent years [1] [2] [8] [9] [10]. The main idea of the matched-field
processing method is described in Bucker’s paper “use of calculated wave field and matched field
detection to locate sound source” [2]. On the other hand, the classical inverse scattering theories
have developed rapidly recently [3] [11] [5]. The basic idea of the inverse scattering theory is based
on the physical idea of scattering one or more “plane waves” off the unidentified inclusion and then
trying to identify the shape of the inclusion or other properties from its far-field patterns. Recently,
Gilbert and Xu have generalized this idea to the direct and inverse scattering problems in a shallow
ocean (ref. [6] [7] [12] [13)).

In this paper, we combine matched-field processing with the boundary integral equation method
of inverse scattering theory to study a sound source localization problem in a shallow ocean with
an unknown large inclusion. A similar idea has been used by Xu and Yan [15] for sound source
localization in a shallow ocean with a known large inclusion. Here we extend the idea to the case
that there is an unknown inclusion embedded in a shallow water waveguide. A continuous wave (CW),
produced by a sound source, is scattered by the inclusion and then received by a hydrophone array
(Figure 1). As we can expect, the existence of the unknown inclusion changes the propagating field
greatly. The propagating fields from a point source in a waveguide with and without the inclusion are

1This author’s research was supported in part by the Institute for Mathematics and its Applications with funds
provided by the National Science Foundation, the Minnesota Supercomputer Institute and Alliant Techsystems Inc.



plotted in figures 3 and 4 respectively. Therefore, neglecting the existence of the unknown inclusion
will lead to substantial mismatching in the matched-field signal processing.

One straightforward method of avoiding mismatch is to use the inverse scattering method to
reconstruct the shape of the unknown inclusion and then use the BIEM method in [14] to estimate
the location of the source. However, sometimes one is only interested in locating the sound source. In
that case, the method above is not a wise choice because the reconstruction of the unknown inclusion
requires a large amount of information and very heavy computation. Moreover, the ill-posedness of
the reconstruction problem will cause unnecessary error.

In this paper we will present a method which uses the idea of inverse scattering without actually
computing the shape of the unknown inclusion. To localize a continuous wave source we send in a
number of “plane waves” which scatter off the unidentified inclusion and are received by a hydrophone
array. By combining the information from these scattered waves with the signal from the point source
we present an algorithm to estimate the location of the CW source. In Section 2 we formulate the
problem and present the theory. Section 3 describes the numerical results.

2 Modeling and methodology

2.1 Modeling

The model of the perturbed waveguide is depicted in figure 1.

We denote the waveguide with depth d as R} = {(z,2,)| — 00 < 77 < 00,0 < 7, < d}. An
inclusion which is a bounded region located in the waveguide is denoted as ). For the sake of
exposition, we shall assume that the inclusion has a sound-soft boundary 8Q. Here we would like to
point out that the shape of this inclusion is unknown and no information about € is actually used
in our computation. A time-harmonic acoustic source is located at z° = (z{,z3). The hydrophone
array consists of L hydrophones at 2! = (z},z}),l = 1,2,--- L. A time-harmonic wave, radiated
from z* and scattered by ), propagates outward to |z;| — co. Let p(z;z°) be the acoustic pressure
at ¢ = (z,,2,), emitted from the acoustic source at z°, and k = 27 f/c be the wave number, where
f 1s the frequency and c is the speed of the tlme-harmomc acoustic wave. If the water waveguide
has a pressure release surface at z, = 0 and a rigid bottom at z, = d, then the propagation of the
outgoing wave is governed by the following equation:

A p(z;2°) + k*p(z;2°) = —6(21 — 23)é(z2 — 23), 7 = (21,72) € RI\ T, (2.1)
0

P, 0,2°) =0, 22 (z,dia’) =0, (2:2)

p(z;2°) =0 for = € ON. (2.3)

Moreover, p(z;z*) satisfies an outgoing radiating condition, i.e., for |z;] — oo, p(z;z°) has an
expansion

1:1,:[2 an¢n tk“lzll (24)



where k, = [k? = (n — %)2%]1/2 is the horizontal wavenumber, and the coefficients p, depend on z°

and the sign of z;, and
1=

T,) = sin{(n — =)=z 25

bal22) = sin[(n = 5) 7] (23)
Now we can state our source localization problem as follows: given the acoustic pressure at points

z',1=1,2,---, L in the perturbed waveguide, estimate the location of the sound source z°.

2.2 Representation of the propagator

In this section we represent the propagating field using the boundary integral equation method
on 0Q. The purpose is to understand the information that is needed to approximate the propagating
field. The integral is defined over an unknown boundary and cannot actually be calculated.

The propagating acoustic wave emitted from a point source at z* (which is called the Green’s
function) can be constructed in the following way.

Write the Green’s function in the waveguide with an inclusion  as

p(z;2°) = po(z; 2°) + p1(z; 2°). (2.6)

Here po(z;z°) is the Green’s function in the waveguide without the inclusion, i.e., po(z; z°) satisfies

B pol;2°) + Kpol 33 2°) = —8(zy — 2)8(22 — 23), © = (21,2) € R? (2.7)
0
po(z1,0;2°) =0, a—po(xl,d; z’) =0, (2.8)
I2
and po(z;z°) is outgoing. By separation of variables, we can represent po(z;z°) as
s - z s\ tkn|zy—z?
po(z;2") = 3 {% }¢n(12)¢n(mz)e Fnlea =il (2.9)
n=1] *<%n
Then p; = p — po is a solution of the problem

A pi(z;2°) + k¥pi(z;2°) =0, z € R%\ Q, (2.10)
pr(e0,0;2%) = 0, 2z, diz%) = 0 (2.11)

axz bl 1 bl .
pi(z;2°) = —po(z;2°) for z € 9Q, (2.12)

and p;(z;z°) is out-going as |zr;| — oo. The physical meaning of this problem is that a wave
Po incident upon the inclusion 0 produces the scattered wave p;. The Green’s function p is the
composition of the incident wave po and the scattered wave p;.

e construct the scattered wave p; by the boundary integral equation method. Using a double
layer potential,[4] we write

Opo(z; —
pi(z;2°) = /an —I%V—y)'zb(y;:r’)day, forz € R\ Q, (2.13)
y



where 1) is the solution of the boundary integral equation

i}
Y(z;z°) + 2 ﬂ(z;y)w(y;z’)day = —2po(z,z”), for z € ON. (2.14)
aq Ov,

Symbolically we denote the boundary integral equation (2.14) as

¥ + K¢ = —2p,, (2.15)
where K is the integral operator
. 9po ,
Ky(z;z*):=2 | —(z;y)¢¥(y;2")doy, for z € ON. (2.16)
an Ov,

By the theory of Fredholm integral equations of the second kind, if k is not an eigenvalue of the
interior Neumann problem in §, then I + K is invertible [4]. We can write

¥(z;2°) = =214+ K) 7 Ipo(z; 2°), (2.17)
and

Opo(z;y)

b~ o, (I+K) 'po(y; z°)do,, for z € R\ QL. (2.18)

p(z;2°) = po(z;2°) — 2

2.3 Approximation of the Green’s function using the inverse scattering
method

The representation (2.18) in the last section cannot be used for computation since § is unknown.
However, in view of (2.9), we can rewrite (2.18) for ] < y; < z, as

Ly x L s —ik,..t]‘ ,‘k“:l_ 8170(1,3/) -1 tknyi
p(:r,:r)_;2kn¢n(:rz)e {d),,(:rg)e 2 an—auy (I4+K) dn(y2)e doyp. (2.19)

For the other cases of z},y;, and z,, we get similar representations by using a proper change of the
signs of z3,y;, and ;.
Hence, we can approximate p(z;z*) by

N

pr(aia’) = 3 g un(@)gn(es)e o, (2.20)
n=1 n
where 5
un(2) = du(za)etnn — 2 [ FPEY g gy (e do (2.21)
an Oy,

and N is the number of propagating modes. If the inclusion € is known, (2.21) can be used to
calculate u,, and hence obtain the calculated field. However, since we assume no knowledge of § is
given, we have to estimate u, using some other information.
Comparing (2.21) and (2.18), we see that u,(z) is the sum of the incident wave ul = ¢,(z;)e**:
and the corresponding scattered wave
dpo(z;y)

s _ _ het s ANt E- 04 -1 tkny1
ul 2 o0 ov, (I+K) én(ya)e do,.



That is, an incident “mode wave” u! scatters off the unknown object and produces the scattered
wave ul. The total field is the sum of the incident and scattered waves u, = uf + u?.

We compute our estimate of the acoustic field py(z;z°) in two separate steps:

1. Detect un(z') for given z!,1 = 1,2,---, L. We send in “mode waves” u! for n = 1,2, --, N,
and the complex pressures detected at z/,1=1,2,---, L are u,(z').

2. For a given source location z*, compute py(z';z*). After u,(z') are obtained, py(z'; z°) can
be calculated using (2.20).

2.4 Construction of estimators

Using the representations forthe Green'’s function (2.9) and its modal amplitude, we now construct
the estimators. For the sake of illustrating our method, we shall use the following simple estimator.
More robust estimators will be interesting in practise. However we will not discuss them in this
report.

Estimator: Let {p},,} be the detected data set consisting of the acoustic pressure field pZ,,
sampled at the hydrophones located at (z*,z5),m = 1,2,---,M;l = 1,2,.--, L. The estimator in
phone space is defined as follows:

-1
2]
)

where py (2T, zb; 22, 23) is the calculated acoustic pressure field at (z7*, z%).
D 1,22: 71, I3 p 12

L M
Fp(li,l’;) = [Z z |pN($;n7zl2;x;7z;) - p:nl
=1 m=1

—_—
[N
[ O]
[§]

~—

3 Computer simulations

Computer simulations using the method above were carried out on the Cray2 at the Minnesota
Supercomputer Center. In this section we present some examples from our computations.

Example: Vertical hydrophone array

The configuration for the computer simulations is depicted in figure 2.

We assume the waveguide has a depth of 100 meters. The sound speed is assumed to be 1500m/s.
An acoustic source S located at (~350/7,100/7) emits a time-harmonic wave at the frequency
f = 30Hz. The hydrophone array is arranged vertically at (600/7,2.57),7 = 0,1,---,40. There is
an inclusion §) with a pressure release surface which occupies the region {(z,,z;)|z? +4(z, — 50)% <
(50/7)%}. If the waveguide is normalized to a depth of 7, then the normalized wave number is k = 4,
which means there are four propagating modes for the acoustic wave at the given frequency.

We use the boundary integral equation method to compute the propagating field. First, we solve
the integral equation (2.13) for 3 (z; z*) where po(z; £*) is given by (2.9) with truncation at n = 30 and
z* = (—350/7,100/7), and substitute the ¥(z;z*) into (2.18) to get the propagating field p(z;z*).
A contour plot of the propagating wave with source at z* = (—350/7,100/7) is plotted in figure 3.
For comparison, a contour plot of the propagating wave with a source at z° = (-350/7,100/x) in an
unperturbed waveguide is plotted in figure 4. In particular, we obtain p;, = p(600/7,2.5m;z*),m =
0,1,---,40. To make the data more realistic, we add Gaussian noise (generated by a NAG subroutine
g05ddf in our computation) to the data and use it as our detected data. Contour plots of the first to



forth modes of the total fields in a waveguide with the large inclusion are given in figures 5-8. For
comparison, the forth mode in a unperturbed waveguide is plotted in figure 9.

The second step is to compute the estimator. We generated the u,(600/7,2.5m) as the detected
field at (600/7,2.5m),m = 0,1,---,40. These data are obtained by our approximate BIEM method
with added Gaussian noise.

Using these u,(z), we search the area of [—600/7,0.0] x [0,100], and plot the estimator F,(z*)
for z* € [-600/x,0.0] x [0,100]. (See figures 10-14).

Figure 10-11: These figures show the estimator Fy,(z*) for the detected data p;, = p(600/7,2.5m; z*
m = 0,1, --,40 which contain Gaussian noise with signal-to-noise ratio S/N = 10dB. In figure 11,
a filter with the threshold value F,(z°) = 0.65 is used, i.e. we set Fp(z*) =0 if F,(z°) < 0.65.

Figure 12: This figure shows the estimator F,,(z*) when the calculated field py(z; z*) is computed
in the absence of the inclusion and hence mismatches the true field. The figure indicates the processing
loss and localization ambiguities incurred by not accounting for unknown inclusions in matched field
processing. No noise was used in this calculation.

Figure 13: Same as Figure 15 with added Gaussian noise, signal to noise ratio S/N = 10dB,
and a filter threshhold value of F,(z*) = 0.65.

4 Conclusions

A technique for compensating for environmental uncertainty in matched field processing has
been described. The method combines the boundary integral equation method with matched field
processing. By illuminating the search space with incident “mode waves™ the effect of unknown
inhomogeneities in the environment on matched field processing can be compensated. The advantages

of this compensation on matched field processing gain and localization can be clearly seen by the
numerical simulations.
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Figure 7: Third mode of the total wave in the
perturbed waveguide
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Figure 8: Fourth mode of the total wave In the
perturbed waveguide
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Figure 9: Fourth mode of the total wave in the
unperturbed waveguide
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Figure 10: Esti

mator of detected data with Gaussian
noise, S/N=10db
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Figure 11: Estimator with filter threshold set at 0.65
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Figure 12: Estimator output when the calculated field is
computed in the absence of the inclusion and hence
mismatches the true field
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Figure 13: Same as Figure 12 with added Gaussian
noise, S/N=10db, filter threshold set at .65
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