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Magneto- and electroencephalography (M/EEG) are widespread techniques to

measure neural activity in-vivo at a high temporal resolution but low spatial

resolution. Locating the neural sources underlying the M/EEG poses an inverse

problem, which is ill-posed. We developed a new method based on Recursive

Application of Multiple Signal Classification (MUSIC). Our proposedmethod is able

to recover not only the locations but, in contrast to other inverse solutions, also the

extent of active brain regions flexibly (FLEX-MUSIC). This is achieved by allowing it

to search not only for single dipoles but also dipole clusters of increasing extent to

find the best fit during each recursion. FLEX-MUSIC achieved the highest accuracy

for both single dipole and extended sources compared to all othermethods tested.

Remarkably, FLEX-MUSIC was capable to accurately estimate the level of sparsity

in the source space (r = 0.82), whereas all other approaches tested failed to do

so (r ≤ 0.18). The average computation time of FLEX-MUSIC was considerably

lower compared to a popular Bayesian approach and comparable to that of

another recursive MUSIC approach and eLORETA. FLEX-MUSIC produces only few

errors and was capable to reliably estimate the extent of sources. The accuracy

and low computation time of FLEX-MUSIC renders it an improved technique to

solve M/EEG inverse problems both in neuroscience research and potentially in

pre-surgery diagnostic in epilepsy.

KEYWORDS

electroencephalography (EEG), magnetoencephalography (MEG), inverse problem,

electric source imaging (ESI), Multi-Signal Classification (MUSIC)

1. Introduction

In this paper, we present a novel approach for solving the inverse problem of magneto

and electroencephalography (M/EEG) using truncated recursively applied multi-signal

classification for sources with variable coherent (FLEX-MUSIC). The EEG andMEG inverse

problem is a fundamental challenge in the field of neuroscience, as it involves inferring

the underlying neural activity that generates a given set of EEG or MEG measurements

(Nunez and Srinivasan, 2006; He et al., 2018; Awan et al., 2019; Michel and Brunet,

2019). The problem is that many different configurations of brain activity can cause

the same signal measured on the scalp. Traditional methods for solving this inverse

problem rely on mathematical assumptions that are often not aligned with biophysical
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models of the brain. Others rely on statistical techniques

or optimization algorithms, which can be computationally

expensive and may not scale well to large datasets. Despite the

underdetermined nature of the M/EEG inverse problem, inverse

solutions help researchers and clinicians alike. M/EEG inverse

solutions help researchers gain insights into the spatio-temporal

workings of the brain during, e.g., perceptual and/ or cognitive

processing (Feige et al., 2005; Luck, 2014; Kornmeier et al., 2019).

M/EEG inverse solutions allow for the identification of functional

brain networks and is also used in neurofeedback applications

where participants learn to control brain activity in different

frequency bands within a specified location (van Lutterveld et al.,

2017). Clinicians utilize M/EEG inverse solutions to categorize

brain abnormalities or to guide brain surgery, e.g., in drug-resistant

epileptic patients (Ebersole, 1994; Lantz et al., 1996; Aydin et al.,

2015; Willemse et al., 2016; Sharma et al., 2018).

There are several existing approaches for solving the M/EEG

inverse problem (henceforth referred to as solvers), each with its

own strengths and limitations. A popular class of methods are the

minimum norm estimates (MNE, Hamalainen, 1984; Hämäläinen

and Ilmoniemi, 1994; Pascual-Marqui, 1999) that aim to find a

solution that explains the observed EEG data with minimal energy

of the sources.While these approaches typically incorporate the L2-

norm of the source, L1-type solvers have been proposed and termed

minimum current estimates (MCE) in the domain of M/EEG

inverse problems (Beck and Teboulle, 2009). These L1-type solvers

find sources that are sparse in nature since the imposed L1-penalty

ultimately sets most dipole values close to zero.

Low-resolution tomography (LORETA) and its iterations,

standardized and exact LORETA, fall within this class of solvers

(Pascual-Marqui, 1999, 2002, 2007). While these approaches are

fast to compute and easy to interpret, these approaches often

produce blurred solutions, despite their ability to correctly localize

source maxima.

Beamformers are a class of spatial filtering techniques that

are commonly used to solve the M/EEG inverse problem.

These methods involve constructing a set of spatial filters that

are applied to the measured signals to estimate the neural

activity at each location in the brain. Beamformers can be

effective in certain scenarios but struggle to correctly localize

multiple correlated sources or spatially coherent source activity.

Furthermore, minimum variance beamformers are known to

be sensitive to errors in the forward model. Robust minimum

variance beamformers have shown to mitigate the impact of

modelling errors recently (Hosseini et al., 2018). A commonly used

proponent is the linearly constrained minimum variance (LCMV)

Beamformers (Van Veen et al., 1997; Grech et al., 2008). A novelty

in the field of Beamformers are the multiple constrained minimum

variance (MCMV) Beamformers, which alleviate the problem of

correlated sources (Nunes et al., 2020).

Bayesian methods provide a framework for incorporating prior

knowledge and uncertainty into the inverse solving process (Friston

et al., 2008; Grech et al., 2008;Wipf andNagarajan, 2009;Wipf et al.,

2010). These approaches involve constructing a probabilistic model

of the forward and inverse problems, and then apply Bayesian

inference to estimate the posterior distribution of the neural activity

given the measured M/EEG signals. Bayesian approaches, like

sparse Bayesian learning (SBL, Friston et al., 2008; Wipf and

Nagarajan, 2009), are capable to accurately localize sources under

different sparsity assumptions. However, Bayesian optimization

can often be computationally intensive. This problem is amplified

when many dipoles are present in the source space, exacerbating

the computational load.

A novel class of inverse solvers arose in the past decade that

utilize the recent advances in machine learning, predominantly

artificial neural networks (ANNs) to solve M/EEG inverse

problems. These approaches require training an ANN to produce

a source estimate based on simulated pairs of source and M/EEG

activity and achieve high accuracy compared to many conventional

methods (Cui et al., 2019; Hecker et al., 2020, 2022; Pantazis

and Adler, 2021). ANNs are prone to biases in the training data,

wherefore their application is yet limited.

Multiple Signal Classification (MUSIC, Mosher and Leahy,

1998) and recursively applied (RAP-) MUSIC (Mosher and Leahy,

1999) are popular approaches for solving the M/EEG inverse

problem. Both methods are based on the concept of subspace

estimation, which involves estimating the subspace of the neural

activity from the measured M/EEG signals using singular value

decomposition (SVD).While MUSIC calculates an inverse solution

by applying an SVD on the data covariance matrix in a single step,

RAP-MUSIC extends the MUSIC method by repeatedly applying

the MUSIC algorithm to the measured M/EEG signals. At each

iteration, the estimated signal subspace is used to update the

estimate of the neural activity, and the updated estimate is then used

to update the estimate of the noise subspace. This recursive process

continues until convergence is achieved. An improvement of the

RAP-MUSIC algorithm was proposed by truncating the recursively

calculated subspace with each iteration (TRAP-MUSIC, Mäkelä

et al., 2018). This effectively removes residual variance that could

not be explained in the prior iterations which leads to disturbances

in localization (“RAP dilemma”, cf. Figure 2 in Mäkelä et al., 2018).

Algorithms that follow the RAP-MUSIC-scheme have in

common that a spatially coherent source patch will not be detected

reliably. Approaches to find multiple dipoles per recursion were

proposed by Mosher and Leahy (1998) and Katyal and Schimpf

(2004), albeit with factorial increase in computational complexity.

Liu and Schimpf (2006) introduced a more computationally

efficient way to find extended source clusters by applying

computing a weightedMinimumNorm Estimate (wMNE) solution

on all estimated single dipoles and their respective neighbors. This

step, however, can introduce (1) spurious sources at locations in

which a single dipole would have explained sufficient parts of the

signal subspace and (2) the approach is limited to finding sources of

larger extent beyond single dipoles and their first-order neighbors.

In this paper we summarize the results of our endeavor to

overcome this limitation in creating an analysis algorithm that is

capable to effectively solve the inverse problem in constellations

where established methods do have limitations.

2. Methods

The M/EEG inverse problem refers to the process of inferring

the underlying neural activity that generates a given set of EEG

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1170862
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hecker et al. 10.3389/fnins.2023.1170862

measurements. This problem is a fundamental challenge in the field

of neuroscience, as it involves understanding the spatio-temporal

patterns of neural activity that underlie various cognitive and

behavioral processes.

The EEG inverse problem is described as correctly identifying

the source matrix J ∈ R
p×t that, when multiplied by the leadfield

matrix L ∈ R
q×p (also referred to as gain-matrix) produces the

observed EEG data matrix M ∈ R
q×t with q electrodes, p dipoles

(i.e., positions in the brain) and t time points.

The propagation of neural currents J through the leadfield L is

thus defined as:

M = LJ + ζ , (1)

where ζ is the noise in the EEG data. For simplicity, we assume

dipoles with fixed orientation perpendicular to the cortical surface.

2.1. Multi-Signal Classification (MUSIC) and
its iterations

MUSIC approaches can be interpreted as algorithms that aim

to select candidate dipoles in the brain that explain the signal of the

EEG data. This is accomplished by calculating the signal and noise

subspace of the data covariance C ∈ R
q×q:

C = MMT

UsDsU
T
s = C0,

(2)

where MT denote the transpose of the EEG data matrix

M and C0 denotes the covariance matrix of the noiseless data.

Us denotes the eigenvectors and Ds the eigenvalues that both

belong to the signal subspace. Signal and noise are sought to

be disentangled by selecting only the first n eigenvalues of the

covariance matrix UDUT = C. While this selection is inherently

difficult, it was recommended to overestimate n to avoid losing

parts of the signal subspace (Mosher and Leahy, 1999). We

followed a different approach by algorithmically selecting the set

of eigenvalues belonging to the signal subspace. First, eigenvalues

were normalized to a maximum of 1 by dividing all eigenvalues by

the largest eigenvalue, yielding the normalized set of eigenvalues

D̃. We then calculate the difference from each eigenvalue to the

next eigenvalue, yielding d̃1. Let d̃1 be the set of eigenvalues and

ǫ = 0.01 be the relative selection criterion, which was determined

empirically during our testing phase. The smallest eigenvector ñ

that belongs to the signal subspace is defined as

UDVT = C

ddd = [D1,1,D2,2, ..Dq,q]

d̃ddi =
dddi

max(ddd)

d̃dd1,i = d̃ddi+1 − d̃ddi, ∀i ∈ {2, . . . , q}

ñ = i|d̃ddi < ǫ ≤ d̃ddi−1

(3)

The estimated signal subspace is thus Us = U(1 : ñ) and the

projection to the signal space is defined as Ps = UsU
T
s .

The MUSIC localizer is then calculated as follows:

µp =

∥

∥Psl(p)
∥

∥

2

∥

∥l(p)
∥

∥

2 , (4)

where l(p) denotes the pth column of the leadfield matrix L. The

resulting localizer µ is finally filtered to only contain values above a

certain criterion (typically between 0.9 to 0.99).

Recursively applied MUSIC (RAP-MUSIC) also makes use

of the signal subspace and its projection by iteratively selecting

candidate dipoles as follows. We henceforth describe the RAP-

MUSIC algorithm.

The first candidate is the dipole with the largest source

amplitude in the MUSIC localizer as described above (Eq. 4).

Let Î1 be the topography of the initially selected candidate at

iteration i we construct a set of topographies B = [Î1, ..., Îi] that

stores all topographies of the selected candidates. Using the set of

topographies B ∈ R
q×i at iteration i we define the out-projector

matrix Qi:

Qi = I − BiB
†
i , (5)

where I ∈ R
q×q denotes the identity matrix and B† denotes the

Moore-Penrose pseudo inverse of B.

The updated covariance matrix Ci is then calculated by

multiplying the out-projector matrix by the signal subspace and the

new signal subspace is thusly calculated:

C = QUi

C = UiDiU
T
i

(6)

We then calculate the new signal subspace projection as Pi =

Ui(1 : ñ)Ui(1 : ñ)T . Note, that the number of selected components

can be truncated to Ui(1 : ˜n− k− 1) to alleviate the problem of the

RAP-dilemma (Mäkelä et al., 2018). The (T)RAP-MUSIC localizer

is then calculated as follows:

µµµi(p) =

∥

∥PiQil(p)
∥

∥

2

∥

∥Qil(p)
∥

∥

2 , (7)

where l(p) denotes the pth column of the leadfield matrix L. The

dipole at which ui is maximal is selected as the new candidate ci. The

equations 5, 6 & 7 are iterated while i < q or a stopping criterion is

met. The stopping criterion typically is met when the maximum of

the (T)RAP-MUSIC localizer ui falls below a threshold (in our case

0.975), i.e., when no dipole is able to explain the signal subspace

projection sufficiently.

2.2. FLEX-MUSIC

A new dipole is selected in each iteration of the RAP-MUSIC

algorithm based on the current subspace projection P. As described

by Mäkelä et al. (2018), the selection of the most optimal dipoles

often leaves some residual of the signal subspace projection to
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be explained. One reason for this is that neural sources can

often not be represented by a single dipole due to the functional

coherence in the cortex that is reflected by locally smooth activity

of varying extent. To overcome this limitation we extended the set

of candidate dipoles by multiple sets of smoothly distributed dipole

clusters.

We have therefore calculated gradients Gk ∈ R
p×p for

increasing smoothness orders k ∈ 1, 2, ..., 8. Each gradient Gk

transforms the original leadfield matrix L to leadfield matrices of

increasing smoothness orders Lk as based on the adjacency matrix

A ∈ R
q×q:

G1 = I

G2 = laplacian(A)

Gk = Gk−1A|k > 2

Lk = LGk,

(8)

where S is the largest order of smoothness and I ∈ R
p×p is

the identity matrix. In summary, Eq. 8 states that we create a set

leadfieldmatricesGk with progressing smoothness. This is achieved

using the Laplacian of the adjacency matrix. The adjacency matrix,

also referred to as neighborhood matrix describes which dipoles in

our model are directly connected (i.e., are neighbors).

The selection of the highest smoothness order k depends on the

upper boundary of smoothness to be assumed in the source model

and should be adjusted depending on the number of dipoles in

the source model. Note, that the original leadfield, denoted as L1,

remains, since the respective gradient G1 is the identity matrix.

We calculate the FLEX-MUSIC localizer at iteration i by

µµµi,k =
‖PiQiLk‖

2

‖QiLk‖
2 , (9)

yielding one localizer for each smoothness order k.

The dipole or dipole cluster p̂ (depending on the estimated

optimal smoothness order k̂) at which µµµi,k is maximal is selected

as the new candidate.

We then update the set of topographies B with the newly added

topography L
k̂,p̂
. Furthermore, we update the source covariance

matrix S by adding the column vector of G
k̂,p̂
:

Si = Si−1 + G
k̂,p̂

(10)

FLEX-MUSIC iterates the equations 5, 6, 8, 9 and 10. No

truncation, as done in TRAP-MUSIC, was applied since that yielded

better results during testing.

Unlike MUSIC, the recursive approaches (e.g., RAP-, TRAP-

and FLEX-MUSIC) require a final estimation of the current source

density Ĵ ∈ R
p×t after candidate selection. We use the source

covariance matrix S to calculate a weighted minimum-norm-like

solution:

Ĵ = SLT(LSLT)−1M, (11)

whereM ∈ R
q×t is the EEG or MEG data matrix.

In summary, FLEX-MUSIC further alleviates the RAP-dilemma

of residual variance in the signal subspace projector P. This is

achieved by adding clusters of neighboring dipoles to the set of

candidate dipoles at each recursion step. The algorithm is still

capable to localize single dipoles since they remain part of the

set of candidates (cf. Eq. 8). This renders FLEX-MUSIC a flexible

solution to the M/EEG inverse problem in which the spatial extent

of neural activations is often unknown a priori. In this way, FLEX-

MUSIC increases the probability to identify extended sources and

integrate their extensions into the result source space, instead of

either ignoring the extension or treating the neighboring dipoles as

separate sources.

2.3. Evaluation

In order to evaluate the proposed method, we simulated pairs

of source- and EEG- data using an anatomical template brain

“fsaverage” (Fischl et al., 1999) by the Freesurfer image analysis

suite1. EEG simulations were carried out using a precomputed three

shell boundary element method (BEM; Fuchs et al., 2002) forward

solution as provided by mne-python (v20.3, Gramfort et al., 2013).

Each shell (brain, skull & scalp tissue) was composed of 5120

vertices. The conductivity was set to 0.3S/m2 for brain and scalp

tissue, and 0.06S/m2 for the skull.

The source model was chosen with p = 1, 284 dipoles with

icosahedral spacing. For the EEG electrodes we used the Biosemi

64-channel layout consisting of q = 64 electrodes of the 10-20

system. Using the forward model and the parameters described, we

calculated a leadfield L ∈ R
q×p.

We evaluate our proposed method FLEX-MUSIC by

comparing it to a diverse set of other inverse algorithms

including TRAP-MUSIC, eLORETA, a sparse Bayesian learning

(SBL) approach called Convexity Champagne and the Multiple

Constrained Minimum Variance Beamformer (MCMV, Mosher

and Leahy, 1999; Pascual-Marqui, 2007; Wipf and Nagarajan, 2009;

Mäkelä et al., 2018; Nunes et al., 2020; Cai et al., 2022).

Motivation is given for the choice of each method for solving

the EEG inverse problem. TRAP-MUSIC was chosen as one of the

latest developments of the recursiveMUSIC approaches. eLORETA

is a popular choice in many EEG studies with theoretically low

localization errors, rendering it the most suitable choice within

the minimum-norm family. Convexity Champagne was chosen

as a very recent improvement to the Champagne algorithm.

Champagne was shown to produce fast and accurate solutions

within the framework of empirical Bayes (Wipf et al., 2010). MCMV

is a similar approach as the linearly constrained minimum variance

(LCMV) beamformer. However, it is designed to be less prone to

correlations between sources, rendering it a useful innovation over

LCMV. All methods were implemented in-house and are available

in our python package invertmeeg2.

Optimal regularization of eLORETA, MCMV and Convexity

Champagne was achieved using generalized cross validation (GCV,

Grech et al., 2008) on a set of 7 regularization parameters

1 http://surfer.nmr.mgh.harvard.edu/

2 https://github.com/lukethehecker/invert
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TABLE 1 Simulation parameters.

Parameter Settings
single
dipoles

Settings
extended
dipoles

Domain

Number of samples 500 500 –

Number of available
dipole positions

1,284 1,284 Spatial

Number of available
electrodes

64 64 Spatial

Number of simulated
dipole

[1, 10] [1, 10] Spatial

Neighborhood orders 0 [1, 3] Spatial

Number of simulated
time points

20 20 Temporal

EEG signal-to-noise ratio [0.1, 100] [0.1, 100] Temporal

Parameters and parameter ranges (denoted in square brackets) for the source and EEG

simulations of single and extended dipoles. Diameters are reported in neighborhood orders

(the higher, the larger the diameter of the cluster).

λ = {10−3..., 103}. The MUSIC-type methods (FLEX- and TRAP-

MUSIC) do not require the regularization parameters since the

noise is estimated by selecting the signal subspace.

A set of 1,000 samples consisting of ground truth sources J ∈

R
p×t and corresponding EEGM ∈ R

p×t was simulated in order to

evaluate the accuracy of all solvers.

The number of simulated consecutive time points was set

to t = 20. The simulation parameters are outlined in Table 1.

Half of all samples contained single dipoles, whereby the other

half contained samples of extended dipole clusters with coherent

activity over time. The cluster size was varied in terms of

neighborhood orders, whereas an order of 1 indicates a single

dipole and an order of 2 indicates a dipole including all its

neighbors. The source time course was generated as random

sequence of a colored frequency spectrum as described by the

P(f ) = 1
f beta

, where beta controls the level of temporal smoothness.

Noise was generated as random spatio-temporal white noise with

inter-channel correlation between -1 and 1. The noise was added

to the EEG matrix such that a random signal-to-noise ratio (SNR)

within the given range outlined in Table 1 was achieved. Only white

noise is considered since the presence of colored noise in real data

can be handled by whitening the EEG data as a preprocessing step.

We calculated inverse solutions to each of the simulated

samples of EEG data using the different methods, as described

above. Accuracy of the individual inverse solutions is quantified

by calculating the mean localization error (MLE), Earth Mover’s

Distance (EMD, Hitchcock, 1941) and the mean squared error

(MSE). Furthermore, we quantified the sparsity of each inverse

solution.

We calculated the MLE by first identifying the local maxima

of the ground truth source matrix J and the inverse solution Ĵ and

then calculating the minimum Euclidean distance between each

true dipole location and all estimated dipole locations.

MSE quantifies how close the estimated dipole moments (in

nAm) are to the true dipole moments and was calculated as follows:

MSE(J, Ĵ) =
∥

∥

∥

J − Ĵ
∥

∥

∥

2
(12)

EMD is a measure that calculates the distance between two

distributions. It is a suitable method to quantify the accuracy of

an inverse solution since, unlike MSE, it takes into account the

distance between dipole locations. It was calculated as follows:

EMD(J, Ĵ) =
∑

p

D(J − Ĵ), (13)

where D ∈ R
p×p is the distance matrix containing the

Euclidean distance between each dipole pair. Prior to calculating

the EMD, we have computed the absolute mean over time points

for J and Ĵ and normalized them.

Sparsity was calculated by first normalizing the columns of the

estimated source matrix Ĵ ∈ R
p×t to unit length by division of

the respective columns L2-norm. The L1 norm of the normalized

matrix
∥

∥

∥

Ĵ
∥

∥

∥

1
was then calculated, yielding a metric with an inverse

relationship to sparsity. According to the dogma of Occam’s

Razor, which states that complexity should not be posited without

necessity, we can assume that sparse solutions make the fewest

assumptions about the brain’s activity and are therefore preferred,

given that they explain a sufficient amount of the data.

In summary, the evaluationmetrics described above capture the

accuracy of estimated local maxima positions (MLE), the accuracy

of the global pattern of the inverse solution (EMD), the accuracy of

dipole moments (MSE) and the sparsity of the solution (L1 norm).

3. Results

We calculated the accuracy of all inverse algorithms as

described in the previous section. Exemplary samples of ground

truth source activity and estimated sources are shown in Figure 1.

Figure 2 depicts the Mean Localization Error (MLE), Earth

Mover’s Distance (EMD) and the Mean Squared Error (MSE) for

all inverse solutions of each solver. All metrics are summarized in

Table 2. Samples were divided into those containing single dipole

sources and those containing extended source clusters. FLEX-

and TRAP-MUSIC show overall lowest MLE and EMD for single

dipole sources when compared to all other solvers. Notably, the

median MLE is zero for both MUSIC-based methods, and there

was no significant difference in MLE for single-dipole sources (p =

0.96, t = 0.36, d = 0.02). FLEX- and TRAP-MUSIC did also not

differ significantly in EMD (p = 0.95, t = 0.73, d = 0.05) and

MSE (p = 1.00, t = 0.31, d = 0.02). Champagne produced the

next best accuracies, eLORETA and the MCMV Beamformer show

comparatively poor accuracy in correctly estimating the source

distribution as depicted in relatively high EMD and MSE, whereas

the Convexity Champagne solver lies in-between.

The advantage of the proposed FLEX-MUSIC solver becomes

most apparent for extended sources. While TRAP-MUSIC fails

to accurately localize sources with spatial extent, FLEX-MUSIC

retains the lowest MLE and EMD compared to all other solvers

(Figure 2).

Figure 3 shows the sparsity of the produced inverse solutions

of all solvers, defined as the L1-norm of the L2-normalized source
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FIGURE 1

Examples of ground truth and estimated sources. Exemplary plots of ground truth sources and the estimated sources of FLEX-MUSIC and

comparative approaches. For demonstration purposes, samples were selected based on visibility on the right lateral view. (First Row) Single

non-extended source. (Seconds Row) Multiple non-extended sources. (Third Row) Single extended source. (Fourth row) Multiple extended sources.

Colorbars were adjusted for eLORETA and MCMV to improve visibility of the source pattern. FLEX-MUSIC visibly recovers the actual source extent

whereas all other approaches tested show biases toward single dipoles or extended dipoles.

FIGURE 2

Evaluation of all solvers. Boxplots depict the accuracy of FLEX-MUSIC and all other solvers tested. (Left) Mean Localization Error in mm. (Center)

Earth Mover’s Distance (EMD), (Right) Mean Squared Error. Blue: Single dipoles. Orange: Extended dipoles. Note, that FLEX-MUSIC achieves

competitive accuracy for single-dipole sources and the highest accuracy for samples containing spatially extended sources.

estimate Ĵ. We find that FLEX- and TRAP-MUSIC exhibit the

highest sparsity, MCMV and eLORETA the lowest, and Convexity

Champagne lies in the middle. Interestingly, only FLEX-MUSIC

shows a clear difference in sparsity between samples containing

single dipoles and those containing extended dipole clusters,

which is consequence of its flexibility to estimate sources of

varying extent.

This aspect is shown in detail in Figure 4, depicting each solver’s

capability to recover the spatial level of sparsity in the ground

truth. FLEX-MUSIC shows the highest correlation (r = 0.82)

between the sparsity in the ground truth sources and the sparsity

in the predicted sources. TRAP-MUSIC shows a high correlation

for highly sparse samples and is biased for less sparse samples.

Convexity Champagne produced solutions that were often less

sparse that the ground truth, whereas MCMV and eLORETA had

a strong bias toward finding less sparse activations. Despite the

strong bias, the sparsity of eLORETA was significantly correlated

with the sparsity in the ground truth samples.

Next, we tested the dependence of the inverse solution accuracy

on varying levels of noise. For this comparison we have combined

samples containing single dipoles and those containing extended

dipole clusters (Figure 5). The graph shows that FLEX-MUSIC

yields inverses solutions with the highest accuracy regardless of the

level of noise in the EEG data.

Finally, we analyzed the accuracy of all solvers depending

on a varying number of dipoles/ dipole clusters in the ground

truth (Figure 6). FLEX-MUSIC achieves again the highest accuracy

on all metrics regardless of how many dipoles/ dipole clusters
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were present in the ground truth source. Similar to Champagne,

FLEX-MUSIC showed remarkably lowMSE when multiple sources

were active simultaneously.

FIGURE 3

Sparsity of inverse solutions. Boxplot depicts the L1 norm for all

inverse solvers tested. The L1 norm reflects the level of

“non-sparsity”.

3.1. Computational expense

The computational expense to calculate the EEG inverse

operators is presented in Figure 7 (right). The framework

for these calculations was the invertmeeg library which was

developed in-house in python (https://github.com/lukethehecker/

invert). Although FLEX-MUSIC has some additional processing

steps compared to TRAP-MUSIC, we find that the median

computation time differs only slightly (1t = 0.042s, p =

1.72 · 10−6, t = 5.25, d = 0.23). eLORETA required similar

computation times of 0.32s. Convexity Champagne required the

longest computation time of 2.66s. Note, that eLORETA, Convexity

Champagne and MCMV were re-computed 7 times for varying

levels of regularization. If the optimal regularization parameter

was known in advance, the computation time could be reduced

seven-fold.

4. Discussion

In this work we have presented FLEX-MUSIC, a new

approach to solve the M/EEG inverse problem embedded in the

recursive MUSIC scheme. Similar to the well-known RAP-MUSIC

techniques, it iteratively adds candidate positions to the set of active

sources. In addition to the RAP-MUSIC approaches it adds an

extended dictionary of increasingly smooth source patches.

We have shown that FLEX-MUSIC works as well as TRAP-

MUSIC in scenarios where the EEG was produced by singular

dipole sources. Furthermore, we have shown that FLEX-MUSIC

FIGURE 4

Accuracy in extent estimation. Scatter plots depict the relationship between the L1 norm in the ground truth and the L1 norm in the prediction. The

L1 norm reflects the level of “non-sparsity.” Note, that only FLEX-MUSIC is capable to reproduce the true sparsity with high correlation (r = 0.82).

***p < 0.001.
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FIGURE 5

Dependence on SNR. Accuracy of all solvers separated by the signal-to-noise ratio (SNR) in the simulated EEG samples. (Left) Mean localization Error

for di�erent levels of noise in the EEG data. (Center) Earth Mover’s Distance for di�erent levels of noise in the EEG data. (Right) Mean Squared Error

for di�erent levels of noise in the EEG data. Note that the advantage of FLEX-MUSIC over other solvers persists for varying levels of noise.

TABLE 2 Medians of all metrics.

Method MLE [mm] EMD Mean squared error Sparsity Time [s]

FLEX-MUSIC 2.11 66,291.31 4.15e-07 2.36 0.35

TRAP-MUSIC 5.50 125,233.79 5.37e-07 1.73 0.32

Champagne 7.73 123,775.42 4.67e-07 6.29 2.66

eLOR 19.05 185,186.10 8.16e-07 28.29 0.32

MCMV 16.25 184,793.86 9.65e-07 30.04 1.82

Table depicts the median performance of each solver in each metric considered. Both single-dipole and extended-dipole samples were included in this analysis. Best performance per metric is

highlighted in bold font. MLE: Mean localization error. EMD: Earth Mover’s Distance. Sparsity: Sparsity of the produced inverse solutions. Time: Computation time of the inverse operator.

FIGURE 6

Dependence on number of active sources. Accuracy of all solvers for varying numbers of active sources within the simulated EEG samples. Error bars

depict standard errors of the mean (SEM).

accurately estimates the spatial extent of the underlying sources.

Strikingly, of all inverse solvers tested, only FLEX-MUSIC was

capable of estimating the level of sparsity in the ground truth,

showing the highest correlation between the sparsity levels in the

ground truth sources and the estimated sources or r = 0.82,

whereas the next best solver achieved only a correlation of r = 0.18.

We consider this aspect to be the most compelling argument for

FLEX-MUSIC, since the correct estimation of the extent of neural

generators underlying an M/EEG signal is of high interest for

multiple reasons.

First, as stated above, RAP-MUSIC approaches suffer in general

from what is called the RAP dilemma, i.e., the interference of

residual variance from previous iterations. Since FLEX-MUSIC

is capable to explain a larger portion of the subspace, it

effectively diminishes the residual variance from the previous

iterations, leading to more accurate inverse solutions throughout

all iterations.

Second, good estimations of the extent of neural sources is of

high interest in the pre-surgical diagnostic in epilepsy. Not only

does FLEX-MUSIC more reliably find the true location of the
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FIGURE 7

Time of computation. Boxplot depicts the computation time in

seconds for all inverse solvers tested. Convexity Champagne

requires ten times longer computation time compared to

FLEX-MUSIC.

source maxima regardless of their extent (cf. Figure 2), it is also

capable to isolate the prospective resection area in the brain.

As stated earlier, the recursiveMUSIC approaches are a suitable

option to solve inverse problems where the solution space is

considerably large due to their low computation time and built-

in regularization. While the presented Convexity Champagne has

shown competitive accuracy in many cases, we showed that the

computational expense was almost 10 times higher in our setting.

We further argue that the difference in computational expense may

further increase with larger source models (i.e., higher number of

dipoles), rendering the computation of Bayesian inverse solutions

unfeasible fir certain clinical applications.

The simulations presented in this work contained spherical

sources, similar as to what FLEX-MUSIC is able to model by

progressively smoothing the leadfield. This may have led to

optimistic results, and it is expected that deviant source shapes

(e.g., elliptical) could cause FLEX-MUSIC to perform worse.

However, we have made efforts to simulate a broad set of neural

activity with up to 10 simultaneously active sources. Diverse spatial

patterns of neural activity form when many spherical sources are

combined, e.g., through overlap. FLEX-MUSIC performed well

even under these conditions, as was shown in Figure 6, which

indicates robustness of the algorithm.

A potential weakness of our proposed FLEX-MUSIC algorithm

is that mesoscale brain activity may not be sufficiently modelled

with single dipoles and smooth dipole clusters. Various shapes,

e.g., elliptical coherent sources, may be involved in real-world

M/EEG recordings of brain activity. However, we expect that for

a sufficiently large source model, FLEX-MUSIC should still be able

to reconstruct deviant shapes of sources using the circular smooth

patches. Future improvements of the FLEX-MUSIC algorithm

could involve changing the way the dictionary of candidate dipoles

or dipole clusters is applied. One potentially fruitful modification

may be to find the set of active dipoles that explain the signal

subspace in each iteration is found in a data-driven manner,

unlike the dictionary-like search that we proposed in the present

work. Another idea would be a combination of SBL and FLEX-

MUSIC, in which a small set of active dipoles are added to the

source covariance matrix (cf. Eq. 10) based on the maximum a

posteriori (MAP) estimation. An interesting development of the

recursive MUSIC algorithms was presented recently by Adler et al.

(2022), called Alternating Projections (AP). The approach yielded

lower MLE compared to RAP- and TRAP-MUSIC, especially under

low SNR conditions. It may be promising to translate the idea

of FLEX-MUSIC to the domain of AP, which could potentially

further increase the accuracy of the AP-approach in scenarios

where spatially coherent sources are expected.

A very important finding of the present work, beyond the

performance benefits of FLEX-MUSIC, is that different inverse

solutions applied to the same data set can produce quite divergent

results. In the case of real EEG data, where a ground truth is not

available, we strongly recommend to use different methods for EEG

source calculations in parallel and compare the results with each

other. As we have shown in this work, combining FLEX-MUSIC

and a Champagne algorithm may be useful, although Champagne

may overestimate the size of neural sources in some cases.
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