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A m ?  

A new methad for soume localization is described that is 
based on a nrodijcation of the well-known MUSIC algo- 
rithm. In classical MUSIC, the a m y  manqold vector is 
projected onto an estimate of the signal subspace, but 
emrs  in the estinuue can make location of mvltble soumes 
di@kult, Recutsively applied and projected (RAP) MUSIC 
uses each successively located source to fom an interne- 
diate array gain matrix, ondpmjects both the army mani- 
fold and the signal subspace estimate into its orthogonal 
cofflplement. 7% MUSIC projection is then perfonned in 
this reduced subspace. Using the metric of principal 
angles, we describe a geneml form of the RAP-MUSIC 
algorithm for the case of divemely polarized soumes. 
Tirrough a uniform linear army simulation, we demon- 
strate the improved Monte Carlo performance of 
RAP-MUSIC relative to MUSIC and two other sequential 
subspwe m e t W ,  S and IhS-MVSlC 

I. 1- 

The multiple signal classification (MUSIC) [l, 21 
method for source locallWon is a ~ t a t i o n ~ l y  ~ttrac- 

tive alternative to kast-squaaes, since the locations of each 
source can b e ' f d  w ~ y ,  thus avoiding high dimen- 
sional searches of m-convex cost functions. "bo procS- 
lems, bowever, often arise in practice. First, errors in 
estimting the signal subspace can make it difficult to dif- 
ferentiate "true" fnnn "false" peaks in the MUSIC metric. 
Second autoaatically finding several local maxima in the 
MUSIC metric becomes difkult as the dimension of the 
source space inne;rses. 

We develop here an algorithm, RAP-MUSIC, that 
overcomes these poblems by using a recursive procedure 
in which each source is found as the global maximizerofa 
&Berent cost f'unctioa. In essence, the method works by 
H y i n g  a MUSIC Jearch to a modified problem in which 
we fht~jectboththeesthnatedsignalsubspmandthe 
anay manifold vector away from Me subspace spaaned by 
the s~ l lces  that W e  already been found. We describe the 
RAP-MUSIC method using prJncipa1 angles [3] which 
provide a frameworlt forcompariag signal subspaces and 
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have pfeviously been used in other rebed subspace signal 
p.ocessing pobrems [4, S, 61. 

In Section 2 and 3 we describe the problem formula- 
tion, awl for comparative purpose% we describe classical 
MUSIC in terms of principat angles. We then develop 
RAP-MUSIC in Section 4 for the general case of 
"divewly polarized" soulces [l, 21. A compwi9051 of this 
method, both in terms of formulation using principal angles 
and Monte-Carlo perfonnaace evaluation, is preeremed for 
two alternative sequential algorithms, S- and IES- 
MUstC[7,8]. 

2.Background 

We consider the problem of estimating the paramem 
of r sources impinging on an m sensor element array. 
Each source is replesented by an m > r (possibly complex) 
a m y  manifold vector de). Each source parameter 8 may 
be multidimensional, and the collection of tbe r manifold 
parameters isdesignated 9 = {el, ..., e,}. The manifold 
vectors collectively fam an m x r array transfer mtrix 

(1) 

which we assume to be of full c o b  rank r for a q  set of 
r distinct source parameters 8. Le., no array ambiguities 
exist. Associated with each array vector is a time series 
SO), and the data aae acquired 85 t(t) = A(@)s(t) + r(t) , 
where&) isthevectorof r timeseaiesattimet.Thedata 
are assumed to be white, Le., the additive noip vector qt) 
has zero mean and covariance E{n(t)r ( t ) )  L a,,#, 
where superscript Id" denotes the Hermitian transpose. 

The autoconelation of dt) can be partitioned as 

R = E{x(r)&)) 

A(Q) = [de,), ..., de,)] 

= A@)( E{ s(t)rH(t)})A(0)* + a:# (2) 

3: @[A + &]4' P + @,,A,,@' 
where we have assumed that the time series r(t) ~ I V  uncor- 
related with the noise. We assume that the correlation of the 
signal t i m s  series yields a fgl rank matrix 
P = E(s(t)s (1) )  , p d  A(e)PA(e) can be eigende- 
composed as 4,AaS , such fhat span(A(0)) = span(@$. 
The r eigenvalues of tMs decompositiT combine with the 
mise covariance to fm A, = A + a,f , with the eigen- 
values in the diagonal A, arranged in decreasing order. 
The YgonaI A,, comprJses the m - r repeated eigenval- 
ues a,, . Thus (2) represents the well-known partitioning of 
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the covariance matrix into signal subspace (span(@,) ) and 
noise-only subspace (span(@& ) terms. 

Let R denote the sample covariance matrix estimate 
of R obtained by averaging the outer products of the data 

vectors. Accordingly, we designate the first r eigenvectors 

of R as as, i.e., a set of vectors which span our estimate 
of the signal subspace; similarly we designate the estimated 
noise-only subspace @, using the remaining eigenvectors. 

Finally, we generalize the array manifold vector for the 

case of vector sources representing, for instance, diverse 
polarization [ 1,2] in conventional array processing or cur- 
rent dipoles in EEG and MEG source localization [9, 10, 
111. In this case, the array manifold vector is the product of 
an array matrix and a polarization or orientation vector, 

and we may view the parameter set for each source as 
8 = { p, $} , comprising quasi-linear orientation parame- 
ters $ and nonlinear location parameters p . 

3. MUSIC and principal angles 

The MUSIC algorithm [ 1,2] finds the source locations 
as those for which the corresponding array vector is nearly 
orthogonal to the noise-only subspace, or equivalently, 
projects almost entirely into the estimated signal subspace. 
For the diversely polarized case, the problem becomes 
more complex since the signal or noise-only subspaces 
must be compared with the entire span of the gain matrix 
G(p) . A natural way to compare these two subspaces is 
through use of principal angles [3] or canonical correla- 
tions (Le. the cosines of the principal angles) (cf. [6]). 

Let q denote the minimum of the ranks of two matri- 
ces A and B . The “subspace correlation” is a vector con- 
taining the cosines of the q principal angles that reflect the 
similarity between the subspaces spanned by the columns 
of the two matrices. The elements of the subspace correla- 
tion vector are ranked in decreasing order, and we denote 
the cosine of the smallest principal angle (i.e., the largest 
canonical correlation) as 

If subcorrl(A, B )  = 1 ,  then the two subspaces have at 
least a one dimensional subspace in common. Conversely, 
if subcorrl(A, B )  = 0,  then the two subspaces are 
orthogonal. These subspace correlations are readily com- 
puted using SVDs as described in [3] and reviewed in [9]. 

The MUSIC algorithm finds the source locations as 
those for which the principal angle between the array vec- 
tor and the noise-only subspace is maximum. Equivalently 
the sources are chosen as those that minimize the 
noise-only subspace correlation subcorrl (a(@, @,) or 
equivalently maximize the signal subspace correlation 
subcorrl (a@), Q S ) .  Since the first argument is a vector 

a(e) = G(PN (3) 

subcorrl ( A ,  B )  (4) 

and the second is already orthogonalized, the square of this 
signal subspace correlation is easily shown to be 

H ^  “ H  
A 2 (48) @SO‘S a(@> (5 )  

subcorrl (a@), QS) = 

(a(e) 

where the right hand side is the standard metric used in 

MUSIC [ 1,2]. Practical considerations in low-rankE/MEG 
source localization lead us to prefer the use of the signal 

rather than the noise-only subspace [9, 11, 121. The devel- 
opment below in terms of the signal subspace is readily 
modified to computations in terms of the noise-only sub- 
space. 

Principal angles can also be used to represent the 
MUSIC metric for diversely polarized sources [ 1, 21 and 
EMEG dipole localization [ 101. In this case, the algorithm 
must compare the entire space spanned by the gain matrix 
G(p) with the signal subspace. It is again straightforward 
to equate the subspace correlation with Schmidt’s diversely 
polarized MUSIC solution, 

“ 2  H -  A H  
subcorrl(G(p), 0s) = hmaX(U,@s@s UG) 9 (6) 

where U ,  is the orthogonalization of G(p) and hmm( ) 
is the maximum eigenvalue of the enclosed expression. 

The source locations p can be found as those for 
which (6) is approximately unity. The quasi-linear parame- 
ters $ can then be found as the eigenvector corresponding 
to the maximum eigenvalue in (6). Equivalently, the singu- 
lar vectors from the SVDs performed to compute 
subcorrl ( ) can be used to form $ (see the appendix in 
[9] for further details). 

4. RAP-MUSIC 

If the r -dimensional signal subspace is estimated per- 
fectly, then the sources are simply found as the r global 
maximizers of (6). Errors in our estimate &s reduce (6) to 
a function with a single global maximum and at least 
( r  - 1) local maxima. Finding the first source is simple: 
over a sufficiently densely sampled grid of the nonlinear 
parameter space p , find the global maximum of (6), 

(7) 

We then extract the corresponding eigenvector to form the 
quasi-linear parameter estimate 4, The estimate of the 
parameters of the first source is denoted 61 = { P l ,  
and the first estimated array manifold vector is formed as 

P l  = arg rnax(subcorrl (G(p), OS)) 
P 

a@1> = G(ijl)4l (8) 

Identifying the remaining local maxima becomes more 
difficult since nonlinear search techniques may m i s s  shal- 
low or adjacent peaks and return to a previous peak. We 
also need to locate the r best peaks, rather than any r local 
maxima. Numerous techniques have been proposed in the 
past to enhance the “peak-like” nature of the spectrum (cf. 
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[4]), so that identifying these peaks becomes simpler. 
Nonetheless, “peak-picking” algorithms rapidly become 
complex and subjective as the number of sources increases 
and the dimensionality of p increases. 

The novelty of RAP-MUSIC is to avoid this peak-pick- 
ing problem entirely. We instead remove the component of 

the signal subspace that is spanned by the first source, then 
perform a search to find the second source as the global 
maximizer over this modified subspace. In this way we 
replace the problem of finding r local maxima with one in 
which we recursively find the sources by finding r global 
maxima. 

The method can be viewed simply in terms of the sub- 
space correlation functions described above. Define the 
orthogonal projection operation for a(61) as 

(9) 

and apply this operator to both arguments of the 
subcorrl( ) function. The second source is then found as 
the global maximizer 

%61) = ( 1  - (a(61)aH(61))/(aH(61)a(e1))) 

Here we have projected both our signal subspace esti- 
mate and the multidimensional array manifold away from 
the first solution, then found the maximum subspace corre- 
lation (minimum principal angle) between these two pro- 
jected spaces. After the maximization, the quasi-linear 
parameters are again easily extracted and the second array 
manifold vector estimated as 4 6 2 )  = G ( l j 2 ) 4 2 .  We then 
form the orthogonal projection operator for the combina- 
tion of the first two sources, and proceed recursively. 

By extension, the kth recursion, k = 1, ..., r ,  of 
RAP-MUSIC is 

where we define 

a k -  1 E [a(&) ... a(&- I)] (12) 

as formed from the array manifold estimates of the previ- 
ous k -  1 recursions, and 

is the orthogonal projection operator for this matrix. 

5. Other sequential forms of MUSIC 

In [9], we introduced a preliminary version of 
RAP-MUSIC that we now refer to as R-MUSIC?, develop- 
ing the algorithm from a subspace “distance” perspective 
[3], with specific application to the EMEG source localiza- 

?In [9, 131, we referred to R-MUSIC as RAP-MUSIC, and while related, 

these two methods are distinct. 

tion problem. Successful demonstration of R-MUSIC in a 
blind test for EMEG source localization can be found in 
[ 131, and a more complete description of the application of 
R-MUSIC to the EMEG problem can be found in [l 11. 

To demonstrate the promise of RAP-MUSIC, we 
present here a comparison with classical MUSIC and two 
other “sequential” methods: S-MUSIC [7] and 
IES-MUSIC [8]. While the RAP-MUSIC method is appli- 
cable to any problem for which MUSIC can be used, we 
restrict our discussion here to a scalar source parameter 8 
and to two sources. All of the methods used in our compar- 
ison find the first source in the Same way, i.e. as the global 
maximizer of subcorrl (a@) ,  a,). The manner in which 
the second source is found differs for each method. 

In S-MUSIC [7], we apply the projection operator (9) 
only to the array manifold and find the second source as 
arg m a e  g(8) , where 

In IES-MUSIC [8], the denominator of (14) is dropped 
and the following modification used 

g(8, = 

This measure is equivalent to S-MUSIC for p = 1 and 
MUSIC for p = 0 .  In [8], an optimal scalar p is derived 
for the case of two sources, but this scalar requires knowl- 
edge of the two sources 8, and 8,. Since these parameters 
are unknown, IES-MUSIC first obtains the estimated loca- 
tions 8, and 8, from another approach, such as MUSIC, 
from which it forms the estimate p . After this step g ( 8 , p )  
is maximized to find the second source. 

These algorithms may be summarized and compared 
using the subspace correlation function as follows. 

MUSIC: 

6 2  = arg mambcorrl {a@), 6s} 6 2  # 61 (16) 

S-MUSIC: 
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RAP-MUSIC: 

In (17) and (la),  the first argument is a vector and the 
second argument is already orthogonal. Thus (17) and (18) 
are readily seen to be equivalent to (14) and (15), respec- 
tively. Conversely, by explicitly forming the orthogonaliza- 
tions required in (19), we may express RAP-MUSIC in a 
form comparable to (14) and (15) as 

To form this equivalence we have orthogonalized the pro- 
jected signal subspace using an SVD as 

and retained only the non-zero singular value components 
of (21). We note that 

and substitution using (22) and the idempotent property of 
projection operators yields (20). 

When viewed in terms of the subspace correlations, we 
see that the clear difference between RAP-MUSIC and the 
other sequential forms is that the projection operator is 
applied to both arguments before computing the subspace 
correlation, rather than just to the array manifold as in the 
case of S and IES MUSIC. 

6. Simulation 

We have followed the simulations in [SI in order to 
draw performance comparisons between these various 
forms of recursive MUSIC. The sensor array is the conven- 
tional uniform linear array of sensors spaced a half-wave- 
length apart. The sources are far-field narrow-band and 
impinging on the array from scalar direction 8 .  The array 
manifold vector may therefore be specified as 

insine in(m-l)sine T 
a(8) = [ l ,  e , ..., e 1 1  

where 8 = 0 is broadside to the array, and lla<8)112 = m . 
The source time series are assumed to be complex 
zero-mean Gaussian sequences with covariance matrix P . 
We assume fifteen sensor elements and two sources at 25 
and 30 degrees. The source covariance matrix is specified 
as 

P = I l*yI 

where IyI 5 1 determines the degree of correlation between 
these two sources of equal power. The variance of the noise 
is set to unity, such that the signal to noise power ratio is 
also unity. 

We simulate n samples of both the signal and noise, 
form the estimated data covariance matrix, then extract the 
matrix &s comprising the two estimated signal subspace 
vectors. The noise variance is estimated as the mean of the 
noise-only subspace eigenvalues. For each realization, we 
find the maxima of the MUSIC measure in a region about 
each of the true solutions. The source with the better corre- 
lation was considered source 8 , .  The second source 
8, was then found by maximizing the appropriate measure, 
(16)-(19). Since IES-MUSIC is a “two-pass” algorithm, 
i.e., it requires an initial estimate of both source parame- 
ters, we used the RAP-MUSIC source estimates for the ini- 
tial estimate, as the RAP-MUSIC solution was on average 
superior to the MUSIC and S-MUSIC estimates. We also 
ran as a comparison IES-MUSIC with p set to the true 
optimal value using the true source angles. 

In [SI, closed-form formulae are presented for calcu- 
lating the theoretical error variance of MUSIC, S-MUSIC, 
and IES-MUSIC. For each estimator, we also calculated a 
numerical root mean squared (RMS) error, 

where &(i) represents the estimate from the i th Monte 
Carlo run. In each of these runs, we determined which of 
the two MUSIC peaks in the regions about the true answer 
was greater and declared this source as 61. We then esti- 
mated the second source, then tabulated the actual number 
of runs used for both 8, = 25 or 30 degrees, which is 
approximately evenly split at about 250 Monte Carlo runs 
each. 

In Table 1, we held the number of time samples con- 
stant at n = 1000 and varied the degree of correlation 
between the two sources. For uncorrelated sources, y = 0 ,  
all measures performed similarly, as also demonstrated in 
[SI. The differences in performance begin to arise at 
y = 0.7, as tabulated in our table, where we observe that 
IES-MUSIC and RAP-MUSIC have RMS error about 25% 
better than MUSIC and S-MUSIC. At y = 0.925, we see 
that RAP-MUSIC continues to have performance compara- 
ble to that of perfect IES-MUSIC, but that estimated 
IES-MUSIC is beginning to degrade in comparison; 
MUSIC and S-MUSIC have RMS error almost twice that 
of IES-MUSIC and RAP-MUSIC at this point. By 
y = 0.975, all methods are experiencing comparable dif- 
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RAP-MUSIC 

RMS err, fi 0.946 0.919 0.189 0.184 0.110 0.116 0.084 0.084 0.071 0.075 0.063 0.068 

RMS err 0.879 0.863 0.150 0.153 0.083 0.093 0.070 0.070 0.067 0.069 0.061 0.065 

ficulty in estimating the sources. MUSIC is particularly 
poor at this correlation, since in many trials an adequately 
detectable peak did not occur in the region around the true 
answer. 

In general, the RMS error of MUSIC and S-MUSIC 
match the theoretical bounds established in [SI quite well, 
and our RMS errors agree well with those presented in [SI 
for their comparable cases. RAP-MUSIC consistently 
maintains an improved RMS error over that  of 
IES-MUSIC, and we note again that IES-MUSIC depends 
on some other technique in order to arrive at an initial set 
of source estimates. IES-MUSIC performance using the 
optimally designed p agrees quite well with the theoretical 
bounds, but this performance obviously requires prior 
knowledge of the true solution. 

These RMS errors were calculated at a relatively large 
number of time samples. We also tested small sample per- 
formance, in which we held the correlation constant at 
y = 0.9 and varied the number of time samples; for brev- 
ity we do not include the table of results. At lower numbers 
of time samples, we generally had a difficult task determin- 
ing a second MUSIC peak, and the MUSIC results were 
unreliable. As in Table 1, RAP-MUSIC consistently main- 

tained improved performance over the other methods, and 
the performances were generally in good agreement with 
the theoretical bounds established by [SI. 
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