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A Brain-Computer Interface (BCI) is a system used to communicate with an external world through the brain activity. )e brain
activity is measured by electroencephalography (EEG) signal and then processed by a BCI system. EEG source reconstruction
could be a way to improve the accuracy of EEG classification in EEG based brain-computer interface (BCI).)e source localization
of the human brain activities can be an important resource for the recognition of the cognitive state, medical disorders, and a
better understanding of the brain in general. In this study, we have compared 51 mother wavelets taken from 7 different wavelet
families, which are applied to a StationaryWavelet Transform (SWT) decomposition of an EEG signal.)is process includes Haar,
Symlets, Daubechies, Coiflets, Discrete Meyer, Biorthogonal, and reverse Biorthogonal wavelet families in extracting five different
brainwave subbands for source localization. For this process, we used the Independent Component Analysis (ICA) for feature
extraction followed by the Boundary ElementModel (BEM) and the Equivalent Current Dipole (ECD) for the forward and inverse
problem solutions. )e evaluation results in investigating the optimal mother wavelet for source localization eventually identified
the sym20 mother wavelet as the best choice followed by bior6.8 and coif5.

1. Introduction

Brain-Computer Interface (BCI) not only external permits
controlling devices but also interacts using the environment
by brain signals. EEG signals measurements over the motor
cortex exhibit changes in power related to the movements or
imaginations which are executed in motor tasks [1]. Changes
declare decrease or increase of power in alpha (8Hz–13Hz)
and beta (13Hz–28Hz) frequency bands from resting state
to motor imagery task known as event related synchro-
nization and desynchronization [2]. )e necessity to com-
municate with the external world for locked-in state (LIS)
patients made doctors and engineers motivated to develop a
BCI technology for typing letters through brain commands.
Research has been done around this area to ascertain the
dream of typing for the handicapped. In the brain, some

regions of the cerebral cortex are involved in the planning,
control, and execution of voluntary movements. Electro-
encephalography (EEG) signals are electrical potentials
generated by the nerve cells in the cerebral cortex. In order to
execute motoric tasks, the EEG signals have appeared over
the motor cortex [1].

To accurately study and analyze the human brain,
electroencephalography (EEG) [1] is thought to be the
optimal method that helps us advance in our quest due to the
noninvasiveness and the low-cost factors. )e electroen-
cephalogram (EEG) is a recording of the electrical activity of
the brain from the scalp. )e recorded waveforms reflect the
cortical electrical activity. In fact, the EEG provides access to
human brain activities in 5 main frequency band packages
presented in Table 1 [2]. )e scientific trend shifted towards
exploiting these frequency subbands and seeking the
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extraction of pure and noncontaminated signals instead of
developing recording methods and other ways to express the
signal.

)e research community took an omnidirectional ap-
proach throughout the recent years to try to extract the
human brain activities and access these five different fre-
quency subbands. In this context, Murali et al. [3] used the
recurrence quantification analysis (RQA) algorithm and an
adaptive FIR filter for the EEG signal extraction. As for
Singh, Vivek et al. [4], they compared using Finite Impulse
Response (FIR) and Infinite Impulse Response (IIR) filters
and confirmed the FIR success over RII regarding EEG
signals. On the other hand, Nallamothu et al. [5] used a
Nonlinear Least Mean square (LMS) adaptive filtering to
remove artifacts from the EEG signal.

For their part, Tzimourta et al. [6, 7] used a Discrete
Wavelet Transform (DWT) for feature extraction and
Support Vector Machine (SVM) classification of Epileptic
Seizures. Actually, our previous work [8] has proved the
effectiveness of the Stationary Wavelet Transform (SWT)
using Symlet 4 mother wavelet compared to FIR filters in
feature extraction of the alpha and gamma band waves.
Furthermore, Akkar and Jasim [9] proved that the Symlet 9
mother wavelet is the best wavelet from a set of 25 mother
wavelet functions using the Packet Wavelet Transform
(PWT). Condo and Efrén [10] compared 18 different mother
wavelets for EEG signal analysis and affirmed Symlet 6 and
Daubechie 5 are the most adequate for EEG signals. Noor
et al. [11] compared 45 mother wavelets to conclude that
Symlet 9 followed by Coiflet 3 and Daubechie 7 exhibits the
highest similarities and compatibilities with the EEG signal
after applying an FIR notch filter.

)e EEG signal is a nonstationary signal; the advantage
of using the wavelet transform over the usual Fourier
transform in EEG signals is their capability to analyze
nonstationary signals [12, 13] due to their improved pre-
sentation in both the time and frequency domain as shown
by Figure 1.

In this context, this study aims at comparing 51 different
mother wavelets using SWT to extract human brainwaves
and localize their sources. In section 2, we will address the
methodology first, by describing the manipulated dataset
and then proceed by presenting the SWTand the processing
steps of our study and finally by introducing the evaluation
methods. Section 3 will feature the conceived results and
section 4 will highlight the discussion.

2. Methodology

2.1. Dataset

2.1.1. Simulated Signal. Influenced by the morphology and
the structure of actual EEG signals, we created a sinusoidal
signal with oscillations of 400ms on 800ms time windows
used in the evaluation process.

A sampling rate of 1000Hz and an oscillation frequency
of 3, 6, 10, 20, and 45Hz were recorded for the extraction of
Delta, )eta, Alpha, Beta, and Gamma waves, respectively.
)e signal to the noise ratio (SNR) was also altered from −5
to 15 dB with −5 dB for noisy signal simulation, 10 dB for
balanced signals, and 15 dB for acceptable quality signals. On
the other hand, the amplitude of the signal depends on both
the SNR value and the noise contaminating the signal, which
is what is known as a pink noise; besides, it is a very common
noise for biological systems.

2.1.2. /e EEG Dataset. )e EEG signal dataset used in this
study is a one-subject recording of a presurgical EEG signal
from a pharmacoresistant subject with asymptomatic focal
cortical dysplasia in the right occipital-temporal junction.
)e acquisition and preprocessing phases were applied as in
our previous work [7, 8] and validated by an expert neu-
rologist. )is particular EEG recording was chosen because
it presented clear alpha and gamma patterns with regular
spiking and visible epileptic oscillations as validated by the
expert. )e EEG data was recorded on a Deltamed System,
with a 2500Hz sampling rate and antialiasing low-pass
analog filter set to 100Hz. )e dataset contained 74 epochs
with a 6-second duration each, 62 channels, and 148 events.

2.2./eWaveletTransform. Similar to the Fourier transform
(FT), the wavelet transform (WT) is a function that grants
the passage from the time to the frequency domain. How-
ever, the FTdecomposes the signal into a series of sinus and
cosines components as in the following equation:

s(t) � ∫+∞
ω�−∞

S(ω)ejωtdω, (1)

with S(ω) the short-time Fourier coefficient controlled using
the frequency parameter ω.

)e wavelet transform also decomposes the signal into a
series of wavelet component as in the following equation:

Table 1: )e EEG signal main human brain frequencies.

EEG bands Frequency (Hz) Main description

Delta 0–4 Deep state of sleep
)eta 4–8 Deep meditation and lucid dreaming
Alpha 8–12 Relaxation/creativity
Beta 12–32 Analytical thinking or stress/anxiety

Gamma
Lower 32–64

Wide brain activities or higher 64–128 brain disorder
Higher 64–128
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s(t) � ∫+∞
a�0
∫+∞
b�0

c(a, b)φa,b(t)da.db, (2)

where C(a, b) is the wavelet coefficient and φa,b(t) the
mother wavelet with “a” the scaling parameter and “b” the
wavelet shifting parameter that determines the shape of the
wavelet. In fact, Figure 2 highlights the difference between
FT and WT decomposition components. Moreover, the
wavelets are characterized by a limited duration, irregularity,
and asymmetricity compared to the predictable, fluid, and
infinitely propagated sinus waveform.

On the other hand, the wavelet transform used in this
study is the stationary one (SWT) instead of the Continuous
Wavelet Transform (CWT) or the Discrete Wavelet
Transform (DWT). In fact, the SWT is more suitable for our
case by avoiding the frequency band overlapping of CWT
[14] and preserving the properties of the signal by averting
the binary decimation process (downsampling) of DWT
[15, 16].

2.3. Levels ofDecomposition andProcessing Steps. In order to
decompose the EEG signal of our dataset that has 2500Hz
sampling rate to extract the five EEG frequency subbands,
we had to reduce the signal to exactly 2048Hz sampling
rate; otherwise, these subbands would be extremely
overlapping. In Figure 3, we display the decomposition of
the resampled EEG signal. We notice here that, in our
previous study [8], we have not resampled the signal as we
extracted only the alpha and gamma waves that were far
separated and did not cause band overlapping issues. Our
decomposition level was 9 to acquire access to the delta
wave frequencies while our previous work needed only 7
levels of decomposition to reach the alpha wave. We can
also notice that, in our previous work, the approximated
coefficients cAi included upper and lower levels (for alpha
wave extraction, the cAi were 6, 7, 8 and cDi was 7), while
for this study, we have included only the above upper levels
for the cAi (for alpha wave extraction, the cAi were 6, 7 and
cDi was 7). )e most studied characteristic of EEG signals
in accordance with alertness level is Power Spectral
Density (PSD) of different brain waves: delta, theta, alpha,
and beta.

As the wavelet decomposition phase is completed, we
evaluate the mother wavelets used in this process and move
on to the source localization. Figure 4 shows the processing
steps of this study.

2.4. /e Evaluation Methods

2.4.1. /e Goodness of Fit (GOF). )e goodness of fit (GOF)
is an evaluation method commonly used for physiological
signals that adopt Pearson’s chi-squared statistical test [17],
which is the normalized sum of squared deviations that
investigate the likelihood of an observed difference in the
frequency distribution compared to the theoretical distri-
bution as in the following equation:

GOF � 1 –
∑r∑r

t�1 s(t) − sf(t)( )2
∑r

t�1 s(t)
2( ), (3)

where s(t) is the theoretical power and sf(t) the power of the
extracted signal that depends on the adopted mother
wavelet.

2.4.2. /e Power Spectral Density (PSD) and Scalp Topographies.
)e Power Spectral Density is a display of the data energy
distribution throughout the frequency spectrum. It is
used as a visual evaluation process for its efficiency in
presenting the data in the frequency domain rather than
the time domain, which allows the identification of the
extracted EEG frequency bands [18]. )e energy fre-
quency distribution of the EEG signal channels compares
the mother wavelets effectiveness in isolating the extracted
frequency band from the other subbands or artifacts and
differentiates its capabilities to amplify the extracted signal
power.

On the other hand, the scalp topographies are another
visual evaluation process since it represents a mapping of the
brain activities distributed on the surface of the scalp. An
increasingly dipolar topography suggests that a cerebral
measurement is an observation of a discharge operation
involving a big number of neurons. Even in nonepileptic
observations of brain activities, the dipolar scalp topogra-
phies are a great indicator of a valuable recording session
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Figure 1: Comparison between the partition of Fourier transform and wavelet transform in the time-frequency domain. (a) Fourier
transform. (b) Wavelet transform.
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since they reflect the domination of certain areas over others
in the energetic exertion, which is the typical and more
natural habit of cerebral behavior [19].

2.4.3. /e Source Localization. )e source localization is an
estimation of the brain activity generator locations [20]. To
reach this estimation, first, we solve the forward problem,
which is a calculation of the field generated by a given source
for an estimated brain shape and conductivity, with a
consideration of numerous properties, such as the shape of
the brain that changes from a subject to another or the
anisotropy conductivity of the skull and the brain

conductivity [21]. For the forward problem, we used the
Boundary Element Model (BEM), which is a surface mesh
calculation of interfaces between the tissues using theMRI of
the patient (which makes it a realistic model) [22]. For the
inverse problem, which is an estimation of the current
generator distribution responsible for the electric EEG
signal, we used the Equivalent Current Dipole (ECD), which
is the most used method to simplify the brain activities in a
few sources [23]. )e signals are assumed to be generated by
a small number of focal sources modeled by current dipoles
(an unknown position, amplitude, and orientation).
Moreover, the extracted signal has to undergo an inde-
pendent component analysis (ICA) dipole fitting operation
as a preprocessing phase before the ECD inverse problem
solution, in order to separate different components and
make the components in a dipolar state useful in the lo-
calization of the source generators. )e ICA is the feature
extraction phase compatible with the statistically indepen-
dent and non-Gaussian signals, which are the traits of the
EEG signal [24] while the ECD and the BEM are our
classification algorithm [25].

In fact, the source localization process is sensitive to the
quality of the extracted EEG frequency band and can also
serve as an evaluation process that depends on the number of
the located sources and the accuracy of their localization.

3. Results

3.1. /e GOF Evaluation Results. )e goodness of fit (GOF)
is the evaluation process that enabled us to minimize both
our wavelet selection and processing criteria. Considering
that the other evaluation methods and the source localiza-
tion are a computationally heavy and costly process, the
GOF is an excellent fast evaluation that relieved us from
repeating the hull processing steps and source localization
for the vast number of 51 mother wavelets. Figure 5 presents
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Figure 3: EEG signal SWT decomposition levels with cAi as the
approximated coefficients and cDi as the detailed coefficients.
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Figure 2: Comparison between (a) FT decomposition component
and different mother wavelets families decomposition components.
(b) Symlets 4 (c) Coiflets 5. (d) Daubechies 11.

51 mother wavelet for SWT
decomposition

EEG signal acquisition
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different mother wavelets families for
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Figure 4: )e cycle of processing steps during this study.
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the GOF results for the 51 mother wavelets with different
SNR values of −5, 10, and 15 dB as we have mentioned in the
dataset descriptions in Section 2, A, 1).

On the other hand, the use of alpha and gamma wave
extraction in GOF evaluation is justified by our earlier
knowledge during our previous study [8] of the excellent
capability of SWT in extracting these specific frequency
subbands.

)e GOF results showed a similar pattern across the
different frequency subbands and different SNR values with
a distinct superiority to sym20, coif5, bior6.8, rbio6.8, and
dmey wavelets.

In order to explore and investigate this superiority, we
have extracted the best mother wavelets of every wavelet
family and the wavelets that already showed some note-
worthy results in other studies, such as sym4 in [8], db5, and
sym6 in [10] and sym9 in [9, 11], in every EEG frequency
subband, as shown in Figure 6.

Besides, after isolating the GOF results about the limited
number of noteworthy wavelets, we notice that the perfor-
mance of the wavelet extraction changes from one frequency
subband to another with an obvious preeminence in gamma
and alpha waves.We also observe that sym4 in [8] is the lowest
in the GOF performance due to the approximated coefficient
choice in the decomposition phase compared to our choice of
approximated coefficient in this study for all the wavelets.

Finally, to lock the GOF evaluation results, we calculated
the noteworthy wavelet average across the five frequency
subbands and ordered them from the lowest performance,
on the left, to the best performance, on the right by their
GOF score in Figure 7. In fact, the best results were achieved
using demy and sym20 wavelets, while the worst results used
sym4 [8] and Haar also.

3.2. /e PSD and Topographies Evaluation Results. )e
Power Spectral Density (PSD) is also an important

evaluation method that grants us a visual representation of
the EEG signal extraction. )e choice of frequency subband
extraction visualization for this evaluation was limited to the
alpha and gamma waves for the confirmed potential of SWT
in their extraction. Moreover, due to the weak energy of the
gamma wave and its proximity to the 50Hz noise artifact of
the original EEG signal dataset, we relied only on the alpha
wave in the PSD visualization as it provides a clear display of
the extraction effectiveness difference between the selected
mother wavelets.

In Figure 8, we compare the EEG signal extraction of the
alpha frequency subband using the different noteworthy
wavelets chosen by the GOF evaluation ordered from the
worst to the best. As we can deduce, the haar and sym4
wavelets, respectively, had the worst results with a signal
spectrum contaminated by different artifacts and other
frequency subbands while sym20 and dmey had the best
results in isolating the extracted signals from other infil-
trating ones. We can also recognize the abilities of the new
SWT decomposition in eliminating high frequency, while
witnessing some difficulties in low-frequency elimination,
such as delta and theta, as demonstrated in the PSD
visualization.

For the scalp topography visualization, almost all the
noteworthy mother wavelets selected by the GOF had
similar good results by producing depolarized scalp to-
pographies isolated from the other frequencies, except for
the Haar and sym4 wavelet extractions, which produced
some interfering artifacts that could compromise the ability
to review the scalp topographies by the medical experts and
mislead them in diagnosing the cause of these parasites.
Figure 9 displays the scalp topographies of the original signal
compared to both the mother wavelet extraction and the
contaminated scalp topographies of Haar and sym4. As an
assessment of the PSD and scalp topography evaluation, the
sym20 and demy mother wavelets demonstrated the best
results while the Haar and sym4 produced the worst ones.

3.3. /e Source Localization. For the source localization, we
performed the Independent Component Analysis (ICA) on
the extracted signals by the noteworthy mother wavelets;
then, we used the BEM for the forward problem and ECD for
the inverse problem. As we have already mentioned, the ICA
is a computationally costly process for feature extraction,
especially with 62 EEG channels for the extraction of the
same number of components before the source localization,
so we reduced the process to include only the alpha and
gamma frequency subbands. )e alpha wave is the most
important brainwave activity in the human brain and the
gamma wave is perceived as an indicator of high active
cognitive state and constantly used in brain malfunction and
disease confirmation [26].

)e ICA was performed using the runica algorithm from
the EEGLAB toolbox [27]. )en, the BEM and ECD were
executed using the fieldtrip toolbox [28]. We set a rejection
threshold for the components based on the Residue Variance
equivalent to RV� 15% as it is the optimum value in
component rejection, as confirmed by Artoni et al. [29]. In
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Figure 10, we present the source localization of the alpha and
gamma extracted waves using the different noteworthy
mother wavelets. As we can see, every mother wavelet ex-
traction has a different number of sources localized under
the Residue Variance (RV) error threshold and different
source locations compared to each other. In order to
evaluate the source localization of our different mother
wavelets, we focus on the number of localized components
by every mother wavelet and the number of times every
mother wavelet has the best accuracy (lower RV value) in
localizing the source of a component and the average of
accuracy in the five first components. )e reason for which
we have included the accuracy of the five first components in
our evaluation is that the ICA using the runica algorithm for
the output components in a decreasing order of the EEG
variance accounted for by each component, that is, the lower

the order of a component, the more data (neural and/or
artifactual) it accounts for [30].

Figure 11 shows the number of components localized by
each mother wavelet in the alpha and gamma frequency
subbands and only the number of components that were not
localized in the other frequency subbands.

An interpretation of the number of localized component
results showed that the sym20mother wavelets produced the
best results followed by Haar and bior6.8, while coif5 had the
lowest number of localized components.

In Figure 12, we explore the accuracy of the noteworthy
mother wavelets in source localization by comparing the
number of times eachmother wavelet managed to record the
lowest RV score. )is chart also considers the localization in
the alpha wave, gamma wave, and the combined best-lo-
calized components of both frequency subbands.
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)e sym20 mother wavelet scored the best accuracy
results followed by Haar and sym9, while rbio 6.8 did not
have even once the best accuracy compared to the other
wavelets for both frequency subbands. We also spot that the

original EEG signal had an impressive accuracy in gamma
wave, which indicates the interference of the other frequency
subbands or the 50Hz noise artifact and compromised the
integrity of the located sources considering that the gamma
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Figure 8: PSD visualization of the different noteworthy mother wavelets in alpha wave extraction.
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Figure 9: A scalp topographies comparison between the original dataset, the noteworthymother wavelets extractions, and the contaminated
scalp topographies of Haar and sym4 wavelets for the five EEG frequencies subbands.

Journal of Healthcare Engineering 7



Alpha components

Gamma components

Unique components in alpha & gamma

Original
dataset

HaarSym4 Db5Sym6 Bior6.8Sym9 Coif5Sym20 DemyRbior6.8

45

40

35

30

25

20

15

10

5

0

10 11

13 13 15 14
14

13
14 14

15

18

8 8
8

8
8 86 6

6

7

11 11 11 1112 12 12 12
14

Source localization components of alpha and
gamma with RV error under 15%

Figure 11: )e number of components localized by the noteworthy mother wavelets in alpha and gamma waves with RV under 15%.

Original dataset

Alpha AlphaGamma Gamma

db5

Coif5

Bior 6.8

Rbio 6.8

dmey

Haar

Sym4

Sym6

Sym9

Sym20

Figure 10: Visualization of the alpha and gamma waves source localization using the noteworthy mother wavelets extractions.

8 Journal of Healthcare Engineering



wave had poor frequency energy that could not produce
such result.

Table 2 presents the final criteria for source localization
evaluation that focuses on the accuracy of the five first
components. )e accuracy is expressed with the RV values,
which means that the lower the RV value is, the better
accuracy will be.

Actually, the best result for the alpha wave was achieved
by bior6.8 while the worst was recorded by the Haar mother
wavelet. For the gamma wave, the Haar mother wavelet
produced the best result, while rbio6.8 extractions were last
compared to the other wavelet extractions. )en, regarding
the combined best-localized components of alpha and
gamma, the sym20 and coif5 shared the first place in
extracting the most accurate first five components, with the
rbio6.8 mother wavelet in the last place.

As an overall perception of the source localization results
in evaluating our mother wavelets, we can classify the sym20
mother wavelet as the best mother wavelet extraction overall,
while the Haar occupies the second place with questionable
results due to our previous readings of the GOF, PSD, and
scalp topographies that proved the interference of frequency
overlapping and noise artifacts in the sincerity of the lo-
calized components. If we eliminate the Haar mother
wavelet, we must crown the bior6.8 mother wavelet the
second place considering the number of localized compo-
nents and the best results achieved in the accuracy average of
the first components in the alpha wave followed by the coif5
and sym9 mother wavelets. While On the other hand, the
dmey produced a somehow moderate result in light of the
promising potential in the earlier evaluations of GOF, PSD,
and scalp topographies. )e least favorite mother wavelet in

Table 2: )e RV average of 5 first components for the noteworthy mother wavelets.

Wavelet
Alpha RV average of 5 first

components
Gamma RV average of 5 first

components
Combined RV average of best 5 first

components

Original
dataset

10.8

Sym4 8.9 9.5 8.6
Sym6 7.8 9.6 7.7
Sym9 6.8 10.2 6.8
Sym20 9.4 9.6 6.2
Haar 10.9 8.3 6.7
Db5 7.8 9.7 7.8
Coif5 8.8 10.2 6.2
Bior6.8 6.7 9.6 6.6
Rbio6.8 9.3 10.4 9.3
demy 9.4 9.6 6.8

Original
dataset

HaarSym4 Db5Sym6 Bior6.8Sym9 Coif5Sym20 DemyRbior6.8

7
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Poll of the best component RV error minimization
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Figure 12: )e number of times each mother wavelet scored the best accuracy for source localization in alpha and gamma waves.
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source localization was the rbio6.8 with the worst accuracy
results recorded by all the noteworthy mother wavelets.

4. Conclusion

In this paper, we have compared 51 different mother
wavelets taken from 7 different families including Haar,
Symlets, Daubechies, Coiflets, DiscreteMeyer, Biorthogonal,
and reverse Biorthogonal, which are applied to source
localization and extraction of EEG signal. For the source
localization performance comparison, the 10 mother wavelets
selected from the 51 mother wavelets produced an adequate
result. However, the sym20 outshined all the other wavelets
and took the lead almost in every evaluation followed by a
notable performance from bior6.8, coif5, and sym9, re-
spectively. )en, the least results were produced by the Haar
and rbio6.8 mother wavelets. As a conclusion, the Symlet
family generates the top results for EEG signal, as dem-
onstrated by our study. )en, bior6.8 and coif5 are the
second important mother wavelets for source localization.

Regarding the evaluation methods, we used the goodness
of fit (GOF), the Power Spectral Density, and scalp to-
pographies in the extraction of EEG frequency subbands
applied to benchmarks containing source localization with
the number of located sources and accuracy of localization.
)e source localization is produced via Stationary Wavelet
Transform (SWT) and an Independent Component Analysis
(ICA) feature extraction followed by Boundary Element
Model (BEM) and Equivalent Current Dipole (ECD) so-
lutions for the forward and inverse problem. Future studies
and advancements could explore the improvement of the
source localization feature extraction or forward and inverse
problem solutions. )e use of artificial intelligence tech-
niques based on the deep neural network could help to
facilitate the simulation and give better results.
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